EP2173927B1 - Equipment and method for electrolytic tinning of steel strips using a non soluble anode - Google Patents

Equipment and method for electrolytic tinning of steel strips using a non soluble anode Download PDF

Info

Publication number
EP2173927B1
EP2173927B1 EP08826511A EP08826511A EP2173927B1 EP 2173927 B1 EP2173927 B1 EP 2173927B1 EP 08826511 A EP08826511 A EP 08826511A EP 08826511 A EP08826511 A EP 08826511A EP 2173927 B1 EP2173927 B1 EP 2173927B1
Authority
EP
European Patent Office
Prior art keywords
zone
tin
installation
electrolyte solution
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08826511A
Other languages
German (de)
French (fr)
Other versions
EP2173927A2 (en
Inventor
Philippe Barbieri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clecim SAS
Original Assignee
Siemens VAI Metals Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VAI Metals Technologies SAS filed Critical Siemens VAI Metals Technologies SAS
Publication of EP2173927A2 publication Critical patent/EP2173927A2/en
Application granted granted Critical
Publication of EP2173927B1 publication Critical patent/EP2173927B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0628In vertical cells

Definitions

  • the invention generally relates to the insoluble anode electrolytic tinning of steel strips, and more particularly to an insoluble anode electrolytic tinning process and the installation for its implementation.
  • tinplate tin-plated mild steel in the field of food packaging where it is known under the name of "tinplate”.
  • the manufacture of tinplate is generally made from coils ("coils") of mild steel or ultra-soft, which previously undergo a hot rolling operation, followed by a cold rolling operation. At the end of these rolling operations, steel strips of a few tenths of a millimeter thick are obtained. These strips are then annealed, passed after annealing in a cold rolling mill ("skin passed"), degreased, etched and tinned by an electrolytic tinning process (or “electro-tinning”). Tinning is typically followed by finishing operations such as coating remelting, passivation, and oiling.
  • Electro-tinning is a method of electroplating tin on a metal substrate, which consists in establishing the transfer of stannous Sn 2+ ions to the band to be coated according to the equilibrium: Sn 2+ + 2e - ⁇ Sn deposited
  • This reaction involves the availability of stannous ions in the bath.
  • the bath has an acid for lowering the pH and increasing the electrical conductivity. It also contains additives that contribute, inter alia, to stabilize the stannous ions by preventing them from oxidizing, and to prevent the formation of stannic oxide sludge caused by the oxidation of these stannous ions.
  • the first category of processes includes processes using a soluble anode, or so-called “soluble anode” processes
  • the second category of processes includes processes using a insoluble anode, or so-called “insoluble anode” processes.
  • soluble anode electro-tinning processes are used in electrolytic tinning installations which mainly use high purity tin anodes (that is to say anodes comprising at least 99.85% by weight of tin), which dissolve during the electrolysis and charge the bath in stannous Sn 2+ ions.
  • FIG. figure 1 An example of a "soluble anode” electro-tinning installation known to those skilled in the art is shown in FIG. figure 1 . It is a vertical electro-tinning installation 1, in which a strip to be coated 2 dives into a coating tank 3 (or electro-deposition tank) by winding on two conducting rollers 41, 42 and a bottom roll 5, thus forming a downstream strand 21 and a rising strand 22. The two conducting rollers 41, 42 feed the strip 2 with electrical current.
  • the tin soluble anodes 61, 62 are disposed on either side of the falling 21 and up 22 strands of the steel strip 2 to be coated. This steel strip 2 is connected to the negative pole (represented by the symbol "-" on the Fig.
  • an electric power generator (not shown on the figure 1 ) an electric power generator (not shown on the figure 1 ), and the soluble anodes 61, 62 are connected to the positive pole (represented by the symbol "+" on the figure 1 ) of this generator, thus constituting the anode.
  • the anodes 61, 62 and the descending 21 and 22 strands of the steel strip 2 are partially immersed in an electrolyte solution 7 (or electrolyte).
  • insoluble anode electro-tinning processes are therefore distinguished from those called “soluble anode” in that they lead to the formation of acid in the electrolytic bath correlatively to its depletion of tin. These continuous changes therefore require regeneration, the bath also continues.
  • the patent US5,312,539 proposes another "insoluble anode" tinning process, which uses an anionic membrane dialysis cell and a separate tin dissolution unit in which tin is supplied as an oxide directly dissolved in the acid, or as a tin anode, which is dissolved electrolytically.
  • Such a method has certain disadvantages, and in particular the cost of tin oxide and the need to create a strong concentration gradient on either side of the membrane, which imposes the implementation of a unit of concentration.
  • the necessary membrane surface (of the order of several thousand m 2 for continuous tinning installations of steel strips) makes the industrial application very problematic. .
  • the subject of the present invention is therefore an electro-tinning process and an installation for its implementation which remedy the drawbacks of the prior art, by the use of an electrodialysis membrane or cationic electrolysis membrane in the device. tin dissolution.
  • cationic electrodialysis membrane is meant, in the sense of the present invention, a cation permeable membrane and which is typically used in an electrodialysis process.
  • a cationic electrolysis membrane is understood to mean a membrane permeable to cations typically used in a process membrane electrolysis, but which can advantageously be used in the electrodialysis process according to the invention because of its robustness and its ability to withstand higher current densities than a cationic electrodialysis membrane.
  • the tin anode and the insoluble cathode are separated by a cationic electrodialysis or electrolysis membrane, defining a cathode zone integrating the cathode and an anode zone incorporating the tin anode, and a recirculation circuit of the electrolytic solution connects the electroplating tank to the anode zone of the tin dissolution reactor.
  • the presence of a cationic electrodialysis membrane in the dissolution reactor between the soluble anode of tin and the insoluble cathode allows the H + ions of the electrolytic solution to pass through the membrane, from the anode zone to the zone cathodic, while the Sn 2+ ions produced at the anode remain predominantly in the anode zone of the reactor.
  • the electrolytic solution contained therein is then recharged with stannous ions, and can then be directed back to the coating tank.
  • the recirculation circuit of the electrolytic solution between the electroplating tank and the anode zone of the tin dissolution reactor comprises an oxygen degassing tank, which is arranged upstream of the dissolution reactor in the direction of circulation of the electrolyte in this recirculation circuit.
  • This degassing tank makes it possible to effectively eliminate the gaseous oxygen formed at the insoluble anode of the coating tank.
  • the plant according to the invention also further comprises a degassing circuit of the electrolytic solution contained in the cathode zone of the tin dissolution reactor, this degassing circuit incorporating a hydrogen degassing tank.
  • the acid AH is advantageously chosen from sulphonic acids.
  • sulphonic acids that may be used according to the present invention, mention may be made especially of methanesulfonic acid and phenol-sulphonic acid.
  • the preferred sulfonic acid is methanesulfonic acid.
  • the SnA 2 compound will therefore advantageously be a tin sulphonate corresponding to the preferred sulphonic acids according to US Pat. invention: tin phenol sulphonate or tin methane sulphonate.
  • the present invention also relates to a process for the electrolytic tinning of a continuous steel strip in at least one plating tank filled with an electrolytic solution which comprises an acid AH and stannous Sn 2+ ions under form of a compound SnA 2 with A denoting an acid function, said tinning process employing a non-soluble anode and the metal strip constituting a cathode which are immersed in the electrolytic solution and between which a potential difference is applied, and the SnA 2 compound from a tin dissolution reactor, which comprises an insoluble cathode and a tin anode, between which a potential difference is applied.
  • the electro-tinning installation (or electrolytic tinning installation) represented on the figure 1 is a soluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.
  • the electro-tinning installation (or electrolytic tinning installation) represented on the figure 2 is an insoluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.
  • FIG 3 is represented a block diagram of an example of installation according to the invention, wherein the strip to be coated and an insoluble anode 60 are partially immersed in an electroplating tank (or coating tank) containing an electrolytic solution (or electrolyte) containing Sn 2+ stannous ions as a SnA compound 2 and an acid AH, A being an acidic radial.
  • an electroplating tank or coating tank
  • electrolytic solution or electrolyte
  • the compound SnA 2 comes from a tin dissolution reactor 10, which comprises an insoluble cathode 120 and a soluble tin anode 160, which are immersed in a tank 130 also containing the same electrolytic solution as the coating tank 30
  • a cationic electrodialysis or electrolysis membrane 140 is disposed between the electrodes 120, 160 of the reactor 10, so that the reservoir 130 of the reactor 10 is divided into a cathode zone 1200 containing the insoluble cathode 120 and an anode zone 1600 containing the soluble anode 160.
  • the anode 160 of the reactor 10 is constituted by tin granules 161 contained in a basket 162 (called “tin dissolution basket”).
  • This basket 162 filled with granules 161 is connected to the positive pole (represented by the symbol “+” on the figure 3 ) a source of electrical power (not shown on the figure 3 ), the tin aggregates 161 playing the role of soluble anode.
  • the insoluble cathode 120 of the tin dissolution reactor 10 is connected to the negative pole (represented by the symbol "-" on the figure 3 ) from the same source of electrical power.
  • a soluble anode 160 it is also possible to use, in the tin dissolution reactor 10 of the plant according to the invention, an anode in massive form (not shown on the Figures 3 to 5 ).
  • the electro-tinning installation represented on the figure 3 comprises, in addition to the coating tank 30 and the tin dissolution reactor 10, an oxygen degassing tank 210 and a hydrogen degassing tank 310.
  • the oxygen degassing tank 210 is part of a recirculation circuit 200 of the electrolyte connecting the coating tank 30 and the anode zone 1600 of the dissolution reactor 10, the degassing tank 210 being disposed upstream of the reactor of dissolution (10) in the recirculation direction of the electrolyte in the circuit 200.
  • the hydrogen degassing tank 310 is part of a recirculation circuit 300 of the electrolyte contained in the cathode zone 1200 of the dissolution reactor 10, in which the electrolyte is subjected to degassing of the hydrogen in a hydrogen degassing tank 310.
  • An electrolyte depleted of stannous ions is thus obtained, part of which is taken from the coating tank 30, and is then subjected to degassing of the oxygen gas in the degassing tank 210 before being introduced into the anode zone 1600 of the dissolution reactor 10.
  • the electrolytic dissolution of the tin granules 161 ensures the production of Sn 2+ stannous ions, which thanks to the selective permeability of the cationic membrane 140 remain mainly in the vicinity of the anode.
  • CMX-S cationic membrane
  • the cationic membrane 140 has a selective permeability that allows the transfer of ions H + to the cathode 120 and the maintenance of Sn 2+ ions near the anode 160.
  • the electrolyte of the anodic zone 1600 thus recharged with stannous ions can then be recovered and directed again towards the coating tank 30.
  • the H + ions present in the anodic zone 1600 cross the cationic membrane 140 because of the field
  • the H + ions recovered in the cathode zone 1200 of the reactor 10 are then recombined with the anions A - , in order to reform the acid AH.
  • a dissolution reactor 10 comprising a tank 130 filled with electrolyte, which may be of cylindrical shape and which is separated in two by a cationic electrodialysis membrane 140, which may also be cylindrical shape, thereby defining a central anode zone 1600 comprising the soluble anode 160, and an external cathode zone 1200 comprising the cathode 120.
  • the cylindrical shape of the reservoir 130 and the cationic membrane 140 is given here by way of example. But, the reservoir 130 and the cationic membrane 140 may also be of parallelepipedal shape.
  • the cathode 120 is connected to the negative pole of a source of electric current (represented by the symbol "-" on the figure 4 ) and the anode 160 is connected, in its upper part, to the positive pole (represented by the symbol “+” on the figure 4 ) from the same source of electrical power.
  • the lower 1621 and middle 1622 areas of the dissolution basket 162 of the anode 160 are both made of non-electrically conductive material.
  • an electrically nonconductive material usable according to the invention for producing the lower zones 1621 and median 1622 of the basket 162 of the soluble anode 160 plastics, and composites such as the polyester resins and the polyesters, are recommended. polymers coated steels.
  • the upper region 1623 for supplying tin granules 161 is made of an electrically conductive material.
  • an electrically conductive material that can be used according to the invention to produce the basket 162 of the soluble anode 160, mention may notably be made of stainless steel.
  • the lower zone 1621 immersed in the electrolyte comprises a mesh 163 comprising a plastic mesh net adapted to retain the tin granules, ie between 0.05 and 0.50 mm, and preferably between 0.1 and 0, 30 mm.
  • This net is supported by the envelope of the basket which has openings for contacting the electrolyte, which are at least 50 times wider than the mesh of the net openings (dashed on the figure 4 ) are formed in the casing of the basket 162.
  • the median zone 1622 includes a recovery trough 164 of the regenerated electrolyte, this trough being supplied via a trellis 165 (identical to that 163 of the lower zone 1621) and openings (in dashed lines on the trunk). figure 4 ) formed in the envelope of the basket 162 (identical to those of the lower zone 1621).
  • the median zone 1622 is wetted by the electrolytic solution of the tank 130 circulating in the circuit 200.
  • the upper zone 1623 comprises a filling hopper 166 in tin granules 161, which is connected to the positive pole of the power supply source and which transmits the electric dissolution current into the bed of tin pellets. via the contact surfaces between the tin granules and the electrically conductive material hopper.
  • the lower zone 1621 of the basket 162, which is immersed in the electrolyte, is surrounded by a cationic membrane 140 of circular shape.
  • This cationic membrane 140 is advantageously supported by at least one plastic net, which ensures the rigidity of the membrane 140.
  • the electrolyte to be treated is introduced into the lower zone 1621 of the basket by intake pipes 201 at a pressure sufficient to allow it to overflow into the recovery trough 164 of the median zone 1622.
  • the electric current ensures the dissolution of said granules 161 and the acid is charged with Sn ++ ions which remain close to the anode 160.
  • the electrolyte and reloaded tin is recovered at the level of the trough 164, before being returned to the coating tank 30 via the return lines 202.
  • dissolution reactor 10 which comprises a plurality of soluble anodes 160 each having a basket 162 filled with tin granules 161, each basket 162 being surrounded by a membrane cationic 140 circular.
  • a feed device 400 in granules 161 serves hoppers 166 of all baskets 162 of the dissolution reactor 10.
  • This device 400 may be a treadmill or vibrating, or non-electrically conductive pipes.
  • the device 400 operates intermittently according to a given signal by a granule level detection device in the hoppers 166, so as to maintain a constant level of granules 161 in the basket 162.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The invention relates to equipment for the electrolytic tinning (1) of a continuously running steel strip (2) in at least one coating tank (30) fitted with at least one non-soluble anode (60) and containing an acidic electrolyte. The equipment (1) further includes a tin dissolution reactor (10) including a non-soluble cathode (120) and a soluble tin anode (160). According to the invention, at least one electrodialysis or electrolysis cationic membrane (140) is provided in the reactor (10) between the tin anode (160) and the cathode (120), thus defining an anodic area (1600) and a cathodic area (1200), and an electrolyte recirculation circuit connects the electrodeposition tank (30) to the anodic area (1600) of the reactor (10). The present invention also relates to an electrolytic tinning method with a non-soluble anode using said equipment (1).

