EP2184445A1 - Axial segmentierter Leitschaufelträger für einen Gasturbine - Google Patents
Axial segmentierter Leitschaufelträger für einen Gasturbine Download PDFInfo
- Publication number
- EP2184445A1 EP2184445A1 EP08019365A EP08019365A EP2184445A1 EP 2184445 A1 EP2184445 A1 EP 2184445A1 EP 08019365 A EP08019365 A EP 08019365A EP 08019365 A EP08019365 A EP 08019365A EP 2184445 A1 EP2184445 A1 EP 2184445A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- gas turbine
- vane carrier
- axial
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/041—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/246—Fastening of diaphragms or stator-rings
Definitions
- the invention relates to a guide vane carrier, in particular for a gas turbine, which consists of a number of axial segments.
- Gas turbines are used in many areas to drive generators or work machines.
- the energy content of a fuel is used to generate a rotational movement of a turbine shaft.
- the fuel is burned in a combustion chamber, compressed air being supplied by an air compressor.
- the working medium produced in the combustion chamber by the combustion of the fuel, under high pressure and at high temperature, is guided via a turbine unit arranged downstream of the combustion chamber, where it relaxes to perform work.
- a number of rotor blades which are usually combined into blade groups or rows of blades, are arranged thereon and drive the turbine shaft via a momentum transfer from the working medium.
- For guiding the flow of the working medium in the turbine unit also commonly associated between adjacent blade rows with the turbine housing and combined into rows of guide vanes are arranged.
- the combustion chamber of the gas turbine may be embodied as a so-called annular combustion chamber, in which a plurality of circumferentially arranged around the turbine shaft burners in a common, surrounded by a high temperature resistant surrounding wall combustion chamber space.
- the combustion chamber is designed in its entirety as an annular structure.
- a single combustion chamber can also be provided a plurality of combustion chambers.
- first row of guide vanes of a turbine unit which, together with the blade row immediately downstream in the flow direction of the working medium, forms a first turbine stage of the turbine unit, which is usually followed by further turbine stages.
- the vanes are fixed in each case via a blade root, also referred to as a platform, on a guide vane carrier of the turbine unit.
- the guide blade carrier for securing the platforms of the guide vanes comprise an insulation segment.
- a guide ring on the guide vane support of the turbine unit is arranged in each case.
- Such a guide ring is spaced by a radial gap of the blade tips of the fixed at the same axial position on the turbine shaft blades of the associated blade row.
- the guide vane carrier of the gas turbine usually made of cast steel. This is suitable to withstand the high temperatures within the gas turbine and it can thus ensure safe operation of the gas turbine.
- the guide vanes of the gas turbine can either be fastened to a common guide vane carrier or separate axial segments are provided for each turbine stage.
- a common guide vane carrier or separate axial segments are provided for each turbine stage.
- the turbine vane carrier is exposed to the extremely high temperatures that require high heat resistant cast steel, but there is a temperature profile that has relatively small high temperature regions and a larger, low temperature rear region.
- the invention is therefore based on the object to provide a guide vane, which allows a technically simpler design and more flexible adaptation to the prevailing at the vane carrier temperature profile while maintaining operational safety.
- This object is achieved according to the invention by designing at least one axial segment as a lattice tube structure.
- the invention is based on the consideration that a more flexible adaptation to the temperature profile within the gas turbine could occur in the area of the guide blade carrier, in particular by different materials of the individual axial segments of the guide blade carrier.
- high temperatures occur in particular in the region of the entanglement of the guide vanes and the ring segments, since these components cause a local heat input in the region of their attachment.
- the foremost region of the guide blade carrier is exposed to a comparatively high compressor end temperature.
- a relatively high quality material is necessary.
- the temperature resistance of this material is not required. These areas could consist of cheaper and less expensive material.
- the axial segments should continue to be solid in areas of low temperature. Therefore, these axial segments should be formed as a grid tube structure, ie as interconnected, arranged in the manner of a grid structure tubes or beams.
- the respective grid pipe structure is provided on its inner and / or outer side with a sheet metal lining.
- a sheet-metal-clad tubular construction can replace previously provided as castings sections of the vane support by a simpler structure, without jeopardizing the operational safety of the gas turbine. At the same time a smaller amount of material is needed.
