EP2183116B1 - Coloured security document individualization - Google Patents
Coloured security document individualization Download PDFInfo
- Publication number
- EP2183116B1 EP2183116B1 EP08785547.4A EP08785547A EP2183116B1 EP 2183116 B1 EP2183116 B1 EP 2183116B1 EP 08785547 A EP08785547 A EP 08785547A EP 2183116 B1 EP2183116 B1 EP 2183116B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanoparticles
- energy
- starting materials
- laser
- document
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002105 nanoparticle Substances 0.000 claims description 88
- 239000007858 starting material Substances 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 33
- 238000010521 absorption reaction Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 24
- 230000001419 dependent effect Effects 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 13
- 239000012190 activator Substances 0.000 claims description 12
- 239000002243 precursor Substances 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 claims description 3
- 238000000197 pyrolysis Methods 0.000 claims description 3
- 230000007850 degeneration Effects 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 230000005476 size effect Effects 0.000 claims 3
- 239000010410 layer Substances 0.000 description 24
- 230000008859 change Effects 0.000 description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 230000005855 radiation Effects 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 10
- 239000010931 gold Substances 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 8
- 229910052737 gold Inorganic materials 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000000862 absorption spectrum Methods 0.000 description 6
- 230000005670 electromagnetic radiation Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000013139 quantization Methods 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- IGPFOKFDBICQMC-UHFFFAOYSA-N 3-phenylmethoxyaniline Chemical compound NC1=CC=CC(OCC=2C=CC=CC=2)=C1 IGPFOKFDBICQMC-UHFFFAOYSA-N 0.000 description 2
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 2
- LHQLJMJLROMYRN-UHFFFAOYSA-L cadmium acetate Chemical compound [Cd+2].CC([O-])=O.CC([O-])=O LHQLJMJLROMYRN-UHFFFAOYSA-L 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 239000010415 colloidal nanoparticle Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- QXKXDIKCIPXUPL-UHFFFAOYSA-N sulfanylidenemercury Chemical compound [Hg]=S QXKXDIKCIPXUPL-UHFFFAOYSA-N 0.000 description 2
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920003247 engineering thermoplastic Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- BRMYZIKAHFEUFJ-UHFFFAOYSA-L mercury diacetate Chemical compound CC(=O)O[Hg]OC(C)=O BRMYZIKAHFEUFJ-UHFFFAOYSA-L 0.000 description 1
- VCEXCCILEWFFBG-UHFFFAOYSA-N mercury telluride Chemical compound [Hg]=[Te] VCEXCCILEWFFBG-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- -1 salt ions Chemical class 0.000 description 1
- YQMLDSWXEQOSPP-UHFFFAOYSA-N selanylidenemercury Chemical compound [Hg]=[Se] YQMLDSWXEQOSPP-UHFFFAOYSA-N 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/267—Marking of plastic artifacts, e.g. with laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M3/00—Printing processes to produce particular kinds of printed work, e.g. patterns
- B41M3/14—Security printing
- B41M3/142—Security printing using chemical colour-formers or chemical reactions, e.g. leuco-dye/acid, photochromes
Definitions
- the invention relates to a method for colored individualization of security documents that comprise a document body, as well as security documents for color customization with a document body and a method for the production thereof.
- Security documents are documents that are protected against counterfeiting, falsification and / or duplication with the help of security elements.
- Security documents thus include, for example, identity cards, passports, ID cards, access control cards, tax stamps, tickets, driver's licenses, motor vehicle papers, banknotes, checks, postage stamps, credit cards, any smart cards and adhesive labels (for example for product security).
- Such security documents which are also sometimes referred to as value documents, typically comprise a substrate, a printing layer and optionally a transparent cover layer.
- a substrate is a support structure to which the print layer is applied with information, images, patterns, and the like. Suitable materials for a substrate are all customary materials based on paper and / or plastic in question.
- Many modern security documents comprise a document body comprising at least one, preferably a plurality of, most preferably only a plurality of interconnected layers made of plastics.
- This document body has one or more security elements.
- One type of security element is individualizing information introduced into such a card body, such as a serial number, a card number, personal data, for example name and / or date of birth, biometric data, for example pictures (passport pictures), size and / or eye color, etc . may include.
- molding compositions based on semi-crystalline engineering thermoplastics known that result in laser-markable moldings with increased marking quality.
- the molding compositions are characterized in that micro- or nanoparticles of light-sensitive compounds with a plurality of cations and / or nanoprimary particles of light-sensitizing oxides and optionally other customary additives are present in a polymer matrix.
- the molding compounds have a light, usually white or light gray color, which is blacked by laser irradiation.
- Highly transparent laser-markable and laser-weldable plastic materials are known. Described are highly transparent plastic materials which are laser-markable and / or laser-weldable by a content of nanoscale laser-sensitive metal oxides.
- the plastic materials which are present as shaped bodies, semi-finished products, molding compositions or coatings contain in particular metal oxides with particle sizes of 5 to 100 nm and a content of 0.0001 to 0.1 wt .-%.
- Typical metal oxides are nanoscale indium tin oxide or antimony tin oxide. These materials can be used in particular for the production of laser-markable production goods.
- the metal oxides are provided to promote absorption of laser light in the plastic to melt it or to cause a color change of the plastic.
- a method for applying colored information to an object wherein the article has at least in a near-surface layer at least two different coloring particles which change the color of this layer under the influence of laser radiation, wherein the laser radiation is used with at least two different wavelengths, to change the color of this layer, and the application of laser radiation to the object in the vector and / or raster method via a Zweikoordinatenstrahlablenk Skerie and a focusing device for focusing the laser radiation is applied to the layer of the object.
- absorbing color pigments are bleached by the different wavelengths in different wavelength ranges in order to change a color impression.
- a method for generating information in a carrier body in which a simple long-term stable information against light and moisture is to be generated in the carrier body by simple means. These are for a number of in the carrier body Stored starting materials in a localized portion of the support body by laser irradiation set those reaction conditions that cause these starting materials to a synthesis reaction.
- complex reaction processes are selected, which can only be specifically triggered by laser irradiation and not by sunlight to synthesize colored substances.
- a colored substance here is a substance that is colored regardless of its size and shape. In this way, different colored substances can be synthesized.
- Another problem is to perform the color-forming reactions spatially resolved and without quenching to achieve a clear color.
- the invention is therefore based on the technical problem of providing a method and a device as well as a document body of a security document and a method for its production, with which it is possible to carry out a colored individualization, preferably after a production of the document body itself, in a simple manner ,
- nanoparticles whose interaction with electromagnetic radiation, ie also with light in the visible wavelength range, depends on quantum mechanical effects which are influenced by their shape and / or a local concentration of the nanoparticles.
- a method for colored individualization of security documents comprising a document body are held in the starting materials, which are locally stimulated by a localized targeted energy input to create or change nanoparticles that produce a color impression, wherein a shape and / or a concentration of the nanoparticles locally in the document body is dependent on the energy input and wherein the color impression the nanoparticles is dependent on their shape and / or local concentration, proposed in which locally targeted energy is introduced at a point at which a colored color impression is to be brought about in the document body in order to store an individualizing information about the color impression caused.
- a security document which includes a personalized color document body, created in the interior of the document body starting materials are provided, which are targeted by means of a localized energy input targeted for the formation of nanoparticles of different shapes and / or different concentration, the shape and / or concentration is dependent on the energy input and wherein a color impression of the nanoparticles is dependent on their shape and / or their concentration.
- An apparatus for individualizing a said security document with a security document body comprises a document body receptacle for receiving the article body, an energy source for locally introducing the energy input into the document body in order to selectively change the color impression so that an individualizing information is stored in the document body by the color impression effected ,
- a security document with a document body that can be personalized in color is created by incorporating the starting materials into the document body during production.
- the starting materials for example by printing, can be introduced between two layers before lamination.
- the shape of the nanoparticles is understood to be their size and, on the other hand, their geometric shape.
- Nanoparticles of semiconductor materials which have a band gap of preferably less than 2 electron volts in the bulk material often exhibit a so-called size quantization effect when a particle size is varied to ever smaller nanoparticles in the range of a few nanometers or less.
- the band gap energy is dependent on the size, ie the shape, of the nanoparticles. With the bandgap energy, in turn, the absorption behavior is electromagnetic Radiation linked.
- changing the band gap energy also changes a color of the nanoparticle, ie the color impression obtained when viewing the nanoparticle.
- the color impression ie their absorption behavior
- the color impression is influenced mainly by their surface shape.
- surface plasmons are excited. These are critically dependent on a form of nanoparticles.
- color impression is thus meant primarily an absorption behavior of the nanoparticle.
- the color impression also depends, of course, on the number of nanoparticles present in a volume or surface, since the number of particles affects the total absorption in the volume or on the surface. However, this does not change the course of the absorption spectrum, but only the absorption efficiency. When talking about a change in the color impression in the context of the invention, such is not meant to be due to an increased / decreased absolute absorption.
- the starting materials are introduced into the document body in such a way that it prevents the systems from forming such color-producing nanoparticles at normal ambient temperatures.
- minute nanoparticles which are not stabilized by embedding in a matrix, a chemical solution, or the like, tend to coalesce into larger nanoparticles.
- a total surface energy of the nanoparticles involved is reduced. Such a process is prevented by the embedding in the document body at ambient temperature and runs only where the document body is locally heated by the energy input.
- the energy is introduced by means of one or more lasers.
