EP2185297B1 - Dedusting method and corresponding dedusting device - Google Patents
Dedusting method and corresponding dedusting device Download PDFInfo
- Publication number
- EP2185297B1 EP2185297B1 EP08838142A EP08838142A EP2185297B1 EP 2185297 B1 EP2185297 B1 EP 2185297B1 EP 08838142 A EP08838142 A EP 08838142A EP 08838142 A EP08838142 A EP 08838142A EP 2185297 B1 EP2185297 B1 EP 2185297B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dedusting
- ist
- tool
- dedusted
- drive motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000003595 mist Substances 0.000 claims abstract 9
- 238000010422 painting Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 2
- 230000032258 transport Effects 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 210000000707 wrist Anatomy 0.000 claims 1
- 238000007654 immersion Methods 0.000 description 33
- 238000004140 cleaning Methods 0.000 description 21
- 238000012937 correction Methods 0.000 description 12
- 238000005406 washing Methods 0.000 description 11
- 230000006978 adaptation Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000003973 paint Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B13/00—Brushes with driven brush bodies or carriers
- A46B13/02—Brushes with driven brush bodies or carriers power-driven carriers
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B3/00—Brushes characterised by the way in which the bristles are fixed or joined in or on the brush body or carrier
- A46B3/18—Brushes characterised by the way in which the bristles are fixed or joined in or on the brush body or carrier the bristles being fixed on or between belts or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B2200/00—Brushes characterized by their functions, uses or applications
- A46B2200/30—Brushes for cleaning or polishing
- A46B2200/3026—Dusting brush
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B2200/00—Brushes characterized by their functions, uses or applications
- A46B2200/30—Brushes for cleaning or polishing
- A46B2200/3046—Brushes for cleaning cars or parts thereof
Definitions
- the invention relates to a dedusting method for dry or moist defrosting of motor vehicle body components according to the preamble of patent claim 1.
- the invention relates to a dedusting device for dedusting of motor vehicle body components by means of a sword brush according to the preamble of claim 9.
- a method and a device of this kind is example, from the DE-A-103 60 649 known.
- the vehicle bodywork components to be painted must be dedusted before the actual painting operation, for which purpose so-called sword brushes can be used, which can be used, for example, in DE 43 14 046 A1 .
- DE 103 60 649 A1 and DE 103 29 499 B3 are described.
- the sword brush is in this case mounted on a hand axis of a multi-axis robot and is guided by the robot on the dedusting surfaces of the vehicle bodywork components to be painted, the sword brush dusting the dust to be dedusted surfaces.
- the cleaning brushes mounted on the rotating brush belt of the sword brush have to be dedusted Touch surfaces to remove dust.
- a certain distance between the rotating dedusting band of the sword brush and the dedusting surface must not be exceeded, since the dedusting brushes are more deformed with increasing depth of immersion, resulting in damage to the cleaning brushes and in the worst case to a collision between the sword brush and the dedusting Can lead component.
- the cleaning result with sword brushes depends on the immersion depth, whereby an optimal cleaning result can only be achieved if the immersion depth remains within a certain range.
- the low positioning tolerance of the known sword brushes is particularly problematic because the positioning of the dedusting motor vehicle body parts in a paint shop only with a relatively low positioning accuracy is possible, which would have to be absorbed by the sword brush.
- vehicle body components can have tolerances of up to one centimeter in their dimensions, which can not be changed.
- the tolerance deviations in the positioning of the dedusting motor vehicle body components therefore exceed the possibilities of tolerance compensation of the sword brush and occasionally lead to a production stoppage by triggering a collision protection.
- the tolerance range of the immersion depth in sword brushes is considerably smaller than in the abovementioned large-scale washing systems for aircraft.
- sword brushes are not only used for dedusting flat surfaces, but are also used for dedusting curved surfaces.
- the drive torque of the sword brush motor is not a suitable measure of the depth of immersion when dedusting curved surfaces.
- a cleaning device which is used for cleaning windshields for motor vehicles.
- a rotating cleaning brush is positioned so that the axis of rotation of the cleaning brush always runs parallel to the curved surface of the windshield.
- the movement path of the cleaning brush is programmed in advance in a teaching mode.
- the invention is therefore based on a dedusting method or a corresponding dedusting device, as defined in the preamble of the independent claims and, for example DE 103 60 649 A1 are known.
- the invention is therefore based on the object to achieve the greatest possible positioning tolerance when using a sword brush for dedusting of motor vehicle body components in order to avoid the disruptive production stoppages caused by the triggering of collision protection.
- the invention conveys the principle mentioned in the abovementioned dissertation by Klaus Dieter Rupp of regulating the immersion depth taking into account the drive torque of the brush motor for the first time on a dedusting device for motor vehicle body components. This is made possible according to the invention by also determining the surface shape of the component to be dedusted and taking it into account in the position correction. In this way, independent of the immersion depth effects of different shapes of dedusting surfaces on the torque of the sword brush motor can be considered.
- the invention therefore provides a dedusting method in which a dedusting tool (e.g., a sword brush) driven by a drive motor is brought to a predetermined dedusting position so that the dedusting tool contacts and dedusts the component to be dedusted.
- a dedusting tool e.g., a sword brush
- the default dedusting position is typically a track point on a robotic track that can be "taught" by an operator.
- a first operation amount (e.g., torque) of the deduster tool driving motor is detected, the first operation amount representing the mechanical load of the drive motor by the contact with the part to be dedusted.
- a corrected dedusting position is then calculated that takes into account the positional tolerances of the vehicle body components to be dedusted and thereby enables compliance with a narrow tolerance field of the immersion depth of the sword brush.
- the dedusting tool is then brought into the dedusting position thus corrected.
- the corrected dedusting position is calculated not only as a function of the first operating variable of the drive motor and the predetermined dedusting position, but also as a function of a form factor which represents the surface shape of the component to be dedusted at the predetermined dedusting position. This is useful because the surface shape of the vehicle body component to be dedusted, in addition to the immersion depth, likewise influences the load torque of the drive motor and should therefore be taken into account in the calculation of the corrected dedusting position.
- the form factor can be determined by means of a sensor which measures the deflection of the dedusting belt of the sword brush, since a convex surface of the components to be dedusted, with otherwise identical immersion depth, leads to a greater deflection of the dust removal belt than a flat surface of the components to be dedusted.
- a second amount of operation (e.g., speed) of the drive motor of the dedusting tool is determined and also taken into account in the calculation of the corrected dedusting position.
- the corrected dedusting position is thus calculated as a function of the predetermined dedusting position, the first operating variable (for example the torque) and the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool.
- the dedusting tool in the context of the invention is preferably a sword brush, which as such is brush-filled Dedusting tape which is guided around two pulleys.
- sword brushes are for example off DE 43 14 046 A1 and DE 103 29 499 B3 It should be noted that, with regard to the construction and functioning of sword brushes, reference is made to these two publications, the content of which is fully attributable to the present description.
- dust removal used in the context of the invention is not limited to a liquid-free dedusting. Rather, it is within the scope of the invention, the possibility that in the dedusting a cleaning and antistatic liquid is applied to the surfaces to be dedusted to improve the cleaning effect, as for example DE 199 20 250 A1 is known, so that the content of this patent application is fully attributable to the present description.
- a liquid film is applied to the dedusting component surfaces in the dedusting.
- the term dedusting therefore encompasses both dry dedusting and wet dedusting.
- the term dedusting in the context of the invention is to be distinguished from washing methods which not only produce a liquid film on the component surface, but apply larger quantities of a washing liquid.
- the invention is not limited to dedusting and dedusting facilities, in which the corrected dedusting position is calculated as a function of the torque and the speed of the sword brush motor and in dependence on the surface shape of the component to be dedusted. Rather, other operating variables of the dedusting tool can also be taken into account when calculating the corrected dedusting position.
- the dedusting tool is positioned by a multi-axis dedusting robot, wherein the assembly of the sword brush on a hand axis of the dedusting robot is particularly advantageous.
