EP2162514A1 - Huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée - Google Patents

Huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée

Info

Publication number
EP2162514A1
EP2162514A1 EP08773478A EP08773478A EP2162514A1 EP 2162514 A1 EP2162514 A1 EP 2162514A1 EP 08773478 A EP08773478 A EP 08773478A EP 08773478 A EP08773478 A EP 08773478A EP 2162514 A1 EP2162514 A1 EP 2162514A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
vinyl
use according
oil
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08773478A
Other languages
German (de)
English (en)
Other versions
EP2162514B1 (fr
Inventor
Matthias Krull
Robert Janssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Publication of EP2162514A1 publication Critical patent/EP2162514A1/fr
Application granted granted Critical
Publication of EP2162514B1 publication Critical patent/EP2162514B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides

Definitions

  • the present invention relates to the use of nucleating agents to improve the cold flowability of mineral oil distillates containing detergent additives, as well as the mineral oil distillates additive.
  • paraffin-rich crude oils are extracted and processed, which consequently also lead to paraffin-rich fuel oils.
  • the paraffins contained in particular in middle distillates can crystallize on lowering the temperature of the oil and partially agglomerate with the inclusion of oil. This crystallization and agglomeration can cause blockages of the filters in engines and firing systems, especially in winter, which prevents safe metering of the fuels and may possibly lead to a complete interruption of the fuel supply.
  • the paraffin problem is also exacerbated by the environmental reasons to reduce the sulfur content increasing hydrodesulfurization of fuel oils, which leads to an increased proportion of cold-critical paraffins in the fuel oil.
  • cold flow improvers In order to improve the cold flow properties, middle distillates are often added with chemical additives, so-called cold flow improvers or flow improvers, which modify the crystal structure and agglomeration tendency of the precipitated paraffins, so that the oils thus added can still be pumped or used at temperatures which are often more than 20 ° C. lower than non-additized oils.
  • cold flow improver oil-soluble copolymers of ethylene and unsaturated esters, oil-soluble polar nitrogen compounds and / or comb polymers are usually used. In addition, however, other additions have been proposed.
  • detergent additives are being developed with ever increasing effectiveness. In addition, they are often used in very high dosage rates. It is reported that this reduces, for example, in diesel fuels, the specific consumption and the performance of the engines is increased.
  • these additives often have negative effects on the cold flowability of middle distillates and in particular on the efficacy of known cold flow improvers. Especially with middle distillates with low boiling point and simultaneously low aromatic content, it is often difficult or even impossible to adjust in the presence of modern detergent additives using conventional flow improvers a satisfactory cold flow behavior. For example, the addition of detergent additives often results in an antagonistic effect on the effectiveness of the added cold flow improvers.
  • the paraffin dispersion of the middle distillate, set by paraffin dispersants is impaired, without being able to be reconstituted by increased metering of paraffin dispersant.
  • the CFPP measured filterability with cold flow improvers additive oils is significantly reduced in the cold and can be compensated only by greatly increased dosage of the flow improver.
  • detergent additives which are derived from higher polyamines and those which are, for example, conditional have very high molecular weights by multiple alkylation and / or acylation of these polyamines.
  • those detergent additives whose hydrophobic residue is derived from sterically hindered olefins and / or higher molecular weight and / or polyfunctionalized poly (olefins).
  • the invention thus relates to the use of at least one oil-soluble compound B) acting as nucleator for the paraffin crystallization, selected from copolymers of ethylene and 2 to 10.5 mol% of at least one ethylenically unsaturated carboxylic acid ester, for improving the response of mineral oil flow improvers C), which are different from B) in middle distillates containing at least one ashless nitrogen-containing detergent additive A), which is an oil-soluble, amphiphilic compound comprising at least one alkyl or alkenyl radical attached to a polar group, wherein the alkyl or alkenyl radical comprises 10 to 500 C atoms and the polar group comprises 2 or more nitrogen atoms.
  • Another object of the invention is a process for improving the response of mineral oil flow improvers C) in middle distillates containing ashless nitrogen-containing detergent additives A), and wherein the ashless nitrogen-containing detergent additives A) are oil-soluble, amphiphilic compounds comprising at least one alkyl or alkenyl group attached to a polar group, wherein the alkyl or alkenyl group is 10 to 500 carbon atoms and the polar group is 2 or more Includes nitrogen atoms,
  • oil-soluble compound B) acting as nucleator for paraffin crystallization selected from copolymers of ethylene and from 2 to 10.5 mol% of at least one ethylenically unsaturated carboxylic acid ester other than C;
  • Another object of the invention are additives containing
  • At least one ashless, nitrogen-containing detergent additive A which is an oil-soluble, amphiphilic compound containing at least one alkyl or
  • Alkenyl group bonded to a polar group wherein the alkyl or alkenyl group comprises 10 to 500 carbon atoms and the polar group comprises 2 or more nitrogen atoms,
  • At least one oil-soluble compound B) acting as nucleator for the paraffin crystallization selected from copolymers of ethylene and 2 to 10.5 mol% of at least one ethylenically unsaturated carboxylic acid ester.
  • the additives contain in a preferred embodiment in addition to the components A) and B) a different B) Mineralölaltf Strukturvercoster C).
  • A) and B) is also referred to below as "inventive additive".