- Lasers offer the advantage that their light can be focused well, so that energy can be supplied to the focus in a targeted manner. With a suitable choice of the laser wavelength, it is possible, depending on the material from which the document body is made, to make a colored individualization inside the document body and not only on a surface.
- the energy input by means of one or more lasers offers the advantage that the laser intensity and / or the laser frequency can be modulated in order to control the energy input and, via this, the formation process of the nanoparticles producing a desired color impression.
- the starting materials comprise nanoparticles whose bank-gap energy is greater than that due to the size-quantization effect Photon energy of visible light is.
- These nanoparticles of the starting materials can be caused by a targeted introduction of energy into the document body to grow together to form larger nanoparticles and thus change their absorption spectrum and thus their color and the color impression due to the size quantization effect.
- the starting materials are preferably incorporated into a matrix. This is preferably designed so that the constituents of the starting materials can only move in the matrix when energy is introduced into the matrix and this is heated thereby.
- the matrix consists of a polycarbonate, in particular bisphenol A polycarbonate.
- Polycarboconates are particularly suitable because they are transparent to electromagnetic radiation in the visible wavelength range. Nevertheless, by means of a laser so high radiation energy densities can be generated that the polycarbonate material can be heated locally targeted.
- the starting materials contain activator material which has a good laser absorption.
- the activator material can be introduced in concentrations that do not adversely affect a transparency impression of the document body and yet significantly increase a locally targeted absorption of laser light.
- a laser wavelength can be adjusted to achieve good absorption in an activator material.
- the activator material comprises zinc oxide ZnO.
- other substances such as carbon black or Iriodin ®.
- the starting materials additionally or alternatively precursor for the formation of nanoparticles whose absorption behavior of their shape and / or their local concentration depends. This means that their color impression depends on their shape and / or their local concentration.
- precursors therefore, such substances are present in the starting materials which form nanoparticles by a chemical reaction when energy is introduced into the document body and / or cause growth of already present smallest nanoparticles.
- the local temperature can thus be varied over time by means of a targeted energy supply and a process control can be achieved by way of this, so that an optimum desired color impression, ie a desired color, can be set.
- a particularly suitable substance II-VI semiconductor nanoparticles have been found.
- other suitable systems or substances for example cadmium phosphide Cd 3 P 2 , etc. are also known.
- all substances can be used which exhibit a shape-dependent absorption behavior in the visible wavelength range, in particular a size, shape and / or concentration-dependent absorption behavior (again meaning a change in the absorption spectrum (whose wavelength-dependent profile) as a function of the concentration).
- the II-VI semiconductor nanoparticles found to be particularly suitable usually have a large size quantization effect.
- the preferred materials include, for example, cadmium or mercury sulfide, cadmium or mercury selenide, cadmium or mercury telluride and ternary or quaternary compounds of the aforementioned elements.
- the starting materials may comprise, for example, cadmium acetate and / or mercuric acetate and thioacetamide, from which cadmium sulfide or mercury sulfide forms upon energy input.
- the starting materials comprise form-quantisable nanoparticles which change their shape as a function of the energy input, the color impression of which depends on the mold.
- Form-quantisable nanoparticles may, for example, consist of gold and / or silver and / or alloys thereof.
- the starting materials may comprise, for example, gold rod-shaped nanoparticles.
- starting materials comprise precursors of substances which form colloidal nanoparticles whose color impression depends on a local concentration of the colloidal nanoparticles.
- the starting materials may contain zinc oxide (ZnO) and gold or silver salts. In laser irradiation, the ZnO acts as an electron supplier to reduce gold or silver. This can be a growth of nano-colloids of gold and / or silver are excited.
- the introduction of the energy is carried out so that a chemical degeneration, in particular a depolymerization, pyrolysis or carbonization, of the material of the document body is omitted.
- optical sensors which monitor a color impression.
- the energy supply is then controlled as a function of the monitored color impression.
- the energy is localized at several points in a targeted manner introduced into the document body to bring about a color impression at the plurality of locations due to the shape and / or concentration of the nanoparticles, wherein the plurality of locations provide a pattern containing the individualizing information.
- different color impressions are caused by the energy input at the different points. This means that the energy input takes place differently at the different locations.
- FIG. 1 For three different particle sizes a, b, c, box potentials for the conduction band 1 a, 1 b, 1 c and corresponding box potentials for the valence band 2 a, 2 b, 2 c are shown.
- a width 3a, 3b, 3c of the individual box potentials 1a, 2a, 1b, 2b, 1c, 2c is dependent on a particle size in the box model in each case. The larger the particle, the wider the corresponding box potentials.
- the particle a is the smallest particle and c the largest particle.
- the energetically lowest results taking into account quantum mechanics Energy levels 4a-4c of the conduction band and the highest energy states 5a-5c of the valence band, resulting for the different large particles ac different energy difference 6a-6c, each of which can be associated with a band gap energy.
- the energy difference 6a-6c decreases with increasing particle size. The larger the bandgap of a particle, the higher the energy must be the radiation that is absorbed by this particle.
- the band gap in the solid is 0.55 eV.
- the material no longer appears black, but brown.
- the color changes to red, orange and yellow until the material appears white at about 1.5 nm and has a bandgap of about 4 eV.
- the energetic profile of the conduction band 15 and the valence band 16 is in each case schematically plotted against the particle size.
- the bandgap energy 17 is large, for example in the region of 4 eV. Particles of this size appear white.
- the bandgap energy 17 decreases and the color changes from yellow to orange, red to brown and finally black.
- a nanoparticle 21 is shown, the aspect ratio, a ratio of a length 22 to a width 23, decreases.
- a rod-shaped nanoparticle, a nanoparticle with a high aspect ratio is used as a starting material, for example, in one of polycarbonate embedded matrix embedded.
- the nanoparticle is given the opportunity to change its shape.
- a reduction of the aspect ratio leads to a reduction of the surface and thus a surface energy, so that this conversion of the originally rod-shaped nanoparticle 21 is prevented only by the matrix. Only when the matrix and the nanoparticle warm up is the nanoparticle given the opportunity to change its shape to a spherical shape.
- the volume of the nanoparticle remains unchanged.
- the aspect ratio changes its absorption behavior also changes from the infrared to the visible.
- a device 41 for laser personalization of a security document 42 is shown schematically, which comprises a color customizable document body 43.
- the document body 43 is preferably a composite formed of multiple layers 44 by lamination. These layers 44 are preferably formed from one or more thermoplastic materials. Single layers or all layers may be printed before laminating. Furthermore, microchips or other security elements may be incorporated in single or multiple layers. At least one layer, preferably several layers, are formed in such a way that starting materials for forming size-scalable nanoparticles are incorporated in them. The nanoparticles can also be introduced by printing between two layers, for example.
- a layer is for example made of bisphenol A polycarbonate. This material provides a matrix for the starting materials.
- smallest nanoparticles of substances are embedded whose bandgap energy is above the energy of photons of visible light.
- precursors for example cadmium acetate and thioacetamide, may be embedded in the matrix.
- zinc oxide ZnO is incorporated into the matrix as activator material.
- the document body is held in a document body receptacle 55.
- the device 41 comprises a laser 45 as the energy source.
- This laser 45 generates electromagnetic radiation in the infrared, visible and / or ultraviolet spectral range.
- the laser 45 may be selected from the list "YAG: Nd (fundamental or frequency multiplied: 1064 nm, 532 nm, 355 nm, 266 nm), excimer laser (F 2 157 nm, Xe 172 nm), exciplex laser (ArF 193 nm, KrF 248 nm, XeBr 282 nm, XeCl 308 nm, XeF 351 nm), titanium sapphire laser, CO 2 laser (10.6 ⁇ m) or diode laser ".
- This laser radiation 46 is focused with an imaging optics 47 localized in a region of the layers 44, in which the starting materials are incorporated.
- the laser radiation 46 is preferably absorbed by an activator material, for example zinc oxide (ZnO).
- ZnO zinc oxide
- hot spot zinc oxide
- different numbers of nanoparticles form. The higher the laser intensity, ie the higher the temperature of the matrix increases locally, the more nanoparticles are created. If a lower temperature is selected, less or no nanoparticles are created. However, growth of existing nanoparticles continues. In this case, the size of the nanoparticles 49 changes. Depending on the size, a color impression changes.
- irradiation of the activator material results in the formation of electron-hole pairs, thereby reducing, for example, metal salt ions, particularly silver (Ag + ) and gold (Au 3+ ), to the corresponding metals and form nanoparticles.
- metal salt ions particularly silver (Ag + ) and gold (Au 3+ )
- an optical sensor 50 which is formed for example as a color CCD camera, the optical impression is monitored.
- the document body 43 it may be necessary for the document body 43 to be illuminated with a light source 51.
- the signals detected by means of the optical sensor 50 are evaluated by a control device 52 which controls an energy input via the energy source 41 designed as a laser 45.
- the energy source 41 may further include a modulator 54 through which the frequency and / or amplitude of the laser is modulated to control the energy input into the document body 43.
- the modulator may be integrated into the laser 45 in other embodiments.
- the energy source may also include multiple lasers that emit light of different wavelengths. This makes it possible to optimally excite different activator materials.
- provision can be made for nanoparticles to be created to change the color impression in a plurality of different layers of the document body. If the laser radiation is focused simultaneously or with a time delay at different locations in the document body in order to selectively introduce locally targeted energy and to create nanoparticles that produce an optical color impression in the visible spectral range, a colored pattern can be generated in the document body, which is an individualizing information, for example a name, a passport photo, etc. represents.