- the components to be dedusted are preferably transported by means of a conveyor along a conveying path past the dedusting robot.
- the conveyor also has positioning inaccuracies, which add up to the above-mentioned positioning inaccuracies and therefore also have to be compensated or tolerated by the dedusting tool.
- the position of the component to be dedusted is determined on the conveying path, for which purpose, for example, a position sensor can be used.
- the corrected dedusting position is then also calculated as a function of the determined position of the component to be dedusted. In this way, the positioning inaccuracy of the conveyor can be compensated and thus does not have to be absorbed by the dedusting tool.
- the sensors mentioned above may, for example, be ultrasonic sensors, optical sensors, force sensors or strain gauges (DMS).
- DMS strain gauges
- a correction of the dedusting position is made in order to keep the immersion depth of the heavy brush within the predetermined tolerance field.
- the invention comprises not only the above-described dedusting method according to the invention, but also a dedusting device in which the dedusting position is corrected by means of an adaptation unit in order to keep the immersion depth of the dedusting tool within a predetermined tolerance field.
- the adaptation unit continuously calculates a corrected dedusting position in dependence on the first operating variable (for example the torque), the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool and / or depending on the form factor, which represents the surface shape of the component to be dedusted.
- first operating variable for example the torque
- second operating variable for example the rotational speed
- the invention also includes a painting installation with one or more paint booths and the dedusting device according to the invention.
- FIGS. 1A and 1B show in simplified form a sword brush 1, as for example in DE 43 14 046 A1 and DE 103 29 499 B3 is described so that with regard to the further details of the sword brush 1 reference is also made to these documents, the contents of the present description with regard to the structure and operation of the sword brush 1 is fully attributable.
- the sword brush 1 has two parallel deflection rollers 2, 3, around which a dedusting belt 4 is guided, wherein the dedusting belt 4 carries dedusting brushes 5 on its outside.
- the sword brush 1 is positioned so that the lower, pulled run of the dedusting belt 4 presses with the dedusting brushes 5 against the body surface 6.
- the dedusting brushes 5 have a free length 1 in the unloaded state, while a distance d lies between the lower, drawn strand of the dedusting belt 4 and the bodywork surface 6 to be dedusted.
- This results in an immersion depth T 1-d. It is important that the immersion depth T remains within a predetermined tolerance field, since a too small immersion depth T leads to an unsatisfactory dedusting effect, whereas a too large immersion depth T causes a strong wear of the dedusting brushes 5.
- the immersion depth T also has an influence on the cleaning result, with an optimum cleaning result presupposing that the immersion depth T is within a certain range T MIN ⁇ T ⁇ T MAX .
- Figure 1A shows here the use of the sword brush 1 for dedusting the flat body surface 6, whereas the body surface 6 in FIG. 1B is convex, which leads to a deflection a actual of the lower, pulled run of the dedusting belt 4.
- the deflection a IST of the lower, pulled run of the dedusting belt 4 increases the torque M IST acting on a drive motor 7 of the sword brush 1, which is important for the dedusting method according to the invention.
- the dedusting method according to the invention evaluates the torque M IST of the drive motor 7 of the sword brush 1 as a measure of the immersion depth T of the sword brush 1 in order to compensate for positional tolerances of the body surface 6 to be dedusted.
- the sword brush 1 is mounted on a multi-axis hand axis of a multi-axis dedusting robot 8, which allows a free positioning of the sword brush 1.
- the vehicle body components to be dedusted are transported by a linear conveyor 9 along a conveying path past the dedusting robot 8, so that the dedusting robot 8 can guide the sword brush 1 over the body surfaces 6 to be dedusted.
- the current spatial position and orientation of the sword brush 1 is here by a position vector P IS reproduced and regulated by a control unit 10 according to a predetermined, taught robot path.
- control unit 10 on a robot track generator 11 the position vectors for previously programmed robot tracks P TEACH outputs the position of a Tool Center Point (TCP) of the Sword Brush 1 and the orientation of the Sword Brush 1 for the individual path points.
- TCP Tool Center Point
- the position vectors P TEACH are then output from an adder 12 with a correction value ⁇ P to a corrected position vector P KORR converted, as will be described in detail later.
- the corrected position vectors P KORR in the spatial coordinates are then fed to a robot controller 13, which converts the spatial coordinates into axis coordinates and controls the dedusting robot 8 accordingly.
- control unit 10 has an adaptation unit 14 which stores the correction value ⁇ P calculated and thereby compensates for positioning inaccuracies of the dedusting body surfaces 6.
- the dedusting device therefore has a torque sensor 15, which determines the torque M actual of the drive motor 7 of the sword brush 1 and forwards it to the adaptation unit 14 for evaluation.
- the torque M actual is not measured by the separate torque sensor 15, but is derived from the electrical operating variables of the drive motor 7, so that the torque sensor 15 can be dispensed with.
- the torque M IS of the drive motor 7 of the sword brush 1 is not only influenced by the immersion depth T of the sword brush 1, but also by the shape of the body surface to be dedusted 6.
- the convex body surface 6 causes FIG. 1B at the same immersion depth T a larger torque M IS than the flat body surface 6 according to Figure 1A ,
- FIG. 1B shows an idealized state in which the immersion depth over the entire length of the sword brush 1 is constant. In practice, however, the immersion depth T varies over the length of the sword brush 1, since the dedusting brushes 5 each represent a spring.
- the adaptation unit 14 therefore takes into account in the calculation of the correction value P not only the torque M IS of the drive motor 7 of the sword brush 1, but also a deflection a IST of the lower, pulled run of Entustaubungsbands 4, since the deflection a IST forms a form factor, which reflects the surface shape of the dedusted body surface 6.
- the deflection A is the lower, drawn strand
- the dedusting belt is measured by a deflection sensor 16, which may be designed, for example, as an optical sensor or as an ultrasonic sensor.
- the dedusting device in this exemplary embodiment has a rotational speed sensor 17, which measures a rotational speed n IST of the drive motor 7 of the sword brush 1 and forwards it to the adaptation unit 14, so that in the calculation of the correction value P also the speed n IST is taken into account.
- the vehicle body parts to be dedusted are transported by a linear conveyor 9 along a conveying path past the dedusting robot 8, wherein the linear conveyor 9 also has positioning inaccuracies which must be absorbed or compensated by the dedusting device according to the invention.
- the dedusting device according to the invention therefore has a position sensor 18 which measures a position s IST of the motor vehicle body components to be dedusted along the conveying path and forwards them to the adaptation unit 14.
- the adaptation unit 14 calculates the correction value P also as a function of the measured position s IST of the vehicle body components to be dedusted on the conveyor, whereby positioning inaccuracies of the linear conveyor 9 are compensated.
- a robot path is first programmed ("taught"), which is known per se from the prior art and therefore need not be described in detail.
- the programming of the desired robot path can be done offline, i. E. without the dedusting robot making a real move.
- the distributed by the applicant programming software "3D OnSite" can be used.
- step S2 then the respective next track point P TEACH controlled on the previously programmed robot path .
- the correction value then becomes the previously measured quantities P calculated, the calculation of the correction value P can be done using predetermined maps.
- step S8 is then from the predetermined path point P TEACH and the correction value P a corrected track point P KORR calculated.
- the robot controller 13 calculates the corrected path point P KORR from the space coordinates in axis coordinates and controls the Entustaubungsroboter 8 in a next step S10 accordingly.
- steps S3 to S10 are then repeated in a loop until it is determined in a step S11 that the corrected path point P KORR is reached.
- step S12 it is then checked in a step S12 whether the predetermined robot path has ended. If this is not the case, the steps S2 to S11 are repeated in a loop, wherein in each case the next path point P TEACH the predetermined robot path is controlled.
