EP2185297A1 - Dedusting method and corresponding dedusting device - Google Patents
Dedusting method and corresponding dedusting deviceInfo
- Publication number
- EP2185297A1 EP2185297A1 EP08838142A EP08838142A EP2185297A1 EP 2185297 A1 EP2185297 A1 EP 2185297A1 EP 08838142 A EP08838142 A EP 08838142A EP 08838142 A EP08838142 A EP 08838142A EP 2185297 A1 EP2185297 A1 EP 2185297A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dedusting
- tool
- drive motor
- corrected
- dedusted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000006978 adaptation Effects 0.000 claims description 13
- 239000000428 dust Substances 0.000 claims description 8
- 238000010257 thawing Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000010422 painting Methods 0.000 claims description 4
- 230000032258 transport Effects 0.000 claims 1
- 239000003595 mist Substances 0.000 abstract 3
- 238000007654 immersion Methods 0.000 description 33
- 238000004140 cleaning Methods 0.000 description 15
- 238000012937 correction Methods 0.000 description 12
- 238000005406 washing Methods 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B13/00—Brushes with driven brush bodies or carriers
- A46B13/02—Brushes with driven brush bodies or carriers power-driven carriers
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B3/00—Brushes characterised by the way in which the bristles are fixed or joined in or on the brush body or carrier
- A46B3/18—Brushes characterised by the way in which the bristles are fixed or joined in or on the brush body or carrier the bristles being fixed on or between belts or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B2200/00—Brushes characterized by their functions, uses or applications
- A46B2200/30—Brushes for cleaning or polishing
- A46B2200/3026—Dusting brush
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B2200/00—Brushes characterized by their functions, uses or applications
- A46B2200/30—Brushes for cleaning or polishing
- A46B2200/3046—Brushes for cleaning cars or parts thereof
Definitions
- the invention relates to a dedusting method, in particular for the wet cleaning of motor vehicle body components prior to painting.
- the invention relates to a corresponding Entstau- bung device that is suitable for wet cleaning of motor vehicle body components and, for example, has a sword brush as dedusting tool.
- the vehicle body components to be painted must be dedusted before the actual painting process, for which purpose so-called sword brushes can be used, which are described, for example, in DE 43 14 046 A1 and DE 103 29 499 B3.
- the sword brush is mounted on a hand axis of a multi-axis robot and is guided by the robot over the dust-removing surfaces of the vehicle chassis components to be painted, whereby the sword brush removes dust from the surfaces to be dedusted.
- the problem with the use of sword brushes for dedusting of motor vehicle body components is the low tolerance of sword brushes with respect to the immersion depth.
- the cleaning brushes mounted on the rotating brush belt of the sword brush have to Touch the surfaces to remove dust.
- a certain distance between the rotating dedusting band of the sword brush and the dedusting surface must not be fallen below, since the dedusting brushes are deformed more with increasing depth of immersion, resulting in damage to the cleaning brushes and in the worst case to a collision between the sword brush and the can lead to dedusting component.
- the cleaning result with sword brushes depends on the immersion depth, whereby an optimal cleaning result can only be achieved if the immersion depth remains within a certain range.
- the low positioning tolerance of the known sword brushes is problematic in particular because the positioning of the vehicle body components to be dedusted in a paint shop is possible only with a relatively low positioning accuracy, which would have to be absorbed by the sword brush.
- vehicle body components can have tolerances of up to one centimeter in their dimensions, which can not be changed.
- sword brushes are not only used for dedusting flat surfaces, but are also used for dedusting curved surfaces.
- the drive torque of the sword brush motor is not a suitable measure of the immersion depth when curved surfaces are dedusted.
- the invention is therefore based on the object to achieve the greatest possible positioning tolerance when using a sword brush for dedusting of motor vehicle body components in order to avoid the disruptive production stoppages caused by the triggering of collision protection.
- the invention conveys the principle mentioned in the abovementioned dissertation by Klaus Dieter Rupp of regulating the immersion depth in consideration of the drive motor. ment of the brush motor for the first time on a dedusting device for motor vehicle body components. This is made possible according to the invention by also determining the surface shape of the component to be dedusted and taking it into account in the position correction. In this way, independent of the immersion depth effects of different shapes of dedusting surfaces on the torque of the sword brush motor can be considered.
- the invention therefore provides a dedusting method in which a dust removal tool (for example a sword brush) driven by a drive motor is brought into a predetermined dedusting position so that the dedusting tool touches and dedusts the component to be dedusted.
- a dust removal tool for example a sword brush
- the specified dedusting position is usually one
- a first operation amount (e.g., torque) of the deduster tool driving motor is detected, the first operation amount representing the mechanical load of the drive motor by the contact with the part to be dedusted.
- a corrected dedusting position is then calculated which takes into account the positional tolerances of the vehicle body components to be dedusted and thereby enables compliance with a narrow tolerance field of the immersion depth of the sword brush.
- the dedusting tool is then brought into the dedusting position thus corrected.
- the corrected dedusting position is calculated not only as a function of the first operating variable of the drive motor and the predetermined dedusting position, but also as a function of a form factor which reproduces the surface shape of the component to be dedusted at the predetermined dedusting position. This is useful because the surface shape of the vehicle body component to be dedusted, in addition to the immersion depth, likewise influences the load torque of the drive motor and should therefore be taken into account in the calculation of the corrected dedusting position.
- the form factor can be determined by means of a sensor which measures the deflection of the dedusting belt of the sword brush, since a convex surface of the components to be dedusted, with otherwise identical immersion depth, leads to a greater deflection of the dedusting belt than a flat surface of the components to be dedusted ,
- a second amount of operation (e.g., speed) of the drive motor of the dedusting tool is determined and also taken into account in the calculation of the corrected dedusting position.
- the corrected dedusting position is thus calculated as a function of the predefined dedusting position, the first operating variable (for example the torque) and the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool.
- the dedusting tool in the context of the invention is preferably a sword brush, which as such is a brush-type brush.
- a dedusting band which is guided around two pulleys.
- sword brushes are known, for example, from DE 43 14 046 A1 and DE 103 29 499 B3, so that reference is made to these two publications with regard to the structure and mode of operation of sword brushes, the content of which is fully attributable to the present description.
- de-staining used in the context of the invention is not limited to a liquid-free dedusting. Rather, it is within the scope of the invention, the possibility that in the dedusting a cleaning and antistatic fluid is applied to the surfaces to be dedusted to improve the cleaning effect, as is known for example from DE 199 20 250 Al, so that the content of this Patent application is fully attributable to the present description. Preferably, therefore, a liquid film is applied to the dedusting component surfaces in the dedusting.
- de-dusting therefore also encompasses both in the context of the invention
- dedusting as well as a wet dedusting.
- dedusting in the context of the invention is to be distinguished from washing methods which not only produce a liquid film on the component surface, but apply larger amounts of a washing liquid.
- the invention is not restricted to dedusting methods and dedusting devices, in which a sword brush is used as a dewatering tool. Rather, the invention also includes dedusting and dedusting facilities, in which other types of dedusting tools are used. Furthermore, the invention is not restricted to dedusting methods and dedusting devices in which the corrected dedusting position is calculated as a function of the torque and the speed of the sword brush motor and as a function of the surface shape of the component to be dedusted. Rather, other operating variables of the dedusting tool can also be taken into account when calculating the corrected dedusting position.
- the dedusting tool is positioned by a multi-axis dedusting robot, wherein in the case of a sword brush the assembly of the sword brush on a hand axis of the dedusting robot is particularly advantageous.
- the components to be dedusted are preferably transported by means of a conveyor along a conveying path past the dedusting robot.
- the conveyor also has positioning inaccuracies, which add up to the positioning inaccuracies mentioned above and therefore also have to be compensated or tolerated by the dedusting tool.
- the position of the component to be dedusted is determined on the conveying path, for which purpose, for example, a position sensor can be used.
- the corrected dedusting position is then also calculated as a function of the determined position of the component to be dedusted. In this way, the positioning accuracy of the conveyor can be compensated and thus does not have to be absorbed by the dedusting tool.
- the sensors mentioned above may, for example, be ultrasonic sensors, optical sensors, force sensors or strain gauges (DMS).
- DMS strain gauges
- a correction of the dedusting position is made in order to keep the immersion depth of the heavy brush within the predetermined tolerance field.
- the invention comprises not only the above-described dedusting method according to the invention, but also a dedusting device in which the dedusting position is corrected by means of an adaptation unit in order to keep the immersion depth of the dedusting tool within a predetermined tolerance field.
- the adaptation unit continuously calculates a corrected dedusting position as a function of the first operating variable (for example the torque), the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool and / or depending on the form factor, which represents the surface shape of the component to be dedusted.
- the first operating variable for example the torque
- the second operating variable for example the rotational speed
- the invention also includes a painting installation with one or more paint booths and the dedusting device according to the invention.
- FIG. 1A shows a simplified cross-sectional view of a conventional sword brush for dedusting force vehicle body components on a flat body surface
- FIG. 1B shows the sword brush according to FIG. 1A on a convex body surface
- Figure 2 is a control engineering equivalent circuit diagram of a dedusting device according to the invention.
- FIG. 3 shows the dedusting process according to the invention in the form of a flow chart.