  • Another object of the invention are middle distillates having a sulfur content of less than 100 ppm and a 90% distillation point of below 360 0 C, containing
  • At least one ashless, nitrogen-containing detergent additive A which is an oil-soluble, amphiphilic compound comprising at least one alkyl or alkenyl radical bonded to a polar group, wherein the alkyl or alkenyl radical has 10 to 500 carbon atoms and the polar group comprises 2 or more nitrogen atoms,
  • At least one oil-soluble compound B) acting as nucleator for the paraffin crystallization selected from copolymers of ethylene and from 2 to 10.5 mol% of at least one ethylenically unsaturated carboxylic acid ester,
  • Cold flow improver C) adjusted or adjustable and by the addition of a detergent additive A) impaired cold property of middle distillates by addition of acting as a nucleating agent for the paraffin crystallization compound B) is improved.
  • the nucleating agent B by adding the nucleating agent B), the cold property set or adjustable without the presence of the detergent additive A) by the cold flow improver C) is achieved.
  • Cold properties are understood here individually or in combination as the pour point, the cold filterability (CoId filter plugging point), the low-temperature flow capability and the paraffin dispersion of middle distillates.
  • Especially affected is the response of flow improvers in middle distillates containing more than 10 ppm of a nitrogen containing detergent additive A), in particular more than 20 ppm and especially more than 40 ppm such as 50 to 2,000 ppm of nitrogen-containing detergent additive A).
  • the additives according to the invention preferably contain from 0.01 to 10 parts by weight, based on one part by weight of the nitrogen-containing detergent additive A, and in particular from 0.05 to 5 parts by weight, for example from 0.1 to 3 parts by weight of the oil-soluble compound B) acting as nucleator for the paraffin crystallization.
  • Ashless means that the additives in question essentially consist only of elements which form gaseous reaction products during combustion.
  • the additives consist essentially only of the elements carbon, hydrogen, oxygen and nitrogen.
  • ashless additives are substantially free of metals and metal salts.
  • Nucleators are understood to be compounds which initiate the crystallization of paraffins on cooling a paraffin-containing oil. They thus shift the beginning of the paraffin crystallization of the oil additized with them, which can be determined, for example, by measuring the cloud point or the Wax Appearance Temperature (WAT), to higher temperatures. These are compounds that are soluble in the oil above the cloud point and begin to crystallize just above the temperature of the paraffin saturation and then serve as seed for the crystallization of the paraffins. Thus, they prevent over-saturation of the oil with paraffins and lead to crystallization near the saturation concentration. This leads to the formation of a multiplicity of equally small paraffin crystals.
  • WAT Wax Appearance Temperature
  • paraffin crystallization thus begins at a higher temperature than in non-additized oil. This can be determined, for example, by measuring the WAT by means of differential scanning calorimetry (DSC) with a slow cooling of the oil at, for example, -2 K / min.
  • DSC differential scanning calorimetry
  • middle distillates 10 to 10,000 ppm and in particular 50 to 3,000 ppm of the nitrogen-containing detergent additives A) are added.
  • the alkyl or alkenyl group imparts oil-solubility to the detergent additives.
  • alkyl radical has 15 to 500 carbon atoms and in particular 20 to 350 carbon atoms, for example 50 to 200 carbon atoms.
  • This alkyl radical can be linear or branched, in particular it is branched.
  • the alkyl radical is derived from oligomers of lower olefins having 3 to 6 C atoms such as propene, butene, pentene or hexene and mixtures thereof.
  • Preferred isomers of these olefins are isobutene, 2-butene, 1-butene, 2-methyl-2-butene, 2,3-dimethyl-2-butene, 1-pentene, 2-pentene and iso-pentene and mixtures thereof.
  • Particular preference is given to propene, isobutene, 2-butene, 2-methyl-2-butene, 2,3-dimethyl-2-butene and mixtures thereof.
  • Particularly suitable for the preparation of such detergent additives are highly reactive low molecular weight polyolefins having a proportion of terminal double bonds of at least 75 mol%, especially at least 85% and in particular at least 90% such as at least 95%.
  • Particularly preferred low molecular weight polyolefins are poly (isobutylene), poly (2-butene), poly (2-methyl-2-butene), poly (2,3-dimethyl-2-butene), poly (ethylene-co-isobutylene) and atactic poly (propylene).
  • the molecular weight of particularly preferred polyolefins is between 500 and 3000 g / mol.
  • Such oligomers of lower olefins are accessible, for example, by polymerization using Lewis acids such as BF 3 and AICI 3 , by means of Ziegler catalysts and in particular by means of metallocene catalysts.
  • the polar component of the detergent additives which are particularly problematic for the response of known cold additives is derived from polyamines having 2 to 20 N atoms.
  • polyamines having 2 to 20 N atoms.
  • Such polyamines correspond for example to the formula
  • each R 9 is independently hydrogen, an alkyl or hydroxyalkyl radical having up to 24 carbon atoms, a polyoxyalkylene radical - (AO) r or polyiminoalkylene radical - [AN (R 9 )] S - (R 9 ) but wherein at least R 9 is hydrogen, q is an integer from 1 to 19, A is an alkylene radical having 1 to 6 C atoms, r and s are independently from 1 to 50. Usually these are mixtures of polyamines and in particular mixtures of poly (ethylene amines) and / or poly (propyleneamines). Examples include: ethylenediamine, 1, 2-propylenediamine, dimethylaminopropylamine, diethylenetriamine (DETA), dipropylenetriamine,
  • Heavy polyamines are generally understood as meaning mixtures of polyalkylenepolyamines which, in addition to small amounts of TEPA and PEHA, mainly contain oligomers having 7 or more nitrogen atoms, of which two or more are in the form of primary amino groups. These polyamines often also contain branched structural elements via tertiary amino groups.