- the document body itself is a complete security document or document of value. In other embodiments, the document body is incorporated, for example, in a passport book.
- the document body is a multi-layer laminated composite in which different layers include different starting materials and / or concentrations thereof. This can be caused in a simple manner in the different layers different color impressions by localized energy input. These can together result in a color pattern. Likewise, however, the layers may also comprise the same starting materials and / or concentrations thereof.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Credit Cards Or The Like (AREA)
- Lasers (AREA)
- Electronic Switches (AREA)
- Printing Methods (AREA)
Description
Die Erfindung betrifft ein Verfahren zur farbigen Individualisierung von Sicherheitsdokumenten, die einen Dokumentenkörper umfassen, sowie Sicherheitsdokumente zur farbigen Individualisierung mit einem Dokumentenkörper und ein Verfahren zu deren Herstellung.The invention relates to a method for colored individualization of security documents that comprise a document body, as well as security documents for color customization with a document body and a method for the production thereof.
Sicherheitsdokumente sind Dokumente, die gegen eine Nachahmung, Verfälschung und/oder ein Duplizieren mit Hilfe von Sicherheitselementen geschützt sind. Sicherheitsdokumente umfassen somit beispielsweise Personalausweise, Reisepässe, ID-Karten, Zugangskontrollausweise, Steuerzeichen, Tickets, Führerscheine, Kraftfahrzeugpapiere, Banknoten, Schecks, Postwertzeichen, Kreditkarten, beliebige Chipkarten und Haftetiketten (z.B. zur Produktsicherung). Solche Sicherheitsdokumente, die teilweise auch als Wertdokumente bezeichnet werden, weisen typischerweise ein Substrat, eine Druckschicht und optional eine transparente Deckschicht auf. Ein Substrat ist eine Trägerstruktur, auf welche die Druckschicht mit Informationen, Bildern, Mustern und dergleichen aufgebracht wird. Als Materialien für ein Substrat kommen alle fachüblichen Werkstoffe auf Papier- und/oder Kunststoffbasis in Frage.Security documents are documents that are protected against counterfeiting, falsification and / or duplication with the help of security elements. Security documents thus include, for example, identity cards, passports, ID cards, access control cards, tax stamps, tickets, driver's licenses, motor vehicle papers, banknotes, checks, postage stamps, credit cards, any smart cards and adhesive labels (for example for product security). Such security documents, which are also sometimes referred to as value documents, typically comprise a substrate, a printing layer and optionally a transparent cover layer. A substrate is a support structure to which the print layer is applied with information, images, patterns, and the like. Suitable materials for a substrate are all customary materials based on paper and / or plastic in question.
Viele moderne Sicherheitsdokumente umfassen einen Dokumentenkörper, der mindestens eine, vorzugsweise mehrere, am bevorzugtesten ausschließlich mehrere, aus Kunststoffen bestehende miteinander verbundene Schichten umfasst. Dieser Dokumentenkörper weist ein oder mehrere Sicherheitselemente auf. Eine Art von Sicherheitselementen stellen in einen solchen Kartenkörper eingebrachte individualisierende Informationen dar, die beispielsweise eine Seriennummer, eine Ausweisnummer, personenbezogene Daten, zum Beispiel Name und/oder Geburtsdatum, biometrische Daten, zum Beispiel Bilder (Passbilder), Größe und/oder Augenfarbe, usw. umfassen können.Many modern security documents comprise a document body comprising at least one, preferably a plurality of, most preferably only a plurality of interconnected layers made of plastics. This document body has one or more security elements. One type of security element is individualizing information introduced into such a card body, such as a serial number, a card number, personal data, for example name and / or date of birth, biometric data, for example pictures (passport pictures), size and / or eye color, etc . may include.
Aus dem Stand der Technik ist es bekannt, solche individualisierenden Angaben im Inneren des aus Kunststoffmaterialien bestehenden Dokumentenkörpers einzubringen. Hierzu wird über einen Laser Energie in das Kunststoffmaterial eingebracht und hierüber eine Pyrolyse bewirkt, die zu einer Carbonisierung und somit Schwärzung an den Orten führt, an denen Energie in die Kunststoffe eingebracht wird. Ein solches Verfahren ist beispielsweise in der
Aus der
Aus der
Aus der
Aus der
Aus dem Stand der Technik ist es ferner bekannt, in Kartenkörper farbige Individualisierungen einzubringen. Aus der
In der
Aus der
Der Erfindung liegt somit das technische Problem zugrunde, ein Verfahren und eine Vorrichtung sowie einen Dokumentenkörper eines Sicherheitsdokuments sowie ein Verfahren zu dessen Herstellung zu schaffen, mit denen es möglich ist, eine farbige Individualisierung, vorzugsweise nach einer Herstellung des Dokumentenkörpers selbst, auf einfache Weise auszuführen.The invention is therefore based on the technical problem of providing a method and a device as well as a document body of a security document and a method for its production, with which it is possible to carry out a colored individualization, preferably after a production of the document body itself, in a simple manner ,
Das Problem wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 sowie ein Sicherheitsdokument mit den Merkmalen des Patentanspruchs 8 gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.The problem is solved according to the invention by a method having the features of patent claim 1 and a security document having the features of patent claim 8. Advantageous embodiments of the invention will become apparent from the dependent claims.
Hierfür ist vorgesehen, Nanoteilchen zu verwenden, deren Wechselwirkung mit elektromagnetischer Strahlung, d.h. auch mit Licht im sichtbaren Wellenlängenbereich, von quantenmechanischen Effekten abhängt, die durch deren Gestalt und/oder eine lokale Konzentration der Nanoteilchen beeinflusst sind. Hierfür wird ein Verfahren zur farbigen Individualisierung von Sicherheitsdokumenten, die einen Dokumentenkörper umfassen, in dem Ausgangsstoffe vorgehalten sind, die durch einen lokalisierten gezielten Energieeintrag lokal zu einer Schaffung oder Veränderung von Nanoteilchen, die einen Farbeindruck erzeugen, angeregt werden, wobei eine Gestalt und/oder eine Konzentration der Nanoteilchen lokal in dem Dokumentenkörper von dem Energieeintrag abhängig ist und wobei der Farbeindruck der Nanoteilchen von ihrer Gestalt und/oder lokalen Konzentration abhängig ist, vorgeschlagen, bei dem lokal gezielt Energie an einer Stelle eingebracht wird, an der ein farbiger Farbeindruck in dem Dokumentenkörper herbeigeführt werden soll, um eine individualisierende Information über den herbeigeführten Farbeindruck zu speichern. Es wird somit ein Sicherheitsdokument, welches einen farbig personalisierbaren Dokumentenkörper umfasst, geschaffen, bei dem im Innern des Dokumentenkörpers Ausgangsstoffe vorgehalten sind, die mittels eines lokalisierten Energieeintrags gezielt zur Ausbildung von Nanoteilchen unterschiedlicher Gestalt und/oder unterschiedlicher Konzentration anregbar sind, wobei die Gestalt und/oder Konzentration abhängig von dem Energieeintrag ist und wobei ein Farbeindruck der Nanoteilchen von ihrer Gestalt und/oder ihrer Konzentration abhängig ist. Eine Vorrichtung zum Individualisieren eines genannten Sicherheitsdokuments mit einem Sicherheitsdokumentenkörper umfasst eine Dokumentenkörperaufnahme zum Aufnehmen des Dckumentenkörpers, eine Energiequelle zum lokalisierten Einbringen des Energieeintrags in den Dokumentenkörper, um den Farbeindruck gezielt so zu verändern, dass eine individualisierende Information in dem Dokumentenkörper durch den bewirkten Farbeindruck gespeichert wird. Ein Sicherheitsdokument mit einem farbig personalisierbaren Dokumentenkörper wird geschaffen, indem die Ausgangsstoffe bei einer Herstellung des Dokumentenkörpers in diesen mit eingearbeitet werden.For this purpose, it is intended to use nanoparticles whose interaction with electromagnetic radiation, ie also with light in the visible wavelength range, depends on quantum mechanical effects which are influenced by their shape and / or a local concentration of the nanoparticles. For this purpose, a method for colored individualization of security documents comprising a document body are held in the starting materials, which are locally stimulated by a localized targeted energy input to create or change nanoparticles that produce a color impression, wherein a shape and / or a concentration of the nanoparticles locally in the document body is dependent on the energy input and wherein the color impression the nanoparticles is dependent on their shape and / or local concentration, proposed in which locally targeted energy is introduced at a point at which a colored color impression is to be brought about in the document body in order to store an individualizing information about the color impression caused. It is thus a security document, which includes a personalized color document body, created in the interior of the document body starting materials are provided, which are targeted by means of a localized energy input targeted for the formation of nanoparticles of different shapes and / or different concentration, the shape and / or concentration is dependent on the energy input and wherein a color impression of the nanoparticles is dependent on their shape and / or their concentration. An apparatus for individualizing a said security document with a security document body comprises a document body receptacle for receiving the article body, an energy source for locally introducing the energy input into the document body in order to selectively change the color impression so that an individualizing information is stored in the document body by the color impression effected , A security document with a document body that can be personalized in color is created by incorporating the starting materials into the document body during production.