- FIGS. 1A and 1B show, in a simplified form, a sword brush 1, as described, for example, in DE 43 14 046 A1 and DE 103 29 499 B3, so that reference is also made to these documents with regard to the further details of the sword brush 1, the contents of which This description in terms of the structure and operation of the sword brush 1 is fully attributable.
- the sword brush 1 has two parallel deflection rollers 2, 3, around which a dedusting belt 4 is led, the dedusting belt 4 carrying dedusting brushes 5 on its outside.
- the sword brush 1 is positioned so that the lower, pulled run of the dedusting belt 4 presses with the dedusting brushes 5 against the body surface 6.
- the dedusting brushes 5 have a free length 1 in the unloaded state, while a distance d lies between the lower, drawn strand of the dedusting belt 4 and the bodywork surface 6 to be dedusted.
- This results in an immersion depth T ld. It is important that the immersion depth T remains within a predetermined tolerance field, since a too small immersion depth T leads to an unsatisfactory defrosting effect, whereas a too large immersion depth T causes a strong wear of the dedusting brushes 5.
- the immersion depth T also has an influence on the cleaning result, wherein an optimum cleaning result requires that the immersion depth T be within a certain range T MIN ⁇ T ⁇ T MAX .
- FIG. 1A shows the use of the sword brush 1 for dedusting the planar body surface 6, whereas the body surface 6 in FIG. 1B is convex, which leads to a displacement ai ⁇ ⁇ of the lower, pulled run of the dedusting belt 4.
- the deflection ai S ⁇ of the lower, pulled run of Entustaubungsbands 4 increases acting on a drive motor 7 of the sword brush 1 torque M ⁇ S ⁇ t which is important for the dedusting process according to the invention.
- the dedusting method according to the invention evaluates the torque M IST of the drive motor 7 of the sword brush 1 as a measure of the immersion depth T of the sword brush 1 in order to compensate for positional tolerances of the body surface 6 to be dedusted.
- the sword brush 1 is mounted on a multi-axis hand axis of a multi-axis dedusting robot 8, which allows a free positioning of the sword brush 1.
- the vehicle body components to be dedusted are transported by a linear conveyor 9 along a conveying path past the dedusting robot 8, so that the dedusting robot 8 can guide the sword brush 1 over the body surfaces 6 to be dedusted.
- the current spatial position and orientation of the sword brush 1 is reproduced here by a position vector P IST and regulated by a control unit 10 in accordance with a predetermined, taught robot path.
- control unit 10 has a robot track generator 11 which outputs position vectors P TEACH for previously programmed robot tracks , which define the position of a tool center point (TCP) of the sword brush 1 and the orientation of the sword brush 1 for the individual track points.
- P TEACH position vectors
- TCP tool center point
- the position vectors P TEACH are then converted by an adder 12 with a correction value ZlP to a corrected position vector P K0RR , as will be described in detail later.
- the corrected position vectors P KORR in the spatial coordinates are then supplied to a robot controller 13, which converts the spatial coordinates into axis coordinates and controls the dedusting robot 8 accordingly.
- control unit 10 has an adaptation unit 14 which calculates the correction value ZIP and thereby compensates for positioning inaccuracies of the body surfaces 6 to be dedusted.
- the torque MI S T of the drive motor 7 of the sword brush 1 increases with the immersion depth T, since the dust removal brushes 5 must be deformed more strongly with increasing immersion depth T.
- the torque Mi ST is therefore suitable half as a measure for the adjustment of the immersion depth T of the sword brush.
- the dedusting device therefore has a torque sensor 15, which determines the torque M actual of the drive motor 7 of the sword brush 1 and forwards it to the adaptation unit 14 for evaluation.
- the torque M actual is not measured by the separate torque sensor 15, but is derived from the electrical operating variables of the drive motor 7, so that the torque sensor 15 can be dispensed with.
- the torque M IS ⁇ of the drive motor 7 of the sword brush 1 is influenced not only by the immersion depth T of the sword brush 1, but also by the shape of the body surface to be dedusted 6.
- the torque M IS ⁇ of the drive motor 7 of the sword brush 1 is influenced not only by the immersion depth T of the sword brush 1, but also by the shape of the body surface to be dedusted 6.
- Figure IB shows an idealized state in which the immersion depth over the entire length of the sword brush 1 is constant. In practice, however, the immersion depth T varies over the length of the sword brush 1, since the dedusting brushes 5 each represent a spring.
- the adaptation unit 14 therefore takes into account not only the torque M IST of the drive motor 7 of the sword brush 1 in the calculation of the correction value ⁇ P, but also a
- the deflection ai S ⁇ of the lower, pulled strand is measured by a deflection sensor 16, which may be designed, for example, as an optical sensor or as an ultrasonic sensor.
- the dedusting device has a rotational speed sensor 17, which measures a rotational speed n IS ⁇ of the drive motor 7 of the sword brush 1 and forwards it to the adaptation unit 14, so that the speed n IS ⁇ is also used in the calculation of the correction value -4P. is considered.
- the vehicle body parts to be dedusted are transported by a linear conveyor 9 along a conveying path past the dedusting robot 8, wherein the linear conveyor 9 also has positioning inaccuracies which must be absorbed or compensated by the dedusting device according to the invention.
- the dedusting device according to the invention therefore has a position sensor 18, which measures a position S IST of the motor vehicle body components to be dedusted along the conveying path and forwards them to the adaptation unit 14.
- the adaptation unit 14 calculates the correction value ZlP as a function of the measured position Sisx of the vehicle body components to be dedusted on the conveying path, which compensates for positioning inaccuracies of the linear conveyor 9.
- a robot path is first programmed ("taught"), which is known per se from the prior art and therefore does not have to be described in detail.
- the programming of the desired robot path can be done offline, i. E. without the dedusting robot making a real move.
- the distributed by the applicant programming software "3D OnSite" can be used.
- step S2 the respective next track point P TEACH is then activated on the previously programmed robot track.
- the correction value .DELTA.P is then calculated from the previously measured variables, wherein the calculation of the correction value .DELTA.P can take place on the basis of predefined maps.
- a corrected path point P K0RR is then calculated from the predetermined path point P TEACH and the correction value ⁇ P.
- the robot controller 13 then converts the corrected path point P K0RR from the spatial coordinates into axis coordinates and controls the dedusting robot 8 accordingly in a next step S10.
- the steps S3 to SlO are then repeated in a loop until it is determined in a step Sil that the corrected path point P KORR has been reached.
- step S12 it is then checked in a step S12 whether the predetermined robot path has ended. If this is not the case, the steps S2 to Sil are repeated in a loop, wherein in each case the next path point P TEACH of the predetermined robot path is controlled.
Landscapes
- Cleaning In General (AREA)
- Manipulator (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
Abstract
Description
BESCHREIBUNG DESCRIPTION
Entstaubungsverfahren und entsprechende EntstaubungseinrichtungDust removal process and appropriate dedusting facility
Die Erfindung betrifft ein Entstaubungsverfahren, insbesondere zur feuchten Reinigung von Kraftfahrzeugkarosseriebauteilen vor einer Lackierung.The invention relates to a dedusting method, in particular for the wet cleaning of motor vehicle body components prior to painting.
Weiterhin betrifft die Erfindung eine entsprechende Entstau- bungseinrichtung, die sich zur feuchten Reinigung von Kraftfahrzeugkarosseriebauteilen eignet und beispielsweise eine Schwertbürste als Entstaubungswerkzeug aufweist.Furthermore, the invention relates to a corresponding Entstau- bung device that is suitable for wet cleaning of motor vehicle body components and, for example, has a sword brush as dedusting tool.
In Lackieranlagen für Kraftfahrzeugkarosseriebauteile müssen die zu lackierenden Kraftfahrzeugkarosseriebauteile vor dem eigentlichen Lackiervorgang entstaubt werden, wozu sogenannte Schwertbürsten eingesetzt werden können, die beispielsweise in DE 43 14 046 Al und DE 103 29 499 B3 beschrieben sind. Die Schwertbürste ist hierbei an einer Handachse eines mehrachsi- gen Roboters montiert und wird von dem Roboter über die zu entstaubenden Oberflächen der zu lackierenden Kraftfahrzugka- rosseriebauteile geführt, wobei die Schwertbürste die zu entstaubenden Oberflächen feucht entstaubt.In painting systems for motor vehicle body components, the vehicle body components to be painted must be dedusted before the actual painting process, for which purpose so-called sword brushes can be used, which are described, for example, in DE 43 14 046 A1 and DE 103 29 499 B3. The sword brush is mounted on a hand axis of a multi-axis robot and is guided by the robot over the dust-removing surfaces of the vehicle chassis components to be painted, whereby the sword brush removes dust from the surfaces to be dedusted.