Landscapes
- Cleaning In General (AREA)
- Manipulator (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
Abstract
Description
Die Erfindung betrifft ein Entstaubungsverfahren zur trockenen oder feuchten Entstautung von Kraftfahrzeugkarosseriebauteilen gemäß dem Oberbegriff des Patent-anspruchs 1.The invention relates to a dedusting method for dry or moist defrosting of motor vehicle body components according to the preamble of
Weiterhin betrifft die Erfindung eine Entstaubungseinrichtung zur Entstaubung von Kraftfahrzeugkarosseriebauteilen mittels einer Schwertbürste gemäß dem Oberbegriff des Patentanspruchs 9.Furthermore, the invention relates to a dedusting device for dedusting of motor vehicle body components by means of a sword brush according to the preamble of
Ein Verfahren und eine Vorrichtung diese Art ist beispiels weise aus der
In Lackieranlagen für Kraftfahrzeugkarosseriebauteile müssen die zu lackierenden Kraftfahrzeugkarosseriebauteile vor dem eigentlichen Lackiervorgang entstaubt werden, wozu sogenannte Schwertbürsten eingesetzt werden können, die beispielsweise in
Problematisch an der Verwendung von Schwertbürsten zur Entstaubung von Kraftfahrzeugkarosseriebauteilen ist die geringe Toleranz von Schwertbürsten hinsichtlich der Eintauchtiefe.The problem with the use of sword brushes for dedusting of motor vehicle body components is the low tolerance of sword brushes with respect to the immersion depth.
Einerseits müssen die auf dem umlaufenden Bürstenband der Schwertbürste angebrachten Reinigungsbürsten die zu entstaubenden Oberflächen berühren, um diese zu entstauben. Andererseits darf ein bestimmter Abstand zwischen dem umlaufenden Entstaubungsband der Schwertbürste und der zu entstaubenden Oberfläche nicht unterschritten werden, da die Entstaubungsbürsten mit zunehmender Eintauchtiefe stärker deformiert werden, was zu Beschädigungen an den Reinigungsbürsten und im schlimmsten Fall zu einer Kollision zwischen der Schwertbürste und dem zu entstaubenden Bauteil führen kann.On the one hand, the cleaning brushes mounted on the rotating brush belt of the sword brush have to be dedusted Touch surfaces to remove dust. On the other hand, a certain distance between the rotating dedusting band of the sword brush and the dedusting surface must not be exceeded, since the dedusting brushes are more deformed with increasing depth of immersion, resulting in damage to the cleaning brushes and in the worst case to a collision between the sword brush and the dedusting Can lead component.
Darüber hinaus ist das Reinigungsergebnis bei Schwertbürsten von der Eintauchtiefe abhängig, wobei sich ein optimales Reinigungsergebnis nur erzielen lässt, wenn die Eintauchtiefe innerhalb eines bestimmten Bereichs bleibt.In addition, the cleaning result with sword brushes depends on the immersion depth, whereby an optimal cleaning result can only be achieved if the immersion depth remains within a certain range.
Die geringe Positionierungstoleranz der bekannten Schwertbürsten ist insbesondere deswegen problematisch, weil die Positionierung der zu entstaubenden Kraftfahrzeugkarosseriebauteile in einer Lackieranlage nur mit einer relativ geringen Positionierungsgenauigkeit möglich ist, die von der Schwertbürste aufgenommen werden müssten.The low positioning tolerance of the known sword brushes is particularly problematic because the positioning of the dedusting motor vehicle body parts in a paint shop only with a relatively low positioning accuracy is possible, which would have to be absorbed by the sword brush.
Ein Grund für die geringe Positionierungsgenauigkeit der zu entstaubenden Kraftfahrzeugkarosseriebauteile besteht darin, dass die Kraftfahrzeugkarosseriebauteile in ihren Abmessungen Toleranzen von bis zu einem Zentimeter aufweisen können, was sich nicht verändern lässt.One reason for the low positioning accuracy of the vehicle body components to be dedusted is that the vehicle body components can have tolerances of up to one centimeter in their dimensions, which can not be changed.
Ein weiterer Grund für die geringe Positionierungsgenauigkeit der zu entstaubenden Kraftfahrzeugkarosseriebauteile besteht darin, dass die Fördertechnik toleranzbehaftet ist, was sich nur mit hohen Investitionen in die Fördertechnik ändern ließe.Another reason for the low positioning accuracy of the dedusted motor vehicle body components is that the conveyor technology is subject to tolerances, which could be changed only with high investments in conveyor technology.
Schließlich besteht ein Grund für die geringe Positionierungsgenauigkeit der zu entstaubenden Kraftfahrzeugkarosseriebauteile darin, dass die Kraftfahrzeugkarosseriebauteile von einem Gestell (engl. "Skid") toleranzbehaftet aufgenommen werden.Finally, one reason for the low positioning accuracy of the vehicle body components to be dedusted is that the motor vehicle body components are accommodated by a frame ("skid") with a tolerance.
Die Toleranzabweichungen bei der Positionierung der zu entstaubenden Kraftfahrzeugkarosseriebauteile überschreiten deshalb die Möglichkeiten des Toleranzausgleichs der Schwertbürste und führen gelegentlich zu einem Produktionsstillstand durch die Auslösung eines Kollisionsschutzes.The tolerance deviations in the positioning of the dedusting motor vehicle body components therefore exceed the possibilities of tolerance compensation of the sword brush and occasionally lead to a production stoppage by triggering a collision protection.
Weiterhin ist aus Klaus Dieter Rupp: "Zur Fehlerkompensation und Bahnkorrektur für eine mobile Großmanipulator-Anwendung", Springer-Verlag (1996) eine Flugzeugwaschanlage bekannt, bei der eine Waschbürste von einem Großmanipulator über die zu waschenden Flugzeugoberflächen geführt wird. Auch hierbei muss die Eintauchtiefe der Waschbürste innerhalb eines bestimmten Toleranzfeldes gehalten werden, um einerseits eine Kollision zwischen der Waschbürste und dem zu reinigenden Flugzeug zu vermeiden und andererseits eine gute Waschwirkung zu erzielen. Es ist deshalb aus dieser Druckschrift bekannt, die Eintauchtiefe der Waschbürste in Abhängigkeit von dem Drehmoment eines Waschbürstenmotors zu regeln. So nimmt das Drehmoment des Waschbürstenmotors mit zunehmender Eintauchtiefe ebenfalls zu, da die Bürsten der Waschbürste mit zunehmender Eintauchtiefe stärker deformiert werden. Das Drehmoment des Waschbürstenmotors ist also ein Maß für die Eintauchtiefe und kann deshalb als Messgröße benutzt werden.Furthermore, from Klaus Dieter Rupp: "For error compensation and path correction for a mobile large manipulator application", Springer-Verlag (1996) an aircraft washing system is known in which a washing brush is guided by a large manipulator on the aircraft surfaces to be washed. Again, the immersion depth of the washing brush must be kept within a certain tolerance field, on the one hand to avoid a collision between the washing brush and the aircraft to be cleaned and on the other hand to achieve a good washing effect. It is therefore known from this document to regulate the immersion depth of the washing brush in dependence on the torque of a washing brush motor. Thus, the torque of the scrub brush motor also increases with increasing depth of immersion, since the brushes of the scrub brush are deformed more with increasing depth of immersion. The torque of the washing brush motor is thus a measure of the immersion depth and can therefore be used as a measured variable.
Diese bekannte Regelung der Eintauchtiefe in Abhängigkeit von dem Drehmoment des Antriebsmotors wurde jedoch bisher aus verschiedenen Gründen nicht auf Schwertbürsten übertragen.However, this known control of the immersion depth in dependence on the torque of the drive motor has not been transferred to sword brushes for various reasons.
Zum einen ist das Toleranzfeld der Eintauchtiefe bei Schwertbürsten wesentlich kleiner als bei den vorstehend erwähnten Großwaschanlagen für Flugzeuge.On the one hand, the tolerance range of the immersion depth in sword brushes is considerably smaller than in the abovementioned large-scale washing systems for aircraft.