- the respective metal cladding on cooling air holes are also easier to manufacture than the cooling air holes required for castings, whereby a finer distribution to the subsequent ring segments can be provided by increasing the number of holes with the same cross-section or flow resistance.
- the material of the respective axial segment and / or, where appropriate, of the respective sheet-metal cladding is local to that provided during operation adapted to thermal and mechanical loads.
- a number of axial segments are welded together.
- the individual axial segments d. H. the individual grid pipe structures and the axial segments produced as castings ensures a dimensionally stable and secure connection.
- all axial segments are designed as a lattice tube structure.
- the entire vane carrier can be designed as a lattice tube structure, where appropriate, different sheet metal linings are used on the inside, segment by segment. As a result, an even simpler construction of the guide vane carrier and thus the gas turbine is possible.
- the advantages associated with the invention are, in particular, that a technically much simpler, easier and less expensive construction of a guide blade carrier and thus the entire gas turbine is possible by the design of an axial segment of a vane carrier as a lattice tube structure.
- more favorable materials can be used in areas with lower temperature exposure and expensive high-temperature materials remain limited to the front, hot area of the gas turbine.
- the remaining axial segments made of castings are comparatively smaller, allowing a simpler design of the vane carrier and the entire gas turbine.
- the grid structure is less thermally conductive than a solid casting, also finds a lower heat conduction in the axial direction, in particular from the hot areas at the compressor exit in the rear cooler areas, resulting in improved cooling of the vane support and thus a lower axial and possibly also radial thermal Expansion is achieved.
- this design shows great potential for further development of guide vane carrier, as more flexible can be addressed to thermal and mechanical requirements.
- At the front of the turbine vane carrier there are extremely stringent requirements for maintaining the gap to the vanes and blades to ensure turbine efficiency. With the segmentation by the grid construction, the thermal expansion behavior can be set to a much better extent than before, and thus the necessary minimum gap can be reduced.
- FIG. 1 shows in detail a half section through a guide vane carrier 1.
- the guide vane carrier 1 is usually conical or cylindrical in shape and consists of two segments, an upper and a lower segment, the z. B. are interconnected via flanges. Only the section through the upper segment is shown.
- the illustrated vane carrier 1 comprises a number of axial segments 24 which are welded together to form a solid structure.
- a number of axial segments 24 of the guide blade carrier 1 is formed as a grid tube construction 26.
- the lattice tube constructions 26 are each provided on their inner side with a sheet metal lining 28.
- the remaining axial segments 24 are formed as castings 30.
- the material of the cast parts 30 and the sheet metal linings 28 is in each case adapted to the thermal conditions in their respective region in the interior of the gas turbine.
- a complete construction of the vane support 1 made of grid pipe segments would also be possible.
- the gas turbine 101 includes a compressor 102 for combustion air, a combustion chamber 104 and a turbine unit 106 for driving the compressor 102 and a generator, not shown, or a working machine.
- the turbine unit 106 and the compressor 102 are arranged on a common turbine shaft 108, also referred to as a turbine runner, to which the generator or the working machine is also connected and which is rotatably mounted about its central axis 109.
- the combustor 104 which is in the form of an annular combustor, is equipped with a number of burners 110 for combustion of a liquid or gaseous fuel.
- the turbine unit 106 has a number of rotatable blades 112 connected to the turbine shaft 108.
- the blades 112 are annularly disposed on the turbine shaft 108 and thus form a number of blade rows.
- the turbine unit 106 includes a number of stationary vanes 114, which are also attached in a donut-like manner to a vane support 1 of the turbine unit 106 to form rows of vanes.
- the blades 112 serve to drive the turbine shaft 108 by momentum transfer from the turbine unit 106 flowing through the working medium M.
- the vanes 114 serve to guide the flow of the working medium M between two seen in the flow direction of the working medium M consecutive blade rows or blade rings.
- a successive pair of a ring of vanes 114 or a row of vanes and a ring of blades 112 or a blade row is also referred to as a turbine stage.
- Each vane 114 has a platform 118 which is arranged to fix the respective vane 114 to a vane support 1 of the turbine unit 106 as a wall element.
