EP2174392B1 - Dispositif de laser à semi-conducteur - Google Patents
Dispositif de laser à semi-conducteur Download PDFInfo
- Publication number
- EP2174392B1 EP2174392B1 EP08779009.3A EP08779009A EP2174392B1 EP 2174392 B1 EP2174392 B1 EP 2174392B1 EP 08779009 A EP08779009 A EP 08779009A EP 2174392 B1 EP2174392 B1 EP 2174392B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wavelengths
- cavity
- output
- wavelength
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 37
- 230000003287 optical effect Effects 0.000 claims description 78
- 238000013461 design Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000002310 reflectometry Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 238000000609 electron-beam lithography Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000004556 laser interferometry Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000000276 deep-ultraviolet lithography Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/065—Mode locking; Mode suppression; Mode selection ; Self pulsating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/125—Distributed Bragg reflector [DBR] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0268—Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/065—Mode locking; Mode suppression; Mode selection ; Self pulsating
- H01S5/0656—Seeding, i.e. an additional light input is provided for controlling the laser modes, for example by back-reflecting light from an external optical component
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1021—Coupled cavities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1209—Sampled grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1212—Chirped grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1215—Multiplicity of periods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4087—Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
Definitions
- the present invention is directed to a semiconductor laser device comprising a first resonator section for resonating an optical resonator signal for providing an optical output signal at an output of said laser device.
- Semiconductor laser devices as described above are generally known and widely used in many applications in a variety of industries, such as for example telecommunications industry.
- FTTH/FTTP requires a large volume of optical sources and therefore it will open a worldwide market for low-cost tunable lasers.
- a successful device for FTTH applications is a cheap, easy-tunable laser which operates in a small number of channels (4-8 wavelengths).
- a successful device requires a higher performance operation in a larger number of channels (16-32 wavelengths).
- Today's tunable sources usually consist of an optical laser cavity that can resonate at a large number of wavelengths. Two or three tunable elements inside the cavity are used for selecting the right wavelength out of a multitude. The relation between wavelength and control currents is complicated, and a complex control algorithm is needed for getting stable operation at the right wavelength. To provide the algorithm with the proper control data an extensive and expensive characterization of each laser is necessary.
- JPH 03 274 784 A relates to a semiconductor laser device having a narrow spectral line and variable in wavelength within a gain range, by employing dual-laser structure in which one laser is furnished with means for feeding a specific wavelength within the gain range back to an active layer.
- a dual-resonator laser has a nonreflective film on one end, and it is coupled through an object lens to an external refractive grating. The light from the laser is fed back to an active layer to provide single-mode oscillation with a narrow spectral line of selected wavelength.
- the angle of the reflective grating is varied by a rotating mechanism to vary the feedback wavelength so that the wavelength can be varied within the range of gain of the first and the second semiconductor lasers.
- the wavelength can be continuously varied by controlling currents to said first and second semiconductor lasers.
- EP 0 762 573 A1 relates to a laser light source apparatus comprising a compound cavity and an optical gain medium.
- the compound cavity includes first, second, and third optical reflection members disposed along the optical axis.
- the first optical reflection member has a light wavelength selectivity.
- At least one of the first to third optical reflection members can change its own position on an optical axis in relation to the other reflection members.
- Two of the first to third optical reflection members are provided opposite to each other with the optical gain medium inserted therebetween, thereby forming a laser light source.
- the other one optical reflection member is provided so as to form a light path for feeding laser light emitted from the laser light source back to the laser light source.
- US 2005/0249256 A1 relates to a monolithically integrated wavelength switchable laser comprising three coupled Fabry-Perot cavities.
- the length and consequently the free spectral range of the first cavity are designed such that the resonant peaks correspond substantially to a set of discrete operating wavelengths separated by a constant channel spacing.
- the second cavity has a slightly different length so that only one resonant peak coincides with one of the resonant peaks of the first cavity over the spectral window of the material gain.
- the lasing action occurs at the common resonant wavelength.
- the two cavities are coupled through a third short cavity that produces a certain coupling loss and phase relationship between the first and the second cavities in order to achieve an optimal mode selectivity of the combined cavity laser.
- both the first and the second cavities are forward biased to provide optical gains for the laser action.
- the second cavity is tuned by varying the refractive index of at least a portion of the waveguide within the cavity through an electrical means, resulting in wavelength switching of the laser among the set of discrete operating wavelengths as determined by the first cavity.
- US 2002/0118711 A1 relates to a wavelength-tunable laser consisting of a resonant semiconductor cavity coupled to a sampled Bragg reflector grating having reflectivity peaks for N optical frequencies.
- the resonant cavity is formed of two opposite reflector members that are not wavelength selective and delimit an amplifier section coupled to a phase tuning section.
- the optical length of the cavity is adjustable electro-optically as a function of a control voltage applied to it.
- the laser can be tuned quickly over a wide band.
- US 2005/0135449 A1 relates to various methods and apparatuses in which an array of optical gain mediums capable of lasing are contained in a single integral unit.
- the array may contain four or more optical gain mediums capable of lasing.
- Each optical gain medium capable of lasing supplies a separate optical signal containing a band of wavelengths different than the other optical gain mediums capable of lasing in the array to a first multiplexer/demultiplexer.
- a connection for an output fiber exists to route an optical signal to and from a passive optical network.
- WO 2008120024 A1 relates to tunable distributed Bragg reflector (DBR) semiconductor lasers, in particular a DBR laser with a branched optical waveguide within which a plurality of differently shaped lasing cavities may be formed, and a method of operation of such a laser.