Zum anderen dienen Schwertbürsten nicht nur zur Entstaubung von ebenen Oberflächen, sondern werden auch zur Entstaubung von gekrümmten Oberflächen eingesetzt. Es hat sich jedoch gezeigt, dass das Antriebsmoment des Schwertbürstenmotors kein geeignetes Maß für die Eintauchtiefe darstellt, wenn gekrümmte Oberflächen entstaubt werden.On the other hand, sword brushes are not only used for dedusting flat surfaces, but are also used for dedusting curved surfaces. However, it has been shown that the drive torque of the sword brush motor is not a suitable measure of the depth of immersion when dedusting curved surfaces.
Schließlich sind aus
Aus
Ferner sind aus
Die Erfindung geht also von einem Entstaubungsverfahren bzw. einer entsprechenden Entstaubungseinrichtung aus, wie sie in dem Oberbegriff der unabhängigen Ansprüche definiert sind und beispielsweise aus
Der Erfindung liegt deshalb die Aufgabe zugrunde, beim Einsatz einer Schwertbürste zur Entstaubung von Kraftfahrzeugkarosseriebauteilen eine möglichst große Positionierungstoleranz zu erreichen, um die störenden Produktionsstillstände zu vermeiden, die durch die Auslösung des Kollisionsschutzes verursacht werden.The invention is therefore based on the object to achieve the greatest possible positioning tolerance when using a sword brush for dedusting of motor vehicle body components in order to avoid the disruptive production stoppages caused by the triggering of collision protection.
Diese Aufgabe wird nach der Erfindung durch ein Entstaubungsverfahren gemäß Patentanspruch 1 und durch eine Entstaubungseinrichtung gemäß Patentanspruch 9 gelöst.This object is achieved according to the invention by a dedusting method according to
Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der betreffenden abhängigen Ansprüche.Advantageous developments of the invention are the subject of the respective dependent claims.
Die Erfindung überträgt das in der vorstehend erwähnten Dissertation von Klaus Dieter Rupp erwähnte Prinzip einer Regelung der Eintauchtiefe unter Berücksichtigung des Antriebsmoments des Bürstenmotors erstmals auf eine Entstaubungseinrichtung für Kraftfahrzeugkarosseriebauteile. Dies wird erfindungsgemäß ermöglicht, indem auch die Flächenform des zu entstaubenden Bauteils ermittelt und bei der Positionskorrektur berücksichtigt wird. Auf diese Weise können die von der Eintauchtiefe unabhängigen Wirkungen verschiedener Formgebungen der zu entstaubenden Oberflächen auf das Drehmoment des Schwertbürstenmotors berücksichtigt werden.The invention conveys the principle mentioned in the abovementioned dissertation by Klaus Dieter Rupp of regulating the immersion depth taking into account the drive torque of the brush motor for the first time on a dedusting device for motor vehicle body components. This is made possible according to the invention by also determining the surface shape of the component to be dedusted and taking it into account in the position correction. In this way, independent of the immersion depth effects of different shapes of dedusting surfaces on the torque of the sword brush motor can be considered.
Die Erfindung sieht deshalb ein Entstaubungsverfahren auf, bei dem ein von einem Antriebsmotor angetriebenes Entstaubungswerkzeug (z.B. eine Schwertbürste) in eine vorgegebene Entstaubungsposition gebracht wird, so dass das Entstaubungswerkzeug das zu entstaubende Bauteil berührt und entstaubt. Die vorgegebene Entstaubungsposition ist in der Regel ein Bahnpunkt auf einer Roboterbahn, die von einer Bedienungsperson programmiert ("geteacht") werden kann.The invention therefore provides a dedusting method in which a dedusting tool (e.g., a sword brush) driven by a drive motor is brought to a predetermined dedusting position so that the dedusting tool contacts and dedusts the component to be dedusted. The default dedusting position is typically a track point on a robotic track that can be "taught" by an operator.
Bei der Positionierung des Entstaubungswerkzeugs in die vorgegebene Entstaubungsposition wird bei dem erfindungsgemäßen Entstaubungsverfahren eine erste Betriebsgröße (z.B. das Drehmoment) des Antriebsmotors des Entstaubungswerkzeugs ermittelt, wobei die erste Betriebsgröße die mechanische Belastung des Antriebsmotors durch den Berührungskontakt mit dem zu entstaubenden Bauteil wiedergibt.In positioning the dedusting tool to the predetermined dedusting position, in the dedusting method of the present invention, a first operation amount (e.g., torque) of the deduster tool driving motor is detected, the first operation amount representing the mechanical load of the drive motor by the contact with the part to be dedusted.
In Abhängigkeit von der vorgegebenen Entstaubungsposition und der ermittelten ersten Betriebsgröße des Antriebsmotors wird dann eine korrigierte Entstaubungsposition berechnet, die Positionstoleranzen der zu entstaubenden Kraftfahrzeugkarosseriebauteile berücksichtigt und dadurch die Einhaltung eines engen Toleranzfeldes der Eintauchtiefe der Schwertbürste ermöglicht.Depending on the predefined dedusting position and the determined first operating variable of the drive motor, a corrected dedusting position is then calculated that takes into account the positional tolerances of the vehicle body components to be dedusted and thereby enables compliance with a narrow tolerance field of the immersion depth of the sword brush.
Das Entstaubungswerkzeug wird dann in die derart korrigierte Entstaubungsposition gebracht.The dedusting tool is then brought into the dedusting position thus corrected.
In einem bevorzugten Ausführungsbeispiel der Erfindung wird die korrigierte Entstaubungsposition nicht nur in Abhängigkeit von der ersten Betriebsgröße des Antriebsmotors und der vorgegebenen Entstaubungsposition berechnet, sondern auch in Abhängigkeit von einem Formfaktor, der die Flächenform des zu entstaubenden Bauteils an der vorgegebenen Entstaubungsposition wiedergibt. Dies ist sinnvoll, weil die Oberflächenform des zu entstaubenden Kraftfahrzeugkarosseriebauteils neben der Eintauchtiefe ebenfalls das Lastmoment des Antriebsmotors beeinflusst und deshalb bei der Berechnung der korrigierten Entstaubungsposition berücksichtigt werden sollte. Im einfachsten Fall kann der Formfaktor mittels eines Sensors ermittelt werden, der die Auslenkung des Entstaubungsbandes der Schwertbürste misst, da eine konvexe Oberfläche der zu entstaubenden Bauteile bei ansonsten gleicher Eintauchtiefe zu einer stärkeren Auslenkung des Entstaubungsbandes führt als eine ebene Oberfläche der zu entstaubenden Bauteile.In a preferred embodiment of the invention, the corrected dedusting position is calculated not only as a function of the first operating variable of the drive motor and the predetermined dedusting position, but also as a function of a form factor which represents the surface shape of the component to be dedusted at the predetermined dedusting position. This is useful because the surface shape of the vehicle body component to be dedusted, in addition to the immersion depth, likewise influences the load torque of the drive motor and should therefore be taken into account in the calculation of the corrected dedusting position. In the simplest case, the form factor can be determined by means of a sensor which measures the deflection of the dedusting belt of the sword brush, since a convex surface of the components to be dedusted, with otherwise identical immersion depth, leads to a greater deflection of the dust removal belt than a flat surface of the components to be dedusted.
In dem bevorzugten Ausführungsbeispiel der Erfindung wird zusätzlich eine zweite Betriebsgröße (z.B. die Drehzahl) des Antriebmotors des Entstaubungswerkzeugs ermittelt und bei der Berechnung der korrigierten Entstaubungsposition ebenfalls berücksichtigt. Die korrigierte Entstaubungsposition wird hierbei also in Abhängigkeit von der vorgegebenen Entstaubungsposition, der ersten Betriebsgröße (z.B. dem Drehmoment) und der zweiten Betriebsgröße (z.B. der Drehzahl) des Antriebsmotors des Entstaubungswerkzeugs berechnet.In addition, in the preferred embodiment of the invention, a second amount of operation (e.g., speed) of the drive motor of the dedusting tool is determined and also taken into account in the calculation of the corrected dedusting position. The corrected dedusting position is thus calculated as a function of the predetermined dedusting position, the first operating variable (for example the torque) and the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool.