Description

L'invention concerne de manière générale l'étamage électrolytique à anode insoluble de bandes d'acier, et plus particulièrement un procédé d'étamage électrolytique à anode insoluble et l'installation pour sa mise en oeuvre.The invention generally relates to the insoluble anode electrolytic tinning of steel strips, and more particularly to an insoluble anode electrolytic tinning process and the installation for its implementation.

L'absence de toxicité de l'étain et l'excellente protection contre la corrosion qu'il apporte à l'acier ont depuis longtemps conduit à l'utilisation d'acier doux étamé dans le domaine de l'emballage alimentaire où il est connu sous le nom de « fer blanc ». La fabrication du fer blanc est généralement réalisée à partir de bobines (« coils ») d'acier doux ou ultra-doux, qui subissent préalablement une opération de laminage à chaud, suivie d'une opération de laminage à froid. A l'issue de ces opérations de laminage, on obtient des bandes d'acier de quelques dixièmes de millimètres d'épaisseur. Ces bandes sont ensuite recuites, passées après recuit dans un laminoir à froid (« skin passées »), dégraissées, décapées puis étamées selon un procédé d'étamage électrolytique (ou encore « électro-étamage »). L'étamage est typiquement suivi d'opérations de finition telles que la refusion du revêtement, la passivation, et l'huilage.The lack of toxicity of tin and the excellent protection against corrosion it brings to steel have long led to the use of tin-plated mild steel in the field of food packaging where it is known under the name of "tinplate". The manufacture of tinplate is generally made from coils ("coils") of mild steel or ultra-soft, which previously undergo a hot rolling operation, followed by a cold rolling operation. At the end of these rolling operations, steel strips of a few tenths of a millimeter thick are obtained. These strips are then annealed, passed after annealing in a cold rolling mill ("skin passed"), degreased, etched and tinned by an electrolytic tinning process (or "electro-tinning"). Tinning is typically followed by finishing operations such as coating remelting, passivation, and oiling.