Problematisch an der Verwendung von Schwertbürsten zur Entstaubung von Kraftfahrzeugkarosseriebauteilen ist die geringe Toleranz von Schwertbürsten hinsichtlich der Eintauchtiefe. Einerseits müssen die auf dem umlaufenden Bürstenband der Schwertbürste angebrachten Reinigungsbürsten die zu entstau- benden Oberflächen berühren, um diese zu entstauben. Andererseits darf ein bestimmter Abstand zwischen dem umlaufenden Entstaubungsband der Schwertbürste und der zu entstaubenden Oberfläche nicht unterschritten werden, da die Entstaubungs- bürsten mit zunehmender Eintauchtiefe stärker deformiert werden, was zu Beschädigungen an den Reinigungsbürsten und im schlimmsten Fall zu einer Kollision zwischen der Schwertbürste und dem zu entstaubenden Bauteil führen kann.The problem with the use of sword brushes for dedusting of motor vehicle body components is the low tolerance of sword brushes with respect to the immersion depth. On the one hand, the cleaning brushes mounted on the rotating brush belt of the sword brush have to Touch the surfaces to remove dust. On the other hand, a certain distance between the rotating dedusting band of the sword brush and the dedusting surface must not be fallen below, since the dedusting brushes are deformed more with increasing depth of immersion, resulting in damage to the cleaning brushes and in the worst case to a collision between the sword brush and the can lead to dedusting component.
Darüber hinaus ist das Reinigungsergebnis bei Schwertbürsten von der Eintauchtiefe abhängig, wobei sich ein optimales Reinigungsergebnis nur erzielen lässt, wenn die Eintauchtiefe innerhalb eines bestimmten Bereichs bleibt.In addition, the cleaning result with sword brushes depends on the immersion depth, whereby an optimal cleaning result can only be achieved if the immersion depth remains within a certain range.
Die geringe Positionierungstoleranz der bekannten Schwertbürsten ist insbesondere deswegen problematisch, weil die Positionierung der zu entstaubenden Kraftfahrzeugkarosseriebauteile in einer Lackieranlage nur mit einer relativ geringen Positionierungsgenauigkeit möglich ist, die von der Schwert- bürste aufgenommen werden müssten.The low positioning tolerance of the known sword brushes is problematic in particular because the positioning of the vehicle body components to be dedusted in a paint shop is possible only with a relatively low positioning accuracy, which would have to be absorbed by the sword brush.
Ein Grund für die geringe Positionierungsgenauigkeit der zu entstaubenden Kraftfahrzeugkarosseriebauteile besteht darin, dass die Kraftfahrzeugkarosseriebauteile in ihren Abmessungen Toleranzen von bis zu einem Zentimeter aufweisen können, was sich nicht verändern lässt.One reason for the low positioning accuracy of the vehicle body components to be dedusted is that the vehicle body components can have tolerances of up to one centimeter in their dimensions, which can not be changed.
Ein weiterer Grund für die geringe Positionierungsgenauigkeit der zu entstaubenden Kraftfahrzeugkarosseriebauteile besteht darin, dass die Fördertechnik toleranzbehaftet ist, was sich nur mit hohen Investitionen in die Fördertechnik ändern ließe. Schließlich besteht ein Grund für die geringe Positionierungsgenauigkeit der zu entstaubenden Kraftfahrzeugkarosseriebauteile darin, dass die Kraftfahrzeugkarosseriebauteile von einem Gestell (engl. "Skid") toleranzbehaftet aufgenommen werden.Another reason for the low positioning accuracy of the dedusted motor vehicle body components is that the conveyor technology is subject to tolerances, which could be changed only with high investments in conveyor technology. Finally, one reason for the low positioning accuracy of the vehicle body components to be dedusted is that the motor vehicle body components are accommodated by a frame ("skid") with a tolerance.
Die Toleranzabweichungen bei der Positionierung der zu entstaubenden Kraftfahrzeugkarosseriebauteile überschreiten deshalb die Möglichkeiten des Toleranzausgleichs der Schwert- bürste und führen gelegentlich zu einem Produktionsstillstand durch die Auslösung eines Kollisionsschutzes.The tolerance deviations during the positioning of the vehicle body components to be dedusted therefore exceed the possibilities of tolerance compensation of the sword brush and occasionally lead to a production stoppage due to the initiation of collision protection.
Weiterhin ist aus Klaus Dieter Rupp: "Zur Fehlerkompensation und Bahnkorrektur für eine mobile Großmanipulator-Anwendung", Springer-Verlag (1996) eine Flugzeugwaschanlage bekannt, bei der eine Waschbürste von einem Großmanipulator über die zu waschenden Flugzeugoberflächen geführt wird. Auch hierbei muss die Eintauchtiefe der Waschbürste innerhalb eines bestimmten Toleranzfeldes gehalten werden, um einerseits eine Kollision zwischen der Waschbürste und dem zu reinigendenFurthermore, from Klaus Dieter Rupp: "For error compensation and path correction for a mobile large manipulator application", Springer-Verlag (1996) an aircraft washing system is known in which a washing brush is guided by a large manipulator on the aircraft surfaces to be washed. Again, the immersion depth of the washing brush must be kept within a certain tolerance field, on the one hand a collision between the washing brush and to be cleaned
Flugzeug zu vermeiden und andererseits eine gute Waschwirkung zu erzielen. Es ist deshalb aus dieser Druckschrift bekannt, die Eintauchtiefe der Waschbürste in Abhängigkeit von dem Drehmoment eines Waschbürstenmotors zu regeln. So nimmt das Drehmoment des Waschbürstenmotors mit zunehmender Eintauchtiefe ebenfalls zu, da die Bürsten der Waschbürste mit zunehmender Eintauchtiefe stärker deformiert werden. Das Drehmoment des Waschbürstenmotors ist also ein Maß für die Eintauchtiefe und kann deshalb als Messgröße benutzt werden.To avoid aircraft and on the other hand to achieve a good washing effect. It is therefore known from this document to regulate the immersion depth of the washing brush in dependence on the torque of a washing brush motor. Thus, the torque of the scrub brush motor also increases with increasing depth of immersion, since the brushes of the scrub brush are deformed more with increasing depth of immersion. The torque of the washing brush motor is thus a measure of the immersion depth and can therefore be used as a measured variable.
Diese bekannte Regelung der Eintauchtiefe in Abhängigkeit von dem Drehmoment des Antriebsmotors wurde jedoch bisher aus verschiedenen Gründen nicht auf Schwertbürsten übertragen. Zum einen ist das Toleranzfeld der Eintauchtiefe bei Schwertbürsten wesentlich kleiner als bei den vorstehend erwähnten Großwaschanlagen für Flugzeuge.However, this known control of the immersion depth in dependence on the torque of the drive motor has not been transferred to sword brushes for various reasons. On the one hand, the tolerance range of the immersion depth in sword brushes is considerably smaller than in the abovementioned large-scale washing systems for aircraft.
Zum anderen dienen Schwertbürsten nicht nur zur Entstaubung von ebenen Oberflächen, sondern werden auch zur Entstaubung von gekrümmten Oberflächen eingesetzt. Es hat sich jedoch gezeigt, dass das Antriebsmoment des Schwertbürstenmotors kein geeignetes Maß für die Eintauchtiefe darstellt, wenn gekrümm- te Oberflächen entstaubt werden.On the other hand, sword brushes are not only used for dedusting flat surfaces, but are also used for dedusting curved surfaces. However, it has been shown that the drive torque of the sword brush motor is not a suitable measure of the immersion depth when curved surfaces are dedusted.
Schließlich sind aus US 5 525 027, DE 44 28 069 Al und DE 44 33 925 Al Reinigungsvorrichtungen für Flugzeuge bzw. Schiffe bekannt, bei denen der Anpressdruck einer Reinigungsbürste gemessen und geregelt wird. Bei diesen Reinigungsvorrichtungen handelt es sich jedoch nicht um Entstaubungseinrichtungen in dem erfindungsgemäßen Sinne. Darüber hinaus eignen sich diese Reinigungsvorrichtungen nicht zur Reinigung von Kraftfahrzeugkarosseriebauteilen in einer Lackieranlage.Finally, from US 5 525 027, DE 44 28 069 Al and DE 44 33 925 Al cleaning devices for aircraft or ships are known in which the contact pressure of a cleaning brush is measured and controlled. However, these cleaning devices are not dedusting devices in the sense according to the invention. In addition, these cleaning devices are not suitable for cleaning motor vehicle body parts in a paint shop.
Der Erfindung liegt deshalb die Aufgabe zugrunde, beim Einsatz einer Schwertbürste zur Entstaubung von Kraftfahrzeugkarosseriebauteilen eine möglichst große Positionierungstoleranz zu erreichen, um die störenden Produktionsstillstände zu vermeiden, die durch die Auslösung des Kollisionsschutzes verursacht werden.The invention is therefore based on the object to achieve the greatest possible positioning tolerance when using a sword brush for dedusting of motor vehicle body components in order to avoid the disruptive production stoppages caused by the triggering of collision protection.
Diese Aufgabe wird durch ein Entstaubungsverfahren und eine entsprechende Entstaubungseinrichtung gemäß den nebengeordne- ten Ansprüchen gelöst.This object is achieved by a dedusting method and a corresponding dedusting device according to the subordinate claims.
Die Erfindung überträgt das in der vorstehend erwähnten Dissertation von Klaus Dieter Rupp erwähnte Prinzip einer Regelung der Eintauchtiefe unter Berücksichtigung des Antriebsmo- ments des Bürstenmotors erstmals auf eine Entstaubungsein- richtung für Kraftfahrzeugkarosseriebauteile. Dies wird erfindungsgemäß ermöglicht, indem auch die Flächenform des zu entstaubenden Bauteils ermittelt und bei der Positionskorrek- tur berücksichtigt wird. Auf diese Weise können die von der Eintauchtiefe unabhängigen Wirkungen verschiedener Formgebungen der zu entstaubenden Oberflächen auf das Drehmoment des Schwertbürstenmotors berücksichtigt werden.The invention conveys the principle mentioned in the abovementioned dissertation by Klaus Dieter Rupp of regulating the immersion depth in consideration of the drive motor. ment of the brush motor for the first time on a dedusting device for motor vehicle body components. This is made possible according to the invention by also determining the surface shape of the component to be dedusted and taking it into account in the position correction. In this way, independent of the immersion depth effects of different shapes of dedusting surfaces on the torque of the sword brush motor can be considered.