- the platform 118 is a thermally comparatively heavily loaded component, which forms the outer boundary of a hot gas channel for the turbine unit 106 flowing through the working medium M.
- Each blade 112 is fastened to the turbine shaft 108 in an analogous manner via a platform 119, also referred to as a blade root.
- a guide ring 121 is respectively arranged on the guide vane carrier 16 of the turbine unit 106.
- the outer surface of each guide ring 121 is also exposed to the hot, the turbine unit 106 flowing through the working medium M and spaced in the radial direction from the outer end of the blades lying opposite him 112 through a gap.
- the arranged between adjacent vane rows Guide rings 121 serve in particular as cover elements, which protect the inner housing in the guide blade carrier 1 or other housing-mounting components from thermal overload by the hot working medium M flowing through the turbine 106.
- the combustion chamber 104 is configured in the exemplary embodiment as a so-called annular combustion chamber, in which a plurality of burners 110 arranged around the turbine shaft 108 in the circumferential direction open into a common combustion chamber space.
- the combustion chamber 104 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 108 around.
- the leftmost axial segments 24 are accordingly made of a high temperature resistant material than in the gas channel downstream areas.
- the grid tube structure further ensures a good thermal insulation of the individual cast parts 30 from each other, as a result of which thermal deformations can be minimized.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08019365A EP2184445A1 (de) | 2008-11-05 | 2008-11-05 | Axial segmentierter Leitschaufelträger für einen Gasturbine |
JP2011533644A JP5596042B2 (ja) | 2008-11-05 | 2009-09-10 | ガスタービン用の軸方向に区分化されたガイドベーンマウント |
PCT/EP2009/061744 WO2010052050A1 (de) | 2008-11-05 | 2009-09-10 | Axial segmentierter leitschaufelträger für eine gasturbine |
PL09824439T PL2342427T3 (pl) | 2008-11-05 | 2009-09-10 | Dźwigar łopatek kierujących złożony z segmentów osiowych dla turbiny gazowej |
CN200980144348.5A CN102216568B (zh) | 2008-11-05 | 2009-09-10 | 用于燃气轮机的轴向段的导向叶片支架 |
US13/127,295 US8870526B2 (en) | 2008-11-05 | 2009-09-10 | Axially segmented guide vane mount for a gas turbine |
RU2011122612/06A RU2508450C2 (ru) | 2008-11-05 | 2009-09-10 | Сегментированная в осевом направлении обойма направляющих лопаток для газовой турбины, а также газовая турбина и газопаровая турбинная установка с сегментированной обоймой направляющих лопаток |
EP09824439.5A EP2342427B1 (de) | 2008-11-05 | 2009-09-10 | Axial segmentierter leitschaufelträger für eine gasturbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08019365A EP2184445A1 (de) | 2008-11-05 | 2008-11-05 | Axial segmentierter Leitschaufelträger für einen Gasturbine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2184445A1 true EP2184445A1 (de) | 2010-05-12 |
Family
ID=40497476
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08019365A Withdrawn EP2184445A1 (de) | 2008-11-05 | 2008-11-05 | Axial segmentierter Leitschaufelträger für einen Gasturbine |
EP09824439.5A Not-in-force EP2342427B1 (de) | 2008-11-05 | 2009-09-10 | Axial segmentierter leitschaufelträger für eine gasturbine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09824439.5A Not-in-force EP2342427B1 (de) | 2008-11-05 | 2009-09-10 | Axial segmentierter leitschaufelträger für eine gasturbine |
Country Status (7)
Country | Link |