L'électro-étamage est un procédé d'électrodéposition de l'étain sur un substrat métallique, qui consiste à établir le transfert d'ions stanneux Sn2+ vers la bande à revêtir suivant l'équilibre :

        Sn2+ + 2e- → Sn déposé

Electro-tinning is a method of electroplating tin on a metal substrate, which consists in establishing the transfer of stannous Sn 2+ ions to the band to be coated according to the equilibrium:

Sn 2+ + 2e - → Sn deposited

Cette réaction implique la disponibilité d'ions stanneux dans le bain. Outre ces ions stanneux, le bain comporte un acide destiné à abaisser le pH et à augmenter la conductivité électrique. Il comporte aussi des additifs qui concourent, entre autre, à stabiliser les ions stanneux en les empêchant de s'oxyder, et d'éviter la formation de boues d'oxydes stanniques causées par l'oxydation de ces ions stanneux.This reaction involves the availability of stannous ions in the bath. In addition to these stannous ions, the bath has an acid for lowering the pH and increasing the electrical conductivity. It also contains additives that contribute, inter alia, to stabilize the stannous ions by preventing them from oxidizing, and to prevent the formation of stannic oxide sludge caused by the oxidation of these stannous ions.

Il existe deux grandes catégories de procédés d'électro-étamage: la première catégorie de procédés regroupe les procédés mettant en oeuvre une anode soluble, ou procédés dits « à anode soluble », et la deuxième catégorie de procédés regroupe les procédés mettant en oeuvre une anode insoluble, ou procédés dits « à anode insoluble ».There are two main categories of electro-tinning processes: the first category of processes includes processes using a soluble anode, or so-called "soluble anode" processes, and the second category of processes includes processes using a insoluble anode, or so-called "insoluble anode" processes.

Les procédés d'électro-étamage dits « à anode soluble » sont mis en oeuvre dans des installations d'étamage électrolytique qui font majoritairement appel à des anodes en étain de haute pureté (c'est-à-dire à des anodes comprenant au moins 99,85% en poids d'étain), qui se dissolvent au cours de l'électrolyse et chargent le bain en ions stanneux Sn2+.The so-called "soluble anode" electro-tinning processes are used in electrolytic tinning installations which mainly use high purity tin anodes (that is to say anodes comprising at least 99.85% by weight of tin), which dissolve during the electrolysis and charge the bath in stannous Sn 2+ ions.

Un exemple d'installation d'électro-étamage « à anode soluble » connue de l'homme de l'art est représenté sur la figure 1. Il s'agit d'une installation d'électro-étamage 1 verticale, dans laquelle une bande à revêtir 2 plonge dans un bac de revêtement 3 (ou encore bac d'électro-déposition) en s'enroulant sur deux rouleaux conducteurs 41, 42 et un rouleau de fond 5, formant ainsi un brin descendant 21 et un brin montant 22. Les deux rouleaux conducteurs 41, 42 alimentent la bande 2 en courant électrique. Les anodes solubles en étain 61, 62 sont disposées de part et d'autre des brins descendant 21 et montant 22 de la bande d'acier 2 à revêtir. Cette bande d'acier 2 est reliée au pôle négatif (représenté par le symbole " - " sur la figure. 1) d'un générateur de courant électrique (non représenté sur la figure 1), et les anodes solubles 61, 62 sont reliées au pôle positif (représenté par le symbole " + " sur la figure 1) de ce générateur, constituant ainsi l'anode. Les anodes 61, 62 et les brins descendant 21 et montant 22 de la bande d'acier 2 sont immergés partiellement dans une solution électrolytique 7 (ou électrolyte).An example of a "soluble anode" electro-tinning installation known to those skilled in the art is shown in FIG. figure 1 . It is a vertical electro-tinning installation 1, in which a strip to be coated 2 dives into a coating tank 3 (or electro-deposition tank) by winding on two conducting rollers 41, 42 and a bottom roll 5, thus forming a downstream strand 21 and a rising strand 22. The two conducting rollers 41, 42 feed the strip 2 with electrical current. The tin soluble anodes 61, 62 are disposed on either side of the falling 21 and up 22 strands of the steel strip 2 to be coated. This steel strip 2 is connected to the negative pole (represented by the symbol "-" on the Fig. 1 ) an electric power generator (not shown on the figure 1 ), and the soluble anodes 61, 62 are connected to the positive pole (represented by the symbol "+" on the figure 1 ) of this generator, thus constituting the anode. The anodes 61, 62 and the descending 21 and 22 strands of the steel strip 2 are partially immersed in an electrolyte solution 7 (or electrolyte).

Il existe plusieurs procédés d'électro-étamage « à anode soluble », qui diffèrent les uns des autres en fonction de l'électrolyte utilisé. Mais, dans tous les procédés d'électro-étamage « à anode soluble », le revêtement électrolytique d'étain de la bande d'acier 2 se déroule selon les réactions suivantes :

  • ■ à la cathode : SnA2 + 2e- → Sn + 2A-
  • ■ à l'anode : Sn + 2A- → SnA2 + 2e-
There are several methods of electro-tinning "soluble anode", which differ from each other depending on the electrolyte used. However, in all "soluble anode" electro-tinning processes, the electrolytic tin coating of the steel strip 2 takes place according to the following reactions:
  • ■ at the cathode: SnA 2 + 2 e- → Sn + 2A -
  • ■ at the anode: Sn + 2A - → SnA 2 + 2e -

Dans les procédés d'électro-étamage dits « à anode insoluble », on remplace l'anode en étain par une anode non soluble, par exemple une anode en titane avec un revêtement d'un métal (par exemple un métal de la famille du platine) ou d'un oxyde métallique. Dans ce type de procédé, les ions d'étain nécessaires au revêtement sont, dans ce cas, issus du bain d'électrolyte lui-même sous la forme d'un composé de formule SnA2, A étant un radical acide. Les réactions se déroulant à l'anode et à la cathode sont évidemment différentes :

  • ■ à la cathode : SnA2 + 2e- → Sn + 2A-
  • ■ à l'anode : H2O → ½ O2 + 2H+ + 2e-
In so-called "insoluble anode" electro-tinning processes, the tin anode is replaced by an insoluble anode, for example a titanium anode with a coating of a metal (for example a metal of the family of platinum) or a metal oxide. In this type of process, the tin ions required for the coating are, in this case, derived from the electrolyte bath itself in the form of a compound of formula SnA 2 , A being an acid radical. The reactions taking place at the anode and at the cathode are obviously different:
  • ■ at the cathode: SnA 2 + 2e - → Sn + 2A -
  • ■ at the anode: H 2 O → ½ O 2 + 2H + + 2e -

Les procédés d'électro-étamage dits « à anode insoluble » se distinguent donc de ceux dits « à anode soluble » en ce qu'ils conduisent à la formation d'acide dans le bain électrolytique corrélativement à son appauvrissement en étain. Ces modifications continues nécessitent donc une régénération, du bain elle aussi continue.So-called "insoluble anode" electro-tinning processes are therefore distinguished from those called "soluble anode" in that they lead to the formation of acid in the electrolytic bath correlatively to its depletion of tin. These continuous changes therefore require regeneration, the bath also continues.

L'homme de l'art connaît des procédés d'électro-étamage « à anode insoluble » dans lesquels une partie de l'électrolyte est mis en recirculation en vue de la régénération en continu du bain électrolytique. Ainsi, par exemple, le brevet américain US 4,181,580 décrit une installation d'électro-étamage illustrée sur la figure 2, qui met en oeuvre des anodes non solubles 61, 62, un circuit de recirculation 8 de l'électrolyte 7, et un réacteur à lit fluidisé 9, dans lequel sont introduits l'électrolyte 7, des granulats d'étain 91, et un courant gazeux 92 riche en oxygène. Ce procédé présente toutefois l'inconvénient d'induire la formation d'ions d'étain quadrivalents selon la réaction :

        Sn + O2 + 4H+ → Sn4+ + 2H2O

        2Sn2+ + O2 + 4H+ → 2Sn4+ + 2H2O

Those skilled in the art know "insoluble anode" electro-tinning processes in which part of the electrolyte is recirculated for the continuous regeneration of the electrolytic bath. So, for example, the US patent US 4,181,580 describes an electro-tinning installation illustrated on the figure 2 which employs non-soluble anodes 61, 62, a recirculation circuit 8 of the electrolyte 7, and a fluidized bed reactor 9, into which the electrolyte 7, tin granules 91, and a gas stream 92 rich in oxygen. However, this process has the disadvantage of inducing the formation of quadrivalent tin ions according to the reaction:

Sn + O 2 + 4H + → Sn 4+ + 2H 2 O

2Sn 2+ + O 2 + 4H + → 2Sn 4+ + 2H 2 O

Ces ions Sn4+, peu solubles dans l'électrolyte, se précipitent sous forme de boues qui nécessitent d'être régulièrement récupérées, ce qui diminue fortement l'intérêt d'un tel procédé.These Sn 4+ ions, poorly soluble in the electrolyte, precipitate in the form of sludge which needs to be regularly recovered, which greatly reduces the interest of such a process.