- the laser may comprise a phase control section, gain section, a sampled grating DBR giving a comb-line spectrum and two tunable, chirped DBRs for broadband frequency training and a coupling section.
- the frequency routing device has an optical grating having unequal length waveguides to form paths.
- a method of turning on a laser having a waveguide grating to a stable operating condition comprises the steps of applying an initial current to a first amplifier and maintaining a second amplifier off; allowing the laser to reach thermal equilibrium; applying an operating current to the second amplifier; and applying another operating current to the first amplifier to stably operate the laser.
- Proposed is a tuning approach in which a laser is used that can operate only at a discrete set of equally spaced wavelengths that are matched to the internationally standardized telecommunication wavelengths (ITU-grid).
- the desired wavelength is selected by re-injecting a small signal at the right wavelength into the laser (filtered feedback).
- a compact active discretely tuneable filter Arrayed waveguide grating (AWG)
- AWG Arrayed waveguide grating
- the laser and the feedback filter may be integrated in a small chip ( ⁇ 1 mm ⁇ ) that can address a moderate number of wavelengths (8 or 16). This will provide a low-cost solution for large scale application in user access networks. For application in higher level networks more wavelengths are needed.
- the number of wavelengths of the chip may in accordance with an embodiment be extended by including a tuneable Bragg reflector in the active filter, which enables to increase the total number of wavelengths with a factor of 2-4.
- the invention provides a cheap stable integrated tunable laser, which allows the selective emission of a set of different optical wavelengths which are spaced according to the ITU grid specifications. This is an international standard for optical telecommunication frequencies.
- a Distributed Bragg Reflector laser (DBR-Laser) is employed in combination with an Arrayed Waveguide Grating (AWG), integrated with a set of semiconductor optical amplifiers (see Figure 1 ).
- DBR distributed Bragg reflector
- DBR distributed Bragg reflector
- DBR distributed Bragg reflector
- the length of the laser cavity (approximately 500 ⁇ m) and the bandwidth of the distributed Bragg reflector (DBR) mirrors (approximately 200 nm) is such that the distributed Bragg reflector (DBR) laser can operate in at least 8 modes which are spaced at the ITU grid.
- the channel spacing of the Arrayed waveguide grating (AWG) is designed in order to match the free spectral range of the distributed Bragg reflector (DBR) laser.
- the FSR of the laser cavity does not necessarily have to be the same as the channel spacing of the Arrayed waveguide grating (AWG) (or any other filter realization). As long as the wavelengths in between the channels get suppressed more than the one that is passed through the filter the device will operate the same way. In this way, one can generate feedback at the ITU wavelengths produced by the laser. With this design, it is possible to selectively stabilize the device at the desired ITU wavelength via filtered optical feedback.
- ABG Arrayed waveguide grating
- Wavelength Division Multiplexing i.e. different wavelengths (or channels) are used to carry different messages or different parts of the same message and travel together in the same fiber.
- FTTH Fiber-to-the-Home
- FTTP Fiber-to-the-Premises
- a very efficient use of available bandwidth would be a configuration of shared connections with packets of information being routed towards different users by wavelength-routing.
- Tunable lasers provide a good solution as a single tunable device is capable to produce a large number of relevant wavelengths, thus reducing the inventory costs.
- a single device which can be rapidly tuned to different ITU wavelengths would be extremely relevant for a cost effective realization of packet-switching access networks.
- a successful tunable laser should score well in the following operational characteristics: output power, tunability i.e. the window of wavelengths that can be produced, switching-speed i.e. the minimum amount of time required to switch from operation in one channel to operation in another channel and wavelength-stability i.e. the device must operate only at the desired wavelength and operation in other channels should be suppressed.
- the channel spacing is of the order of 0.5-1 nm (50 or 100 GHz), which means that a tunability of 10 nm allows approximately 10-15 channels.
- the current design for tunable lasers is based on the idea of controlling a fully tunable device. Such a device is in principle capable to emit every possible wavelength in a certain window, and during operation, it requires to be stabilized to a well defined channel. However, this stabilization of the emission wavelength requires complicated (and expensive) control schemes.
- the speed of the device should be sufficient to allow wavelength switching between each transmitted data packet. This is essential for application in Passive Optical Networks (PONs) in which the routing of the packets is done by sending the data with the right wavelength. Static wavelength filters are then sufficient to perform the routing. To add maximum flexibility to the network, packet switching is essential in every layer of the network.
- PONs Passive Optical Networks
- SE-noise spontaneous emission noise
- Such noise consists in a random emission of photons in the laser cavity as a consequence of spontaneous recombination of carriers in the semiconductor material.
- SE-Noise is responsible for mode-hopping i.e. the operation in one wavelength is suddenly suppressed, while the device starts emitting in a second undesired lasing mode. The resulting operation consists in alternate emission on different channels.
- mode-hopping corresponds to the operation of the laser in an undesired channel and consequently a dramatic deterioration of the communication quality.
- spontaneous emission noise is present in every kind of laser, it is clear that the wavelength-stability of devices which are designed to operate at all possible wavelengths in a window will be affected more heavily, thus making their control extremely intricate.
- we introduce a new laser design which exploits the most modern results in filtered-optical feedback to simplify the stable operation of the laser in a set of communication-relevant wavelengths.
- IFF-TL Integrated Filtered-Feedback Tunable Laser
- the present invention focuses on a device which produces only a certain discrete set of wavelengths (for example matching the ITU grid specifications) and on the choice of filtered optical feedback (FOF) as control scheme.