  • Suitable amines include those which comprise cyclic structural units derived from piperazine.
  • the piperazine units may preferably carry hydrogen at one or both nitrogen atoms, an alkyl or hydroxyalkyl radical having up to 24 carbon atoms or a polyiminoalkylene radical - [AN (R 9 )] S - (R 9 ) where A, R 9 and s have the meanings given above.
  • Suitable amines include alicyclic diamines such as 1,4-di (aminomethyl) cyclohexane and heterocyclic nitrogen compounds such as imidazolines and N-aminoalkylpiperazines such as N- (2-aminoethyl) piperazine.
  • detergent additives whose polar portion is derived from hydroxyl-bearing polyamines, heterocycle-substituted polyamines, and aromatic polyamines are problematic.
  • Examples include: N- (2-hydroxyethyl) ethylenediamine, N, N 1 -bis (2-hydroxyethyl) ethylenediamine, N- (3-hydroxybutyl) tetra (methylene) diamine, N-2-aminoethylpiperazine, N-2 and N-3-aminopropylmorpholine, N-3- (dimethylamino ) propylpiperazine, 2-heptyl-3- (2-aminopropyl) imidazoline, 1,4-bis (2-aminoethyl) piperazine, 1- (2-hydroxyethyl) piperazine, various isomers of phenylenediamine and naphthalenediamine and mixtures of these amines.
  • Detergent additives based on heavy polyamines in which R 9 is hydrogen in the above formula and q has values of at least 3, in particular at least 4, such as 5, 6 or 7, are particularly critical for the cold additization of middle distillates.
  • R 9 is hydrogen in the above formula and q has values of at least 3, in particular at least 4, such as 5, 6 or 7, are particularly critical for the cold additization of middle distillates.
  • a proportion of more than 10 wt .-%, in particular more than 20 wt .-% and especially of more than 50 wt .-% of amines having q-values of 4 or higher and especially with q Values of 5 or higher and in particular with q values of 6 or higher on the total amount of amines used have proven particularly critical.
  • oil-soluble alkyl moiety and the polar head group of the detergent additives may be linked together either directly via a C-N or through an ester, amide or imide bond. Accordingly, preferred detergent additives are
  • Alkylpolyamines Mannich reaction products, hydrocarbyl-substituted succinamides and imides, and mixtures of these classes of compounds.
  • the detergent additives linked via C-N bonds are preferably alkylpoly (amines) which are obtainable, for example, by reacting polyisobutylenes with polyamines, for example by hydroformylation and subsequent reductive amination with the abovementioned polyamines.
  • one or more alkyl radicals may be bound to the polyamine.
  • Detergent additives based on higher polyamines having more than 4 N atoms, for example those having 5, 6 or 7 N atoms, are particularly critical for the cold addition.
  • Detergent additives containing amide or imide bonds are obtainable, for example, by reaction of alkenylsuccinic anhydrides with polyamines.
  • Alkenylsuccinic anhydride and polyamine are preferably reacted in a molar ratio of about 1: 0.5 to about 1: 1.
  • the preparation of the underlying Alkenylbemsteinklaanhydride is usually carried out by addition of ethylenically unsaturated polyolefins or chlorinated polyolefins to ethylenically unsaturated dicarboxylic acids.
  • alkenyl succinic anhydrides can be prepared by reaction of chlorinated polyolefins with maleic anhydride.
  • the preparation can also be achieved by thermal addition of polyolefins to maleic anhydride in an "ene reaction.”
  • Highly reactive olefins having a high content of, for example, more than 75% and especially more than 85 mol%, based on the total number of polyolefin molecules, are present
  • the molar ratio of the two reactants in the reaction between maleic anhydride and polyolefin can vary within wide limits. Preferably, it may be between 10: 1 and 1: 5, with molar ratios of 6: 1 to 1: 1 being particularly preferred.
  • Maleic anhydride is preferably used in stoichiometric excess, for example 1.1 to 3 mol of maleic anhydride per mole of polyolefin. Excess maleic anhydride can be removed from the reaction by, for example, distillation.
  • the accessible reaction products have, based on the reacted with unsaturated carboxylic acids fractions of the poly (olefins) on average a Malein istsgrad of more than 1, preferably about 1, 01 to 2.0 and in particular 1, 1 to 1, 8 dicarboxylic acid per alkyl radical.
  • alkenyl succinic anhydrides with polyamines leads to products which can carry one or more amide and / or imide bonds per polyamine and depending on the Maleinleitersgrad one or two polyamines per alkyl radical.
  • 1, 0 to 1, 7 and in particular 1, 1 to 1, 5 mol alkenylsuccinic anhydride per mol of polyamine are preferably used, so that free primary amino groups remain in the product.
  • alkenyl succinic anhydride and polyamine are reacted equimolarly.