Par ailleurs, le brevet US 5,312,539 propose un autre procédé d'étamage « à anode insoluble », qui met en oeuvre une cellule de dialyse à membrane anionique et une unité de dissolution d'étain séparée dans laquelle l'étain est apporté sous forme d'oxyde directement dissous dans l'acide, ou sous forme d'anode en étain, qui est dissoute électrolytiquement. Un tel procédé présente certains inconvénients, et notamment le coût de l'oxyde d'étain et la nécessité de créer un fort gradient de concentration de part et d'autre de la membrane, ce qui impose la mise en oeuvre d'une unité de concentration. D'autre part, même avec un fort gradient de concentration, la surface de membrane nécessaire (de l'ordre de plusieurs milliers de m2 pour les installations d'étamage en continu de bandes d'acier) rend l'application industrielle très problématique. Une variante de ce procédé est proposée par la demande de brevet japonais JP 51-71499 qui regroupe les fonctions de dissolution de l'étain et de dialyse dans un même bac équipé de deux membranes anioniques. L'installation moins complexe que celle de US 5,312,539 , ne résout pas pour autant les problèmes de surface de membrane ni de gradient de concentration.Moreover, the patent US5,312,539 proposes another "insoluble anode" tinning process, which uses an anionic membrane dialysis cell and a separate tin dissolution unit in which tin is supplied as an oxide directly dissolved in the acid, or as a tin anode, which is dissolved electrolytically. Such a method has certain disadvantages, and in particular the cost of tin oxide and the need to create a strong concentration gradient on either side of the membrane, which imposes the implementation of a unit of concentration. On the other hand, even with a strong concentration gradient, the necessary membrane surface (of the order of several thousand m 2 for continuous tinning installations of steel strips) makes the industrial application very problematic. . A variant of this process is proposed by the Japanese patent application JP 51-71499 which combines the functions of dissolving tin and dialysis in the same tank equipped with two anionic membranes. The installation is less complex than that of US5,312,539 does not solve the problems of membrane surface or concentration gradient.

La présente invention a donc pour objet un procédé d'électro-étamage et une installation pour sa mise en oeuvre qui remédient aux inconvénients de l'art antérieur, par le recours à une membrane d'électrodialyse ou d'électrolyse cationique dans le dispositif de dissolution d'étain.The subject of the present invention is therefore an electro-tinning process and an installation for its implementation which remedy the drawbacks of the prior art, by the use of an electrodialysis membrane or cationic electrolysis membrane in the device. tin dissolution.

Par membrane cationique d'électrodialyse, on entend, au sens de la présente invention, une membrane perméable aux cations et qui est typiquement utilisée dans un procédé d'électrodialyse.By cationic electrodialysis membrane is meant, in the sense of the present invention, a cation permeable membrane and which is typically used in an electrodialysis process.

Par membrane cationique d'électrolyse, on entend, au sens de la présente invention, une membrane perméable aux cations typiquement utilisée dans un procédé d'électrolyse à membrane, mais qui peut avantageusement être utilisée dans le procédé d'électrodialyse selon l'invention en raison de sa robustesse et de sa capacité à supporter des densités de courant plus élevées qu'une membrane cationique d'électrodialyse.For the purposes of the present invention, a cationic electrolysis membrane is understood to mean a membrane permeable to cations typically used in a process membrane electrolysis, but which can advantageously be used in the electrodialysis process according to the invention because of its robustness and its ability to withstand higher current densities than a cationic electrodialysis membrane.

La présente invention a plus particulièrement pour objet une installation pour l'étamage électrolytique d'une bande d'acier en défilement continu, ladite installation comprenant :

  • ■ au moins un bac d'électrodéposition rempli d'une solution électrolytique qui comprend un acide AH et des ions stanneux Sn2+ sous forme d'un composé SnA2 avec A désignant une fonction acide, ledit bac d'électrodéposition comprenant une anode insoluble immergée dans la solution électrolytique du bac d'électrodéposition et une cathode constituée par la bande métallique en défilement continu dans la solution électrolytique du bac d'électrodéposition, et
  • ■ un réacteur de dissolution d'étain qui comprend une cathode insoluble et au moins une anode d'étain soluble.
The present invention more particularly relates to an installation for the electrolytic tinning of a steel strip in continuous scrolling, said installation comprising:
  • At least one plating tank filled with an electrolytic solution which comprises an acid AH and stannous ions Sn 2+ in the form of a compound SnA 2 with A denoting an acid function, said plating tank comprising an insoluble anode immersed in the electrolytic solution of the electroplating tank and a cathode constituted by the metal strip continuously moving in the electrolytic solution of the electroplating tank, and
  • A tin dissolution reactor which comprises an insoluble cathode and at least one soluble tin anode.

Selon l'invention, l'anode d'étain et la cathode insoluble sont séparées par une membrane cationique d'électrodialyse ou d'électrolyse, définissant une zone cathodique intégrant la cathode et une zone anodique intégrant l'anode d'étain, et un circuit de recirculation de la solution électrolytique relie le bac d'électrodéposition à la zone anodique du réacteur de dissolution d'étain.According to the invention, the tin anode and the insoluble cathode are separated by a cationic electrodialysis or electrolysis membrane, defining a cathode zone integrating the cathode and an anode zone incorporating the tin anode, and a recirculation circuit of the electrolytic solution connects the electroplating tank to the anode zone of the tin dissolution reactor.

La présence d'une membrane cationique d'électrodialyse dans le réacteur de dissolution entre l'anode soluble d'étain et la cathode insoluble permet aux ions H+ de la solution électrolytique de transiter à travers la membrane, de la zone anodique vers la zone cathodique, tandis que les ions Sn2+ produits à l'anode restent majoritairement dans la zone anodique du réacteur. La solution électrolytique qui y est contenue est alors rechargée en ions stanneux, et peut alors être dirigée de nouveau vers le bac de revêtement.The presence of a cationic electrodialysis membrane in the dissolution reactor between the soluble anode of tin and the insoluble cathode allows the H + ions of the electrolytic solution to pass through the membrane, from the anode zone to the zone cathodic, while the Sn 2+ ions produced at the anode remain predominantly in the anode zone of the reactor. The electrolytic solution contained therein is then recharged with stannous ions, and can then be directed back to the coating tank.

Avantageusement, le circuit de recirculation de la solution électrolytique entre le bac d'électrodéposition et la zone anodique du réacteur de dissolution d'étain comprend un bac de dégazage de l'oxygène, qui est disposé en amont du réacteur de dissolution dans le sens de circulation de l'électrolyte dans ce circuit de recirculation.Advantageously, the recirculation circuit of the electrolytic solution between the electroplating tank and the anode zone of the tin dissolution reactor comprises an oxygen degassing tank, which is arranged upstream of the dissolution reactor in the direction of circulation of the electrolyte in this recirculation circuit.

Ce bac de dégazage permet d'éliminer de manière efficace l'oxygène gazeux formé à l'anode insoluble du bac de revêtement.This degassing tank makes it possible to effectively eliminate the gaseous oxygen formed at the insoluble anode of the coating tank.

Avantageusement, l'installation selon l'invention comprend également en outre un circuit de dégazage de la solution électrolytique contenue dans la zone cathodique du réacteur de dissolution d'étain, ce circuit de dégazage intégrant un bac de dégazage de l'hydrogène.Advantageously, the plant according to the invention also further comprises a degassing circuit of the electrolytic solution contained in the cathode zone of the tin dissolution reactor, this degassing circuit incorporating a hydrogen degassing tank.

L'acide AH est avantageusement choisi parmi les acides sulfoniques.The acid AH is advantageously chosen from sulphonic acids.

A titre d'acides sulfoniques utilisables selon la présente invention, on peut notamment citer l'acide méthane-sulfonique et l'acide phénol-sulfonique.As sulphonic acids that may be used according to the present invention, mention may be made especially of methanesulfonic acid and phenol-sulphonic acid.

L'acide sulfonique préféré est l'acide méthane-sulfonique.The preferred sulfonic acid is methanesulfonic acid.