Die Erfindung sieht deshalb ein Entstaubungsverfahren auf, bei dem ein von einem Antriebsmotor angetriebenes Entstau- bungswerkzeug (z.B. eine Schwertbürste) in eine vorgegebene Entstaubungsposition gebracht wird, so dass das Entstaubungs- werkzeug das zu entstaubende Bauteil berührt und entstaubt. Die vorgegebene Entstaubungsposition ist in der Regel einThe invention therefore provides a dedusting method in which a dust removal tool (for example a sword brush) driven by a drive motor is brought into a predetermined dedusting position so that the dedusting tool touches and dedusts the component to be dedusted. The specified dedusting position is usually one
Bahnpunkt auf einer Roboterbahn, die von einer Bedienungsperson programmiert ("geteacht") werden kann.Track point on a robot track that can be "taught" by an operator.
Bei der Positionierung des Entstaubungswerkzeugs in die vor- gegebene Entstaubungsposition wird bei dem erfindungsgemäßen Entstaubungsverfahren eine erste Betriebsgröße (z.B. das Drehmoment) des Antriebsmotors des Entstaubungswerkzeugs ermittelt, wobei die erste Betriebsgröße die mechanische Belastung des Antriebsmotors durch den Berührungskontakt mit dem zu entstaubenden Bauteil wiedergibt.In positioning the dedusting tool in the predetermined dedusting position, in the dedusting method of the present invention, a first operation amount (e.g., torque) of the deduster tool driving motor is detected, the first operation amount representing the mechanical load of the drive motor by the contact with the part to be dedusted.
In Abhängigkeit von der vorgegebenen Entstaubungsposition und der ermittelten ersten Betriebsgröße des Antriebsmotors wird dann eine korrigierte Entstaubungsposition berechnet, die Po- sitionstoleranzen der zu entstaubenden Kraftfahrzeugkarosseriebauteile berücksichtigt und dadurch die Einhaltung eines engen Toleranzfeldes der Eintauchtiefe der Schwertbürste ermöglicht . Das Entstaubungswerkzeug wird dann in die derart korrigierte Entstaubungsposition gebracht.Depending on the predefined dedusting position and the determined first operating variable of the drive motor, a corrected dedusting position is then calculated which takes into account the positional tolerances of the vehicle body components to be dedusted and thereby enables compliance with a narrow tolerance field of the immersion depth of the sword brush. The dedusting tool is then brought into the dedusting position thus corrected.
In einem bevorzugten Ausführungsbeispiel der Erfindung wird die korrigierte Entstaubungsposition nicht nur in Abhängigkeit von der ersten Betriebsgröße des Antriebsmotors und der vorgegebenen Entstaubungsposition berechnet, sondern auch in Abhängigkeit von einem Formfaktor, der die Flächenform des zu entstaubenden Bauteils an der vorgegebenen Entstaubungsposi- tion wiedergibt. Dies ist sinnvoll, weil die Oberflächenform des zu entstaubenden Kraftfahrzeugkarosseriebauteils neben der Eintauchtiefe ebenfalls das Lastmoment des Antriebsmotors beeinflusst und deshalb bei der Berechnung der korrigierten Entstaubungsposition berücksichtigt werden sollte. Im ein- fachsten Fall kann der Formfaktor mittels eines Sensors ermittelt werden, der die Auslenkung des Entstaubungsbandes der Schwertbürste misst, da eine konvexe Oberfläche der zu entstaubenden Bauteile bei ansonsten gleicher Eintauchtiefe zu einer stärkeren Auslenkung des Entstaubungsbandes führt als eine ebene Oberfläche der zu entstaubenden Bauteile.In a preferred embodiment of the invention, the corrected dedusting position is calculated not only as a function of the first operating variable of the drive motor and the predetermined dedusting position, but also as a function of a form factor which reproduces the surface shape of the component to be dedusted at the predetermined dedusting position. This is useful because the surface shape of the vehicle body component to be dedusted, in addition to the immersion depth, likewise influences the load torque of the drive motor and should therefore be taken into account in the calculation of the corrected dedusting position. In the simplest case, the form factor can be determined by means of a sensor which measures the deflection of the dedusting belt of the sword brush, since a convex surface of the components to be dedusted, with otherwise identical immersion depth, leads to a greater deflection of the dedusting belt than a flat surface of the components to be dedusted ,
In dem bevorzugten Ausführungsbeispiel der Erfindung wird zusätzlich eine zweite Betriebsgröße (z.B. die Drehzahl) des Antriebmotors des Entstaubungswerkzeugs ermittelt und bei der Berechnung der korrigierten Entstaubungsposition ebenfalls berücksichtigt. Die korrigierte Entstaubungsposition wird hierbei also in Abhängigkeit von der vorgegebenen Entstaubungsposition, der ersten Betriebsgröße (z.B. dem Drehmoment) und der zweiten Betriebsgröße (z.B. der Drehzahl) des An- triebsmotors des Entstaubungswerkzeugs berechnet.In addition, in the preferred embodiment of the invention, a second amount of operation (e.g., speed) of the drive motor of the dedusting tool is determined and also taken into account in the calculation of the corrected dedusting position. The corrected dedusting position is thus calculated as a function of the predefined dedusting position, the first operating variable (for example the torque) and the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool.
Es wurde bereits vorstehend erwähnt, dass es sich bei dem Entstaubungswerkzeug im Rahmen der Erfindung vorzugsweise um eine Schwertbürste handelt, die als solche ein bürstenbesetz- tes Entstaubungsband aufweist, das um zwei Umlenkrollen geführt ist. Derartige Schwertbürsten sind beispielsweise aus DE 43 14 046 Al und DE 103 29 499 B3 bekannt, so dass hinsichtlich des Aufbaus und der Funktionsweise von Schwertbürs- ten auf diese beiden Veröffentlichungen verwiesen wird, deren Inhalt der vorliegenden Beschreibung in vollem Umfang zuzurechnen ist.It has already been mentioned above that the dedusting tool in the context of the invention is preferably a sword brush, which as such is a brush-type brush. Has a dedusting band, which is guided around two pulleys. Such sword brushes are known, for example, from DE 43 14 046 A1 and DE 103 29 499 B3, so that reference is made to these two publications with regard to the structure and mode of operation of sword brushes, the content of which is fully attributable to the present description.
Der im Rahmen der Erfindung verwendete Begriff einer Entstau- bung ist nicht auf eine flüssigkeitsfreie Entstaubung beschränkt. Vielmehr besteht auch im Rahmen der Erfindung die Möglichkeit, dass bei der Entstaubung eine Reinigungs- und Antistatikflüssigkeit auf die zu entstaubenden Oberflächen aufgebracht wird, um die Reinigungswirkung zu verbessern, wie es beispielsweise aus DE 199 20 250 Al bekannt ist, so dass der Inhalt dieser Patentanmeldung der vorliegenden Beschreibung in vollem Umfang zuzurechnen ist. Vorzugsweise wird also bei der Entstaubung ein Flüssigkeitsfilm auf die zu entstaubenden Bauteiloberflächen aufgebracht. Der Begriff der Ent- staubung umfasst also im Rahmen der Erfindung sowohl eineThe term de-staining used in the context of the invention is not limited to a liquid-free dedusting. Rather, it is within the scope of the invention, the possibility that in the dedusting a cleaning and antistatic fluid is applied to the surfaces to be dedusted to improve the cleaning effect, as is known for example from DE 199 20 250 Al, so that the content of this Patent application is fully attributable to the present description. Preferably, therefore, a liquid film is applied to the dedusting component surfaces in the dedusting. The term de-dusting therefore also encompasses both in the context of the invention
Trockenentstaubung als auch eine Nassentstaubung . Allerdings ist der Begriff der Entstaubung im Rahmen der Erfindung zu unterscheiden von Waschverfahren, die nicht nur einen Flüssigkeitsfilm auf der Bauteiloberfläche erzeugen, sondern grö- ßere Mengen einer Waschflüssigkeit applizieren.Dry dedusting as well as a wet dedusting. However, the term dedusting in the context of the invention is to be distinguished from washing methods which not only produce a liquid film on the component surface, but apply larger amounts of a washing liquid.