Bei einem aus mehreren Schichten mittels Lamination hergestellten Dokumentenkörpern können die Ausgangsstoffe, beispielsweise drucktechnisch vor dem Laminieren zwischen zwei Schichten eingebracht werden.In the case of a document body produced from several layers by means of lamination, the starting materials, for example by printing, can be introduced between two layers before lamination.
Unter der Gestalt der Nanoteilchen werden zum einen deren Größe und zum anderen deren geometrische Form verstanden. Nanoteilchen aus Halbleitermaterialien, die im Festkörpermaterial (Bulk) eine Bandlücke von bevorzugt kleiner 2 Elektronenvolt aufweisen, zeigen häufig einen so genannten Größenquantisierungseffekt, wenn eine Teilchengröße zu immer kleineren Nanoteilchen im Bereich einiger Nanometer oder darunter variiert wird. Je kleiner das Nanoteilchen dieses Halbleiters wird, desto größer wird die Bandlücke. Somit ist die Bandlückenenergie abhängig von der Größe, d.h. der Gestalt, der Nanoteilchen. Mit der Bandlückenenergie ist wiederum das Absorptionsverhalten elektromagnetischer Strahlung verknüpft. Somit ändert sich mit einer Änderung der Bandlückenenergie auch eine Farbe des Nanoteilchens, d.h. der Farbeindruck, den man beim Betrachten des Nanoteilchens erhält. Bei bestimmten Arten von Nanoteilchen wird der Farbeindruck, d.h. ihr Absorptionsverhalten, hauptsächlich durch ihre Oberflächengestalt beeinflusst. In den Teilchen werden so genannte Oberflächenplasmonen angeregt. Diese sind entscheidend von einer Form der Nanoteilchen abhängig. Ohne eine Änderung des Volumens, einzig durch eine Änderung der Form des Nanoteilchens, beispielsweise eines Aspektverhältnisses bei einem stäbchenförmigen Nanoteilchen, gebildet aus Längsausdehnung zu Querdehnung, kann dessen Absorptionsverhalten wellenlängenabhängig verändert werden. Mit Farbeindruck ist somit in erster Linie ein Absorptionsverhalten des Nanoteilchens gemeint. Darüber hinaus ergibt es sich für den Fachmann, dass der Farbeindruck auch selbstverständlich von der Anzahl der in einem Volumen bzw. auf einer Fläche vorhandenen Nanoteilchen abhängt, da die Anzahl der Teilchen die Gesamtabsorption in dem Volumen oder auf der Fläche beeinflusst. Hierdurch ändert sich jedoch der Verlauf des Absorptionsspektrums nicht, sondern lediglich die Absorptionseffizienz. Wenn im Zusammenhang mit der Erfindung von einer Änderung des Farbeindrucks gesprochen wird, so ist eine solche aufgrund einer gesteigerten/verringerten absoluten Absorption nicht gemeint.The shape of the nanoparticles, on the one hand, is understood to be their size and, on the other hand, their geometric shape. Nanoparticles of semiconductor materials which have a band gap of preferably less than 2 electron volts in the bulk material often exhibit a so-called size quantization effect when a particle size is varied to ever smaller nanoparticles in the range of a few nanometers or less. The smaller the nanoparticle of this semiconductor becomes, the larger the bandgap becomes. Thus, the band gap energy is dependent on the size, ie the shape, of the nanoparticles. With the bandgap energy, in turn, the absorption behavior is electromagnetic Radiation linked. Thus, changing the band gap energy also changes a color of the nanoparticle, ie the color impression obtained when viewing the nanoparticle. In certain types of nanoparticles, the color impression, ie their absorption behavior, is influenced mainly by their surface shape. In the particles so-called surface plasmons are excited. These are critically dependent on a form of nanoparticles. Without a change in the volume, solely by a change in the shape of the nanoparticle, for example an aspect ratio in the case of a rod-shaped nanoparticle, formed from longitudinal expansion to transverse expansion, its absorption behavior can be changed as a function of wavelength. By color impression is thus meant primarily an absorption behavior of the nanoparticle. In addition, it will be apparent to those skilled in the art that the color impression also depends, of course, on the number of nanoparticles present in a volume or surface, since the number of particles affects the total absorption in the volume or on the surface. However, this does not change the course of the absorption spectrum, but only the absorption efficiency. When talking about a change in the color impression in the context of the invention, such is not meant to be due to an increased / decreased absolute absorption.
Hiervon zu unterscheiden ist eine Änderung des Farbeindrucks der Nanoteilchen aufgrund ihrer lokalen Konzentration. Bei Nanoteilchen, bei denen das Absorptionsverhalten im sichtbaren Spektralbereich hauptsächlich durch eine Anregung von Oberflächenplasmonen bestimmt ist, tritt ein weiterer konzentrationsabhängiger Effekt hinzu, der eine Wellenlängenabhängigkeit der Absorption und somit eine Farbe der Nanoteilchen verändert. Hierbei spielen quantenmechanische Effekte eine Rolle, die darauf beruhen, dass die Nanoteilchen sich gegenseitig beeinflussen und sich, ohne eine chemische Bindung auszubilden, die quantenmechanischen Zustandsfunktionen des elektronischen Systems der einzelnen Nanoteilchen so verändern, dass deren Absorptionsspektren und hierüber ihre Farbe verändert wird. Bei diesen Nanoteilchen führt somit die Konzentration nicht zu einem intensiveren Farbeindruck, sondern zu einer anderen Farbe verschobenen Farbeindruck. Dieser Effekt wird hier als Nonoteilchen-Konzentrationsquantisierungseffekt bezeichnet.This is to be distinguished from a change in the color impression of the nanoparticles due to their local concentration. In the case of nanoparticles, where the absorption behavior in the visible spectral range is determined mainly by an excitation of surface plasmons, a further concentration-dependent effect is added, which changes a wavelength dependence of the absorption and thus a color of the nanoparticles. Quantum-mechanical effects, which are based on the fact that the nanoparticles influence each other and, without forming a chemical bond, change the quantum-mechanical state functions of the electronic system of the individual nanoparticles in such a way that their absorption spectra and hereby their color is changed. For these nanoparticles, the concentration does not lead to a more intense color impression, but to a different color shifted color impression. This effect is referred to herein as a non-particle concentration quantization effect.
Über einem gezielten lokalen Energieeintrag in den Dokumentenkörper lässt sich somit eine Ausbildung von Nanoteilchen, d.h. eine Schaffung oder Veränderung von Nanoteilchen gezielt bewirken und hierüber gezielt nahezu jede Farbe des optischen Spektralbereichs lokalisiert einstellen. Hierüber ist somit eine einfache farbige Individualisierung von Sicherheitsdokumenten möglich.Over a targeted local energy input into the document body can thus be a formation of nanoparticles, i. specifically effect creation or alteration of nanoparticles and deliberately localize almost any color of the optical spectral range. This makes possible a simple, colored individualization of security documents.
Wichtig hervorzuheben ist, dass die meisten vorgeschlagenen Systeme die eingebrachte Energie nicht, in der Regel auch nicht als Aktivierungsenergie, benötigen, um eine Bildung von Nanoteilchen zu beginnen oder auszuführen, die eine Veränderung des Farbeindrucks bewirken. Vielmehr sind die Ausgangsstoffe so in den Dokumentenkörper eingebracht, dass dieser bei normalen Umgebungstemperaturen die Systeme daran hindert, solche einen Farbeindruck erzeugende Nanoteilchen zu bilden. Kleinste Nanoteilchen, die nicht durch eine Einbettung in eine Matrix, eine chemische Lösung oder Ähnliches stabilisiert werden, neigen beispielsweise dazu, zu größeren Nanoteilchen zusammenzuwachsen. Hierdurch wird insgesamt eine Oberflächenenergie der beteiligten Nanoteilchen reduziert. Solch ein Prozess wird durch die Einbettung in den Dokumentenkörper bei Umgebungstemperatur unterbunden und läuft nur dort ab, wo der Dokumentenkörper über den Energieeintrag lokal erwärmt wird.Importantly, most proposed systems do not require the introduced energy, usually also not as activation energy, to begin or execute nanoparticle formation that causes a change in color impression. Rather, the starting materials are introduced into the document body in such a way that it prevents the systems from forming such color-producing nanoparticles at normal ambient temperatures. For example, minute nanoparticles which are not stabilized by embedding in a matrix, a chemical solution, or the like, tend to coalesce into larger nanoparticles. As a result, a total surface energy of the nanoparticles involved is reduced. Such a process is prevented by the embedding in the document body at ambient temperature and runs only where the document body is locally heated by the energy input.
Bei einer bevorzugten Ausführungsform wird die Energie mittels eines oder mehrerer Laser eingebracht. Laser bieten den Vorteil, dass ihr Licht gut fokussierbar ist und so Energie in dem Fokus gezielt lokalisiert zugeführt werden kann. Bei einer geeigneten Wahl der Laserwellenlänge ist es abhängig von dem Material, aus dem der Dokumentenkörper gefertigt ist, möglich, im Innern des Dokumentenkörpers eine farbige Individualisierung vorzunehmen und nicht nur an einer Oberfläche. Ferner bietet der Energieeintrag mittels einer oder mehrerer Laser den Vorteil, dass die Laserintensität und/oder die Laserfrequenz moduliert werden können, um den Energieeintrag und hierüber den Bildungsprozess der einen gewünschten Farbeindruck hervorrufenden Nanoteilchen zu steuern.In a preferred embodiment, the energy is introduced by means of one or more lasers. Lasers offer the advantage that their light can be focused well, so that energy can be supplied to the focus in a targeted manner. With a suitable choice of the laser wavelength, it is possible, depending on the material from which the document body is made, to make a colored individualization inside the document body and not only on a surface. Furthermore, the energy input by means of one or more lasers offers the advantage that the laser intensity and / or the laser frequency can be modulated in order to control the energy input and, via this, the formation process of the nanoparticles producing a desired color impression.