Si l'on utilise un acide sulfonique, et notamment un acide choisi par parmi l'acide méthane-sulfonique, et l'acide phénol-sulfonique, le composé SnA2 sera donc avantageusement un sulfonate d'étain correspondant aux acides sulfoniques préférés selon l'invention: phénol sulfonate d'étain ou méthane-sulfonate d'étain.If a sulphonic acid, and in particular an acid selected from among methanesulfonic acid and phenol sulphonic acid, is used, the SnA 2 compound will therefore advantageously be a tin sulphonate corresponding to the preferred sulphonic acids according to US Pat. invention: tin phenol sulphonate or tin methane sulphonate.

La présente invention a également pour objet un procédé d'étamage électrolytique d'une bande d'acier en défilement continu dans au moins un bac d'électrodéposition rempli d'une solution électrolytique qui comprend un acide AH et des ions stanneux Sn2+ sous forme d'un composé SnA2 avec A désignant une fonction acide, ledit procédé d'étamage mettant en oeuvre une anode non soluble et la bande métallique constituant une cathode qui sont immergées dans la solution électrolytique et entre lesquelles on applique une différence de potentiel, et le composé SnA2 provenant d'un réacteur de dissolution d'étain, qui comprend une cathode insoluble et une anode d'étain, entre lesquelles on applique une différence de potentiel.The present invention also relates to a process for the electrolytic tinning of a continuous steel strip in at least one plating tank filled with an electrolytic solution which comprises an acid AH and stannous Sn 2+ ions under form of a compound SnA 2 with A denoting an acid function, said tinning process employing a non-soluble anode and the metal strip constituting a cathode which are immersed in the electrolytic solution and between which a potential difference is applied, and the SnA 2 compound from a tin dissolution reactor, which comprises an insoluble cathode and a tin anode, between which a potential difference is applied.

Selon l'invention, on maintient constante la concentration en acide AH dans la solution électrolytique du bac de revêtement en réalisant les étapes suivantes :

  1. a) on dispose dans le réacteur de dissolution d'étain une membrane cationique d'électrodialyse ou d'électrolyse entre l'anode d'étain et la cathode insoluble, définissant ainsi une zone cathodique intégrant la cathode insoluble et une zone anodique : et
  2. b) on met en circulation une partie de la solution électrolytique entre le bac d'électrodéposition et la zone anodique du réacteur de dissolution d'étain.
According to the invention, the concentration of AH acid is kept constant in the electrolytic solution of the coating tank by carrying out the following steps:
  1. a) there is disposed in the tin dissolution reactor a cationic electrodialysis or electrolysis membrane between the tin anode and the insoluble cathode, thus defining a cathode zone integrating the insoluble cathode and an anode zone; and
  2. b) circulating a part of the electrolytic solution between the electrodeposition tank and the anode zone of the tin dissolution reactor.

D'autres caractéristiques avantageuses de l'invention apparaîtront dans la description suivante de certains modes de réalisation donnés à titre de simple exemple et représentés sur les dessins annexes :

  • la figure 1 est un schéma de principe en coupe d'un exemple d'installation d'électro-étamage à anode soluble selon l'état de la technique,
  • la figure 2 est un schéma de principe en coupe d'un exemple d'installation d'électro-étamage à anode insoluble selon l'état de la technique,
  • la figure 3 est en schéma de principe en coupe d'un exemple d'installation d'électro-étamage selon l'invention,
  • la figure 4 représente un schéma de principe en coupe d'un exemple de réacteur de dissolution d'une installation d'électro-étamage selon l'invention,
  • la figure 5 est une vue de dessous représentant une vue de dessus d'un autre exemple de réacteur de dissolution d'une installation d'électro-étamage selon l'invention.
Other advantageous features of the invention will appear in the following description of certain embodiments given as a simple example and shown in the accompanying drawings:
  • the figure 1 is a block diagram in section of an example of electro-tinning installation with soluble anode according to the state of the art,
  • the figure 2 is a block diagram in section of an example of electro-tinning installation with insoluble anode according to the state of the art,
  • the figure 3 is in cross-sectional diagram of an example of an electro-tinning installation according to the invention,
  • the figure 4 represents a block diagram in section of an example of a dissolution reactor of an electro-tinning installation according to the invention,
  • the figure 5 is a bottom view showing a top view of another example of a dissolution reactor of an electro-tinning installation according to the invention.

L'installation d'électro-étamage (ou installation d'étamage électrolytique) représentée sur la figure 1 est une installation d'électro-étamage 1 à anode soluble de l'état de la technique, qui a été précédemment décrite dans la référence à l'art antérieur qui précède.The electro-tinning installation (or electrolytic tinning installation) represented on the figure 1 is a soluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.

L'installation d'électro-étamage (ou installation d'étamage électrolytique) représentée sur la figure 2 est une installation d'électro-étamage 1 à anode insoluble de l'état de la technique, qui a été précédemment décrite dans la référence à l'art antérieur qui précède.The electro-tinning installation (or electrolytic tinning installation) represented on the figure 2 is an insoluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.

Sur la figure 3, est représenté un schéma de principe d'un exemple d'installation selon l'invention, dans laquelle la bande à revêtir 20 et une anode insoluble 60 sont partiellement immergées dans un bac d'électrodéposition 30 (ou bac de revêtement) contenant une solution électrolytique (ou électrolyte) contenant des ions stanneux Sn2+ sous forme d'un composé SnA2 et un acide AH, A étant un radial acide. Le composé SnA2 provient d'un réacteur de dissolution d'étain 10, qui comprend une cathode insoluble 120 et une anode soluble d'étain 160, qui sont immergées dans un réservoir 130 contenant également la même solution électrolytique que le bac de revêtement 30. Une membrane cationique d'électrodialyse ou d'électrolyse 140 est disposée entre les électrodes 120, 160 du réacteur 10, de sorte que le réservoir 130 du réacteur 10 est divisé en une zone cathodique 1200 contenant la cathode insoluble 120 et une zone anodique 1600 contenant l'anode soluble 160.On the figure 3 is represented a block diagram of an example of installation according to the invention, wherein the strip to be coated and an insoluble anode 60 are partially immersed in an electroplating tank (or coating tank) containing an electrolytic solution (or electrolyte) containing Sn 2+ stannous ions as a SnA compound 2 and an acid AH, A being an acidic radial. The compound SnA 2 comes from a tin dissolution reactor 10, which comprises an insoluble cathode 120 and a soluble tin anode 160, which are immersed in a tank 130 also containing the same electrolytic solution as the coating tank 30 A cationic electrodialysis or electrolysis membrane 140 is disposed between the electrodes 120, 160 of the reactor 10, so that the reservoir 130 of the reactor 10 is divided into a cathode zone 1200 containing the insoluble cathode 120 and an anode zone 1600 containing the soluble anode 160.

Dans le mode de réalisation de l'installation d'étamage 1 selon l'invention représenté sur la figure 3, l'anode 160 du réacteur 10 est constituée par des granules d'étain 161 contenus dans un panier 162 (dit « panier de dissolution d'étain »). Ce panier 162 rempli de granules 161 est relié au pôle positif (représenté par le symbole « + » sur la figure 3) d'une source de courant électrique (non représentée sur la figure 3), les granulats d'étain 161 jouant le rôle d'anode soluble. La cathode insoluble 120 du réacteur de dissolution d'étain 10 est reliée au pôle négatif (représenté par le symbole «-» sur la figure 3) de la même source de courant électrique.In the embodiment of the tinning installation 1 according to the invention shown in the figure 3 the anode 160 of the reactor 10 is constituted by tin granules 161 contained in a basket 162 (called "tin dissolution basket"). This basket 162 filled with granules 161 is connected to the positive pole (represented by the symbol "+" on the figure 3 ) a source of electrical power (not shown on the figure 3 ), the tin aggregates 161 playing the role of soluble anode. The insoluble cathode 120 of the tin dissolution reactor 10 is connected to the negative pole (represented by the symbol "-" on the figure 3 ) from the same source of electrical power.

A titre d'anode soluble 160, il est également possible d'utiliser, dans le réacteur de dissolution d'étain 10 de l'installation selon l'invention, une anode sous forme massive (non représentée sur les figures 3 à 5).As a soluble anode 160, it is also possible to use, in the tin dissolution reactor 10 of the plant according to the invention, an anode in massive form (not shown on the Figures 3 to 5 ).

Par ailleurs, l'installation d'électro-étamage représentée sur la figure 3 comporte, outre le bac de revêtement 30 et le réacteur de dissolution d'étain 10, un bac de dégazage de l'oxygène 210 et un bac de dégazage de l'hydrogène 310.Moreover, the electro-tinning installation represented on the figure 3 comprises, in addition to the coating tank 30 and the tin dissolution reactor 10, an oxygen degassing tank 210 and a hydrogen degassing tank 310.