- a device operating only on a discrete set of wavelengths is intrinsically more stable compared to devices that can be continuously tuned.
- Optical feedback supports the stabilization of laser devices. Part of the radiation emitted by the laser is re-injected in the system in such a way as to affect the semiconductor gain. Filtered feedback allows to independently address the gain of each wavelength, in practice offering the tool to suppress (by suppressing the gain) or enhance (by increasing the gain) the operation at certain wavelengths. This scheme is used in the present invention to select and stabilize the operation at a single relevant wavelength.
- Figure 1 a schematic design for an 8-channel tunable device in accordance with the invention is shown. The same design principle can be applied to a different number of channels, but the 8-channel device is illustrated here as an example.
- the device 1 consists of a first resonator section 3 comprising a relatively short distributed Bragg reflector (DBR)-Laser 8 (500 ⁇ m), coupled to a second resonator section 5 comprising a set of 8 independent cavities (11, 12, 13, 14, 15, 16, 17, 18) which contain short semiconductor optical amplifiers (SOAs), such as SOA 28, that can be independently biased.
- the first resonator section 3 and the second resonator section 5 are operatively connected through tunable filter 4 which is composed of an Arrayed waveguide grating (AWG) (300 ⁇ m x 300 ⁇ m, in this embodiment).
- AMG Arrayed waveguide grating
- the wavelengths may correspond to one or more elements from a group comprising 1490.76nm, 1491.13nm, 1491.50nm, 1491.88nm, 1492.25nm, 1492.62nm, 1492.99nm, 1493.36nm, 1493.73nm, 1494.11nm, 1494.48nm, 1494.85nm, 1495.22nm, 1495.60nm, 1495.97nm, 1496.34nm, 1496.72nm, 1497.09nm, 1497.46nm, 1497.84nm, 1498.21nm, 1498.59nm, 1498.96nm, 1499.34nm, 1499.71nm, 1500.09nm, 1500.46nm, 1500.84nm, 1501.21nm, 1501.59nm, 1501.97nm, 1502.34nm, 1502.72nm, 1503.10nm, 1503.47nm, 1503.85n
- the Arrayed waveguide grating (AWG) 9 is designed in order to route each of the 8 wavelengths into different cavities (11, ..., 18). In this way, each spectral component travels through a different SOA and can be independently manipulated. Finally, the filtered radiation is reflected back into the distributed Bragg reflector (DBR)-Laser cavity 8 by means of mirrors. The output radiation is collected at the output side 10 of the distributed Bragg reflector (DBR)-Laser 8.
- DBR distributed Bragg reflector
- the number of wavelengths addressable with the device must be extended.
- One possibility to increase the number of wavelengths in the device consists in increasing the number of channels of the Arrayed waveguide grating (AWG). However, this solution will make the device much larger.
- Another possibility of extending the number of wavelengths is shown in figure 4 .
- the reflectors 31, 32, 33, 34, 35, 36, 37 and 38 at the end of the external cavities in the feedback section 5 consist of tunable gratings, such as Vertical Groove (VG) gratings or surface gratings (both known to the skilled person).
- VG Vertical Groove
- VG gratings are wavelength-dependent reflectors that can be tuned by injecting current into the grating section.
- the idea is to design the Arrayed waveguide grating (AWG) 40 such that a set of wavelengths will end up in one of the external cavities, this is illustrated in the operating principle shown schematically in figure 5 .
- the vertical groove grating is then designed in order to reflect only one selected feedback wavelength of these wavelengths back into the laser cavity (second filter in figure 5 ).
- the Semiconductor optical amplifier (SOA) 41 in the external cavity still operates as an optical gate, but can also be used to compensate for possible differences in transmission loss of the Arrayed waveguide grating (AWG) 40 for the different wavelengths.
- SOA Semiconductor optical amplifier
- FIG. 6 Further examples of the device, not being part of the invention are illustrated in figure 6 and figure 7 .
- the example in figure 6 comprises a feedback section 45 which is based on a tunable grating 46.
- the grating reflectivity 50 shown above the tunable grating 46 in figure 6 reveals a number of secondary maxima 49 in reflectivity around a primary maximum 49, making the tunable grating 46 suitable for use in the feedback resonator section 45 of a device in accordance with the present invention.
- First resonator section 3 is similar to the first resonator section in figure 1 .
- the example shown in figure 7 not being part of the invention, makes use of a tunable sampled grating 55. This example has the additional benefit that maxima 56 in the grating reflectivity 58 are of a same magnitude. Therefore a Vernier effect can be used to cover a wide wavelength range.
- FIG. 8 illustrates a multiwavelength laser 59 based on the concept of filtered feedback, not being part of the invention.
- the laser 59 comprises a first or output resonator section 60, a tunable filter section 70, and a feedback section 80.
- a number of FP-lasers comprised of mirror 61, semiconductor optical amplifiers 62, 64, 66, and 68, and distributed Bragg reflectors 63, 65, 67, and 69, are coupled to a single filter device 73 in the form of an arrayed waveguide grating (AWG) 73.
- the Arrayed waveguide grating (AWG) 73 only passes one wavelength per laser through to a feedback mirror 83 in the feedback section 80, via optical paths 74, 75, 76 and 77 in the Arrayed waveguide grating (AWG) 73.
- the filtered feedback light then locks each laser in the output section 60 to a different wavelength (A,, Aj, Aj, A4).