Es wurde bereits vorstehend erwähnt, dass es sich bei dem Entstaubungswerkzeug im Rahmen der Erfindung vorzugsweise um eine Schwertbürste handelt, die als solche ein bürstenbesetztes Entstaubungsband aufweist, das um zwei Umlenkrollen geführt ist. Derartige Schwertbürsten sind beispielsweise aus
Der im Rahmen der Erfindung verwendete Begriff einer Entstaubung ist nicht auf eine flüssigkeitsfreie Entstaubung beschränkt. Vielmehr besteht auch im Rahmen der Erfindung die Möglichkeit, dass bei der Entstaubung eine Reinigungs- und Antistatikflüssigkeit auf die zu entstaubenden Oberflächen aufgebracht wird, um die Reinigungswirkung zu verbessern, wie es beispielsweise aus
Ferner ist die Erfindung nicht auf Entstaubungsverfahren und Entstaubungseinrichtungen beschränkt, bei denen die korrigierte Entstaubungsposition in Abhängigkeit von dem Drehmoment und der Drehzahl des Schwertbürstenmotors und in Abhängigkeit von der Oberflächenform des zu entstaubenden Bauteils berechnet wird. Vielmehr können bei der Berechnung der korrigierten Entstaubungsposition auch andere Betriebsgrößen des Entstaubungswerkzeugs berücksichtigt werden.Furthermore, the invention is not limited to dedusting and dedusting facilities, in which the corrected dedusting position is calculated as a function of the torque and the speed of the sword brush motor and in dependence on the surface shape of the component to be dedusted. Rather, other operating variables of the dedusting tool can also be taken into account when calculating the corrected dedusting position.
Vorzugsweise wird das Entstaubungswerkzeug von einem mehrachsigen Entstaubungsroboter positioniert, wobei die Montage der Schwertbürste an einer Handachse des Entstaubungsroboters besonders vorteilhaft ist.Preferably, the dedusting tool is positioned by a multi-axis dedusting robot, wherein the assembly of the sword brush on a hand axis of the dedusting robot is particularly advantageous.
Bei dem erfindungsgemäßen Entstaubungsverfahren werden die zu entstaubenden Bauteile vorzugsweise mittels eines Förderers entlang einem Förderweg vorbei an dem Entstaubungsroboter transportiert. Hierbei weist der Förderer ebenfalls Positionierungstungenauigkeiten auf, die sich zu den bereits eingangs erwähnten Positionierungstungenauigkeiten addieren und deshalb ebenfalls ausgeglichen oder von dem Entstaubungswerkzeug toleriert werden müssen. In dem bevorzugten Ausführungsbeispiel der Erfindung wird deshalb die Position des zu entstaubenden Bauteils auf dem Förderweg ermittelt, wozu beispielsweise ein Positionssensor eingesetzt werden kann. Die korrigierte Entstaubungsposition wird dann auch in Abhängigkeit von der ermittelten Position des zu entstaubenden Bauteils berechnet. Auf diese Weise kann die Positionierungsungenauigkeit des Förderers ausgeglichen werden und muss somit nicht von dem Entstaubungswerkzeug aufgenommen werden.In the dedusting method according to the invention, the components to be dedusted are preferably transported by means of a conveyor along a conveying path past the dedusting robot. In this case, the conveyor also has positioning inaccuracies, which add up to the above-mentioned positioning inaccuracies and therefore also have to be compensated or tolerated by the dedusting tool. In the preferred embodiment of the invention, therefore, the position of the component to be dedusted is determined on the conveying path, for which purpose, for example, a position sensor can be used. The corrected dedusting position is then also calculated as a function of the determined position of the component to be dedusted. In this way, the positioning inaccuracy of the conveyor can be compensated and thus does not have to be absorbed by the dedusting tool.
Bei den vorstehend erwähnten Sensoren kann es sich beispielsweise um Ultraschallsensoren, optische Sensoren, Kraftsensoren oder Dehnmessstreifen (DMS) handeln. Die Erfindung ist jedoch nicht auf die vorstehend erwähnten Sensortypen beschränkt, sondern auch mit anderen Sensortypen realisierbar.The sensors mentioned above may, for example, be ultrasonic sensors, optical sensors, force sensors or strain gauges (DMS). The invention is but not limited to the sensor types mentioned above, but also with other sensor types feasible.
Ferner ist zu erwähnen, dass während der Positionierung des Entstaubungswerkzeugs vorzugsweise laufend (d.h. in Echtzeit) eine Korrektur der Entstaubungsposition erfolgt, um die Eintauchtiefe der Schwerbürste innerhalb des vorgegebenen Toleranzfeldes zu halten.It should also be noted that during the positioning of the dedusting tool, preferably (in real time) a correction of the dedusting position is made in order to keep the immersion depth of the heavy brush within the predetermined tolerance field.
Schließlich umfasst die Erfindung nicht nur das vorstehend beschriebene erfindungsgemäße Entstaubungsverfahren, sondern auch eine Entstaubungseinrichtung, bei der die Entstaubungsposition mittels einer Adaptionseinheit korrigiert wird, um die Eintauchtiefe des Entstaubungswerkzeugs innerhalb eines vorgegebenen Toleranzfeldes zu halten.Finally, the invention comprises not only the above-described dedusting method according to the invention, but also a dedusting device in which the dedusting position is corrected by means of an adaptation unit in order to keep the immersion depth of the dedusting tool within a predetermined tolerance field.
Die Adaptionseinheit berechnet dabei laufend eine korrigierte Entstaubungsposition in Abhängigkeit von der ersten Betriebsgröße (z.B. dem Drehmoment), der zweiten Betriebsgröße (z.B. der Drehzahl) des Antriebsmotors des Entstaubungswerkzeugs und/oder in Abhängigkeit von dem Formfaktor, der die Oberflächenform des zu entstaubenden Bauteils wiedergibt.The adaptation unit continuously calculates a corrected dedusting position in dependence on the first operating variable (for example the torque), the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool and / or depending on the form factor, which represents the surface shape of the component to be dedusted.
Darüber hinaus umfasst die Erfindung auch eine Lackieranlage mit einer oder mehreren Lackierkabinen und der erfindungsgemäßen Entstaubungseinrichtung.In addition, the invention also includes a painting installation with one or more paint booths and the dedusting device according to the invention.
Die Erfindung wird nachstehend zusammen mit der Beschreibung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher erläutert. Es zeigen:
- Figur 1A
- eine vereinfachte Querschnittsansicht einer herkömmlichen Schwertbürste zur Entstaubung von Kraftfahrzeugkarosseriebauteilen auf einer ebenen Karosserieoberfläche,
- Figur 1B
- die Schwertbürste gemäß
Figur 1A auf einer konvexen Karosserieoberfläche, Figur 2- ein regelungstechnisches Ersatzschaltbild einer erfindungsgemäßen Entstaubungseinrichtung sowie
Figur 3- das erfindungsgemäße Entstaubungsverfahren in Form eines Flussdiagramms.
- Figure 1A
- a simplified cross-sectional view of a conventional sword brush for dedusting of motor vehicle body components on a flat body surface,
- FIG. 1B
- the sword brush according to
Figure 1A on a convex body surface, - FIG. 2
- a control engineering equivalent circuit diagram of a dedusting device according to the invention and
- FIG. 3
- the dedusting process according to the invention in the form of a flow chart.