---|---|
US (1) | US8870526B2 (pl) |
EP (2) | EP2184445A1 (pl) |
JP (1) | JP5596042B2 (pl) |
CN (1) | CN102216568B (pl) |
PL (1) | PL2342427T3 (pl) |
RU (1) | RU2508450C2 (pl) |
WO (1) | WO2010052050A1 (pl) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2938828A4 (en) | 2012-12-28 | 2016-08-17 | United Technologies Corp | GAS TURBINE ENGINE COMPONENT WITH VASCULAR MANIPULATED GRID STRUCTURE |
US10018052B2 (en) | 2012-12-28 | 2018-07-10 | United Technologies Corporation | Gas turbine engine component having engineered vascular structure |
US10094287B2 (en) | 2015-02-10 | 2018-10-09 | United Technologies Corporation | Gas turbine engine component with vascular cooling scheme |
US10077664B2 (en) | 2015-12-07 | 2018-09-18 | United Technologies Corporation | Gas turbine engine component having engineered vascular structure |
US10557464B2 (en) | 2015-12-23 | 2020-02-11 | Emerson Climate Technologies, Inc. | Lattice-cored additive manufactured compressor components with fluid delivery features |
US10982672B2 (en) * | 2015-12-23 | 2021-04-20 | Emerson Climate Technologies, Inc. | High-strength light-weight lattice-cored additive manufactured compressor components |
US10634143B2 (en) * | 2015-12-23 | 2020-04-28 | Emerson Climate Technologies, Inc. | Thermal and sound optimized lattice-cored additive manufactured compressor components |
US10221694B2 (en) | 2016-02-17 | 2019-03-05 | United Technologies Corporation | Gas turbine engine component having vascular engineered lattice structure |
US10774653B2 (en) | 2018-12-11 | 2020-09-15 | Raytheon Technologies Corporation | Composite gas turbine engine component with lattice structure |
US12104533B2 (en) * | 2020-04-24 | 2024-10-01 | General Electric Company | Methods and apparatus for gas turbine frame flow path hardware cooling |
US11512611B2 (en) * | 2021-02-09 | 2022-11-29 | General Electric Company | Stator apparatus for a gas turbine engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1051244A (pl) * | 1962-10-09 | |||
CH417637A (de) * | 1960-09-28 | 1966-07-31 | Licentia Gmbh | Mehrstufige, axial beaufschlagte Dampf- oder Gasturbine |
GB2378730A (en) * | 2001-08-18 | 2003-02-19 | Rolls Royce Plc | Cooling of shroud segments of turbines |
WO2005008032A1 (de) * | 2003-07-11 | 2005-01-27 | Mtu Aero Engines Gmbh | Leichtbau-schaufel für eine gasturbine sowie verfahren zur herstlellung derselben |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB417637A (en) | 1934-02-05 | 1934-10-09 | Otto Dietrich Rohrleitungsbau | Improvements relating to high pressure pipe joints |
CH421142A (de) | 1965-01-12 | 1966-09-30 | Escher Wyss Ag | Gehäuse für eine Gas- oder Dampfturbine |
CH425341A (de) * | 1965-07-23 | 1966-11-30 | Bbc Brown Boveri & Cie | Gasturbine mit Kühlung der Schaufelträger |
CS163820B1 (pl) | 1966-09-23 | 1975-11-07 | ||
US3742705A (en) * | 1970-12-28 | 1973-07-03 | United Aircraft Corp | Thermal response shroud for rotating body |
JPS541703A (en) * | 1977-06-06 | 1979-01-08 | Hitachi Ltd | Diaphragm of steel plate structure |
GB2053367B (en) * | 1979-07-12 | 1983-01-26 | Rolls Royce | Cooled shroud for a gas turbine engine |
SU1263777A1 (ru) | 1984-04-12 | 1986-10-15 | Центральный Ордена Трудового Красного Знамени Научно-Исследовательский И Проектный Институт Строительных Металлоконструкций Им.Н.П.Мельникова | Сварной узел трубчатых стержней |
DE3509193A1 (de) * | 1985-03-14 | 1986-09-25 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Stroemungsmaschine mit innengehaeuse |