- the output 85 of the laser 59 is located In the optical path behind feedback mirror 83 in this configuration.
- the laser light therefore passes through the filter section 70 one extra time compared to the filtered feedback tunable laser shown in Figure 1 , where the output light comes directly from the FP-laser. This extra pass suppresses undesired side-modes and noise further.
- the mirror 83 must be partially transparent and partially reflective in order to enable light to reach output 85.
- Figure 9 discloses an another example, not being part of the invention, similar to the example of figure 8 , but different amongst others in the location of the output 85.
- Output 85 is now coupled to a different output of the Arrayed waveguide grating (AWG) 73, and may be reached from each of the FP-lasers in the first or output resonator section 60, through optical paths 94, 95, 96, and 97.
- feedback paths 74, 75, 76 and 77 of Arrayed waveguide grating (AWG) 73 only passes one wavelength per laser through to a feedback mirror 83 in the feedback section 80.
- the output signal from the FP-lasers to output 85 is in Arrayed waveguide grating (AWG) 73 separated from the feedback signal from the FP-lasers to mirror 83.
- Mirror 83 may therefore be fully reflective, adding on to the efficiency of the feedback section 80, while the configuration of figure 9 still benefits from the additional pass through filter section 70 for suppressing undesired side-modes and noise.
- each of the FP-lasers in the output resonator section 60 comprises an optical modulator 88, 89, 90, and 91 between each of the SOA's 62, 64, 66, and 68 and the Arrayed waveguide grating (AWG) 73, for enabling wavelength dependent modulation of the output signal on output 85.
- WAG Arrayed waveguide grating
- These modulators are optional, as will be appreciated by the skilled person.
- the mirror 61 of figure 8 has been replaced by further Bragg reflectors at each of the semiconductor optical amplifiers 62, 64, 66, and 68 in figure 9 .
- figure 10 Another example, not being part, of the invention, is disclosed in figure 10 . It illustrates a combination of the embodiment of figures 1 and the example of Fig. 9 , combining the advantages of multiple feedback channels 100, 101, 102 and 103 with the advantages of multiwavelength lasers based on filtered feedback.
- the output resonator section 60 is identical to the example of figure 9 , and is not further described here, except for the fact that each FP-laser cavity in the output resonator section 60 has been assigned a reference number, i.e. reference numbers 110, 111, 112 and 113 respectively.
- the arrangement, in this example, has four outputs 84, 85, 86 and 87, all separated from the feedback section 80.
- Optical paths from the FP-laser cavities 110 -113 to either the outputs 84-87 or the feedback section 80, through Arrayed waveguide grating (AWG) 73, are not illustrated in figure 10 for reasons of clarity of the figure.
- Each output 84, 85, 86 and 87 may be coupled to one or more FP-laser cavity 110-113.
- each cavity 110113 may comprise its own output, which may in that case be located at each cavity at the back-end thereof - which is the end furthest away from Arrayed waveguide grating (AWG) 73.
- AWG Arrayed waveguide grating
- Arrayed waveguide grating (AWG) 73 is arranged for mapping each wavelength of each FP-laser cavity 110, 111, 112 and 113 to a single feedback channel 100, 101, 102, and 103 in the feedback section 80 (this is to be said, although mapping of each wavelength of each cavity in the output section 60 takes place to a single channel in the feedback section 80, in an alternative example, it is also possible to map each wavelength of each cavity 110 - 113 to at least one channel 100-103, or to map multiple wavelengths of each cavity 110-113 to at least one channel in the feedback section 60).
- each cavity 110-113 mapped to a same channel 100-103 are different for each cavity, for example: amplifiers 62, 64, 66, and 68, and distributed Bragg reflectors 63, 65, 67, and 69, are coupled to a single filter device 73 in the form of an arrayed waveguide grating (AWG) 73.
- the Arrayed waveguide grating (AWG) 73 only passes one wavelength per laser through to a feedback mirror 83 in the feedback section 80, via optical paths 74, 75, 76 and 77 in the Arrayed waveguide grating (AWG) 73.
- the filtered feedback light then locks each laser in the output section 60 to a different wavelength ( ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ).
- the output 85 of the laser 59 is located in the optical path behind feedback mirror 83 in this configuration.
- the laser light therefore passes through the filter section 70 one extra time compared to the filtered feedback tunable laser shown in Figure 1 , where the output light comes directly from the FP-laser. This extra pass suppresses undesired side-modes and noise further.
- the mirror 83 must be partially transparent and partially reflective in order to enable light to reach output 85.
- Figure 9 discloses an improved embodiment, similar to the embodiment of figure 8 , but different amongst others in the location of the output 85.
- Output 85 is now coupled to a different output of the Arrayed waveguide grating (AWG) 73, and may be reached from each of the FP-lasers in the first or output resonator section 60, through optical paths 94, 95, 96, and 97.
- feedback paths 74, 75, 76 and 77 of Arrayed waveguide grating (AWG) 73 only passes one wavelength per laser through to a feedback mirror 83 in the feedback section 80.
- the output signal from the FP-lasers to output 85 is in Arrayed waveguide grating (AWG) 73 separated from the feedback signal from the FP-lasers to mirror 83.
- Mirror 83 may therefore be fully reflective, adding on to the efficiency of the feedback section 80, while the configuration of figure 9 still benefits from the additional pass through filter section 70 for suppressing undesired side-modes and noise.