Die Erfindung ist jedoch nicht auf Entstaubungsverfahren und Entstaubungseinrichtungen beschränkt, bei denen als Entstau- bungswerkzeug eine Schwertbürste eingesetzt wird. Vielmehr umfasst die Erfindung auch Entstaubungsverfahren und Entstaubungseinrichtungen, bei denen andere Typen von Entstaubungs- werkzeugen eingesetzt werden. Ferner ist die Erfindung nicht auf Entstaubungsverfahren und Entstaubungseinrichtungen beschränkt, bei denen die korrigierte Entstaubungsposition in Abhängigkeit von dem Drehmoment und der Drehzahl des Schwertbürstenmotors und in Abhän- gigkeit von der Oberflächenform des zu entstaubenden Bauteils berechnet wird. Vielmehr können bei der Berechnung der korrigierten Entstaubungsposition auch andere Betriebsgrößen des Entstaubungswerkzeugs berücksichtigt werden.However, the invention is not restricted to dedusting methods and dedusting devices, in which a sword brush is used as a dewatering tool. Rather, the invention also includes dedusting and dedusting facilities, in which other types of dedusting tools are used. Furthermore, the invention is not restricted to dedusting methods and dedusting devices in which the corrected dedusting position is calculated as a function of the torque and the speed of the sword brush motor and as a function of the surface shape of the component to be dedusted. Rather, other operating variables of the dedusting tool can also be taken into account when calculating the corrected dedusting position.
Vorzugsweise wird das Entstaubungswerkzeug von einem mehrach- sigen Entstaubungsroboter positioniert, wobei im Falle einer Schwertbürste die Montage der Schwertbürste an einer Handachse des Entstaubungsroboters besonders vorteilhaft ist.Preferably, the dedusting tool is positioned by a multi-axis dedusting robot, wherein in the case of a sword brush the assembly of the sword brush on a hand axis of the dedusting robot is particularly advantageous.
Bei dem erfindungsgemäßen Entstaubungsverfahren werden die zu entstaubenden Bauteile vorzugsweise mittels eines Förderers entlang einem Förderweg vorbei an dem Entstaubungsroboter transportiert. Hierbei weist der Förderer ebenfalls Positionierungstungenauigkeiten auf, die sich zu den bereits ein- gangs erwähnten Positionierungstungenauigkeiten addieren und deshalb ebenfalls ausgeglichen oder von dem Entstaubungswerkzeug toleriert werden müssen. In dem bevorzugten Ausführungsbeispiel der Erfindung wird deshalb die Position des zu entstaubenden Bauteils auf dem Förderweg ermittelt, wozu bei- spielsweise ein Positionssensor eingesetzt werden kann. Die korrigierte Entstaubungsposition wird dann auch in Abhängigkeit von der ermittelten Position des zu entstaubenden Bauteils berechnet. Auf diese Weise kann die Positionierungsun- genauigkeit des Förderers ausgeglichen werden und muss somit nicht von dem Entstaubungswerkzeug aufgenommen werden.In the dedusting method according to the invention, the components to be dedusted are preferably transported by means of a conveyor along a conveying path past the dedusting robot. In this case, the conveyor also has positioning inaccuracies, which add up to the positioning inaccuracies mentioned above and therefore also have to be compensated or tolerated by the dedusting tool. In the preferred embodiment of the invention, therefore, the position of the component to be dedusted is determined on the conveying path, for which purpose, for example, a position sensor can be used. The corrected dedusting position is then also calculated as a function of the determined position of the component to be dedusted. In this way, the positioning accuracy of the conveyor can be compensated and thus does not have to be absorbed by the dedusting tool.
Bei den vorstehend erwähnten Sensoren kann es sich beispielsweise um Ultraschallsensoren, optische Sensoren, Kraftsensoren oder Dehnmessstreifen (DMS) handeln. Die Erfindung ist jedoch nicht auf die vorstehend erwähnten Sensortypen beschränkt, sondern auch mit anderen Sensortypen realisierbar.The sensors mentioned above may, for example, be ultrasonic sensors, optical sensors, force sensors or strain gauges (DMS). The invention is but not limited to the sensor types mentioned above, but also with other sensor types feasible.
Ferner ist zu erwähnen, dass während der Positionierung des Entstaubungswerkzeugs vorzugsweise laufend (d.h. in Echtzeit) eine Korrektur der Entstaubungsposition erfolgt, um die Eintauchtiefe der Schwerbürste innerhalb des vorgegebenen Toleranzfeldes zu halten.It should also be noted that during the positioning of the dedusting tool, preferably (in real time) a correction of the dedusting position is made in order to keep the immersion depth of the heavy brush within the predetermined tolerance field.
Schließlich umfasst die Erfindung nicht nur das vorstehend beschriebene erfindungsgemäße Entstaubungsverfahren, sondern auch eine Entstaubungseinrichtung, bei der die Entstaubungsposition mittels einer Adaptionseinheit korrigiert wird, um die Eintauchtiefe des Entstaubungswerkzeugs innerhalb eines vorgegebenen Toleranzfeldes zu halten.Finally, the invention comprises not only the above-described dedusting method according to the invention, but also a dedusting device in which the dedusting position is corrected by means of an adaptation unit in order to keep the immersion depth of the dedusting tool within a predetermined tolerance field.
Die Adaptionseinheit berechnet dabei laufend eine korrigierte Entstaubungsposition in Abhängigkeit von der ersten Betriebsgröße (z.B. dem Drehmoment), der zweiten Betriebsgröße (z.B. der Drehzahl) des Antriebsmotors des Entstaubungswerkzeugs und/oder in Abhängigkeit von dem Formfaktor, der die Oberflächenform des zu entstaubenden Bauteils wiedergibt.The adaptation unit continuously calculates a corrected dedusting position as a function of the first operating variable (for example the torque), the second operating variable (for example the rotational speed) of the drive motor of the dedusting tool and / or depending on the form factor, which represents the surface shape of the component to be dedusted.
Darüber hinaus umfasst die Erfindung auch eine Lackieranlage mit einer oder mehreren Lackierkabinen und der erfindungsgemäßen Entstaubungseinrichtung.In addition, the invention also includes a painting installation with one or more paint booths and the dedusting device according to the invention.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusam- men mit der Beschreibung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher erläutert. Es zeigen:Other advantageous developments of the invention are characterized in the dependent claims or will be explained in more detail below together with the description of the preferred embodiment of the invention with reference to the figures. Show it:
Figur IA eine vereinfachte Querschnittsansicht einer herkömmlichen Schwertbürste zur Entstaubung von Kraft- fahrzeugkarosseriebauteilen auf einer ebenen Karosserieoberfläche,FIG. 1A shows a simplified cross-sectional view of a conventional sword brush for dedusting force vehicle body components on a flat body surface,
Figur IB die Schwertbürste gemäß Figur IA auf einer konvexen Karosserieoberfläche,FIG. 1B shows the sword brush according to FIG. 1A on a convex body surface;
Figur 2 ein regelungstechnisches Ersatzschaltbild einer erfindungsgemäßen Entstaubungseinrichtung sowieFigure 2 is a control engineering equivalent circuit diagram of a dedusting device according to the invention and
Figur 3 das erfindungsgemäße Entstaubungsverfahren in Form eines Flussdiagramms.FIG. 3 shows the dedusting process according to the invention in the form of a flow chart.
Die Figuren IA und IB zeigen in vereinfachter Form eine Schwertbürste 1, wie sie beispielsweise in DE 43 14 046 Al und DE 103 29 499 B3 beschrieben ist, so dass hinsichtlich der weiteren Einzelheiten der Schwertbürste 1 auch auf diese Druckschriften verwiesen wird, deren Inhalt der vorliegenden Beschreibung hinsichtlich des Aufbaus und der Funktionsweise der Schwertbürste 1 in vollem Umfang zuzurechnen ist.FIGS. 1A and 1B show, in a simplified form, a sword brush 1, as described, for example, in DE 43 14 046 A1 and DE 103 29 499 B3, so that reference is also made to these documents with regard to the further details of the sword brush 1, the contents of which This description in terms of the structure and operation of the sword brush 1 is fully attributable.
Die Schwertbürste 1 weist zwei parallele Umlenkrollen 2, 3 auf, um die ein Entstaubungsband 4 herumgeführt ist, wobei das Entstaubungsband 4 an seiner Außenseite Entstaubungsbürs- ten 5 trägt.The sword brush 1 has two parallel deflection rollers 2, 3, around which a dedusting belt 4 is led, the dedusting belt 4 carrying dedusting brushes 5 on its outside.
Zur Entstaubung einer Karosserieoberfläche 6 wird die Schwertbürste 1 zu positioniert, dass der untere, gezogene Trum des Entstaubungsbands 4 mit den Entstaubungsbürsten 5 gegen die Karosserieoberfläche 6 drückt. Die Entstaubungs- bürsten 5 weisen hierbei im unbelasteten Zustand eine freie Länge 1 auf, während zwischen dem unteren, gezogenen Trum des Entstaubungsbands 4 und der zu entstaubenden Karosserieoberfläche 6 ein Abstand d liegt. Daraus ergibt sich eine Eintauchtiefe T=l-d. Wichtig ist hierbei, dass die Eintauchtiefe T innerhalb eines vorgegebenen Toleranzfeldes bleibt, da eine zu geringe Eintauchtiefe T zu einer unbefriedigenden Entstau- bungswirkung führt, wohingegen eine zu große Eintauchtiefe T einen starken Verschleiß der Entstaubungsbürsten 5 verur- sacht. Darüber hinaus hat die Eintauchtiefe T auch einen Ein- fluss auf das Reinigungsergebnis, wobei ein optimales Reinigungsergebnis voraussetzt, dass die Eintauchtiefe T innerhalb eines bestimmten Bereichs TMIN<T<TMAX liegt.To dedust a body surface 6, the sword brush 1 is positioned so that the lower, pulled run of the dedusting belt 4 presses with the dedusting brushes 5 against the body surface 6. In this case, the dedusting brushes 5 have a free length 1 in the unloaded state, while a distance d lies between the lower, drawn strand of the dedusting belt 4 and the bodywork surface 6 to be dedusted. This results in an immersion depth T = ld. It is important that the immersion depth T remains within a predetermined tolerance field, since a too small immersion depth T leads to an unsatisfactory defrosting effect, whereas a too large immersion depth T causes a strong wear of the dedusting brushes 5. In addition, the immersion depth T also has an influence on the cleaning result, wherein an optimum cleaning result requires that the immersion depth T be within a certain range T MIN <T <T MAX .