Die
Die Schwertbürste 1 weist zwei parallele Umlenkrollen 2, 3 auf, um die ein Entstaubungsband 4 herumgeführt ist, wobei das Entstaubungsband 4 an seiner Außenseite Entstaubungsbürsten 5 trägt.The
Zur Entstaubung einer Karosserieoberfläche 6 wird die Schwertbürste 1 zu positioniert, dass der untere, gezogene Trum des Entstaubungsbands 4 mit den Entstaubungsbürsten 5 gegen die Karosserieoberfläche 6 drückt. Die Entstaubungsbürsten 5 weisen hierbei im unbelasteten Zustand eine freie Länge 1 auf, während zwischen dem unteren, gezogenen Trum des Entstaubungsbands 4 und der zu entstaubenden Karosserieoberfläche 6 ein Abstand d liegt. Daraus ergibt sich eine Eintauchtiefe T=1-d. Wichtig ist hierbei, dass die Eintauchtiefe T innerhalb eines vorgegebenen Toleranzfeldes bleibt, da eine zu geringe Eintauchtiefe T zu einer unbefriedigenden Entstaubungswirkung führt, wohingegen eine zu große Eintauchtiefe T einen starken Verschleiß der Entstaubungsbürsten 5 verursacht. Darüber hinaus hat die Eintauchtiefe T auch einen Einfluss auf das Reinigungsergebnis, wobei ein optimales Reinigungsergebnis voraussetzt, dass die Eintauchtiefe T innerhalb eines bestimmten Bereichs TMIN<T<TMAX liegt.To dedust a
Im Folgenden wird die Erfindung detailliert anhand des regelungstechnischen Ersatzschaltbildes in
Die Schwertbürste 1 ist an einer mehrachsigen Handachse eines mehrachsigen Entstaubungsroboters 8 montiert, was eine freie Positionierung des Schwertbürste 1 ermöglicht.The
Die zu entstaubenden Kraftfahrzeugkarosseriebauteile werden hierbei von einem Linearförderer 9 entlang einem Förderweg vorbei an dem Entstaubungsroboter 8 transportiert, so dass der Entstaubungsroboter 8 die Schwertbürste 1 über die zu entstaubenden Karosserieoberflächen 6 führen kann.The vehicle body components to be dedusted are transported by a
Die aktuelle räumliche Position und Ausrichtung der Schwertbürste 1 wird hierbei durch einen Positionsvektor
Hierzu weist die Steuereinheit 10 einen Roboterbahngenerator 11 auf, der für zuvor programmierte Roboterbahnen Positionsvektoren
Die Positionsvektoren
Die korrigierten Positionsvektoren
Weiterhin weist die Steuereinheit 10 eine Adaptionseinheit 14 auf, die den Korrekturwert Δ
Bei der Berechnung des Korrekturwerts Δ
Die erfindungsgemäße Entstaubungseinrichtung weist deshalb einen Drehmomentsensor 15 auf, der das Drehmoment MIST des Antriebsmotors 7 der Schwertbürste 1 ermittelt und zur Auswertung an die Adaptionseinheit 14 weiterleitet. Es ist jedoch alternativ auch möglich, dass das Drehmoment MIST nicht durch den separaten Drehmomentsensor 15 gemessen, sondern aus den elektrischen Betriebsgrößen des Antriebsmotors 7 abgeleitet wird, so dass der Drehmomentsensor 15 entbehrlich ist.The dedusting device according to the invention therefore has a
Das Drehmoment MIST des Antriebsmotors 7 der Schwertbürste 1 wird jedoch nicht nur durch die Eintauchtiefe T der Schwertbürste 1 beeinflusst, sondern auch durch die Form der zu entstaubenden Karosserieoberfläche 6. So verursacht die konvexe Karosserieoberfläche 6 gemäß
Hierbei ist zu erwähnen, dass
Die Adaptionseinheit 14 berücksichtigt deshalb bei der Berechnung des Korrekturwerts
Darüber hinaus weist die Entstaubungseinrichtung in diesem Ausführungsbeispiel einen Drehzahlsensor 17 auf, der eine Drehzahl nIST des Antriebsmotors 7 der Schwertbürste 1 misst und an die Adaptionseinheit 14 weiterleitet, so dass bei der Berechnung des Korrekturwerts
Es wurde bereits vorstehend erwähnt, dass die zu entstaubenden Kraftfahrzeugkarosserieteile durch einen Linearförderer 9 entlang einem Förderweg vorbei an dem Entstaubungsroboter 8 transportiert werden, wobei der Linearförderer 9 ebenfalls Positionierungsungenauigkeiten aufweist, die von der erfindungsgemäßen Entstaubungseinrichtung aufgenommen oder ausgeglichen werden müssen. Die erfindungsgemäße Entstaubungseinrichtung weist deshalb einen Positionssensor 18 auf, der eine Position sIST der zu entstaubenden Kraftfahrzeugkarosseriebauteile entlang dem Förderweg misst und an die Adaptionseinheit 14 weiterleitet. Die Adaptionseinheit 14 berechnet dann den Korrekturwert
Im Folgenden wird nun anhand des Flussdiagramms in
In einem ersten Schritt S1 wird zunächst eine Roboterbahn programmiert ("geteacht"), was an sich aus dem Stand der Technik bekannt ist und deshalb nicht näher beschrieben werden muss. Bei der Programmierung der Roboterbahn in dem Schritt S1 können jedoch Positionstoleranzen der zu entstaubenden Kraftfahrzeugkarosseriebauteile noch nicht berücksichtigt werden.In a first step S1, a robot path is first programmed ("taught"), which is known per se from the prior art and therefore need not be described in detail. When programming the robot path in step S1, however, positional tolerances of the dust to be dedusted Automotive body components are not yet taken into account.
Die Programmierung der gewünschten Roboterbahn kann hierbei offline erfolgen, d.h. ohne dass der Entstaubungsroboter eine echte Bewegung ausführt. Hierzu kann beispielsweise die von der Anmelderin vertriebene Programmiersoftware "3D-OnSite" eingesetzt werden.The programming of the desired robot path can be done offline, i. E. without the dedusting robot making a real move. For this purpose, for example, the distributed by the applicant programming software "3D OnSite" can be used.
In einem Schritt S2 wird dann der jeweils nächste Bahnpunkt
Bei der Ansteuerung des nächsten Bahnpunkts
In einem Schritt S7 wird dann aus den zuvor gemessenen Größen der Korrekturwert
In einem nächsten Schritt S8 wird dann aus dem vorgegebenen Bahnpunkt
In einem weiteren Schritt S9 rechnet dann die Robotersteuerung 13 den korrigierten Bahnpunkt
Die Schritte S3 bis S10 werden dann in einer Schleife wiederholt, bis in einem Schritt S11 festgestellt wird, dass der korrigierte Bahnpunkt
Anschließend wird dann in einem Schritt S12 geprüft, ob die vorgegebene Roboterbahn beendet ist. Falls dies nicht der Fall ist, so werden die Schritte S2 bis S11 in einer Schleife wiederholt, wobei jeweils der nächste Bahnpunkt
Die Erfindung ist nicht auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die in den Schutzbereich der folgenden Ansprüche fallen.The invention is not limited to the preferred embodiment described above. Rather, a variety of variations and modifications are possible that fall within the scope of the following claims.