Die Ausgangsstoffe umfassen bei einer bevorzugten Ausführungsform Nanoteilchen, deren Banklückenenergie aufgrund des Größenquantisierungseffekts größer als die Photonenenergie sichtbaren Lichts ist. Diese Nanoteilchen der Ausgangsstoffe können durch einen gezielten Energieeintrag in den Dokumentenkörper dazu veranlasst werden, dass diese zu größeren Nanoteilchen zusammenwachsen und so aufgrund des Größenquantisierungseffekts ihr Absorptionsspektrum und somit ihre Farbe und den Farbeindruck verändern.In a preferred embodiment, the starting materials comprise nanoparticles whose bank-gap energy is greater than that due to the size-quantization effect Photon energy of visible light is. These nanoparticles of the starting materials can be caused by a targeted introduction of energy into the document body to grow together to form larger nanoparticles and thus change their absorption spectrum and thus their color and the color impression due to the size quantization effect.
Bevorzugt sind somit bei einer Ausführungsform die Ausgangsstoffe in eine Matrix eingebunden. Diese ist vorzugsweise so ausgestaltet, dass die Bestandteile der Ausgangsstoffe sich in der Matrix nur bewegen können, wenn in die Matrix Energie eingetragen wird und diese dadurch erwärmt wird.Thus, in one embodiment, the starting materials are preferably incorporated into a matrix. This is preferably designed so that the constituents of the starting materials can only move in the matrix when energy is introduced into the matrix and this is heated thereby.
Bei einer besonders bevorzugten Ausführungsform ist vorgesehen, dass die Matrix aus einem Polycarbonat, insbesondere Bisphenol-A-Polycarbonat besteht. Polycarbconate eignen sich insbesondere deshalb, weil sie im sichtbaren Wellenlängenbereich für elektromagnetische Strahlung transparent sind. Dennoch können mittels eines Lasers so hohe Strahlungsenergiedichten erzeugt werden, dass das Polycarbonatmaterial lokal gezielt erwärmt werden kann.In a particularly preferred embodiment, it is provided that the matrix consists of a polycarbonate, in particular bisphenol A polycarbonate. Polycarboconates are particularly suitable because they are transparent to electromagnetic radiation in the visible wavelength range. Nevertheless, by means of a laser so high radiation energy densities can be generated that the polycarbonate material can be heated locally targeted.
Um jedoch eine Absorption des Laserlichts zu verbessern, ist bei einer Ausführungsform der Erfindung vorgesehen, dass die Ausgangsstoffe Aktivatormaterial enthalten, das eine gute Laserabsorption aufweist. Das Aktivatormaterial kann in Konzentrationen eingebracht werden, die einen Transparenzeindruck des Dokumentenkörpers nicht nachteilig beeinflussen und dennoch eine lokal gezielte Absorption von Laserlicht deutlich steigern. Eine Laserwellenlänge kann angepasst werden, um eine gute Absorption in einem Aktivatormaterial zu erzielen.However, in order to improve an absorption of the laser light, it is provided in one embodiment of the invention that the starting materials contain activator material which has a good laser absorption. The activator material can be introduced in concentrations that do not adversely affect a transparency impression of the document body and yet significantly increase a locally targeted absorption of laser light. A laser wavelength can be adjusted to achieve good absorption in an activator material.
Bei einer bevorzugten Weiterbildung der Erfindung ist vorgesehen, dass das Aktivatormaterial Zinkoxid ZnO umfasst. Es können jedoch auch andere Substanzen als Aktivatormaterial verwendet werden, beispielsweise Ruß oder Iriodin®.In a preferred development of the invention, it is provided that the activator material comprises zinc oxide ZnO. However, it can be used as activator, other substances, such as carbon black or Iriodin ®.
Bei einer anderen Ausführungsform der Erfindung ist vorgesehen, dass die Ausgangsstoffe zusätzlich oder alternativ Precursor zur Bildung von Nanoteilchen, deren Absorptionsverhalten von ihrer Gestalt und/oder ihrer lokalen Konzentration abhängig ist, umfassen. Dies bedeutet, dass ihr Farbeindruck von ihrer Gestalt und/oder ihrer lokalen Konzentration abhängig ist. Als Precursor sind in den Ausgangsstoffen somit solche Substanzen vorhanden, die durch eine chemische Reaktion bei Energieeintrag in den Dokumentenkörper Nanoteilchen ausbilden und/oder ein Wachstum bereits vorhandener kleinster Nanoteilchen bewirken. Über eine gezielte Steuerung der zugeführten Energie kann bei einer solchen Ausführungsform sowohl eine Anzahl der geschaffenen Nanoteilchen als auch deren Größe gezielt beeinflusst werden. Erfolgt ein hoher Energieeintrag in kurzer Zeit, so dass eine Erwärmung auf eine hohe Temperatur, beispielsweise 180°C, lokal in dem Material bewirkt wird, so wird eine Bildung einer großen Anzahl von Kristallisationskeimen angeregt. Wird hingegen eine Energiezufuhr so gewählt, dass sich lokal eine geringere Temperatur, beispielsweise von 120°C, ergibt, so findet nur eine geringe Bildung neuer Kristallisationskeime statt, jedoch schreitet ein Größenwachstum der bereits existierenden Nanoteilchen bei dieser geringen Temperatur fort.In another embodiment of the invention it is provided that the starting materials additionally or alternatively precursor for the formation of nanoparticles whose absorption behavior of their shape and / or their local concentration depends. This means that their color impression depends on their shape and / or their local concentration. As precursors, therefore, such substances are present in the starting materials which form nanoparticles by a chemical reaction when energy is introduced into the document body and / or cause growth of already present smallest nanoparticles. By means of a targeted control of the energy supplied, in such an embodiment both a number of the nanoparticles created and their size can be specifically influenced. If a high energy input in a short time, so that heating to a high temperature, for example 180 ° C, is effected locally in the material, so a formation of a large number of nuclei is stimulated. If, on the other hand, an energy supply is chosen such that locally a lower temperature, for example of 120 ° C., results, then only a small formation of new crystallization nuclei takes place, but a size growth of the already existing nanoparticles proceeds at this low temperature.
Über eine gezielte Energiezufuhr kann somit die lokale Temperatur zeitlich variiert werden und hierüber eine Prozesssteuerung erreicht werden, so dass ein optimaler gewünschter Farbeindruck, d.h. eine gewünschte Farbe, eingestellt werden kann. Als besonders geeignete Substanz haben sich II-VI-Halbleiternanoteilchen herausgestellt. Es sind jedoch auch andere geeignete Systeme oder Substanzen, beispielsweise Kadmiumphosphid Cd3P2 usw. bekannt. Im Prinzip können sämtliche Substanzen verwendet werden, die ein gestaltabhängiges Absorptionsverhalten im sichtbaren Wellenlängenbereich, insbesondere ein größen-, form- und/oder konzentrationsabhängiges Absorptionsverhalten zeigen (wobei hier erneut eine Änderung des Absorptionsspektrums (dessen wellenlängenabhängiger Verlauf) in Abhängigkeit von der Konzentration gemeint ist).The local temperature can thus be varied over time by means of a targeted energy supply and a process control can be achieved by way of this, so that an optimum desired color impression, ie a desired color, can be set. As a particularly suitable substance, II-VI semiconductor nanoparticles have been found. However, other suitable systems or substances, for example cadmium phosphide Cd 3 P 2 , etc. are also known. In principle, all substances can be used which exhibit a shape-dependent absorption behavior in the visible wavelength range, in particular a size, shape and / or concentration-dependent absorption behavior (again meaning a change in the absorption spectrum (whose wavelength-dependent profile) as a function of the concentration). ,
Die als besonders geeignet festgestellten II-VI-Halbleiternanoteilchen weisen in der Regel einen großen Größenquantisierungseffekt auf. Zu den bevorzugten Materialien gehören beispielsweise Cadmium- oder Quecksilbersulfid, Cadmium- oder Quecksilberselenid, Cadmium- oder Quecksilbertellurid sowie ternäre oder quaternäre Verbindungen der vorgenannten Elemente. Um eine Bildung dieser Nanoteilchen zu bewirken oder ein Größenwachstum bereits vorhandener Nanoteilchen zu unterstützen oder anzuregen, können die Ausgangsstoffe beispielsweise Cadmiumacetat und/oder Quecksilberacetat und Thioacetamid umfassen, aus denen sich bei Energieeintrag Kadmiumsulfid bzw. Quecksilbersulfid bildet.The II-VI semiconductor nanoparticles found to be particularly suitable usually have a large size quantization effect. The preferred materials include, for example, cadmium or mercury sulfide, cadmium or mercury selenide, cadmium or mercury telluride and ternary or quaternary compounds of the aforementioned elements. To effect formation of these nanoparticles or size growth of already existing ones To support or excite nanoparticles, the starting materials may comprise, for example, cadmium acetate and / or mercuric acetate and thioacetamide, from which cadmium sulfide or mercury sulfide forms upon energy input.