- each of the FP-lasers in the output resonator section 60 comprises an optical modulator 88, 89, 90, and 91 between each of the SOA's 62, 64, 66, and 68 and the Arrayed waveguide grating (AWG) 73, for enabling wavelength dependent modulation of the output signal on output 85.
- WAG Arrayed waveguide grating
- These modulators are optional, as will be appreciated by the skilled person.
- the mirror 61 of figure 8 has been replaced by further Bragg reflectors at each of the semiconductor optical amplifiers 62, 64, 66, and 68 in figure 9 .
- FIG 10 Another embodiment of the invention is disclosed in figure 10 . It illustrates a combination of the embodiments of figures 1 and 9 , combining the advantages of multiple feedback channels 100, 101, 102 and 103 with the advantages of multiwavelength lasers based on filtered feedback.
- the output resonator section 60 is identical to the embodiment of figure 9 , and is not further described here, except for the fact that each FP-laser cavity in the output resonator section 60 has been assigned a reference number, i.e. reference numbers 110, 111, 112 and 113 respectively.
- the arrangement, in this embodiment, has four outputs 84, 85, 86 and 87, all separated from the feedback section 80.
- Optical paths from the FP-laser cavities 110 -113 to either the outputs 84-87 or the feedback section 80, through Arrayed waveguide grating (AWG) 73, are not illustrated in figure 10 for reasons of clarity of the figure.
- Each output 84, 85, 86 and 87 may be coupled to one or more FP-laser cavity 110-113.
- each cavity 110-113 may comprise its own output, which may in that case be located at each cavity at the back-end thereof - which is the end furthest away from Arrayed waveguide grating (AWG) 73.
- AWG Arrayed waveguide grating
- Arrayed waveguide grating (AWG) 73 is arranged for mapping each wavelength of each FP-laser cavity 110, 111, 112 and 113 to a single feedback channel 100, 101, 102, and 103 in the feedback section 80 (this is to be said, although mapping of each wavelength of each cavity in the output section 60 takes place to a single channel in the feedback section 80, in an alternative embodiment, it is also possible to map each wavelength of each cavity 110 - 113 to at least one channel 100-103, or to map multiple wavelengths of each cavity 110-113 to at least one channel in the feedback section 60). However, the wavelengths of each cavity 110-113 mapped to a same channel 100-103 are different for each cavity, for example:
- channel 100 receives wavelength ⁇ 1 of cavity 110, wavelength ⁇ 2 of cavity 111, wavelength ⁇ 3 of cavity 112, and wavelength ⁇ 4 of cavity 113.
- Channel 101 receives wavelength ⁇ 2 of cavity 110, wavelength ⁇ 3 of cavity 111, wavelength ⁇ 4 of cavity 112, and wavelength ⁇ 1 of cavity 113.
- Channel 102 receives wavelength ⁇ 3 of cavity 110, wavelength ⁇ 4 of cavity 111, wavelength ⁇ 1 of cavity 112, and wavelength ⁇ 2 of cavity 113.
- Channel 103 receives wavelength ⁇ 4 of cavity 110, wavelength ⁇ 1 of cavity 111, wavelength ⁇ 2 of cavity 112, and wavelength ⁇ 3 of cavity 113.
- activating one of the feedback channels 100, 101, 102, 103 i.e. by activating a corresponding semiconductor optical amplifier, will lock each laser cavity 110, 111, 112, 113 in a different wavelength. This can be used for switching rapidly the wavelengths of all lasers by activating only a single gate in the feedback section 80.
- each channel is ble to act as feedback channel for all its received wavelengths, i.e. ⁇ 1, ⁇ 2 , ⁇ 3 , and ⁇ 4 .
- multiple laser cavities are coupled to multiple feedback channels, and the free spectral range (FSR) of the laser cavities 110-113 does not necessarily have to match the channel spacing on either side of Arrayed waveguide grating (AWG) 73.
- FSR free spectral range
- the filtered feedback tunable laser of the present invention may be fabricated in InP based technology.
- InP based technology it is possible to integrate both active and passive waveguides on a single chip.
- Active waveguides can provide optical amplification (used in the main laser cavity) and will absorb the light if no electrical current is provided (used in the feedback sections).
- Passive waveguides will guide the light with minimal loss (used in the Arrayed waveguide grating (AWG) and the other device connections).
- AMG Arrayed waveguide grating
- the InP-based layer structure is grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and the properties of the materials can be adjusted to the needs of the feedback based tunable laser.
- MOCVD Metal-Organic Chemical Vapor Deposition
- DBR distributed Bragg reflector
- DBR gratings consist of a series of low-high refractive index transitions. Each transition causes a small reflection, but if the position of the transitions is chosen correctly, all reflections add up and a total reflection of more than 95% can be obtained.
- the low-high index transitions can be realized in different ways. In conventional DFB and (S)SG-DBR lasers, the transitions may be created by etching a small surface corrugation at the bottom or the top of the waveguide layer. The reflection per transition is determined by the etch depth, but is usually low and therefore long mirrors are required.
- the grating pattern can be defined by Electron Beam Lithography (EBL) or by Laser Interferometry Lithography (LIL), of which the latter is generally cheaper.
- EBL Electron Beam Lithography
- LIL Laser Interferometry Lithography
- DBR distributed Bragg reflector
- DBR distributed Bragg reflector
- the distributed Bragg reflector (DBR) sections require a high quality etching process that provides waveguides with very smooth and very steep sidewalls.