Le bac de dégazage de l'oxygène 210 fait partie d'un circuit de recirculation 200 de l'électrolyte reliant le bac de revêtement 30 et la zone anodique 1600 du réacteur de dissolution 10, le bac de dégazage 210 étant disposé en amont du réacteur de dissolution (10) dans le sens de recirculation de l'électrolyte dans le circuit 200.The oxygen degassing tank 210 is part of a recirculation circuit 200 of the electrolyte connecting the coating tank 30 and the anode zone 1600 of the dissolution reactor 10, the degassing tank 210 being disposed upstream of the reactor of dissolution (10) in the recirculation direction of the electrolyte in the circuit 200.

Par ailleurs, le bac de dégazage de l'hydrogène 310 fait partie d'un circuit de recirculation 300 de l'électrolyte contenu dans la zone cathodique 1200 du réacteur de dissolution 10, dans lequel l'électrolyte est soumis à un dégazage de l'hydrogène dans un bac de dégazage de l'hydrogène 310.Furthermore, the hydrogen degassing tank 310 is part of a recirculation circuit 300 of the electrolyte contained in the cathode zone 1200 of the dissolution reactor 10, in which the electrolyte is subjected to degassing of the hydrogen in a hydrogen degassing tank 310.

En fonctionnement, lorsqu'on applique une différence de potentiel entre les électrodes 20, 60 plongeant dans le bac de revêtement 30, les ions stanneux Sn2+ présents dans l'électrolyte sous forme du composé SnA2 se déposent sur la bande à revêtir 20 selon la réaction :

        SnA2 + 2e- → Sn + 2A-

In operation, when a potential difference is applied between the electrodes 20, 60 dipping into the coating tank 30, the Sn 2+ stannous ions present in the electrolyte in the form of the SnA 2 compound are deposited on the strip to be coated. according to the reaction:

SnA 2 + 2e - → Sn + 2A -

On observe en parallèle à l'anode la réaction suivante :

        2H2O → O2 + 4 H+ + 4 e-

The following reaction is observed in parallel with the anode:

2H 2 O → O 2 + 4 H + + 4 e -

On obtient donc un électrolyte appauvri en ions stanneux, dont une partie est prélevée dans le bac de revêtement 30, puis est soumise à un dégazage de l'oxygène gazeux dans le bac de dégazage 210 avant d'être introduit dans la zone anodique 1600 du réacteur de dissolution 10.An electrolyte depleted of stannous ions is thus obtained, part of which is taken from the coating tank 30, and is then subjected to degassing of the oxygen gas in the degassing tank 210 before being introduced into the anode zone 1600 of the dissolution reactor 10.

De même que dans le bac de revêtement 30, on applique simultanément une différence de potentiel entre les électrodes 120, 160 du réacteur de dissolution d'étain 10, ce qui conduit à la dissolution électrolytique de l'anode soluble 160 d'étain selon la réaction :

        Sn + 2A- → SnA2 + 2e-

As in the coating tank 30, a potential difference is applied simultaneously between the electrodes 120, 160 of the tin dissolution reactor 10, which leads to the electrolytic dissolution of the soluble anode 160 of tin according to the invention. reaction:

Sn + 2A - → SnA 2 + 2e -

En parallèle, on observe à la cathode du réacteur 10 la réaction suivante :

        A- + H+ → AH

In parallel, the following is observed at the cathode of the reactor 10:

A - + H + → AH

La dissolution électrolytique des granules d'étain 161 assure la production d'ions stanneux Sn2+, qui grâce à la perméabilité sélective de la membrane cationique 140 restent majoritairement au voisinage de l'anode.The electrolytic dissolution of the tin granules 161 ensures the production of Sn 2+ stannous ions, which thanks to the selective permeability of the cationic membrane 140 remain mainly in the vicinity of the anode.

A titre de membrane cationique utilisable selon l'invention, on conseille la membrane commercialisée par la société TOKUYAMA SODA sous la dénomination commerciale CMX-S.As a cationic membrane that can be used according to the invention, the membrane marketed by the company TOKUYAMA SODA under the trade name CMX-S is recommended.

La membrane cationique 140 présente une perméabilité sélective qui permet le transfert des ions H+ vers la cathode 120 et le maintien des ions Sn2+ du voisinage de l'anode 160.The cationic membrane 140 has a selective permeability that allows the transfer of ions H + to the cathode 120 and the maintenance of Sn 2+ ions near the anode 160.

L'électrolyte de la zone anodique 1600 ainsi rechargé en ions stanneux peut alors être récupéré et dirigé de nouveau vers le bac de revêtement 30. Par contre, les ions H+ présents dans la zone anodique 1600 traversent la membrane cationique 140 en raison du champ électrique créé par la différence de potentiel entre les zones anodique 1600 et cathodique 1200 du réacteur 10. Les ions H+ récupérés dans la zone cathodique 1200 du réacteur 10 sont alors recombinés avec les anions A-, afin de reformer l'acide AH.The electrolyte of the anodic zone 1600 thus recharged with stannous ions can then be recovered and directed again towards the coating tank 30. On the other hand, the H + ions present in the anodic zone 1600 cross the cationic membrane 140 because of the field The H + ions recovered in the cathode zone 1200 of the reactor 10 are then recombined with the anions A - , in order to reform the acid AH.

Sur la figure 4, est représenté un exemple de réacteur de dissolution 10 selon l'invention, comportant un réservoir 130 rempli d'électrolyte, qui peut être de forme cylindrique et qui est séparé en deux par une membrane d'électrodialyse cationique 140, qui peut aussi être de forme cylindrique, définissant ainsi une zone anodique 1600 centrale comportant l'anode soluble 160, et une zone cathodique 1200 externe comportant la cathode 120.On the figure 4 , there is shown an example of a dissolution reactor 10 according to the invention, comprising a tank 130 filled with electrolyte, which may be of cylindrical shape and which is separated in two by a cationic electrodialysis membrane 140, which may also be cylindrical shape, thereby defining a central anode zone 1600 comprising the soluble anode 160, and an external cathode zone 1200 comprising the cathode 120.

La forme cylindrique du réservoir 130 et de la membrane cationique 140 est donnée ici à titre d'exemple. Mais, le réservoir 130 et la membrane cationique 140 peuvent également être de forme parallélépipédique.The cylindrical shape of the reservoir 130 and the cationic membrane 140 is given here by way of example. But, the reservoir 130 and the cationic membrane 140 may also be of parallelepipedal shape.

La cathode 120 est reliée au pôle négatif d'une source de courant électrique (représentée par le symbole « - » sur la figure 4) et l'anode 160 est reliée, dans sa partie supérieure, au pôle positif (représentée par le symbole « + » sur la figure 4) de la même source de courant électrique.The cathode 120 is connected to the negative pole of a source of electric current (represented by the symbol "-" on the figure 4 ) and the anode 160 is connected, in its upper part, to the positive pole (represented by the symbol "+" on the figure 4 ) from the same source of electrical power.

La figure 4 montre que l'anode soluble d'étain 160 comprend un panier de dissolution 162 comprenant des granules d'étain 161. Ce panier 162 est divisé en trois parties superposées distinctes :

  • une zone inférieure 1621 immergée dans l'électrolyte contenu dans le réservoir 130 ;
  • une zone médiane 1622 de récupération de l'électrolyte, qui est située au-dessus de la zone inférieure 1621 en lui étant contigüe et qui n'est pas immergée dans l'électrolyte contenu dans le réservoir 130, mais qui est mouillée par la solution électrolytique lorsqu'elle est mise en circulation dans le circuit 200, et
  • une zone supérieure 1623 sèche pour l'alimentation en granules d'étain 161 secs et la transmission du courant électrique de dissolution.
The figure 4 shows that the soluble anode tin 160 comprises a dissolution basket 162 comprising tin granules 161. This basket 162 is divided into three distinct superposed parts:
  • a lower zone 1621 immersed in the electrolyte contained in the reservoir 130;
  • a median 1622 electrolyte recovery zone, which is located above the lower zone 1621 by being contiguous thereto and which is not immersed in the electrolyte contained in the reservoir 130, but which is wetted by the solution electrolytic when circulated in circuit 200, and
  • a dry upper zone 1623 for the supply of dry tin granules 161 and the transmission of the dissolution electric current.

Les zones inférieure 1621 et médiane 1622 du panier de dissolution 162 de l'anode 160 sont toutes deux réalisées en un matériau non conducteur d'électricité.The lower 1621 and middle 1622 areas of the dissolution basket 162 of the anode 160 are both made of non-electrically conductive material.