Bei einer weiteren Ausführungsform umfasst die Ausgangsstoffe formquantisierbare Nanoteilchen, die abhängig von dem Energieeintrag ihre Form ändern, wobei deren Farbeindruck von der Form abhängig ist. Formquantisierbare Nanoteilchen können beispielsweise aus Gold und/oder Silber und/oder Legierungen hiervon bestehen. Die Ausgangsstoffe können beispielsweise stäbchenförmige Nanoteilchen aus Gold umfassen. Durch Energieeintrag können diese Nanoteilchen angeregt werden; sich in Richtung auf eine sphärische Form umzuwandeln. Hierbei ändert sich das Absorptionsspektrum, welches hauptsächlich durch Oberflächenplasmonanregungen dominiert ist.In a further embodiment, the starting materials comprise form-quantisable nanoparticles which change their shape as a function of the energy input, the color impression of which depends on the mold. Form-quantisable nanoparticles may, for example, consist of gold and / or silver and / or alloys thereof. The starting materials may comprise, for example, gold rod-shaped nanoparticles. By energy input these nanoparticles can be excited; to transform towards a spherical shape. Here, the absorption spectrum changes, which is mainly dominated by surface plasmon excitations.
Einen konzentrationsabhängigen Farbeindruck weisen insbesondere Nanoteilchen aus Gold- und Silberlegierungen auf. Deren Absorptionsverhalten ist von einem mittleren Abstand zu einem benachbarten Nanoteilchen abhängig. Bei einer bevorzugten Ausführungsform der Erfindung umfassen Ausgangsstoffe Precursor von Substanzen, die kolloidale Nanoteilchen ausbilden, deren Farbeindruck von einer lokalen Konzentration der kolloidalen Nanoteilchen abhängig ist. Beispielsweise können die Ausgangsstoffe Zinkoxid (ZnO) und Gold- oder Silbersalze enthalten. Bei Lasereinstrahlung wirkt das ZnO als Elektronenlieferant, um Gold oder Silber zu reduzieren. Hierüber kann ein Wachstum von Nano-Kolloiden aus Gold und/oder Silber angeregt werden.In particular, nanoparticles of gold and silver alloys have a concentration-dependent color impression. Their absorption behavior is dependent on an average distance to an adjacent nanoparticle. In a preferred embodiment of the invention, starting materials comprise precursors of substances which form colloidal nanoparticles whose color impression depends on a local concentration of the colloidal nanoparticles. For example, the starting materials may contain zinc oxide (ZnO) and gold or silver salts. In laser irradiation, the ZnO acts as an electron supplier to reduce gold or silver. This can be a growth of nano-colloids of gold and / or silver are excited.
Das Einbringen der Energie wird so vorgenommen, dass eine chemische Degeneration, insbesondere eine Depolymerisation, Pyrolyse oder Carbonisierung, des Materials des Dokumentenkörpers unterbleibt.The introduction of the energy is carried out so that a chemical degeneration, in particular a depolymerization, pyrolysis or carbonization, of the material of the document body is omitted.
Bei einer bevorzugten Ausführungsform sind optische Sensoren vorhanden, die einen Farbeindruck überwacht. Die Energiezufuhr wird dann in Abhängigkeit des überwachten Farbeindrucks gesteuert.In a preferred embodiment, there are optical sensors which monitor a color impression. The energy supply is then controlled as a function of the monitored color impression.
Besonders bevorzugt wird die Energie an mehreren Stellen lokalisiert gezielt in den Dokumentenkörper eingebracht, um an den mehreren Stellen einen Farbeindruck aufgrund der Gestalt und/oder Konzentration der Nanoteilchen herbeizuführen, wobei die mehreren Stellen ein Muster ergeben, das die individualisierende Information enthält. Bevorzugt werden an den unterschiedlichen Stellen durch den Energieeintrag unterschiedliche Farbeindrücke hervorgerufen. Dies bedeutet, dass der Energieeintrag an den unterschiedlichen Stellen unterschiedlich erfolgt.Particularly preferably, the energy is localized at several points in a targeted manner introduced into the document body to bring about a color impression at the plurality of locations due to the shape and / or concentration of the nanoparticles, wherein the plurality of locations provide a pattern containing the individualizing information. Preferably, different color impressions are caused by the energy input at the different points. This means that the energy input takes place differently at the different locations.
Nachfolgend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Hierbei zeigen:
- Fig. 1
- schematisch Potentiale für unterschiedlich große Teilchen, jeweils für Valenz- und Leitungsband;
- Fig. 2
- Absorptionskurven für unterschiedlich große Teilchen;
- Fig. 3
- einen Verlauf der Bandlücke in Abhängigkeit von der Teilchengröße für größenquantisierbare Teilchen;
- Fig. 4
- Nanoteilchen unterschiedlicher Form; und
- Fig. 5
- eine Vorrichtung zum Individualisieren eines Sicherheitsdokuments mit einem farbig personalisierbaren Dokumentenkörper.
- Fig. 1
- schematically potentials for different sized particles, each for valence and conduction band;
- Fig. 2
- Absorption curves for particles of different sizes;
- Fig. 3
- a course of the band gap as a function of the particle size for size-quantisable particles;
- Fig. 4
- Nanoparticles of different shapes; and
- Fig. 5
- a device for individualizing a security document with a color personalized document body.
In
Bestimmt man in diesen Kastenpotentialen 1a-1c, 2a-2c jeweils die sich unter Berücksichtigung der Quantenmechanik ergebenden energetisch niedrigsten Energieniveaus 4a-4c des Leitungsbands bzw. die höchsten energetischen Zustände 5a-5c des Valenzbands, so ergeben sich für die verschiedenen großen Teilchen a-c unterschiedliche Energiedifferenz 6a-6c, die jeweils mit einer Bandlückenenergie assoziiert werden können. Die Energiedifferenz 6a-6c nimmt mit zunehmender Teilchengröße ab. Je größer die Bandlücke eines Teilchens ist, desto höher energetisch muss die Strahlung sein, die von diesem Teilchen absorbiert wird.If one determines in these box potentials 1a-1c, 2a-2c, respectively, the energetically lowest results taking into account quantum mechanics Energy levels 4a-4c of the conduction band and the highest energy states 5a-5c of the valence band, resulting for the different large particles ac different energy difference 6a-6c, each of which can be associated with a band gap energy. The energy difference 6a-6c decreases with increasing particle size. The larger the bandgap of a particle, the higher the energy must be the radiation that is absorbed by this particle.
Photonen, deren Energie geringer als die Bandlückenenergie ist, werden hingegen nicht absorbiert. Dies bedeutet, dass mit einer Zunahme der Teilchengröße eine Rotverschiebung der Absorptionskante stattfindet. Dieses ist schematisch in
Für Cadmiumphosphid Cd3P2 beträgt die Bandlücke im Festkörper 0,55 eV. Bei einem mittleren Teilchendurchmesser von 3 nm erscheint das Material nicht mehr schwarz, sondern braun. Mit weiter abnehmendem Durchmesser ändert sich die Farbe über rot, orange und gelb, bis das Material bei etwa 1,5 nm weiß erscheint und eine Bandlücke von etwa 4 eV aufweist.For cadmium phosphide Cd 3 P 2 the band gap in the solid is 0.55 eV. At a mean particle diameter of 3 nm, the material no longer appears black, but brown. As the diameter decreases further, the color changes to red, orange and yellow until the material appears white at about 1.5 nm and has a bandgap of about 4 eV.
In
Ein ähnlicher energetischer Effekt stellt sich beispielsweise bei stäbchenförmigen Goldteilchen ein. In
In
Der Dokumentenkörper wird in einer Dokumentenkörperaufnahme 55 gehalten.The document body is held in a
Die Vorrichtung 41 umfasst als Energiequelle einen Laser 45. Dieser Laser 45 erzeugt elektromagnetische Strahlung im infraroten, sichtbaren und/oder ultravioletten Spektralbereich. Zum Beispiel kann der Laser 45 ausgewählt sein aus der Liste "YAG:Nd (Grundwellenlänge oder frequenzvervielfacht: 1064 nm, 532 nm, 355 nm, 266 nm), Excimer-Lasers (F2 157 nm, Xe 172 nm), Exciplex-Laser (ArF 193 nm, KrF 248 nm, XeBr 282 nm, XeCl 308 nm, XeF 351 nm), Titan-Saphir-Laser, CO2-Lasers (10,6 µm) oder Diodenlaser". Diese Laserstrahlung 46 wird mit einer Abbildungsoptik 47 lokalisiert in einem Bereich der Schichten 44 fokussiert, in die die Ausgangsstoffe eingearbeitet sind. In einem Fokus 48 wird die Laserstrahlung 46 bevorzugt von einem Aktivatormaterial, zum Beispiel Zinkoxid (ZnO), absorbiert. Dieses führt zu einer lokalen heißen Stelle (hot spot), wodurch eine Bildung von Cadmiumsulfid angeregt wird, welches sich an dem Aktivatormaterial Zinkoxid (ZnO) anlagert. In Abhängigkeit von der Laserintensität bilden sich unterschiedlich viele Nanoteilchen. Je höher die Laserintensität ist, d.h. je höher die Temperatur der Matrix lokal steigt, desto mehr Nanoteilchen werden geschaffen. Wird eine niedrigere Temperatur gewählt, so werden weniger oder keine Nanoteilchen geschaffen. Ein Wachstum bereits bestehender Nanoteilchen setzt sich jedoch fort. Hierbei verändert sich die Größe der Nanoteilchen 49. In Abhängigkeit von der Größe ändert sich ein Farbeindruck.The
In einer weiteren Ausführungsform führt die Bestrahlung des Aktivatormaterials, zum Beispiel Zinkoxid (ZnO), zur Erzeugung von Elektron-Loch-Paaren, wodurch zum Beispiel Metallsalzionen, insbesondere Silber (Ag+) und Gold (Au3+) zu den entsprechenden Metallen reduziert werden und Nanoteilchen bilden.In another embodiment, irradiation of the activator material, for example, zinc oxide (ZnO), results in the formation of electron-hole pairs, thereby reducing, for example, metal salt ions, particularly silver (Ag + ) and gold (Au 3+ ), to the corresponding metals and form nanoparticles.