- an Inductively Coupled Plasma (ICP) process is very suitable. This may be achieved with a process that uses an e-beam defined pattern as a mask for an ICP etching step. Alternatively, it may be achieved by use of deep-UV wafer-stepper, which is more cost effective for production of large series.
- ICP Inductively Coupled Plasma
- Table 1 DWDM ITU-grid L-Band C-Band S-Band 100 GHz Grid 50 GHz Offset 100 GHz Grid 50 GHz Offset 100 GHz Grid 50 GHz Offset THz nm THz nm THz nm THz nm THz nm 186.00 1611.79 186.05 1611.35 191.00 1569.59 191.05 1569.18 196.00 1529.55 196.05 1529.16 186.10 1610.92 186.15 1610.49 191.10 1568.77 191.15 1568.36 196.10 1528.77 196.15 1528.38 186.20 1610.06 186.25 1609.62 191.20 1567.95 191.25 1567.54 196.20 1527.99 196.25 1527.60 186.30 1609.19 186.35 1608.76 191.30 1567.13 191.35 1566.72 196.30 1527.22 196.35 1526.83 186.25 1609.62
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Claims (11)
- Dispositif laser à semi-conducteur (1) comprenant une première section de résonateur (3) pour résonner un signal de résonateur optique afin de fournir un signal de sortie optique au niveau d'une sortie dudit dispositif laser (1), dans lequel ladite première section de résonateur (3) est agencée pour résonner sélectivement dans une pluralité de longueurs d'onde de sortie discrètes, et dans lequel ledit dispositif laser (1) comprend en outre une seconde section de résonateur (5) connectée de manière opérationnelle à ladite première section de résonateur (3), ladite seconde section de résonateur (5) étant agencée pour fournir un signal de rétroaction optique à une longueur d'onde de rétroaction vers ladite première section de résonateur (3) pour verrouiller ladite première section de résonateur (3) en résonance à une longueur d'onde de sortie sélectionnée parmi lesdites longueurs d'onde de sortie discrètes, laquelle longueur d'onde de sortie sélectionnée correspond à ladite longueur d'onde de rétroaction pour fournir ledit signal de sortie optique, dans lequel ladite seconde section de résonateur (5) est agencée pour fournir ledit signal de rétroaction optique sélectionnable à une pluralité d'ondes de rétroaction, dans lequel ladite seconde section de résonateur (5) comprend une pluralité de cavités (11-18), dans lequel chacune desdites cavités (11-18) est agencée pour résonner à une longueur d'onde de cavité correspondant à au moins une de ladite pluralité de longueurs d'onde de rétroaction, ledit dispositif laser à semi-conducteur (1) comprenant en outre des moyen pour sélectionner l'une de ladite pluralité de cavités (11-18) afin de fournir ledit signal de rétroaction optique; et
un élément filtrant accordable (4, 40) pour établir ladite connexion opérationnelle entre ladite seconde section de résonateur (5) et ladite première section de résonateur (3), dans lequel ledit élément filtrant accordable (4, 40) est conçu pour transmettre sélectivement au moins l'un de lesdites longueurs d'onde de rétroaction. - Dispositif laser à semi-conducteur (1) selon la revendication 1, dans lequel ladite seconde section de résonateur (5) comprend au moins une cavité accordable parmi lesdites cavités, laquelle cavité accordable est agencée pour résonner sélectivement à l'une d'une pluralité de longueurs d'onde de cavité discrètes, dans lequel chaque longueur d'onde de cavité de ladite pluralité de longueurs d'onde de cavité discrètes correspond à l'une desdites longueurs d'onde de rétroaction.
- Dispositif laser à semi-conducteur (1) selon la revendication 2, dans lequel ladite au moins une cavité accordable comprend une grille accordable (31-38, 46, 55) pour résonner sélectivement à l'une de ladite pluralité de longueurs d'onde de cavité discrètes.
- Dispositif laser à semi-conducteur (1) selon la revendication 3, dans lequel ladite grille accordable est une grille échantillonnée accordable (55) ou une grille à rainure verticale accordable (31-38, 46).
- Dispositif laser à semi-conducteur (1) selon la revendication 1, dans lequel ledit élément filtrant accordable (4, 40) comprend une grille de guide d'ondes en réseau.
- Dispositif laser à semi-conducteur (1) selon l'une quelconque des revendications précédentes, comprenant en outre des moyens pour commander une phase dudit signal de rétroaction optique.
- Dispositif laser à semi-conducteur (1) selon l'une quelconque des revendications précédentes,
dans lequel ladite première section de résonateur (3) comprend une (8) ou plusieurs (62, 64, 66, 68, 110 à 113) cavités de sortie, dans lequel chacune desdites une ou plusieurs cavités de sortie est agencée pour résonner à une ou plusieurs de ladite pluralité de longueurs d'onde de sortie discrètes pour fournir ledit signal de sortie optique. - Dispositif laser à semi-conducteur (1) selon la revendication 7, dans lequel ladite première section de résonateur (3) comprend une cavité de sortie unique (8) agencée pour résonner à la totalité de ladite pluralité de longueurs d'onde de sortie discrètes pour fournir ledit signal de sortie optique, ou dans lequel ladite première section de résonateur (3) comprend de multiples cavités de sortie (62, 64, 66, 68, 110-113), dans lequel chaque cavité de sortie desdites multiples cavités de sortie est agencée pour résonner à une ou plusieurs de ladite pluralité de longueurs d'onde de sortie discrètes pour fournir ledit signal de sortie optique.