Figur IA zeigt hierbei die Verwendung der Schwertbürste 1 zur Entstaubung der ebenen Karosserieoberfläche 6, wohingegen die Karosserieoberfläche 6 in Figur IB konvex ist, was zu einer Auslenkung aiΞτ des unteren, gezogenen Trums des Entstaubungs- bands 4 führt. Die Auslenkung aiSτ des unteren, gezogenen Trums des Entstaubungsbands 4 erhöht das auf einen Antriebsmotor 7 der Schwertbürste 1 wirkende Drehmoment MτSτt was für das erfindungsgemäße Entstaubungsverfahren von Bedeutung ist. So wertet das erfindungsgemäße Entstaubungsverfahren das Drehmoment MIST des Antriebsmotors 7 der Schwertbürste 1 als Maß für die Eintauchtiefe T der Schwertbürste 1 aus, um Positionstoleranzen der zu entstaubenden Karosserieoberfläche 6 auszugleichen.In this case, FIG. 1A shows the use of the sword brush 1 for dedusting the planar body surface 6, whereas the body surface 6 in FIG. 1B is convex, which leads to a displacement ai Ξ τ of the lower, pulled run of the dedusting belt 4. The deflection ai S τ of the lower, pulled run of Entustaubungsbands 4 increases acting on a drive motor 7 of the sword brush 1 torque M τS τt which is important for the dedusting process according to the invention. Thus, the dedusting method according to the invention evaluates the torque M IST of the drive motor 7 of the sword brush 1 as a measure of the immersion depth T of the sword brush 1 in order to compensate for positional tolerances of the body surface 6 to be dedusted.
Im Folgenden wird die Erfindung detailliert anhand des rege- lungstechnischen Ersatzschaltbildes in Figur 2 erläutert.The invention will be explained in detail below with reference to the equivalent circuit diagram in FIG. 2.
Die Schwertbürste 1 ist an einer mehrachsigen Handachse eines mehrachsigen Entstaubungsroboters 8 montiert, was eine freie Positionierung des Schwertbürste 1 ermöglicht.The sword brush 1 is mounted on a multi-axis hand axis of a multi-axis dedusting robot 8, which allows a free positioning of the sword brush 1.
Die zu entstaubenden Kraftfahrzeugkarosseriebauteile werden hierbei von einem Linearförderer 9 entlang einem Förderweg vorbei an dem Entstaubungsroboter 8 transportiert, so dass der Entstaubungsroboter 8 die Schwertbürste 1 über die zu entstaubenden Karosserieoberflächen 6 führen kann.The vehicle body components to be dedusted are transported by a linear conveyor 9 along a conveying path past the dedusting robot 8, so that the dedusting robot 8 can guide the sword brush 1 over the body surfaces 6 to be dedusted.
Die aktuelle räumliche Position und Ausrichtung der Schwert- bürste 1 wird hierbei durch einen Positionsvektor PIST wiedergegeben und von einer Steuereinheit 10 entsprechend einer vorgegebenen, geteachten Roboterbahn geregelt.The current spatial position and orientation of the sword brush 1 is reproduced here by a position vector P IST and regulated by a control unit 10 in accordance with a predetermined, taught robot path.
Hierzu weist die Steuereinheit 10 einen Roboterbahngenerator 11 auf, der für zuvor programmierte Roboterbahnen Positionsvektoren PTEACH ausgibt, die für die einzelnen Bahnpunkte die Position eines Tool-Center-Point (TCP) der Schwertbürste 1 sowie die Ausrichtung der Schwertbürste 1 definieren.For this purpose, the control unit 10 has a robot track generator 11 which outputs position vectors P TEACH for previously programmed robot tracks , which define the position of a tool center point (TCP) of the sword brush 1 and the orientation of the sword brush 1 for the individual track points.
Die Positionsvektoren PTEACH werden dann von einen Addierer 12 mit einem Korrekturwert ZlP zu einem korrigierten Positionsvektor PK0RR umgerechnet, wie später noch detailliert beschrieben wird.The position vectors P TEACH are then converted by an adder 12 with a correction value ZlP to a corrected position vector P K0RR , as will be described in detail later.
Die korrigierten Positionsvektoren PKORR in den Raumkoordinaten werden dann einer Robotersteuerung 13 zugeführt, welche die Raumkoordinaten in Achskoordinaten umrechnet und den Entstaubungsroboter 8 entsprechend ansteuert.The corrected position vectors P KORR in the spatial coordinates are then supplied to a robot controller 13, which converts the spatial coordinates into axis coordinates and controls the dedusting robot 8 accordingly.
Weiterhin weist die Steuereinheit 10 eine Adaptionseinheit 14 auf, die den Korrekturwert ZlP berechnet und dadurch Positio- nierungsungenauigkeiten der zu entstaubenden Karosserieoberflächen 6 ausgleicht.Furthermore, the control unit 10 has an adaptation unit 14 which calculates the correction value ZIP and thereby compensates for positioning inaccuracies of the body surfaces 6 to be dedusted.
Bei der Berechnung des Korrekturwerts ZlP wird die Erkenntnis ausgenutzt, dass das Drehmoment MIST des Antriebsmotors 7 der Schwertbürste 1 mit der Eintauchtiefe T zunimmt, da die Ent- staubungsbürsten 5 bei zunehmender Eintauchtiefe T stärker deformiert werden müssen. Das Drehmoment MiST eignet sich des- halb als Messgröße für die Einstellung der Eintauchtiefe T der Schwertbürste.In the calculation of the correction value ZIP, the knowledge is exploited that the torque MI S T of the drive motor 7 of the sword brush 1 increases with the immersion depth T, since the dust removal brushes 5 must be deformed more strongly with increasing immersion depth T. The torque Mi ST is therefore suitable half as a measure for the adjustment of the immersion depth T of the sword brush.
Die erfindungsgemäße Entstaubungseinrichtung weist deshalb einen Drehmomentsensor 15 auf, der das Drehmoment MIST des Antriebsmotors 7 der Schwertbürste 1 ermittelt und zur Auswertung an die Adaptionseinheit 14 weiterleitet. Es ist jedoch alternativ auch möglich, dass das Drehmoment MIST nicht durch den separaten Drehmomentsensor 15 gemessen, sondern aus den elektrischen Betriebsgrößen des Antriebsmotors 7 abgeleitet wird, so dass der Drehmomentsensor 15 entbehrlich ist.The dedusting device according to the invention therefore has a torque sensor 15, which determines the torque M actual of the drive motor 7 of the sword brush 1 and forwards it to the adaptation unit 14 for evaluation. However, it is alternatively also possible that the torque M actual is not measured by the separate torque sensor 15, but is derived from the electrical operating variables of the drive motor 7, so that the torque sensor 15 can be dispensed with.
Das Drehmoment MISτ des Antriebsmotors 7 der Schwertbürste 1 wird jedoch nicht nur durch die Eintauchtiefe T der Schwert- bürste 1 beeinflusst, sondern auch durch die Form der zu entstaubenden Karosserieoberfläche 6. So verursacht die konvexe Karosserieoberfläche 6 gemäß Figur IB bei gleicher Eintauchtiefe T ein größeres Drehmoment MISτ als die plane Karosserieoberfläche 6 gemäß Figur IA.The torque M IS τ of the drive motor 7 of the sword brush 1 is influenced not only by the immersion depth T of the sword brush 1, but also by the shape of the body surface to be dedusted 6. Thus causes the convex body surface 6 according to Figure IB at the same immersion depth T. a larger torque M IS τ than the planar body surface 6 according to FIG IA.
Hierbei ist zu erwähnen, dass Figur IB einen idealisierten Zustand zeigt, in dem die Eintauchtiefe über die gesamte Länge der Schwertbürste 1 konstant ist. In der Praxis variiert die Eintauchtiefe T jedoch über die Länge der Schwertbürs- te 1, da die Entstaubungsbürsten 5 jeweils eine Feder darstellen.It should be noted that Figure IB shows an idealized state in which the immersion depth over the entire length of the sword brush 1 is constant. In practice, however, the immersion depth T varies over the length of the sword brush 1, since the dedusting brushes 5 each represent a spring.