  • Typical and particularly preferred acylated nitrogen compounds are obtained by reacting poly (isobutylene), poly (2-butenyl), poly (2-methyl-2-butenyl) -, poly (2,3-dimethyl-2-butenyl) - or Poly (propenyl) succinic anhydrides having an average of about 1, 2 to 1, 5 anhydride groups per alkyl radical whose alkylene radicals carry between 50 and 400 carbon atoms, with a mixture of poly (ethylene amines) having about 3 to 7 nitrogen atoms and about 1 to 6 ethylene units available.
  • Mannich bases of this kind are prepared by known processes, for example by alkylating phenol and / or salicylic acid with the polyolefins described above, such as, for example, poly (isobutylene), poly (2-butene), poly (2-methyl-2-butene), poly ( 2,3-dimethyl-2-butene) or atactic
  • the average molecular weight determined by means of vapor pressure osmometry is particularly efficient, but at the same time also for the cold additivation of
  • Middle distillates of particularly critical detergent additives is above 800 g / mol and in particular above 2,000 g / mol such as above 3,000 g / mol.
  • the average molecular weight of the above-described detergent additives can also be increased via crosslinking reagents and adapted to the intended use.
  • Suitable crosslinking reagents are, for example, dialdehydes such as glutaric dialdehyde, bisepoxides derived, for example, from bisphenol A, dicarboxylic acids and their reactive derivatives such as maleic anhydride and alkenylsuccinic anhydrides, and higher polybasic carboxylic acids and their derivatives such as trimellitic acid, trimellitic anhydride and pyromellitic dianhydride.
  • dialdehydes such as glutaric dialdehyde
  • bisepoxides derived, for example, from bisphenol A
  • dicarboxylic acids and their reactive derivatives such as maleic anhydride and alkenylsuccinic anhydrides
  • higher polybasic carboxylic acids and their derivatives such as trimellitic acid, trimellitic anhydride and pyromellitic dianhydride.
  • Preferred copolymers of ethylene B) which act as nucleator for the paraffin crystallization contain preferably 4 to 10 mol%, particularly preferably 4.5 to 9 mol% and in particular 5 to 7.9 mol% of structural units derived from at least one ethylenically unsaturated carboxylic acid ester .
  • Suitable ethylenically unsaturated carboxylic acid esters are, on the one hand, esters of vinyl alcohol with C 1 -C 20 -carboxylic acids.
  • esters of vinyl alcohol with C 4 -Cu carboxylic acids are preferred.
  • Particularly preferred are esters of aliphatic carboxylic acids whose alkyl radicals or alkenyl radicals may be linear and in particular branched.
  • branched alkyl radicals particular preference is given to those whose branching is in the ⁇ -position relative to the carboxyl group.
  • Carboxyl group is bonded.
  • suitable vinyl esters are vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pentanoate, vinyl pivalate, Vinylhexanoate, vinyl-n-octanoate, vinyl-2-ethylhexanoate, vinylneononanoate, vinylisodecanoate, vinylneodecanoate, vinylneoundecanoate and vinylisotridecylate.
  • esters of unsaturated carboxylic acids such as acrylic acid and methacrylic acid with
  • CrC 2 o-alcohols and in particular with C 4 -Cu-alcohols.
  • Preferred are saturated linear as well as branched fatty alcohols.
  • Particularly suitable are esters of branched fatty alcohols, wherein the branch is preferably in the 2-position to the OH group.
  • suitable ethylenically unsaturated carboxylic acid esters are methyl acrylate, ethyl acrylate,
  • Acrylic propyl ester n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate and the corresponding esters of methacrylic acid.
  • the copolymers B) acting as nucleator for the paraffin crystallization contain, in addition to structural units derived from ethylene, structural units derived from at least 2 different ethylenically unsaturated carboxylic acid esters.
  • Copolymers which contain structural units derived from esters of vinyl alcohol with a C 1 -C 4 -carboxylic acid and esters of vinyl alcohol with a C 5 -C 6 -carboxylic acid have proven particularly useful.
  • the above-mentioned branched carboxylic acids having 5 to 16 carbon atoms are preferred.
  • copolymers B) are terpolymers of ethylene, vinyl acetate and vinyl neononanoate, of ethylene, vinyl acetate and vinyl neodecanoate, of ethylene, vinyl acetate and vinyl neoanecanoate and of ethylene, vinyl acetate and 2-ethylhexyl vinyl ester. Furthermore, copolymers have proven useful in addition to derived from ethylene structural units of esters of vinyl alcohol with a Ci-C 4 carboxylic acid and esters of acrylic acid or methacrylic acid with C 5 -C 2 o-alcohols derived structural units.
  • Examples of such copolymers B) are terpolymers of ethylene, vinyl acetate and 2-ethylhexyl acrylate, of ethylene, vinyl acetate and octyl acrylate, of ethylene, vinyl acetate and iso-tridecyl acrylate and of ethylene, vinyl acetate and stearyl acrylate.
  • the ratio of short-chain to long-chain ester can thereby vary widely. It is preferably in the ratio between 1:10 and 10: 1, especially between 1: 5 and 5: 1, for example between 1: 3 and 3: 1.
  • the copolymers of ethylene and ethylenically unsaturated carboxylic acid esters may further contain minor amounts of structural units derived from lower olefins.