- Dispositif laser à semi-conducteur (1) selon l'une quelconque des revendications précédentes,
dans lequel lesdites longueurs d'onde de sortie discrètes sont comprises dans une plage allant de 1400 nm à 1700 nm. - Dispositif laser à semi-conducteur (1) selon la revendication 9, dans lequel lesdites longueurs d'onde de sortie discrètes correspondent à des longueurs d'onde définies dans des longueurs d'onde de multiplexage par répartition en longueur d'onde dense, DWDM, union de télécommunication internationale, ITU, spécification de grille, ITU-grid.
- Dispositif laser à semi-conducteur (1) selon l'une quelconque des revendications précédentes, dans lequel ladite première section de résonateur (3) comprend un résonateur de Fabry-Perot, ou dans lequel ladite première section de résonateur (3) comprend des miroirs de réflexion de Bragg (63, 65, 67, 69) pour résonner à ladite pluralité de longueurs d'onde de sortie discrètes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US96299007P | 2007-08-02 | 2007-08-02 | |
PCT/NL2008/000185 WO2009017398A1 (fr) | 2007-08-02 | 2008-08-01 | Dispositif de laser à semi-conducteur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2174392A1 EP2174392A1 (fr) | 2010-04-14 |
EP2174392B1 true EP2174392B1 (fr) | 2020-04-29 |
Family
ID=39876227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08779009.3A Active EP2174392B1 (fr) | 2007-08-02 | 2008-08-01 | Dispositif de laser à semi-conducteur |
Country Status (3)
Country | Link |
---|---|
US (1) | US8571084B2 (fr) |
EP (1) | EP2174392B1 (fr) |
WO (1) | WO2009017398A1 (fr) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011044317A2 (fr) * | 2009-10-07 | 2011-04-14 | Aidi Corporation | Démultiplexeur optique en longueur d'onde (awg) photonique de silicium athermique employant différentes géométries de cœur dans les guides d'onde de réseau |
US9002214B2 (en) | 2011-07-14 | 2015-04-07 | Applied Optoelectronics, Inc. | Wavelength-selectable laser device and apparatus and system including same |
US9698567B2 (en) * | 2011-07-14 | 2017-07-04 | Applied Optoelectronics, Inc. | Wavelength-selectable laser device providing spatially-selectable wavelength(S) |
US8818208B2 (en) * | 2011-07-14 | 2014-08-26 | Applied Optoelectronics, Inc. | Laser mux assembly for providing a selected wavelength |
US9502858B2 (en) * | 2011-07-14 | 2016-11-22 | Applied Optoelectronics, Inc. | Laser array mux assembly with external reflector for providing a selected wavelength or multiplexed wavelengths |
WO2013069106A1 (fr) * | 2011-11-09 | 2013-05-16 | キヤノン株式会社 | Dispositif de source de lumière et dispositif de capture d'image l'employant |
US9341774B2 (en) | 2012-01-24 | 2016-05-17 | Applied Optoelectronics, Inc. | Optically matched laser array coupling assembly for coupling laser array to arrayed waveguide grating |
US9112331B2 (en) | 2012-03-22 | 2015-08-18 | Palo Alto Research Center Incorporated | Surface emitting laser incorporating third reflector |
US9124062B2 (en) | 2012-03-22 | 2015-09-01 | Palo Alto Research Center Incorporated | Optically pumped surface emitting lasers incorporating high reflectivity/bandwidth limited reflector |
US9112332B2 (en) | 2012-06-14 | 2015-08-18 | Palo Alto Research Center Incorporated | Electron beam pumped vertical cavity surface emitting laser |
US9214790B2 (en) * | 2012-10-03 | 2015-12-15 | Applied Optoelectronics, Inc. | Filtered laser array assembly with external optical modulation and WDM optical system including same |
GB2516679C (en) | 2013-07-30 | 2019-08-28 | Rushmere Tech Limited | Optical source |
WO2015135060A1 (fr) | 2014-03-10 | 2015-09-17 | Aeponyx Inc. | Dispositif optique à circuit optique accordable sélectif en longueur d'onde |
EP3029783B1 (fr) * | 2014-12-01 | 2020-03-04 | Huawei Technologies Co., Ltd. | Laser accordable à canaux multiples |
JP6507604B2 (ja) * | 2014-12-04 | 2019-05-08 | 住友電気工業株式会社 | 半導体レーザ及び半導体レーザアレイ |
JP6508956B2 (ja) * | 2015-01-28 | 2019-05-08 | 富士通株式会社 | 変調光源 |
US9854336B2 (en) * | 2015-12-31 | 2017-12-26 | Infinera Corporation | Systems and methods for coupling a fiber to a polarization sensitive photonic integrated circuit |
WO2017128214A1 (fr) * | 2016-01-28 | 2017-08-03 | 华为技术有限公司 | Dispositif d'émission de lumière à longueur d'onde accordable |
CN111095692B (zh) * | 2017-09-01 | 2021-10-26 | 三菱电机株式会社 | 激光装置 |
CN110137797B (zh) * | 2019-05-10 | 2020-10-09 | 上海电力学院 | 一种产生超高频脉冲的方法 |
US12092909B2 (en) * | 2019-09-03 | 2024-09-17 | Lumentum Operations Llc | Integrated semiconductor laser with interferometric amplifier array |
WO2021069629A1 (fr) | 2019-10-08 | 2021-04-15 | Vrije Universiteit Brussel | Commande de longueur d'onde de laser multi-longueur d'onde |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03274784A (ja) * | 1990-03-24 | 1991-12-05 | Anritsu Corp | 半導体レーザ装置 |
JP3526671B2 (ja) * | 1995-08-25 | 2004-05-17 | アンリツ株式会社 | レーザ光源装置 |
US5881079A (en) * | 1997-05-22 | 1999-03-09 | Lucent Technologies Inc. | Wavelength selectable laser with inherent and single-mode stability |
CA2405852A1 (fr) * | 2000-05-04 | 2001-11-08 | Agility Communications, Inc. | Modeles de miroir et de cavite ameliores destines a des lasers pour reflecteur de bragg repartis a reseau de diffraction echantillonne |