Mittels eines optischen Sensors 50, der beispielsweise als farbige CCD-Kamera ausgebildet ist, wird der optische Eindruck überwacht. Hierfür kann es erforderlich sein, dass der Dokumentenkörper 43 mit einer Lichtquelle 51 beleuchtet wird. Die mittels des optischen Sensors 50 erfassten Signale werden von einer Steuereinrichtung 52 ausgewertet, die einen Energieeintrag über die als Laser 45 ausgebildete Energiequelle 41 steuert. Die Energiequelle 41 kann ferner einen Modulator 54 umfassen, über den die Frequenz und/oder Amplitude des Lasers moduliert wird, um den Energieeintrag in den Dokumentenkörper 43 steuern zu können. Der Modulator kann bei anderen Ausführungsformen in den Laser 45 integriert sein.By means of an
Es ergibt sich für den Fachmann, dass die Energiequelle auch mehrere Laser umfassen kann, die Licht unterschiedlicher Wellenlänge emittieren. Hierdurch ist es möglich, unterschiedliche Aktivatormaterialien optimal anzuregen.It will be apparent to those skilled in the art that the energy source may also include multiple lasers that emit light of different wavelengths. This makes it possible to optimally excite different activator materials.
Bei anderen Ausführungsformen kann vorgesehen sein, dass Nanoteilchen zur Veränderung des Farbeindrucks in mehreren unterschiedlichen Schichten des Dokumentenkörpers geschaffen werden. Wird die Laserstrahlung zeitgleich oder zeitversetzt an unterschiedlichen Stellen in dem Dokumentenkörper fokussiert, um jeweils lokal gezielt Energie einzutragen und Nanoteilchen zu schaffen, die einen optischen Farbeindruck im sichtbaren Spektralbereich erzeugen, kann ein farbiges Muster in dem Dokumentenkörper erzeugt werden, welches eine individualisierende Information, beispielsweise einen Namen, ein Passbild usw., darstellt.In other embodiments, provision can be made for nanoparticles to be created to change the color impression in a plurality of different layers of the document body. If the laser radiation is focused simultaneously or with a time delay at different locations in the document body in order to selectively introduce locally targeted energy and to create nanoparticles that produce an optical color impression in the visible spectral range, a colored pattern can be generated in the document body, which is an individualizing information, for example a name, a passport photo, etc. represents.
Bei einigen Ausführungsformen ist der Dokumentenkörper selbst ein vollständiger Sicherheitsdokument oder auch Wertdokument. In anderen Ausführungsformen ist der Dokumentenkörper beispielsweise in ein Passbuch eingebunden.In some embodiments, the document body itself is a complete security document or document of value. In other embodiments, the document body is incorporated, for example, in a passport book.
Bei einigen Ausführungsformen ist der Dokumentenkörper ein aus mehreren Schichten laminierter Verbundkörper, bei dem unterschiedliche Schichten unterschiedliche Ausgangsstoffe und/oder Konzentrationen hiervon umfassen. Hierdurch können auf einfache Weise in den unterschiedlichen Schichten verschiedene Farbeindrücke durch lokalisierten Energieeintrag hervorgerufen werden. Diese können gemeinsam ein Farbmuster ergeben. Ebenso können die Schichten jedoch auch gleiche Ausgangsstoffe und/oder Konzentrationen hiervon umfassen.In some embodiments, the document body is a multi-layer laminated composite in which different layers include different starting materials and / or concentrations thereof. This can be caused in a simple manner in the different layers different color impressions by localized energy input. These can together result in a color pattern. Likewise, however, the layers may also comprise the same starting materials and / or concentrations thereof.
Es ergibt sich für den Fachmann, dass die Erfindung hauptsächlich im sichtbaren Spektralbereich Anwendung finden wird. Es sind jedoch auch Ausführungsformen denkbar, die einen Farbeindruck erzeugen, der nur für eine maschinelle Prüfung vorgesehen ist. Einerseits weil der hervorgerufene Farbeindruck im UV- oder IR-Spektralbereich liegt oder weil eine Nanoteilchenkonzentration erzeugt wird, deren Absorptionsintensität für eine menschliche Prüfung nicht ausreichend hoch ist. Hier ist das Intensitätsverhältnis der Absorption und nicht deren wellenlängenabhängiger Verlauf gemeint. Auch hier wird die Information durch die Änderung eines wellenlängenabhängig veränderten Farbeindrucks gespeichert. Lediglich eine Anzahl der erzeugten farbveränderten Nanoteilchen wird gezielt gering gehalten.It will be apparent to those skilled in the art that the invention will find application primarily in the visible spectral range. However, embodiments are also conceivable which produce a color impression which is provided only for a machine test. On the one hand because the color impression caused is in the UV or IR spectral range or because a nanoparticle concentration is produced whose absorption intensity is not sufficiently high for a human test. Here is meant the intensity ratio of the absorption and not its wavelength-dependent course. Again, the information by changing a stored wavelength-dependent changed color impression. Only a number of the color-changed nanoparticles produced is deliberately kept low.
Die beschriebenen Ausführungsformen sind lediglich beispielhafte Ausführungsformen. Es ergibt sich für den Fachmann, dass es eine Vielzahl von Modifikationsmöglichkeiten gibt.The described embodiments are merely exemplary embodiments. It will be apparent to those skilled in the art that there are a variety of modification possibilities.
- 1a-1c1a-1c
- Kastenpotential des LeitungsbandsBox potential of the conduction band
- 2a-2c2a-2c
- Kastenpotential des ValenzbandsBox potential of the valence band
- 3a-3c3a-3c
- Breite des KastenpotentialsWidth of the box potential
- 4a-4c4a-4c
- Energieniveau des LeitungsbandsEnergy level of the conduction band
- 5a-5c5a-5c
- Energieniveau des ValenzbandsEnergy level of the valence band
- 6a-6c6a-6c
- Energiedifferenzenergy difference
- 11a-11c11a-11c
- Absorptionskanteabsorption edge
- 12a-12c12a-12c
- Absorptionsspektrenabsorption spectra
- 1313
- Pfeil (in Richtung größer werdender Teilchengröße)Arrow (in the direction of increasing particle size)
- 1515
- Leitungsbandconduction band
- 1616
- Valenzbandvalence
- 1717
- SindungsenergieSindungsenergie
- 2121
- Nanoteilchennanoparticles
- 2222
- Längelength
- 2323
- Breitewidth
- 4141
- Vorrichtung zur farbigen Individualisierung von SicherheitsdokumentenDevice for colored individualization of security documents
- 4242
- SicherheitsdokumentThe security document
- 4343
- Dokumentenkörperdocument body
- 4444
- Schichtenlayers
- 4545
- Laserlaser
- 4646
- Laserstrahlunglaser radiation
- 4747
- Abbildungsoptikimaging optics
- 4848
- Fokusfocus
- 4949
- Nanoteilchennanoparticles
- 5050
- optischer Sensoroptical sensor
- 5151
- Lichtquellelight source
- 5252
- Steuerungcontrol
- 5454
- Modulatormodulator
- 5555
- DokumentenkörperaufnahmeDocuments Length
Claims (14)
- Method for the coloured individualization of security documents (42) which comprise a document body (43) in which starting materials are kept inside, which starting materials are locally excited by means of a localized energy input in a targeted manner for formation or modification of nanoparticles (21; 49), wherein a shape and/or a concentration of the nanoparticles (21; 49) locally in the document body (43) is dependent on the energy input and wherein a colour impression of the nanoparticles (21; 49) is dependent on their shape and/or local concentration, in which energy is locally introduced in a targeted manner at a location at which a coloured colour impression is intended to be brought about in the document body (43), in order to store an individualizing information item about the colour impression brought about.
- Method according to claim 1, characterised in that the energy is introduced subject to time variation.
- Method according to claim 1 or 2, characterised in that the energy is introduced by means of a laser (45), wherein the laser intensity and/or laser frequency is modulated in order to time-control the energy input.
- Method according to any one of claims 1 to 3, characterised in that laser wavelength is adapted in order to achieve good absorption in an activator material which the starting materials comprise.
- Method according to any one of claims 1 to 4, characterised in that the energy is introduced such that a chemical degeneration, in particular depolymerisation, pyrolysis or carbonisation, of the material of the document body (43) is avoided.
- Method according to any one of claims 1 to 5, characterised in that a colour impression is monitored and the energy supply is controlled depending on the monitored colour impression.
- Method according to any one of claims 1 to 6, characterised in that different nanoparticles are generated in a targeted manner by varying the energy input.