A titre de matériau non conducteur d'électricité utilisable selon l'invention pour réaliser les zones inférieures 1621 et médiane 1622 du panier 162 de l'anode soluble 160, on conseille les matières plastiques, et les composites tels que les résines polyesters armées et les aciers revêtus de polymères.As an electrically nonconductive material usable according to the invention for producing the lower zones 1621 and median 1622 of the basket 162 of the soluble anode 160, plastics, and composites such as the polyester resins and the polyesters, are recommended. polymers coated steels.

Par contre, la zone supérieure 1623 d'alimentation en granules d'étain 161 est réalisée en un matériau conducteur d'électricité.On the other hand, the upper region 1623 for supplying tin granules 161 is made of an electrically conductive material.

A titre de matériau conducteur d'électricité utilisable selon l'invention pour réaliser le panier 162 de l'anode soluble 160, on peut notamment citer l'acier inoxydable.As an electrically conductive material that can be used according to the invention to produce the basket 162 of the soluble anode 160, mention may notably be made of stainless steel.

La zone inférieure 1621 immergée dans l'électrolyte comporte un treillis 163 comprenant un filet en plastique de maille adaptée à la rétention des granules d'étain, soit entre 0,05 et 0,50 mm, et préférentiellement entre 0,1 et 0,30 mm. Ce filet est supporté par l'enveloppe du panier qui présente des ouvertures de mise en contact avec l'électrolyte, qui sont au moins 50 fois plus larges que les mailles du filet Des ouvertures (en pointillés sur la figure 4) sont formées dans l'enveloppe du panier 162.The lower zone 1621 immersed in the electrolyte comprises a mesh 163 comprising a plastic mesh net adapted to retain the tin granules, ie between 0.05 and 0.50 mm, and preferably between 0.1 and 0, 30 mm. This net is supported by the envelope of the basket which has openings for contacting the electrolyte, which are at least 50 times wider than the mesh of the net openings (dashed on the figure 4 ) are formed in the casing of the basket 162.

La zone médiane 1622 comporte une auge de récupération 164 de l'électrolyte régénéré, cette auge étant alimentée par l'intermédiaire d'un treillis 165 (identique à celui 163 de la zone inférieure 1621) et d'ouvertures (en pointillés sur la figure 4) formées dans l'enveloppe du panier 162 (identiques à celles de la zone inférieure 1621).The median zone 1622 includes a recovery trough 164 of the regenerated electrolyte, this trough being supplied via a trellis 165 (identical to that 163 of the lower zone 1621) and openings (in dashed lines on the trunk). figure 4 ) formed in the envelope of the basket 162 (identical to those of the lower zone 1621).

En fonctionnement, la zone médiane 1622 est mouillée par la solution électrolytique du réservoir 130 en circulation dans le circuit 200.In operation, the median zone 1622 is wetted by the electrolytic solution of the tank 130 circulating in the circuit 200.

La zone supérieure 1623 comporte une trémie de remplissage 166 en granules d'étain 161, qui est raccordée au pôle positif de la source d'alimentation en courant électrique et qui assure la transmission du courant électrique de dissolution dans le lit de granules d'étain, par l'intermédiaire des surfaces de contact entre les granules d'étain et la trémie en matériau conducteur d'électricité.The upper zone 1623 comprises a filling hopper 166 in tin granules 161, which is connected to the positive pole of the power supply source and which transmits the electric dissolution current into the bed of tin pellets. via the contact surfaces between the tin granules and the electrically conductive material hopper.

La zone inférieure 1621 du panier 162, qui est immergée dans l'électrolyte, est entourée par une membrane cationique 140 de forme circulaire. Cette membrane cationique 140 est avantageusement supportée par au moins un filet en matière plastique, qui permet d'assurer la rigidité de la membrane 140.The lower zone 1621 of the basket 162, which is immersed in the electrolyte, is surrounded by a cationic membrane 140 of circular shape. This cationic membrane 140 is advantageously supported by at least one plastic net, which ensures the rigidity of the membrane 140.

L'électrolyte à traiter est introduit dans la zone inférieure 1621 du panier par des conduites d'admission 201 à une pression suffisante pour permettre son débordement dans l'auge de récupération 164 de la zone médiane 1622. Au cours du parcours des granules d'étain 161 à travers le panier 162, le courant électrique assure la dissolution desdits granules 161 et l'acide se charge en ions Sn++ qui restent à proximité de l'anode 160. L'électrolyte ainsi rechargé en étain est récupéré au niveau de l'auge 164, avant d'être retourné au bac de revêtement 30 par l'intermédiaire des conduites de retour 202.The electrolyte to be treated is introduced into the lower zone 1621 of the basket by intake pipes 201 at a pressure sufficient to allow it to overflow into the recovery trough 164 of the median zone 1622. During the course of the granules tin 161 through the basket 162, the electric current ensures the dissolution of said granules 161 and the acid is charged with Sn ++ ions which remain close to the anode 160. The electrolyte and reloaded tin is recovered at the level of the trough 164, before being returned to the coating tank 30 via the return lines 202.

Sur la figure 5, est représenté en vue de dessus un autre exemple de réacteur de dissolution 10 selon l'invention, qui comprend une pluralité d'anodes solubles 160 comportant chacune un panier 162 rempli de granules d'étain 161, chaque panier 162 étant entouré par une membrane cationique 140 circulaire.On the figure 5 , is shown in plan view another example of dissolution reactor 10 according to the invention, which comprises a plurality of soluble anodes 160 each having a basket 162 filled with tin granules 161, each basket 162 being surrounded by a membrane cationic 140 circular.

Un dispositif d'alimentation 400 en granules 161 dessert les trémies 166 de tous les paniers 162 du réacteur de dissolution 10. Ce dispositif 400 peut être un tapis roulant ou vibrant, ou des tuyauteries non conductrices de l'électricité. Le dispositif 400 agit de manière intermittente en fonction d'un signal donné par un dispositif de détection du niveau de granules dans les trémies 166, de manière à maintenir un niveau constant de granules 161 dans le panier 162.A feed device 400 in granules 161 serves hoppers 166 of all baskets 162 of the dissolution reactor 10. This device 400 may be a treadmill or vibrating, or non-electrically conductive pipes. The device 400 operates intermittently according to a given signal by a granule level detection device in the hoppers 166, so as to maintain a constant level of granules 161 in the basket 162.

Claims (16)