  • Preferred olefins are, in particular, those having 3 to 8 C atoms, such as propene, n-butene, isobutylene, pentene, hexene, 4-methylpentene and diisobutylene.
  • Such terpolymers or higher polymers may contain up to 3 mol% of lower olefins, with the proviso that the total comonomer content is not more than 10.5 mol%, preferably not more than 9.0 and in particular not more than 7.9 mol%.
  • the melt viscosity of the solvent-free polymers measured at 140 ° C. is preferably between 100 and 5,000 mPas, in particular between 150 and 2,000 mPas, for example between 200 and 1,000 mPas.
  • the quantitative ratio between detergent additive A) and nucleators B) in the additized oil can vary within wide limits. It has proven particularly useful to use from 0.01 to 10 parts by weight, in particular from 0.05 to 5 parts by weight, for example from 0.1 to 3 parts by weight of nucleator per part by weight of detergent additive, in each case based on the active ingredient.
  • Component IM or mixtures thereof with one or more of components IV to VII are used.
  • Mixtures of ethylene copolymers (constituent III) and alkylphenol-aldehyde resins (constituent V) and of ethylene copolymers (constituent III) and comb polymers (constituent VI) have proven particularly useful.
  • For the paraffin dispersion in particular mixtures of ethylene copolymers (constituent IM) with the constituents IV and V or the constituents IV and VI have proven successful.
  • Preferred cold flow improvers as constituent III are copolymers of ethylene and olefinically unsaturated compounds.
  • Suitable ethylene copolymers are, in particular, those which contain, in addition to ethylene, from 8 to 21 mol%, in particular from 10 to 18 mol%, of olefinically unsaturated comonomer compounds.
  • the comonomer content is at least 1 mol% and preferably at least 2 mol% higher than the nucleators of group B).
  • the olefinically unsaturated compounds are preferably vinyl esters, acrylic esters, methacrylic esters, alkyl vinyl ethers and / or alkenes, it being possible for the abovementioned compounds to be substituted by hydroxyl groups.
  • One or more comonomers may be included in the polymer.
  • the vinyl esters are preferably those of the formula 1
  • R 1 is Ci to C 3 o-alkyl, preferably C 4 to Ci 6 alkyl, especially C ⁇ - to Ci 2 alkyl.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • R 1 is a branched alkyl radical or a neoalkyl radical having 7 to 11 carbon atoms, in particular having 8, 9 or 10 carbon atoms.
  • Particularly preferred vinyl esters are derived from secondary and especially tertiary carboxylic acids whose branching is in the alpha position to the carbonyl group.
  • Suitable vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl laurate, vinyl stearate and versatic acid esters such as vinyl neononanoate, vinyl neodecanoate, vinyl neoundecanoate.
  • these ethylene copolymers contain vinyl acetate and at least one further vinyl ester of the formula 1 in which R 1 is C 4 to C 30 -alkyl, preferably C 4 to C 16 -alkyl, especially C 6 to C 12 -alkyl stands.
  • the acrylic esters are preferably those of the formula 2
  • R 2 is hydrogen or methyl and R 3 is Cr to C 30 -alkyl, preferably C 4 - to C 6 -alkyl, especially C 6 - to C 12 -alkyl.
  • Suitable acrylic esters include, for. Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n- and iso-butyl (meth) acrylate, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl , Hexadecyl, octadecyl (meth) acrylate and mixtures of these comonomers.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • An example of such an acrylic ester is hydroxyethyl methacrylate.
  • alkyl vinyl ethers are preferably compounds of the formula 3
  • R 4 is C r to C 30 alkyl, preferably C 4 - to C 6 alkyl, especially C 6 - to C 12 -alkyl. Examples which may be mentioned are methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • the alkenes are preferably simple unsaturated hydrocarbons having 3 to 30 carbon atoms, in particular 4 to
  • alkenes include propene, butene, isobutylene, pentene, hexene, 4-methylpentene, octene, diisobutylene and norbornene and its derivatives such as methylnorbornene and Vinyl norbornene.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • terpolymers which, apart from ethylene, have from 3.5 to 20 mol%, in particular from 8 to 15 mol% of vinyl acetate and from 0.1 to 12 mol%, in particular from 0.2 to 5 mol%, of at least one longer-chain and preferably branched one Vinyl esters such as vinyl 2-ethylhexanoate, vinyl neononanoate or vinyl neodecanoate, wherein the total comonomer content of the terpolymers is preferably between 8 and 21 mol%, in particular between 12 and 18 mol%.
  • copolymers contain, in addition to ethylene and 8 to 18 mol% of vinyl esters of C 2 - to C 12 -carboxylic acids still 0.5 to 10 mol% of olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • These ethylene copolymers and terpolymers preferably have melt viscosities at 140 ° C. of from 20 to 10,000 mPas, in particular from 30 to 5,000 mPas, especially from 50 to 2,000 mPas.
  • the means of 1 H-NMR spectroscopy, certain degrees of branching are preferably between 1 and 9 CH 3 / CH 2 groups IOO, especially between 2 and 6 CH 3 / IOO CH 2 groups that do not stem from the comonomers.
  • the polymers underlying the mixtures differ in at least one characteristic.
  • they may contain different comonomers, have different comonomer contents, molecular weights and / or degrees of branching.
  • the mixing ratio between the additives according to the invention and ethylene copolymers as constituent III can vary within wide limits depending on the application, with the ethylene copolymers III often representing the greater proportion.