JPS62182444A (ja) * | 1986-02-07 | 1987-08-10 | Hitachi Ltd | ガスタ−ビン冷却空気制御方法及び装置 |
US4863341A (en) * | 1988-05-13 | 1989-09-05 | Westinghouse Electric Corp. | Turbine having semi-isolated inlet |
US4920742A (en) * | 1988-05-31 | 1990-05-01 | General Electric Company | Heat shield for gas turbine engine frame |
US4826397A (en) * | 1988-06-29 | 1989-05-02 | United Technologies Corporation | Stator assembly for a gas turbine engine |
US5104285A (en) * | 1990-10-18 | 1992-04-14 | Westinghouse Electric Corp. | Low pressure inlet ring subassembly with integral staybars |
FR2679296B1 (fr) * | 1991-07-17 | 1993-10-15 | Snecma | Plate-forme separee inter-aube pour disque ailete de rotor de turbomachine. |
FR2685936A1 (fr) * | 1992-01-08 | 1993-07-09 | Snecma | Dispositif de controle des jeux d'un carter de compresseur de turbomachine. |
US5391052A (en) * | 1993-11-16 | 1995-02-21 | General Electric Co. | Impingement cooling and cooling medium retrieval system for turbine shrouds and methods of operation |
JPH07324601A (ja) * | 1994-05-31 | 1995-12-12 | Mitsubishi Heavy Ind Ltd | 蒸気タービンの仕切板構造 |
GB9709086D0 (en) * | 1997-05-07 | 1997-06-25 | Rolls Royce Plc | Gas turbine engine cooling apparatus |
JP3564266B2 (ja) | 1997-07-22 | 2004-09-08 | 三菱重工業株式会社 | ガスタービン静翼の支持構造 |
US6179560B1 (en) * | 1998-12-16 | 2001-01-30 | United Technologies Corporation | Turbomachinery module with improved maintainability |
GB2348466B (en) * | 1999-03-27 | 2003-07-09 | Rolls Royce Plc | A gas turbine engine and a rotor for a gas turbine engine |
JP2002309906A (ja) * | 2001-04-11 | 2002-10-23 | Mitsubishi Heavy Ind Ltd | 蒸気冷却型ガスタービン |
JP3825279B2 (ja) | 2001-06-04 | 2006-09-27 | 三菱重工業株式会社 | ガスタービン |
FR2829176B1 (fr) * | 2001-08-30 | 2005-06-24 | Snecma Moteurs | Carter de stator de turbomachine |
US6514041B1 (en) * | 2001-09-12 | 2003-02-04 | Alstom (Switzerland) Ltd | Carrier for guide vane and heat shield segment |
EP1306521A1 (de) * | 2001-10-24 | 2003-05-02 | Siemens Aktiengesellschaft | Laufschaufel für eine Gasturbine und Gasturbine mit einer Anzahl von Laufschaufeln |
US6886343B2 (en) * | 2003-01-15 | 2005-05-03 | General Electric Company | Methods and apparatus for controlling engine clearance closures |
US7370467B2 (en) * | 2003-07-29 | 2008-05-13 | Pratt & Whitney Canada Corp. | Turbofan case and method of making |
DE102004016222A1 (de) * | 2004-03-26 | 2005-10-06 | Rolls-Royce Deutschland Ltd & Co Kg | Anordnung zur selbsttätigen Laufspalteinstellung bei einer zwei- oder mehrstufigen Turbine |
US7007488B2 (en) * | 2004-07-06 | 2006-03-07 | General Electric Company | Modulated flow turbine nozzle |
SE527732C2 (sv) | 2004-10-07 | 2006-05-23 | Volvo Aero Corp | Ett hölje för omslutande av en gasturbinkomponent |
US7217089B2 (en) * | 2005-01-14 | 2007-05-15 | Pratt & Whitney Canada Corp. | Gas turbine engine shroud sealing arrangement |
FR2891300A1 (fr) * | 2005-09-23 | 2007-03-30 | Snecma Sa | Dispositif de controle de jeu dans une turbine a gaz |
CA2644099C (en) * | 2006-03-02 | 2013-12-31 | Ihi Corporation | Impingement cooled structure |
US7610763B2 (en) * | 2006-05-09 | 2009-11-03 | United Technologies Corporation | Tailorable design configuration topologies for aircraft engine mid-turbine frames |
US7798775B2 (en) * | 2006-12-21 | 2010-09-21 | General Electric Company | Cantilevered nozzle with crowned flange to improve outer band low cycle fatigue |
DE102008000284A1 (de) * | 2007-03-02 | 2008-09-04 | Alstom Technology Ltd. | Dampfturbine |