  1. Installation (1) for electrolytic tinning of a steel strip (2) in continuous movement, said installation (1) comprising:
    ■ at least one electroplating tray (30) filled with an electrolyte solution which comprises an HA acid and Sn2+ stannous ions in the form of an SnA2 compound with A designating an acid function, said electroplating tray (30) comprising an insoluble anode (60) immersed in the electrolyte solution of the electroplating tray (30) and a cathode (20) formed by the strip (2) in continuous movement in the electrolyte solution of the electroplating tray (30),
    ■ at least one tin dissolver (10) which comprises an insoluble cathode (120) and at least one soluble tin anode (160),
    characterised in that the tin anode (160) and the insoluble cathode (120) are separated by an electrodialysis or electrolysis cationic membrane (140) defining a cathodic zone (1200) integrating the cathode (120) and an anodic zone (1600) integrating the tin anode (160), and
    also characterised in that said tinning installation (1) comprises moreover a recirculation circuit (200) of the electrolyte solution between the electroplating tray (30) and the anodic zone (1600) of the tin dissolver (10).
  2. Installation (1) according to claim 1, characterised in that said recirculation circuit (200) of the electrolyte solution between the electroplating tray (30) and the anodic zone (1600) of the tin dissolver (10) comprises an oxygen degassing tray (210) positioned upstream of the tin dissolver (10) in the circulation direction of the electrolyte in said recirculation circuit (200).
  3. Installation (1) according to claim 1 or 2, characterised in that it moreover comprises a degassing circuit (300) of the electrolyte solution contained in the cathodic zone (1200) of the tin dissolver (10), the degassing circuit (300) integrating a hydrogen degassing tray (310).
  4. Installation (1) according to any one of the previous claims, characterised in that the soluble tin anode (160) is presented in the form of tin granules (161) contained in a basket (162).
  5. Installation (1) according to claim 4, characterised in that the basket (162) comprises three distinct superposed sections:
    - a lower zone (1621) which is immersed in the electrolyte solution contained in the tank (130) of the dissolver (10),
    - a median zone (1622) for recovering the electrolyte which is located above said lower zone (1621) and being contiguous, said median zone (1622) not being immersed in the electrolyte solution contained in the tank (130) of the dissolver (10) but being dampened by the electrolyte solution when it is circulated through the circuit (200),
    - an upper zone (1623) which is dry for the supply of tin granules (161) and the transmission of electrical current for dissolution, said upper zone (1623) being located above said median zone (1622) and being contiguous.
  6. Installation (1) according to claim 5, characterised in that the lower zone (1621) and the median zone (1622) of the basket (162) are made from an electrical non-conductor material.
  7. Installation (1) according to claim 6, characterised in that the electrical non-conductor material of the lower zone (1621) and the median zone (1622) of the basket (162) is a plastic material or a composite material chosen from the group composed of reinforced polyester resins or polymer coated steels.
  8. Installation (1) according to one of claims 5 to 7, characterised in that the upper zone (1623) of the basket (162) is made from an electrical conductor material.
  9. Installation (1) according to any of claims 5 to 8, characterised in that the lower zone (1621) of the basket (162) comprises:
    - a wire netting (163) comprising a plastic net of which the mesh is between 0.05 mm and 0.5mm and
    - an envelope to support said wire netting (163) and comprising one or more covers such that the granules (161) are in contact with the electrolyte solution.
  10. Installation (1) according to any of claims 5 to 9, characterised in that the median zone (1622) of the basket (162) comprises:
    - a wire netting (165) comprising a plastic net of which the mesh is between 0.05 mm and 0.5mm and
    - a recovery container (164) for the electrolyte solution, said container (164) being supplied with electrolyte solution through the wire netting (165).
  11. Installation (1) according to any of the preceding claims, characterised in that dissolver (10) comprises a plurality of soluble anodes (160) each of these anodes (160) comprising a hopper (166) and being surrounded by an electrodialysis or electrolysis cationic membrane (140).
  12. Installation (1) according to claim 11, characterised in that it comprises a granule supply device (400) which feeds the hoppers (166) of the anodes (160) in an intermittent manner.
  13. Installation (1) according to claim 12, characterised in that the granule supply device (400) is a conveyor or vibrating belt, or electrical non-conductor pipes.
  14. Method of electrolytic tinning of a steel strip (20) in continuous movement in at least one electroplating tray (30) filled with an electrolyte solution which comprises an HA acid and Sn2+ stannous ions in the form of a SnA2 compound with A designating an acid anion, said tinning method implementing at least one insoluble anode (60) and the metal strip (20) comprising a cathode which are immersed in the electrolyte solution and between which a potential difference is applied, and the SnA2 compound arising from a tin dissolver (10), which comprises an insoluble cathode (120) and a tin anode (1602), between which a potential difference is applied,
    characterised in that a constant concentration of HA acid is maintained in the electrolyte solution of the tray (30) by performing the following steps:
    a) an electrodialysis cationic membrane (140) is positioned in the tin dissolver (10) between the tin anode (10) and the insoluble cathode (120), thus defining a cathodic zone (1200) and an anodic zone (1600); and
    b) some of the electrolyte solution is circulated between the electroplating tray (30) and the anodic zone (1600) of the tin dissolver (10).
  15. Method according to claim 14, characterised in that the electrolyte solution withdrawn from the coating tray (30) is subjected to oxygen degassing before being injected in the anodic zone (1600) of the dissolver.
  16. Method according to claim 14 or 15, characterised in that some of the electrolyte solution contained in the cathodic zone of the dissolver (10) is recirculated and subjected to hydrogen degassing.
EP08826511A 2007-07-26 2008-06-09 Equipment and method for electrolytic tinning of steel strips using a non soluble anode Not-in-force EP2173927B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705487A FR2919311B1 (en) 2007-07-26 2007-07-26 INSTALLATION AND METHOD FOR THE ELECTROLYTIC SHIELDING OF STEEL BANDS USING INSOLUBLE ANODE.
PCT/FR2008/000789 WO2009013398A2 (en) 2007-07-26 2008-06-09 Equipment and method for electrolytic tinning of steel strips using a non soluble anode

Publications (2)

Publication Number Publication Date
EP2173927A2 EP2173927A2 (en) 2010-04-14
EP2173927B1 true EP2173927B1 (en) 2011-02-09

Family

ID=39253869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08826511A Not-in-force EP2173927B1 (en) 2007-07-26 2008-06-09 Equipment and method for electrolytic tinning of steel strips using a non soluble anode

Country Status (6)

Country Link
EP (1) EP2173927B1 (en)
AT (1) ATE498025T1 (en)
DE (1) DE602008004917D1 (en)
ES (1) ES2360020T3 (en)
FR (1) FR2919311B1 (en)
WO (1) WO2009013398A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157160B2 (en) 2013-08-22 2015-10-13 Ashworth Bros., Inc. System and method for electropolishing or electroplating conveyor belts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111762A (en) * 2020-09-26 2020-12-22 深圳市海里表面技术处理有限公司 High-finish material belt tinning process and material belt manufactured by same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181580A (en) * 1973-11-28 1980-01-01 Nippon Steel Corporation Process for electro-tin plating
JPS5318168B2 (en) * 1973-11-28 1978-06-13
JP2559935B2 (en) * 1991-12-20 1996-12-04 日本リーロナール株式会社 Method and apparatus for tin or tin-lead alloy electroplating using insoluble anode
US5312539A (en) * 1993-06-15 1994-05-17 Learonal Inc. Electrolytic tin plating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157160B2 (en) 2013-08-22 2015-10-13 Ashworth Bros., Inc. System and method for electropolishing or electroplating conveyor belts

Also Published As

Publication number Publication date
WO2009013398A3 (en) 2009-03-12
DE602008004917D1 (en) 2011-03-24
FR2919311A1 (en) 2009-01-30
ES2360020T3 (en) 2011-05-31
ATE498025T1 (en) 2011-02-15
WO2009013398A2 (en) 2009-01-29
FR2919311B1 (en) 2009-10-09
EP2173927A2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
CN101473072A (en) Electroplating device and method
US8444832B2 (en) Apparatus and method for providing electrical contact for planar material in straight through installations
EP2334846B1 (en) Method and installation for electrolytic tinning of a continuously running steel strip in an electrodeposition unit
US6942781B2 (en) Method for electroplating a strip of foam
EP2173927B1 (en) Equipment and method for electrolytic tinning of steel strips using a non soluble anode
KR20150046013A (en) Aluminum plating apparatus and method for producing aluminum film using same
EP2173928B1 (en) Plant and process for the electrolytic tinning of steel strips, using an insoluble anode
EP2191044B1 (en) Equipment and method for the electrolytic tinning of steel strips using a non-soluble anode
EP2548998B1 (en) Apparatus for electrochemical deposition of a metal
EP2167223B1 (en) Unit and method for the electrolytic tinning of steel strips
CA1234772A (en) Method and apparatus for unilateral electroplating of a moving metal strip
CA2516166C (en) Method for regeneration of an electrolysis bath for the production of a compound i-iii-vi<sb>2</sb> in thin layers
WO2009016292A2 (en) Unit and method for the electrolytic tinning of steel bands, using a soluble anode
EP3555345B1 (en) Electrolytic method for extracting tin or simultaneously extracting tin and lead contained in an electrically conductive mixture
LU85358A1 (en) DEVICE FOR THE ELECTROLYTIC TREATMENT OF METAL TAPES
FR2854905A1 (en) The recuperation of copper from a spent ammoniac engraving solution by electrolysis with regeneration of the engraving solution
JP2008184651A (en) Plating system and plating method
KR20240037284A (en) Method and device for concentrating a substrate with an alkali metal, and electrolyte
US3109783A (en) Electrolytic plating
JPS63195293A (en) Method for removing metal deposited on conductor roll for horizontal electroplating device
JP3698670B2 (en) Apparatus and method for supplying nickel ions to plating solution
EP0105896B1 (en) Apparatus for continuous production of zinc electroplated sheet
JP2006137891A (en) Method for producing electrolytic polymerization membrane
US20120067732A1 (en) Plating apparatus and plating method
EP0354891A1 (en) Method and device for regenerating a solution for the electrolytic deposition of iron

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602008004917

Country of ref document: DE

Date of ref document: 20110324

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008004917

Country of ref document: DE

Effective date: 20110324

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2360020

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110531

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110209

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110510

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110509

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

BERE Be: lapsed

Owner name: SIEMENS VAI METALS TECHNOLOGIES SAS

Effective date: 20110630

26N No opposition filed

Effective date: 20111110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008004917

Country of ref document: DE

Effective date: 20111110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130819

Year of fee payment: 6

Ref country code: ES

Payment date: 20130711

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008004917

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 498025

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008004917

Country of ref document: DE

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140609

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140610