  • such additive and oil mixtures contain 0.1 to 25, preferably 0.5 to 10 parts by weight of ethylene copolymers per part by weight of the additive combination according to the invention.
  • cold flow improvers which are suitable are oil-soluble polar nitrogen compounds (constituent IV). These are preferably
  • polyamines of the formula - [N- (CH 2 ) n ] m -NR 6 R 7 , in which m is a number between 1 and 20 and n, R 6 and R 7 have the meanings given above, are suitable as fatty amines .
  • the alkyl and alkenyl radicals can be linear or branched and contain up to two double bonds. They are preferably linear and substantially saturated, ie they have iodine numbers of less than 75 gl 2 / g, preferably less than 60 gl 2 / g and in particular between 1 and 10 gl 2 / g.
  • secondary fatty amines in which two of the groups R 6, R 7 and R 8 is C 8 -C 36 alkyl, C 6 -C 36 cycloalkyl, C 8 -C 36 -alkenyl, in particular C 2 - C 24 alkyl, Ci 2 -C 24 alkenyl or cyclohexyl.
  • Suitable fatty amines are, for example, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, behenylamine, didecylamine, didodecylamine, ditetradecylamine, dihexadecylamine, dioctadecylamine, dieicosylamine, dibehenylamine and mixtures thereof.
  • the amines contain chain cuts based on natural raw materials such.
  • Particularly preferred amine derivatives are amine salts, imides and / or amides such as amide Ammonium salts of secondary fatty amines, in particular of dicocosfettamine, ditallow fatty amine and distearylamine.
  • acyl group is meant here a functional group of the following formula:
  • Suitable carbonyl compounds for the reaction with amines are both monomeric and polymeric compounds having one or more carboxyl groups. In the case of the monomeric carbonyl compounds, preference is given to those having 2, 3 or 4 carbonyl groups. They can also contain heteroatoms such as oxygen, sulfur and nitrogen.
  • suitable carboxylic acids are maleic, fumaric, crotonic, itaconic, succinic, C 1 -C 40 -alkenylsuccinic, adipic, glutaric, sebacic and malonic acids and also benzoic, phthalic, trimellitic and pyromellitic acid, nitrilotriacetic acid,
  • Ethylenediaminetetraacetic acid and its reactive derivatives such as esters, anhydrides and acid halides.
  • Copolymers of ethylenically unsaturated acids such as, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, have proven to be particularly suitable as polymeric carbonyl compounds; particularly preferred are copolymers of
  • Suitable comonomers are those which impart oil solubility to the copolymer. Oil-soluble means here that the copolymer dissolves without residue in the middle distillate to be additive after reaction with the fatty amine in practice-relevant metering rates. Suitable comonomers are, for example, olefins, alkyl esters of acrylic acid and
  • the carbon number refers to the alkyl radical attached to the double bond.
  • the molecular weights of the polymeric carbonyl compounds are preferably between 400 and 20,000, more preferably between 500 and 10,000, for example between 1,000 and 5,000.
  • Oil-soluble polar nitrogen compounds which have been obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides have proven particularly suitable (compare US Pat. No. 4,211,534). The same are amides and ammonium salts of
  • Aminoalkylenpolycarbon Acid such as nitrilotriacetic acid or ethylenediaminetetraacetic acid with secondary amines as oil-soluble polar nitrogen compounds suitable (see EP 0398101).
  • oil-soluble polar nitrogen compounds are copolymers of maleic anhydride with ⁇ , ⁇ -unsaturated compounds, optionally with primary
  • Monoalkylamines and / or aliphatic alcohols can be reacted (see EP-AO 154 177, EP-O 777 712), the reaction products of Alkenylspirobislactonen with amines (see EP-AO 413 279 B1) and according to EP-AO 606 055 A2 reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • the mixing ratio between the inventive ethylene copolymers III and oil-soluble polar nitrogen compounds as constituent IV may vary depending on the application.
  • Such additive mixtures preferably contain from 0.1 to 10 parts by weight, preferably from 0.2 to 10 parts by weight, based on the active compounds
  • alkylphenol-aldehyde resins as constituent V. These are in particular those alkylphenol-aldehyde resins which are derived from alkylphenols having one or two alkyl radicals in ortho and / or para position to the OH group. Particularly preferred as starting materials are alkylphenols which carry at least two hydrogen atoms capable of condensation with aldehydes on the aromatic and in particular monoalkylated phenols. Particularly preferably, the alkyl radical is in the para position to the phenolic OH group.
  • the alkyl radicals (which for the constituent V are generally understood to mean hydrocarbon radicals as defined below) can be used in the alkylphenol compounds which can be used in the process according to the invention.
  • Aldehyde resins may be the same or different, they may be saturated or unsaturated and preferably have 1 - 20, in particular 4 - 16 such as 6-12 carbon atoms; it is preferably n-, iso- and tert-butyl, n- and iso-pentyl, n- and iso-hexyl, n- and iso-octyl, n- and iso-nonyl-, n - and iso-decyl, n- and iso-dodecyl, tetradecyl, hexadecyl, octadecyl, tripropenyl, tetrapropenyl, poly (propenyl) - and poly (isobutenyl) radicals.
  • mixtures of alkylphenols having different alkyl radicals are used for the preparation of the alkylphenol resins.