US20030112843A1 (en) * | 2001-01-19 | 2003-06-19 | Siros Technology, Inc. | Method and apparatus for mode-locked vertical cavity laser with equalized mode response |
FR2821495B1 (fr) * | 2001-02-23 | 2004-08-27 | Cit Alcatel | Laser accordable de facon rapide et large |
WO2003012936A2 (fr) | 2001-07-30 | 2003-02-13 | Bookham Technology Plc | Laser accordable |
US7139455B1 (en) * | 2003-03-18 | 2006-11-21 | Luxtera | Electronically controllable arrayed waveguide gratings |
US6931036B2 (en) * | 2003-03-25 | 2005-08-16 | Lucent Technologies Inc. | Digitally tunable laser |
US7313157B2 (en) * | 2003-12-19 | 2007-12-25 | Novera Optics, Inc. | Integration of laser sources and detectors for a passive optical network |
US20050249256A1 (en) * | 2004-05-10 | 2005-11-10 | Lightip Technologies Inc. | Wavelength switchable semiconductor laser |
GB2448162A (en) * | 2007-04-03 | 2008-10-08 | Bookham Technology Plc | Tunable semiconductor laser |
-
2008
- 2008-08-01 EP EP08779009.3A patent/EP2174392B1/fr active Active
- 2008-08-01 US US12/671,550 patent/US8571084B2/en active Active
- 2008-08-01 WO PCT/NL2008/000185 patent/WO2009017398A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2174392A1 (fr) | 2010-04-14 |
US8571084B2 (en) | 2013-10-29 |
US20110216789A1 (en) | 2011-09-08 |
WO2009017398A1 (fr) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2174392B1 (fr) | Dispositif de laser à semi-conducteur | |
US6201824B1 (en) | Strongly complex coupled DFB laser series | |
US20070133647A1 (en) | Wavelength modulated laser | |
US5228050A (en) | Integrated multiple-wavelength laser array | |
US20030063647A1 (en) | Device and method for providing a tunable semiconductor laser | |
US8213804B2 (en) | Semiconductor optical amplifier for an external cavity diode laser | |
AU2002342456A1 (en) | Surface emitting DFB laser structures and array of the same for broadband communication system | |
WO2000054378A1 (fr) | Laser semi-conducteur a emission laterale possedant des filtres d'interference asymetriques | |
WO2013069483A1 (fr) | Élément de laser à semi-conducteur de type circuit intégré | |
JPWO2007004509A1 (ja) | 外部共振器型波長可変レーザ装置および光出力モジュール | |
US20220320825A1 (en) | Dwdm intra-cavity laser device | |
WO2001024330A1 (fr) | Système de laser à modulation de réflexion optique à cavité composée | |
JP4905854B2 (ja) | 直接変調波長可変レーザ | |
WO2021069629A1 (fr) | Commande de longueur d'onde de laser multi-longueur d'onde | |
US20050243882A1 (en) | Dual-wavelength semiconductor laser | |
US20050226283A1 (en) | Single-mode semiconductor laser with integrated optical waveguide filter | |
Hatakeyama et al. | Wavelength-selectable microarray light sources for wide-band DWDM applications | |
DK3028352T3 (en) | OPTICAL SOURCE | |
US7046704B2 (en) | Tunable laser with a fixed and stable wavelength grid especially useful for WDM in fiber optic communication systems | |
JPWO2008152893A1 (ja) | 外部共振器型波長可変レーザ装置 | |
US20040156416A1 (en) | System comprising optical semiconductor waveguide device | |
Yoffe et al. | Widely-tunable 30mW laser source with sub-500kHz linewidth using DFB array | |
WO2023119366A1 (fr) | Laser à semi-conducteur | |
Hong et al. | Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers | |
Van Thourhout et al. | Comparison of integrated multi-wavelength and (widely) tunable edge-emitting laser diodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20101209 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LEJTENS, XAVERIUS JACQUES MARIA Inventor name: KAROUTA, FOUAD Inventor name: SMIT, MEINT, KOERT Inventor name: BERI, STEFANO Inventor name: DOCTER, BOUDEWIJN |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LEIJTENS, XAVERIUS JACQUES MARIA Inventor name: KAROUTA, FOUAD Inventor name: SMIT, MEINT, KOERT Inventor name: BERI, STEFANO Inventor name: DOCTER, BOUDEWIJN |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EFFECT PHOTONICS B.V. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01S 5/065 20060101ALI20190923BHEP Ipc: H01S 5/40 20060101AFI20190923BHEP Ipc: H01S 5/125 20060101ALI20190923BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191011 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EFFECT PHOTONICS B.V. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008062599 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1264717 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200730 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200829 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200831 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1264717 Country of ref document: AT Kind code of ref document: T Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008062599 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20210201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230511 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240710 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240710 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240710 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240710 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240710 Year of fee payment: 17 |