- 11
- Schwertbürstesword brush
- 2, 32, 3
- Umlenkrollenguide rollers
- 44
- EntstaubungsbandEntstaubungsband
- 55
- EntstaubungsbürstenEntstaubungsbürsten
- 66
- Karosserieoberflächebody surface
- 77
- Antriebsmotordrive motor
- 88th
- EntstaubungsroboterEntstaubungsroboter
- 99
- Linearfördererlinear Feeders
- 1010
- Steuereinheitcontrol unit
- 1111
- RoboterbahngeneratorRobot path generator
- 1212
- Addiereradder
- 1313
- Robotersteuerungrobot control
- 1414
- Adaptionseinheitadaptation unit
- 1515
- Drehmomentsensortorque sensor
- 1616
- Auslenkungssensordisplacement sensor
- 1717
- DrehzahlsensorSpeed sensor
- 1818
- Positionssensorposition sensor
Claims (15)
- A dedusting method for the dry or moist dedusting of motor vehicle body components (6) by means of a sword brush (1), with the following steps:a) positioning a dedusting tool (1) driven by a drive motor (7) in a predetermined dedusting position (
P TEACH), so that the dedusting tool (1) touches and dedusts the motor vehicle body component (6) to be dedusted,
characterised by the following steps:b) determining a first operating variable (MIST) of the drive motor (7) of the dedusting tool (1) during the positioning of the dedusting tool (1) in the predetermined dedusting position (P TEACH), wherein the first operating variable (MIST) reproduces the mechanical loading of the drive motor (7) by the contact with the motor vehicle body component to be dedusted,c) calculating a corrected dedusting position (P KORR) as a function of the predetermined dedusting position (P TEACH) and the first operating variable (MIST) of the drive motor (7),d) positioning the dedusting tool (1) in the corrected dedusting position (P KORR). - The dedusting method according to Claim 1,
characterised by the following steps:a) determining a form factor (aIST), which represents the surface shape of the motor vehicle body component (6) to be dedusted at the predetermined dedusting position (P TEACH), andb) calculating the corrected dedusting position (P KORR), also as a function of the form factor (aIST) - The dedusting method according to any one of the preceding claims, characterised by the following steps:a) establishing a second operating variable (nIST) of the drive motor (7) of the dedusting tool (1) during the positioning at the predetermined dedusting position (
P TEACH) andb) calculating the corrected dedusting position (P KORR), also as a function of the established second operating variable (aIST) of the drive motor (7). - The dedusting method according to any one of the preceding claims, characterised in thata) the dedusting tool (1) is a sword brush (1) which has a dedusting belt (4) beset with brushes, which is guided around two deflection rollers (2, 3), and/orb) the dedusting tool (1) is positioned by a multi-axis dedusting robot (8).
- The dedusting method according to any one of the preceding claims, characteriseda) in that the first operating variable (MIST) is the torque of the drive motor (7), and/orb) in that the second operating variable (nIST) is the speed of the drive motor (7), and/orc) in that the form factor (aIST) represents the deflection of the pulled side of the dedusting belt (4).
- The dedusting method according to any one of the preceding claims, characterised by the following steps:a) transporting the motor vehicle body component (6) to be dedusted along a conveying route past the dedusting robot (8) by means of a conveyor (9),b) establishing the position (sIST) of the motor vehicle body component (6) to be dedusted on the conveying route,c) calculating the corrected dedusting position (
P KORR), also as a function of the established position (sIST) of the motor vehicle body component (6) to be dedusted. - The dedusting method according to any one of the preceding claims, characterised in thata) the form factor (aIST) and/or the position (sIST) of the motor vehicle body component to be dedusted is measured on the conveying route by a sensor (16, 18).b) the sensor (16, 18) is an ultrasound sensor, an optical sensor, a force sensor or a strain gauge.
- The dedusting method according to any one of the preceding claims, characterised in that the dedusting position (
P KORR) is continuously calculated and corrected, whilst the dedusting tool (1) is positioned. - A dedusting device for the dedusting of motor vehicle body components (6) by means of a sword brush (1), witha) a dedusting tool (1) with a drive motor (7),b) a dedusting robot (8) for the spatial positioning of the dedusting tool (1),c) a robot control (10, 13), which controls the dedusting robot in accordance with a predetermined dedusting position (
P TEACH),
characterised byd) an adaption unit (14) which calculates a corrected dedusting position (P KORR) as a function of the predetermined dedusting position (P TEACH) and a first operating variable (MIST) of the drive motor (7) of the dedusting tool (1) at the predetermined dedusting position (P TEACH), so that the dedusting robot (8) positions the dedusting tool (1) in the corrected dedusting position (P KORR). - The dedusting device according to Claim 9,
characteriseda) in that a first sensor (16) establishes a form factor (aIST), which represents the surface shape of the motor vehicle body component (6) to be dedusted at the predetermined dedusting position (P TEACH), andb) in that the adaption unit (14) determines the corrected dedusting position (P KORR), also as a function of the form factor (aIST) - The dedusting device according to Claim 10, characterised,a) in that a second sensor (17) establishes a second operating variable (nIST) of the drive motor (7),b) in that the adaption unit (14) calculates the corrected dedusting position (
P KORR), also as a function of the second operating variable (nIST). - The dedusting device according to any one of Claims 9 to 11, characterised in thata) the dedusting tool (1) is a sword brush (1) which has a dedusting belt (4) beset with brushes, which is guided around two deflection rollers (2, 3), and/orb) the dedusting robot (8) has a multi-axis hand wrist, on which the dedusting tool (1) is mounted.
- The dedusting device according to any one of Claims 9 to 12, characteriseda) in that the first operating variable (MIST) is the torque of the drive motor (7), and/orb) in that the second operating variable is the speed of the drive motor (7), and/orc) in that the form factor (aIST) represents the deflection of the dedusting belt (4).
- The dedusting device according to any one of Claims 9 to 13, characterised by,a) a conveyor (9) which transports the motor vehicle body component to be dedusted along a conveying route past the dedusting robot (8),b) a third sensor (18) which determines the position (sIST) of the motor vehicle body component (6) to be dedusted on the conveying route,c) wherein the adaption unit (14) determines the corrected dedusting position (
P KORR), also as a function of the established position (sIST) of the motor vehicle body component (6) to be dedusted on the conveying route. - A painting installation with a dedusting device according to any one of Claims 9 to 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08838142T PL2185297T3 (en) | 2007-10-02 | 2008-10-01 | Dedusting method and corresponding dedusting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007047190A DE102007047190A1 (en) | 2007-10-02 | 2007-10-02 | Dust removal process and appropriate dedusting facility |
PCT/EP2008/008321 WO2009046916A1 (en) | 2007-10-02 | 2008-10-01 | Dedusting method and corresponding dedusting device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2185297A1 EP2185297A1 (en) | 2010-05-19 |
EP2185297B1 true EP2185297B1 (en) | 2012-06-27 |
Family
ID=40247726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08838142A Active EP2185297B1 (en) | 2007-10-02 | 2008-10-01 | Dedusting method and corresponding dedusting device |
Country Status (9)
Country | Link |
---|---|
US (1) | US8298342B2 (en) |
EP (1) | EP2185297B1 (en) |
KR (1) | KR101577996B1 (en) |
CN (1) | CN101815585B (en) |
DE (1) | DE102007047190A1 (en) |
ES (1) | ES2389829T3 (en) |
PL (1) | PL2185297T3 (en) |
PT (1) | PT2185297E (en) |
WO (1) | WO2009046916A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011012231B4 (en) * | 2011-02-24 | 2014-05-28 | Washtec Holding Gmbh | Method for cleaning a rim of a motor vehicle wheel and device for carrying out the method |
DE102012017388A1 (en) | 2012-09-01 | 2014-03-06 | Volkswagen Aktiengesellschaft | Handling device fixed to device for cleaning surface of e.g. motor vehicle component, has guide rollers and drive roller that are arranged on support unit such that axes of rotation of guide and drive rollers are parallel |
US9248974B2 (en) | 2013-03-08 | 2016-02-02 | Mark S. Grill | Cleaning apparatus, methods of making cleaning apparatus, and methods of cleaning |