  • resins based on butyphenol on the one hand and octyl, nonyl and / or dodecylphenol in a molar ratio of 1:10 to 10: 1, on the other hand have proven particularly useful.
  • Suitable alkylphenol resins may also contain or consist of structural units of other phenol analogs such as salicylic acid, hydroxybenzoic acid and derivatives thereof such as esters, amides and salts.
  • Suitable aldehydes for the alkylphenol-aldehyde resins are those having 1 to 12 carbon atoms and preferably those having 1 to 4 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethylhexanal, benzaldehyde, glyoxalic acid and their reactive equivalents such as paraformaldehyde and trioxane.
  • Particularly preferred is formaldehyde in the form of paraformaldehyde and especially formalin.
  • the molecular weight of the alkylphenol-aldehyde resins measured by gel permeation chromatography against poly (styrene) standards in THF is preferably 500-25,000 g / mol, more preferably 800-10,000 g / mol and especially 1,000-5,000 g / mol such as 1500-3,000 g / mol.
  • the prerequisite here is that the alkylphenol-aldehyde resins, at least in application-relevant concentrations of 0.001 to 1 wt .-% are oil-soluble.
  • these are alkylphenol-formaldehyde resins, the oligo- or polymers having a repetitive structural unit of the formula
  • R 11 is C 1 -C 20 -alkyl or alkenyl, OR 10 or OC (O) -R 10, R 10 is -C 2 alkyl or alkenyl, and oo-n is a number from 2 to 100, included.
  • R 10 preferably represents Ci-C 2 o alkyl or alkenyl and especially C 4 -C 6 alkyl or alkenyl such as for C 6 -C 2 alkyl or alkenyl.
  • n is a number from 2 to 50 and especially a number from 3 to 25, such as a number from 5 to 15.
  • alkylphenol-aldehyde resins are accessible by known methods, for. B. by condensation of the corresponding alkylphenols with formaldehyde, d. H. with 0.5 to 1, 5 mol, preferably 0.8 to 1, 2 moles of formaldehyde per mole of alkylphenol.
  • the condensation can be carried out solvent-free, but preferably it takes place in
  • solvents which can form azeotropes with water.
  • solvents are in particular aromatics such as toluene, xylene Diethylbenzol and higher-boiling commercial solvent mixtures such as Shellsol ® AB, and solvent
  • Naphtha used.
  • fatty acids and their derivatives such as esters with lower alcohols having 1 to 5 carbon atoms such as ethanol and especially methanol are suitable as solvents.
  • the condensation is preferably carried out between 70 and 200 ° C., for example between 90 and 160 ° C. It is usually catalysed by 0.05 to 5% by weight of bases or preferably by 0.05 to 5% by weight of acids.
  • acidic catalysts are in addition to carboxylic acids such as acetic acid and oxalic acid in particular strong mineral acids such as hydrochloric acid, phosphoric acid and sulfuric acid and sulfonic acids commonly used catalysts.
  • Particularly suitable catalysts are sulfonic acids which contain at least one sulfonic acid group and at least one saturated or unsaturated, linear, branched and / or cyclic hydrocarbon radical having 1 to 40 C atoms and preferably having 3 to 24 C atoms.
  • aromatic sulfonic acids especially alkylaromatic monosulfonic acids having one or more C 1 -C 28 -alkyl radicals and, in particular, those having C 3 -C 22 -alkyl radicals.
  • Suitable examples are methanesulfonic acid, butanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, 2-mesitylenesulfonic acid, 4-ethylbenzenesulfonic acid, isopropylbenzenesulfonic acid, 4-butylbenzenesulfonic acid, 4-octylbenzenesulfonic acid; Dodecylbenzenesulfonic acid, didodecylbenzenesulfonic acid, naphthalenesulfonic acid. Mixtures of these sulfonic acids are suitable.
  • R ' is a hydrocarbon chain of 8 to 20, preferably 10 to 18 carbon atoms
  • R is a hydrocarbon chain of 1 to 10 carbon atoms, m is a number between 0.4 and 1.0, and n is a number between 0 and 0.6.
  • Suitable comb polymers are, for example, copolymers of ethylenically unsaturated dicarboxylic acids such as maleic or fumaric acid with other ethylenically unsaturated monomers such as olefins or vinyl esters such as vinyl acetate.
  • Particularly suitable olefins are ⁇ -olefins having 10 to 20 and especially 12 to 18 carbon atoms such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and mixtures thereof.
  • olefins based on oligomerized C 2 -C 6 -olefins such as poly (isobutylene) with a high proportion of terminal double bonds are suitable as comonomers.
  • these copolymers are at least 50% esterified with alcohols having 10 to 20 and especially 12 to 18 carbon atoms.
  • Suitable alcohols include n-decan-1-ol, n-dodecan-1-ol, n-tetradecan-1-ol, n-hexadecan-1-ol, n-octadecan-1-ol and mixtures thereof.
  • comb polymers are poly (alkyl acrylates), poly (alkyl methacrylates) and poly (alkyl vinyl ethers) derived from alcohols containing 10 to 20 and especially 12 to 18 carbon atoms, and poly (vinyl esters) derived from fatty acids containing 10 to Derive 20 and especially 12 to 18 carbon atoms.