- Security document (42) which comprises a coloured personalisable document body (43) in which, inside the document body (43), starting materials are kept which can be excited by means of a localized energy input in a targeted manner for formation of nanoparticles (21; 49) of different shape and/or different concentration, wherein the shape and/or concentration is dependent on the energy input and wherein a colour impression of the nanoparticles (21; 49) is dependent on their shape and/or their concentration.
- Security document (42) according to claim 8, characterised in that the starting materials comprise nanoparticles, the band gap energy of which is greater than the photon energy of visible light due to a quantum size effect.
- Security document (42) according to claim 8 or 9, characterised in that the nanoparticles present in the starting materials are prone to particle growth which causes a quantum size effect.
- Security document (42) according to any one of claims 8 to 10, characterised in that the starting materials comprise precursors for the formation of nanoparticles (21; 49) which have a quantum size effect or quantum shape effect or nanoparticle concentration quantum effect.
- Security document (42) according to any one of claims 8 to 11, characterised in that the starting materials are bound into a matrix.
- Security document (42) according to any one of claims 8 to 12, characterised in that the starting materials contain activator material which has good laser absorption.
- Security document (42) according to any one of claims 8 to 13, characterised in that the starting materials contain precursors of substances which form nanocolloids the colour impression of which is dependent on a local concentration of the nanocolloids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08785547T PL2183116T3 (en) | 2007-08-10 | 2008-08-08 | Coloured security document individualization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007037981A DE102007037981A1 (en) | 2007-08-10 | 2007-08-10 | Colored security document customization |
PCT/EP2008/006695 WO2009021737A1 (en) | 2007-08-10 | 2008-08-08 | Coloured security document individualization |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2183116A1 EP2183116A1 (en) | 2010-05-12 |
EP2183116B1 true EP2183116B1 (en) | 2014-01-08 |
Family
ID=39951588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08785547.4A Active EP2183116B1 (en) | 2007-08-10 | 2008-08-08 | Coloured security document individualization |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2183116B1 (en) |
CN (1) | CN101772421B (en) |
DE (1) | DE102007037981A1 (en) |
ES (1) | ES2452295T3 (en) |
PL (1) | PL2183116T3 (en) |
PT (1) | PT2183116E (en) |
RU (1) | RU2506167C2 (en) |
WO (1) | WO2009021737A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2571699B1 (en) | 2010-11-08 | 2013-10-30 | U-NICA Technology AG | Method and device for producing colour images by way of a uv laser on pigmented substrates, and products produced as a result |
DE102012211767B4 (en) | 2012-07-05 | 2014-03-13 | Bundesdruckerei Gmbh | Security document blank for a colored laser personalization, method for producing a security document by means of color laser personalization of a security document blank and security document. |
DE102013218752B4 (en) | 2013-09-18 | 2021-01-28 | Bundesdruckerei Gmbh | Activatable value or security product, method for activating and method for producing the value or security product |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU597240B2 (en) * | 1985-02-05 | 1990-05-31 | Ciba-Geigy Ag | Laser marking of pigmented systems |
ATE352945T1 (en) | 1998-07-20 | 2007-02-15 | Maurer Electronics Gmbh | METHOD FOR ENGRAVING IMAGES USING RADIATION INTO A RADIATION-SENSITIVE LAYER, IN PARTICULAR LASER ENGRAVING |
DE19955383A1 (en) | 1999-10-29 | 2001-05-03 | Orga Kartensysteme Gmbh | Method for applying color information to an object treats the object by laser radiation with a vector and/or grid method using a two-coordinate beam-deflecting device and a focussing device for focussing laser radiation on a layer. |
US7158145B1 (en) * | 1999-11-18 | 2007-01-02 | Orga Systems Gmbh | Method for applying colored information on an object |
DE10008851A1 (en) * | 2000-02-25 | 2001-08-30 | Giesecke & Devrient Gmbh | Manufacturing laser-writeable data media involves applying transparent, optically variable layer then producing marking through optically variable layer by action of laser beam |
DE10053264A1 (en) | 2000-10-26 | 2002-05-08 | Orga Kartensysteme Gmbh | Method for writing data onto / into data carriers by means of laser radiation and data carriers produced therewith |
DE10316034A1 (en) | 2003-04-07 | 2004-12-30 | Bundesdruckerei Gmbh | Method for generating information, carrier body in which the information is generated, and use of such a carrier body |
AU2004299158A1 (en) * | 2003-12-16 | 2005-06-30 | Note Printing Australia Limited | Security article with multicoloured image |
DE102004010504B4 (en) * | 2004-03-04 | 2006-05-04 | Degussa Ag | Highly transparent laser-markable and laser-weldable plastic materials, their use and manufacture, and use of metal-mixed oxides and methods of marking of manufactured goods |
DE102004050557B4 (en) | 2004-10-15 | 2010-08-12 | Ticona Gmbh | Laser-markable molding compounds and products and methods for laser marking obtainable therefrom |
-
2007
- 2007-08-10 DE DE102007037981A patent/DE102007037981A1/en not_active Withdrawn
-
2008
- 2008-08-08 ES ES08785547.4T patent/ES2452295T3/en active Active
- 2008-08-08 PT PT87855474T patent/PT2183116E/en unknown
- 2008-08-08 CN CN2008801019313A patent/CN101772421B/en active Active
- 2008-08-08 PL PL08785547T patent/PL2183116T3/en unknown
- 2008-08-08 EP EP08785547.4A patent/EP2183116B1/en active Active
- 2008-08-08 RU RU2010108251/12A patent/RU2506167C2/en active
- 2008-08-08 WO PCT/EP2008/006695 patent/WO2009021737A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
PT2183116E (en) | 2014-03-25 |
PL2183116T3 (en) | 2014-06-30 |
CN101772421A (en) | 2010-07-07 |
DE102007037981A1 (en) | 2009-02-26 |
ES2452295T3 (en) | 2014-03-31 |
EP2183116A1 (en) | 2010-05-12 |
RU2010108251A (en) | 2011-09-20 |
CN101772421B (en) | 2013-02-06 |
WO2009021737A1 (en) | 2009-02-19 |
RU2506167C2 (en) | 2014-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3151407C1 (en) | ID card and process for its manufacture | |
EP2459389B1 (en) | Identification document having a personalized visual identifier and method for production thereof | |
EP1972463B1 (en) | Security element | |
EP2539154B9 (en) | Method for the colored marking of value or security documents | |
EP2635444A2 (en) | Security element and method for producing a security element | |
DE102018106430A1 (en) | Security element with micro or nanostructuring | |
EP2244883A2 (en) | Method for the production of a security and/or value document comprising protected personalized data | |
DE102008028705B4 (en) | Method for producing a valuable and/or security document and valuable and/or security document with a demetallized structure | |
EP2183116B1 (en) | Coloured security document individualization | |
EP3046777B1 (en) | Method for producing a security feature of a value or security product | |
EP3196044B1 (en) | Data carrier with film security element | |
DE102009016525A1 (en) | Microcapsule with liquid crystal | |
EP2539152B1 (en) | Marking device and method for marking valuable or security documents using optical fibres | |
EP2539155B9 (en) | Marking device and method for marking valuable or security documents with high resolution | |
DE102018127628A1 (en) | Security element with structurally assigned structural elements in different layers | |
EP3046774B1 (en) | Activatable value or security product, method of activation and method for producing a value or security product | |
EP2214914B1 (en) | Method for producing a security feature for a document and corresponding document | |
EP4368409A1 (en) | Security element, security document and method for producing a security document | |
DE102008027162A1 (en) | Method and device for producing a personalization document and personalization document |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100304 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HOPPE, ANDREAS Inventor name: MUTH, OLIVER Inventor name: PFLUGHOEFFT, MALTE |
|
17Q | First examination report despatched |
Effective date: 20111219 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130802 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PFLUGHOEFFT, MALTE Inventor name: HOPPE, ANDREAS Inventor name: MUTH, OLIVER |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWALT DIPL.-ING. (UNI.) WOLFGANG HEISEL, CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 648462 Country of ref document: AT Kind code of ref document: T Effective date: 20140215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008011196 Country of ref document: DE Effective date: 20140220 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20140314 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2452295 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140331 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20140400327 Country of ref document: GR Effective date: 20140317 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 16132 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140408 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008011196 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20141009 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008011196 Country of ref document: DE Effective date: 20141009 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E021930 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140108 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230823 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230801 Year of fee payment: 16 Ref country code: IT Payment date: 20230831 Year of fee payment: 16 Ref country code: IE Payment date: 20230821 Year of fee payment: 16 Ref country code: GB Payment date: 20230824 Year of fee payment: 16 Ref country code: FI Payment date: 20230823 Year of fee payment: 16 Ref country code: ES Payment date: 20230918 Year of fee payment: 16 Ref country code: CH Payment date: 20230902 Year of fee payment: 16 Ref country code: AT Payment date: 20230818 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230803 Year of fee payment: 16 Ref country code: PT Payment date: 20230726 Year of fee payment: 16 Ref country code: PL Payment date: 20230728 Year of fee payment: 16 Ref country code: HU Payment date: 20230803 Year of fee payment: 16 Ref country code: GR Payment date: 20230818 Year of fee payment: 16 Ref country code: FR Payment date: 20230822 Year of fee payment: 16 Ref country code: DE Payment date: 20230822 Year of fee payment: 16 |