Die Adaptionseinheit 14 berücksichtigt deshalb bei der Berechnung des Korrekturwerts ΔP nicht nur das Drehmoment MIST des Antriebsmotors 7 der Schwertbürste 1, sondern auch eineThe adaptation unit 14 therefore takes into account not only the torque M IST of the drive motor 7 of the sword brush 1 in the calculation of the correction value ΔP, but also a
Auslenkung aISτ des unteren, gezogenen Trums des Entstaubungs- bands 4, da die Auslenkung aΪSτ einen Formfaktor bildet, der die Flächenform der zu entstaubenden Karosserieoberfläche 6 wiedergibt. Die Auslenkung aiSτ des unteren, gezogenen Trums des Entstaubungsbands wird hierbei durch einen Auslenkungssensor 16 gemessen, der beispielsweise als optischer Sensor oder als Ultraschallsenor ausgebildet sein kann.Deflection a IS τ of the lower, pulled run of the dedusting belt 4, since the deflection a ΪS τ forms a form factor that reflects the surface shape of the body surface 6 to be dedusted. The deflection ai S τ of the lower, pulled strand In this case, the dedusting belt is measured by a deflection sensor 16, which may be designed, for example, as an optical sensor or as an ultrasonic sensor.
Darüber hinaus weist die Entstaubungseinrichtung in diesem Ausführungsbeispiel einen Drehzahlsensor 17 auf, der eine Drehzahl nISτ des Antriebsmotors 7 der Schwertbürste 1 misst und an die Adaptionseinheit 14 weiterleitet, so dass bei der Berechnung des Korrekturwerts -4P auch die Drehzahl nISτ be- rücksichtigt wird.In addition, in this exemplary embodiment, the dedusting device has a rotational speed sensor 17, which measures a rotational speed n IS τ of the drive motor 7 of the sword brush 1 and forwards it to the adaptation unit 14, so that the speed n IS τ is also used in the calculation of the correction value -4P. is considered.
Es wurde bereits vorstehend erwähnt, dass die zu entstaubenden Kraftfahrzeugkarosserieteile durch einen Linearförderer 9 entlang einem Förderweg vorbei an dem Entstaubungsroboter 8 transportiert werden, wobei der Linearförderer 9 ebenfalls Positionierungsungenauigkeiten aufweist, die von der erfindungsgemäßen Entstaubungseinrichtung aufgenommen oder ausgeglichen werden müssen. Die erfindungsgemäße Entstaubungseinrichtung weist deshalb einen Positionssensor 18 auf, der eine Position SIST der zu entstaubenden Kraftfahrzeugkarosseriebauteile entlang dem Förderweg misst und an die Adaptionseinheit 14 weiterleitet. Die Adaptionseinheit 14 berechnet dann den Korrekturwert ZlP auch in Abhängigkeit von der gemessenen Position Sisx der zu entstaubenden Kraftfahrzeugkarosseriebau- teile auf dem Förderweg, wodurch Positionierungsungenauigkeiten des Linearförderers 9 ausgeglichen werden.It has already been mentioned above that the vehicle body parts to be dedusted are transported by a linear conveyor 9 along a conveying path past the dedusting robot 8, wherein the linear conveyor 9 also has positioning inaccuracies which must be absorbed or compensated by the dedusting device according to the invention. The dedusting device according to the invention therefore has a position sensor 18, which measures a position S IST of the motor vehicle body components to be dedusted along the conveying path and forwards them to the adaptation unit 14. The adaptation unit 14 then calculates the correction value ZlP as a function of the measured position Sisx of the vehicle body components to be dedusted on the conveying path, which compensates for positioning inaccuracies of the linear conveyor 9.
Im Folgenden wird nun anhand des Flussdiagramms in Figur 3 das erfindungsgemäße Entstaubungsverfahren kurz erläutert.The dedusting method according to the invention will now be briefly explained below with reference to the flowchart in FIG.
In einem ersten Schritt Sl wird zunächst eine Roboterbahn programmiert ("geteacht") , was an sich aus dem Stand der Technik bekannt ist und deshalb nicht näher beschrieben werden muss. Bei der Programmierung der Roboterbahn in dem Schritt Sl können jedoch Positionstoleranzen der zu entstau- benden Kraftfahrzeugkarosseriebauteile noch nicht berücksichtigt werden.In a first step S1, a robot path is first programmed ("taught"), which is known per se from the prior art and therefore does not have to be described in detail. When programming the robot path in step S1, however, positional tolerances of the benden motor vehicle body components are not yet taken into account.
Die Programmierung der gewünschten Roboterbahn kann hierbei offline erfolgen, d.h. ohne dass der Entstaubungsroboter eine echte Bewegung ausführt. Hierzu kann beispielsweise die von der Anmelderin vertriebene Programmiersoftware "3D-OnSite" eingesetzt werden.The programming of the desired robot path can be done offline, i. E. without the dedusting robot making a real move. For this purpose, for example, the distributed by the applicant programming software "3D OnSite" can be used.
In einem Schritt S2 wird dann der jeweils nächste Bahnpunkt PTEACH auf der zuvor programmierten Roboterbahn angesteuert.In a step S2, the respective next track point P TEACH is then activated on the previously programmed robot track.
Bei der Ansteuerung des nächsten Bahnpunkts PTEACH werden dann in den Schritten S3 bis S6 das Drehmoment MISτ des Antriebsmo- tors 7 der Schwertbürste 1, die Drehzahl niST des Antriebsmotors 7 der Schwertbürste 1, die Auslenkung aiST des unteren, gezogenen Trums des Entstaubungsbands 4 und die Position sIST des zu entstaubenden Kraftfahrzeugkarosseriebauteils auf dem Förderweg gemessen.When driving the next path point P TEACH then in steps S3 to S6 the torque M IS τ of the drive motor 7 of the sword brush 1, the speed ni ST of the drive motor 7 of the sword brush 1, the deflection ai ST of the lower, pulled run the Entstaubungsbands 4 and the position s IS measured to be dedusted vehicle body component on the conveyor.
In einem Schritt S7 wird dann aus den zuvor gemessenen Größen der Korrekturwert ΔP berechnet, wobei die Berechnung des Korrekturwerts ΔP anhand vorgegebener Kennfelder erfolgen kann .In a step S7, the correction value .DELTA.P is then calculated from the previously measured variables, wherein the calculation of the correction value .DELTA.P can take place on the basis of predefined maps.
In einem nächsten Schritt S8 wird dann aus dem vorgegebenen Bahnpunkt PTEACH und dem Korrekturwert ΔP ein korrigierter Bahnpunkt PK0RR berechnet.In a next step S8, a corrected path point P K0RR is then calculated from the predetermined path point P TEACH and the correction value ΔP.
In einem weiteren Schritt S9 rechnet dann die Robotersteuerung 13 den korrigierten Bahnpunkt PK0RR aus den Raumkoordinaten in Achskoordinaten um und steuert den Entstaubungsroboter 8 in einem nächsten Schritt SlO entsprechend an. Die Schritte S3 bis SlO werden dann in einer Schleife wiederholt, bis in einem Schritt Sil festgestellt wird, dass der korrigierte Bahnpunkt PKORR erreicht ist.In a further step S9, the robot controller 13 then converts the corrected path point P K0RR from the spatial coordinates into axis coordinates and controls the dedusting robot 8 accordingly in a next step S10. The steps S3 to SlO are then repeated in a loop until it is determined in a step Sil that the corrected path point P KORR has been reached.
Anschließend wird dann in einem Schritt S12 geprüft, ob die vorgegebene Roboterbahn beendet ist. Falls dies nicht der Fall ist, so werden die Schritte S2 bis Sil in einer Schleife wiederholt, wobei jeweils der nächste Bahnpunkt PTEACH der vorgegebenen Roboterbahn angesteuert wird.Subsequently, it is then checked in a step S12 whether the predetermined robot path has ended. If this is not the case, the steps S2 to Sil are repeated in a loop, wherein in each case the next path point P TEACH of the predetermined robot path is controlled.