FR2923525B1 (fr) * | 2007-11-13 | 2009-12-18 | Snecma | Etancheite d'un anneau de rotor dans un etage de turbine |
GB2462581B (en) * | 2008-06-25 | 2010-11-24 | Rolls Royce Plc | Rotor path arrangements |
-
2008
- 2008-11-05 EP EP08019365A patent/EP2184445A1/de not_active Withdrawn
-
2009
- 2009-09-10 JP JP2011533644A patent/JP5596042B2/ja not_active Expired - Fee Related
- 2009-09-10 EP EP09824439.5A patent/EP2342427B1/de not_active Not-in-force
- 2009-09-10 WO PCT/EP2009/061744 patent/WO2010052050A1/de active Application Filing
- 2009-09-10 RU RU2011122612/06A patent/RU2508450C2/ru not_active IP Right Cessation
- 2009-09-10 CN CN200980144348.5A patent/CN102216568B/zh not_active Expired - Fee Related
- 2009-09-10 US US13/127,295 patent/US8870526B2/en not_active Expired - Fee Related
- 2009-09-10 PL PL09824439T patent/PL2342427T3/pl unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH417637A (de) * | 1960-09-28 | 1966-07-31 | Licentia Gmbh | Mehrstufige, axial beaufschlagte Dampf- oder Gasturbine |
GB1051244A (pl) * | 1962-10-09 | |||
GB2378730A (en) * | 2001-08-18 | 2003-02-19 | Rolls Royce Plc | Cooling of shroud segments of turbines |
WO2005008032A1 (de) * | 2003-07-11 | 2005-01-27 | Mtu Aero Engines Gmbh | Leichtbau-schaufel für eine gasturbine sowie verfahren zur herstlellung derselben |
Also Published As
Publication number | Publication date |
---|---|
JP2012507652A (ja) | 2012-03-29 |
EP2342427B1 (de) | 2013-06-19 |
CN102216568A (zh) | 2011-10-12 |
PL2342427T3 (pl) | 2013-11-29 |
WO2010052050A1 (de) | 2010-05-14 |
RU2011122612A (ru) | 2012-12-20 |
EP2342427A1 (de) | 2011-07-13 |
US20110268580A1 (en) | 2011-11-03 |
JP5596042B2 (ja) | 2014-09-24 |
RU2508450C2 (ru) | 2014-02-27 |
US8870526B2 (en) | 2014-10-28 |
CN102216568B (zh) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2342427B1 (de) | Axial segmentierter leitschaufelträger für eine gasturbine | |
EP1443275B1 (de) | Brennkammer | |
EP1636526B1 (de) | Brennkammer | |
DE3941174C2 (de) | Spitzenspalt-Einstellvorrichtung für die Turbinenrotorschaufeln eines Gasturbinentriebwerks | |
DE2943464A1 (de) | Dichtungsvorrichtung fuer ein gasturbinentriebwerk | |
EP2342425B1 (de) | Gasturbine mit sicherungsplatte zwischen schaufelfuss und scheibe | |
EP1947293A1 (de) | Leitschaufel für eine Gasturbine | |
EP2344723B1 (de) | Gasturbine mit dichtplatten an der turbinenscheibe | |
WO2001009553A1 (de) | Prallkühlvorrichtung | |
EP2411631B1 (de) | Dichtplatte und Laufschaufelsystem | |
EP2347101B1 (de) | Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage | |
EP2206885A1 (de) | Gasturbine | |
EP1731715A1 (de) | Übergangsbereich zwischen einer Brennkammer und einer Turbineneinheit | |
EP1744014A1 (de) | Befestigungseinrichtung der Turbinenleitschaufeln einer Gasturbinenanlage | |
EP2196628A1 (de) | Leitschaufelträger | |
EP2347100B1 (de) | Gasturbine mit kühleinsatz | |
EP1429077B1 (de) | Gasturbine | |
EP1398569A1 (de) | Gasturbine | |
EP2218882A1 (de) | Leitschaufelträgersystem | |
EP1588102B1 (de) | Hitzeschildelement, brennkammer sowie gasturbine | |
WO2004109187A1 (de) | Hitzeschildelement | |
EP2184449A1 (de) | Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger | |
EP2194236A1 (de) | Turbinengehäuse | |
EP2352909B1 (de) | Leitschaufelträger | |
EP1329594A1 (de) | Regelung des Blattspitzenspalts einer Gasturbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
AKY | No designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20101113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Effective date: 20110412 |