US8997295B1 (en) | 2013-08-06 | 2015-04-07 | Justin Romonti | Smart belt tooth brush |
CN111905927B (en) * | 2019-05-09 | 2023-05-09 | 斗山重工业建设有限公司 | Dust collecting device |
TWI718876B (en) * | 2020-02-21 | 2021-02-11 | 山立工業股份有限公司 | Sanding machine with bidirectional sanding device capable of rotating and operating in different directions |
CN114558389A (en) * | 2022-04-28 | 2022-05-31 | 张掖市巨龙铁合金有限公司 | Negative pressure bag-type dust collector with dust cleaning device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4382308A (en) * | 1981-02-18 | 1983-05-10 | Chemcut Corporation | Scrubbing torque monitoring and control system |
JPS6014979A (en) * | 1983-07-05 | 1985-01-25 | 日本板硝子株式会社 | Cleaning device for bent glass |
JPS6133890A (en) * | 1984-07-26 | 1986-02-17 | 松下電器産業株式会社 | Industrial robot |
EP0541811B1 (en) * | 1991-05-28 | 1999-07-07 | Kabushiki Kaisha Toshiba | Working device |
DE4314046C2 (en) | 1993-04-29 | 1995-02-23 | Claus G Dipl Ing Wandres | Method and device for removing particles adhering to surfaces by means of a wiping element |
JPH07142325A (en) * | 1993-06-23 | 1995-06-02 | Nikon Corp | Aligning device |
DE59402554D1 (en) | 1993-08-31 | 1997-05-28 | Putzmeister Maschf | ARRANGEMENT FOR SURFACE PROCESSING, IN PARTICULAR FOR THE SURFACE CLEANING OF LARGE OBJECTS |
DE4433925A1 (en) * | 1994-09-23 | 1996-03-28 | Schlick Heinrich Gmbh Co Kg | Construction for mounting applicators of surface treatments to ships and aircraft |
JP3949807B2 (en) * | 1998-03-09 | 2007-07-25 | 沖電気工業株式会社 | Substrate cleaning apparatus and substrate cleaning method |
DE19920250C2 (en) | 1999-05-03 | 2001-10-11 | Wandres Micro Cleaning | Device for cleaning surfaces |
US6986185B2 (en) * | 2001-10-30 | 2006-01-17 | Applied Materials Inc. | Methods and apparatus for determining scrubber brush pressure |
FR2855480B1 (en) * | 2003-05-30 | 2006-05-19 | Eisenmann France Sarl | DE-DUSTING MACHINE FOR BODY PAINTING WORKSHOPS OF MOTOR VEHICLES |
DE10329499B3 (en) * | 2003-06-30 | 2004-08-12 | Wandres Gmbh Micro-Cleaning | Surface cleaning device for curved or corrugated surfaces e.g. for automobile body parts, metal bands or uneven plates, has pressure device with cushions or pads for matching cleaned surface contour |
DE10360649A1 (en) * | 2003-12-23 | 2005-04-07 | Daimlerchrysler Ag | Dry cleaning device especially de-dusting plant for pre-treatment of vehicle bodies to be painted, has cleaning brush with belt flexibly mounted inside at least part of housing circumference for conforming to curved contour of body |
CN2782488Y (en) * | 2004-01-13 | 2006-05-24 | 程辉 | Portable multi-function internal/outer wall cleaner for car |
-
2007
- 2007-10-02 DE DE102007047190A patent/DE102007047190A1/en not_active Withdrawn
-
2008
- 2008-10-01 ES ES08838142T patent/ES2389829T3/en active Active
- 2008-10-01 KR KR1020107008585A patent/KR101577996B1/en active IP Right Grant
- 2008-10-01 WO PCT/EP2008/008321 patent/WO2009046916A1/en active Application Filing
- 2008-10-01 PT PT08838142T patent/PT2185297E/en unknown
- 2008-10-01 EP EP08838142A patent/EP2185297B1/en active Active
- 2008-10-01 US US12/681,264 patent/US8298342B2/en active Active
- 2008-10-01 PL PL08838142T patent/PL2185297T3/en unknown
- 2008-10-01 CN CN2008801102471A patent/CN101815585B/en active Active
Also Published As
Publication number | Publication date |
---|---|
PL2185297T3 (en) | 2012-11-30 |
ES2389829T3 (en) | 2012-11-02 |
PT2185297E (en) | 2012-09-11 |
WO2009046916A1 (en) | 2009-04-16 |
US20100242991A1 (en) | 2010-09-30 |
CN101815585B (en) | 2013-01-23 |
CN101815585A (en) | 2010-08-25 |
DE102007047190A1 (en) | 2009-05-14 |
KR101577996B1 (en) | 2015-12-17 |
EP2185297A1 (en) | 2010-05-19 |
KR20100077170A (en) | 2010-07-07 |
US8298342B2 (en) | 2012-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2185297B1 (en) | Dedusting method and corresponding dedusting device | |
DE102012106771B4 (en) | CONTROLLER FOR ELECTRIC MOTOR, COMPREHENSIVE A FUNCTION FOR SIMULTANEOUSLY ESTIMATING INERTIA, FRICTION AND SPRING CONSTANT | |
EP1880971B1 (en) | Method for controlling the orientation of a crane load | |
DE102017005043A1 (en) | Apparatus and method for detecting an abnormality of a joint of a parallel arm robot | |
DE102015004481B4 (en) | A robot control device for controlling a robot moved in accordance with an applied force | |
DE3786860T2 (en) | CONTROL DEVICE FOR A ROBOT. | |
EP2673679B1 (en) | Adapting the dynamics of at least one robot | |
EP1537011A2 (en) | Method and device for processing a moving production part, particularly a vehicle body | |
DE102014103370B4 (en) | Method and device for discrete-time control of a manipulator | |
WO2013026554A1 (en) | Control method for a robot | |
DE102015104550A1 (en) | Schweißungsüberprüfungsrobotersystem | |
DE102018210864B3 (en) | Method and system for controlling a robot | |
EP3037905B1 (en) | Device and method for holding workpieces | |
DE102006050114A1 (en) | Positioning device for moving part of a workpiece | |
WO2020225350A1 (en) | Coating method and corresponding coating installation | |
DE102016008866A1 (en) | Robot control device with compensation of elastic deformation of a support body | |
EP0985989B1 (en) | Method and device for improving the dynamic behaviour of a robot | |
WO2010003584A1 (en) | Method and system for applying a coating material using a programmable robot | |
DE2731041C3 (en) | Programming device for a program-controlled paint manipulator | |
EP2758181B1 (en) | Coating method and coating system with compensation of the unsymmetrical spray jet | |
DE69401590T2 (en) | ALGORITHM FOR GENERATING A FRICTION FOR ACTIVE MANUAL CONTROL | |
DE102019004545B4 (en) | Automatic machine and control device for automatic machine | |
DE102016009436A1 (en) | Robot control that prevents shaking of a tool tip in a robot equipped with a travel axis | |
DE102013017895B4 (en) | Method for continuously determining the 3D positions and trajectory of the movement of a dynamic manufacturing object | |
DE102019200117A1 (en) | robot control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20101126 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 563856 Country of ref document: AT Kind code of ref document: T Effective date: 20120715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008007619 Country of ref document: DE Effective date: 20120823 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20120904 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120927 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2389829 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121102 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120928 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 12477 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121027 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E015329 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20130328 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008007619 Country of ref document: DE Effective date: 20130328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120927 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121001 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 563856 Country of ref document: AT Kind code of ref document: T Effective date: 20131001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008007619 Country of ref document: DE Representative=s name: V. BEZOLD & PARTNER PATENTANWAELTE - PARTG MBB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008007619 Country of ref document: DE Owner name: DUERR SYSTEMS AG, DE Free format text: FORMER OWNER: DUERR SYSTEMS GMBH, 74321 BIETIGHEIM-BISSINGEN, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008007619 Country of ref document: DE Representative=s name: V. BEZOLD & PARTNER PATENTANWAELTE - PARTG MBB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008007619 Country of ref document: DE Owner name: DUERR SYSTEMS AG, DE Free format text: FORMER OWNER: DUERR SYSTEMS AG, 74321 BIETIGHEIM-BISSINGEN, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230929 Year of fee payment: 16 Ref country code: RO Payment date: 20230926 Year of fee payment: 16 Ref country code: CZ Payment date: 20230922 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230925 Year of fee payment: 16 Ref country code: PL Payment date: 20230922 Year of fee payment: 16 Ref country code: NL Payment date: 20231019 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231222 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231026 Year of fee payment: 16 Ref country code: HU Payment date: 20231024 Year of fee payment: 16 Ref country code: FR Payment date: 20231024 Year of fee payment: 16 Ref country code: DE Payment date: 20231020 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231019 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20240919 Year of fee payment: 17 |