Die Erfindung ist nicht auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen. The invention is not limited to the preferred embodiment described above. Rather, a variety of variants and modifications is possible, which also make use of the inventive idea and therefore fall within the scope.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Schwertbürste1 sword brush
2, 3 Umlenkrollen2, 3 pulleys
4 Entstaubungsband4 dedusting tape
5 Entstaubungsbürsten5 dedusting brushes
6 Karosserieoberfläche6 bodywork surface
7 Antriebsmotor7 drive motor
8 Entstaubungsroboter8 dedusting robots
9 Linearförderer9 linear conveyors
10 Steuereinheit10 control unit
11 Roboterbahngenerator11 robot track generator
12 Addierer12 adders
13 RoboterSteuerung13 robot control
14 Adaptionseinheit14 adaptation unit
15 Drehmomentsensor15 torque sensor
16 Auslenkungssensor16 displacement sensor
17 Drehzahlsensor17 speed sensor
18 Positionssensor 18 position sensor
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08838142T PL2185297T3 (en) | 2007-10-02 | 2008-10-01 | Dedusting method and corresponding dedusting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007047190A DE102007047190A1 (en) | 2007-10-02 | 2007-10-02 | Dust removal process and appropriate dedusting facility |
PCT/EP2008/008321 WO2009046916A1 (en) | 2007-10-02 | 2008-10-01 | Dedusting method and corresponding dedusting device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2185297A1 true EP2185297A1 (en) | 2010-05-19 |
EP2185297B1 EP2185297B1 (en) | 2012-06-27 |
Family
ID=40247726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08838142A Active EP2185297B1 (en) | 2007-10-02 | 2008-10-01 | Dedusting method and corresponding dedusting device |
Country Status (9)
Country | Link |
---|---|
US (1) | US8298342B2 (en) |
EP (1) | EP2185297B1 (en) |
KR (1) | KR101577996B1 (en) |
CN (1) | CN101815585B (en) |
DE (1) | DE102007047190A1 (en) |
ES (1) | ES2389829T3 (en) |
PL (1) | PL2185297T3 (en) |
PT (1) | PT2185297E (en) |
WO (1) | WO2009046916A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011012231B4 (en) * | 2011-02-24 | 2014-05-28 | Washtec Holding Gmbh | Method for cleaning a rim of a motor vehicle wheel and device for carrying out the method |
DE102012017388A1 (en) | 2012-09-01 | 2014-03-06 | Volkswagen Aktiengesellschaft | Handling device fixed to device for cleaning surface of e.g. motor vehicle component, has guide rollers and drive roller that are arranged on support unit such that axes of rotation of guide and drive rollers are parallel |
US9248974B2 (en) | 2013-03-08 | 2016-02-02 | Mark S. Grill | Cleaning apparatus, methods of making cleaning apparatus, and methods of cleaning |
US8997295B1 (en) | 2013-08-06 | 2015-04-07 | Justin Romonti | Smart belt tooth brush |
CN111905927B (en) * | 2019-05-09 | 2023-05-09 | 斗山重工业建设有限公司 | Dust collecting device |
TWI718876B (en) * | 2020-02-21 | 2021-02-11 | 山立工業股份有限公司 | Sanding machine with bidirectional sanding device capable of rotating and operating in different directions |
CN114558389A (en) * | 2022-04-28 | 2022-05-31 | 张掖市巨龙铁合金有限公司 | Negative pressure bag-type dust collector with dust cleaning device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4382308A (en) | 1981-02-18 | 1983-05-10 | Chemcut Corporation | Scrubbing torque monitoring and control system |
JPS6014979A (en) * | 1983-07-05 | 1985-01-25 | 日本板硝子株式会社 | Cleaning device for bent glass |
JPS6133890A (en) * | 1984-07-26 | 1986-02-17 | 松下電器産業株式会社 | Industrial robot |
WO1992021484A1 (en) * | 1991-05-28 | 1992-12-10 | Kabushiki Kaisha Toshiba | Working device |
DE4314046C2 (en) | 1993-04-29 | 1995-02-23 | Claus G Dipl Ing Wandres | Method and device for removing particles adhering to surfaces by means of a wiping element |
JPH07142325A (en) * | 1993-06-23 | 1995-06-02 | Nikon Corp | Aligning device |
US5720069A (en) | 1993-08-31 | 1998-02-24 | Putzmeister-Werk Maschinenfabrik Gmbh | Arrangement for surface treatment, especially the cleaning of the surfaces of large objects |
DE4433925A1 (en) * | 1994-09-23 | 1996-03-28 | Schlick Heinrich Gmbh Co Kg | Construction for mounting applicators of surface treatments to ships and aircraft |
JP3949807B2 (en) * | 1998-03-09 | 2007-07-25 | 沖電気工業株式会社 | Substrate cleaning apparatus and substrate cleaning method |
DE19920250C2 (en) | 1999-05-03 | 2001-10-11 | Wandres Micro Cleaning | Device for cleaning surfaces |
US6986185B2 (en) * | 2001-10-30 | 2006-01-17 | Applied Materials Inc. | Methods and apparatus for determining scrubber brush pressure |
FR2855480B1 (en) * | 2003-05-30 | 2006-05-19 | Eisenmann France Sarl | DE-DUSTING MACHINE FOR BODY PAINTING WORKSHOPS OF MOTOR VEHICLES |
DE10329499B3 (en) | 2003-06-30 | 2004-08-12 | Wandres Gmbh Micro-Cleaning | Surface cleaning device for curved or corrugated surfaces e.g. for automobile body parts, metal bands or uneven plates, has pressure device with cushions or pads for matching cleaned surface contour |
DE10360649A1 (en) | 2003-12-23 | 2005-04-07 | Daimlerchrysler Ag | Dry cleaning device especially de-dusting plant for pre-treatment of vehicle bodies to be painted, has cleaning brush with belt flexibly mounted inside at least part of housing circumference for conforming to curved contour of body |
CN2782488Y (en) * | 2004-01-13 | 2006-05-24 | 程辉 | Portable multi-function internal/outer wall cleaner for car |
-
2007
- 2007-10-02 DE DE102007047190A patent/DE102007047190A1/en not_active Withdrawn
-
2008
- 2008-10-01 CN CN2008801102471A patent/CN101815585B/en active Active
- 2008-10-01 KR KR1020107008585A patent/KR101577996B1/en active Active
- 2008-10-01 ES ES08838142T patent/ES2389829T3/en active Active
- 2008-10-01 US US12/681,264 patent/US8298342B2/en active Active
- 2008-10-01 PT PT08838142T patent/PT2185297E/en unknown
- 2008-10-01 WO PCT/EP2008/008321 patent/WO2009046916A1/en active Application Filing
- 2008-10-01 EP EP08838142A patent/EP2185297B1/en active Active
- 2008-10-01 PL PL08838142T patent/PL2185297T3/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2009046916A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20100242991A1 (en) | 2010-09-30 |
WO2009046916A1 (en) | 2009-04-16 |
CN101815585B (en) | 2013-01-23 |
PT2185297E (en) | 2012-09-11 |
KR20100077170A (en) | 2010-07-07 |
EP2185297B1 (en) | 2012-06-27 |
CN101815585A (en) | 2010-08-25 |
DE102007047190A1 (en) | 2009-05-14 |
US8298342B2 (en) | 2012-10-30 |
PL2185297T3 (en) | 2012-11-30 |
ES2389829T3 (en) | 2012-11-02 |
KR101577996B1 (en) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2185297B1 (en) | Dedusting method and corresponding dedusting device | |
DE102012104194B4 (en) | Robot and spot welding robot with learning control function | |
DE102009049172B4 (en) | Method and device for controlling a manipulator | |
EP2954986B1 (en) | Apparatus and method for managing and controlling motion of a multiple body system | |
EP1880971B1 (en) | Method for controlling the orientation of a crane load | |
DE19930087B4 (en) | Method and device for controlling the advance position of a manipulator of a handling device | |
DE102014103370B4 (en) | Method and device for discrete-time control of a manipulator | |
DE102012106771A1 (en) | CONTROLLER FOR ELECTRIC MOTOR, COMPREHENSIVE A FUNCTION FOR SIMULTANEOUSLY ESTIMATING INERTIA, FRICTION AND SPRING CONSTANT | |
EP1537011A2 (en) | Method and device for processing a moving production part, particularly a vehicle body | |
WO2008104167A2 (en) | Singularity-based machine test and calibration method | |
WO2013026554A1 (en) | Control method for a robot | |
EP3037905B1 (en) | Device and method for holding workpieces | |
WO2020225350A1 (en) | Coating method and corresponding coating installation | |
DE2731041C3 (en) | Programming device for a program-controlled paint manipulator | |
DE102016008866A1 (en) | Robot control device with compensation of elastic deformation of a support body | |
DE102017215725A1 (en) | Device and method for applying a sealing and / or coating material | |
DE102007008624A1 (en) | Motor vehicle i.e. train, steering method, involves forming control input signal for controller i.e. proportional integral controller, from feedback vector, and determining desired speed from plan speed, web guiding vector and variable | |
DE102017003833A1 (en) | Laser processing device and laser processing method | |
EP2758181B1 (en) | Coating method and coating system with compensation of the unsymmetrical spray jet | |
DE102015013117A1 (en) | Method and apparatus for masking mounting holes in rims | |
DE3039400C2 (en) | Method for controlling handling systems and handling system for carrying out this method | |
DE102013017895B4 (en) | Method for continuously determining the 3D positions and trajectory of the movement of a dynamic manufacturing object | |
EP2553536B1 (en) | Method for operating a processing enclosure comprising at least one robot | |
DE102016009436A1 (en) | Robot control that prevents shaking of a tool tip in a robot equipped with a travel axis | |
DE202019004672U1 (en) | Compensation device for trouble-free 3D concrete printing using a truck-mounted concrete pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20101126 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 563856 Country of ref document: AT Kind code of ref document: T Effective date: 20120715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008007619 Country of ref document: DE Effective date: 20120823 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20120904 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120927 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2389829 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121102 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120928 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 12477 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121027 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E015329 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20130328 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008007619 Country of ref document: DE Effective date: 20130328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120927 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121001 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 563856 Country of ref document: AT Kind code of ref document: T Effective date: 20131001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008007619 Country of ref document: DE Representative=s name: V. BEZOLD & PARTNER PATENTANWAELTE - PARTG MBB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008007619 Country of ref document: DE Owner name: DUERR SYSTEMS AG, DE Free format text: FORMER OWNER: DUERR SYSTEMS GMBH, 74321 BIETIGHEIM-BISSINGEN, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008007619 Country of ref document: DE Representative=s name: V. BEZOLD & PARTNER PATENTANWAELTE - PARTG MBB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008007619 Country of ref document: DE Owner name: DUERR SYSTEMS AG, DE Free format text: FORMER OWNER: DUERR SYSTEMS AG, 74321 BIETIGHEIM-BISSINGEN, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20240919 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240923 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240920 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240924 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240924 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20241024 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240923 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241022 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241025 Year of fee payment: 17 Ref country code: ES Payment date: 20241127 Year of fee payment: 17 |