  • Polyoxyalkylene compounds such as, for example, esters, ethers and ether / esters of polyols which carry at least one alkyl radical having 12 to 30 C atoms.
  • the oil-soluble polyoxyalkylene compounds have at least 2, such as, for example, 3, 4 or 5 aliphatic hydrocarbon radicals.
  • these radicals are independent each other 16 to 26 carbon atoms such as 17 to 24 carbon atoms.
  • these radicals of the oil-soluble polyoxyalkylene compounds are linear. Further preferably, they are largely saturated, in particular, these are alkyl radicals. Esters are especially preferred.
  • Particularly suitable polyols according to the invention are polyethylene glycols, polypropylene glycols, polybutylene glycols and their copolymers having a molecular weight of about 100 to about 5,000 g / mol, preferably 200 to 2,000 g / mol.
  • the oil-soluble polyoxyalkylene compounds are derived from polyols having 3 or more OH groups, preferably from polyols having 3 to about 50 OH groups such as 4 to 10 OH groups, in particular neopentyl glycol, glycerol, trimethylolethane, trimethylolpropane , Sorbitan, pentaerythritol, as well as the resulting from condensation oligomers having 2 to 10 monomer units such as.
  • polyglycerol As polyglycerol.
  • polystyrene resin such as sorbitol, sucrose, glucose, fructose and their oligomers such as cyclodextrin are suitable as polyols, provided that their esterified or etherified alkoxylates are oil-soluble at least in application-relevant amounts.
  • Preferred polyoxyalkylene compounds thus have a branched polyoxyalkylene nucleus to which are attached multiple alkyl-solubilizing alkyl radicals.
  • the polyols are generally reacted with from 3 to 70 mol of alkylene oxide, preferably from 4 to 50, in particular from 5 to 20, mol of alkylene oxide per hydroxyl group of the polyol.
  • Preferred alkylene oxides are ethylene oxide, propylene oxide and / or butylene oxide.
  • the alkoxylation is carried out by known methods.
  • the fatty acids which are suitable for the esterification of the alkoxylated polyols preferably have 12 to 30 and in particular 16 to 26 C atoms.
  • Suitable fatty acids are, for example, lauric, tridecane, myristic, pentadecane, palmitic, margarine, stearic, isostearic, arachic and behenic, oleic and erucic acid, palmitoleic, myristoleic, ricinoleic acid and natural fats and oils derived fatty acid mixtures.
  • Preferred fatty acid mixtures contain more than 50 mol% fatty acids with at least 20 C atoms.
  • the fatty acids used for the esterification contain double bonds, in particular less than 10 mol%; specifically, they are largely saturated.
  • the esterification can also be carried out starting from reactive derivatives of the fatty acids such as esters with lower alcohols (for example methyl or ethyl esters) or anhydrides.
  • the term "iodine number" of the fatty acid or of the fatty alcohol used is understood to be largely saturated by up to 5 g of I per 100 g of fatty acid or fatty alcohol.
  • suitable polybasic carboxylic acids are dimer fatty acids, alkenylsuccinic acids and aromatic polycarboxylic acids and derivatives thereof such as anhydrides and C 1 - to C 5 -esters.
  • Alkenylsuccinic acid and its derivatives with alkyl radicals having 8 to 200, in particular 10 to 50, C atoms are preferred.
  • Examples are dodecenyl, octadecenyl and poly (isobutenyl) succinic anhydride.
  • the polybasic carboxylic acids are preferably used here to lower levels of up to 30 mol%, preferably 1 to 20 mol%, in particular 2 to 10 mol%.
  • Ester and fatty acid are used for the esterification based on the content of hydroxyl groups on the one hand and carboxyl groups on the other hand in a ratio of 1, 5: 1 to 1: 1, 5, preferably in the ratio 1, 1: 1 to 1: 1, 1 and in particular equimolar.
  • the acid number of the esters formed is generally below 15 mg KOH / g, preferably below 10 mg KOH / g, especially below 5 mg KOH / g.
  • the OH number of the esters is preferably below 20 mg KOH / g and especially below 10 mg KOH / g.
  • the terminal hydroxyl groups are converted, for example, by oxidation or by reaction with dicarboxylic acids into terminal carboxyl groups.
  • fatty alcohols having 8 to 50, in particular 12 to 30, especially 16 to 26 C-atoms polyoxyalkylene esters according to the invention are also obtained.
  • Preferred fatty alcohols or fatty alcohol mixtures contain more than 50 mol% of fatty alcohols having at least 20 carbon atoms.
  • less than 50 mol% of the fatty alcohols used for the esterification contain double bonds, in particular less than 10 mol%; specifically, they are largely saturated.
  • esters of alkoxylated fatty alcohols with fatty acids which contain the abovementioned proportions of poly (alkylene oxides) and whose fatty alcohol and fatty acid have the abovementioned alkyl chain lengths and degrees of saturation are suitable according to the invention.
  • the above-described alkoxylated polyols can be converted by etherification with fatty alcohols having 8 to 50, in particular 12 to 30, especially 16 to 26 carbon atoms in accordance with the invention suitable polyoxyalkylene compounds.
  • the preferred fatty alcohols are linear and largely saturated.
  • the etherification takes place completely or at least largely completely.
  • the etherification is carried out by known methods.
  • Particularly preferred polyoxyalkylene compounds are derived from polyols having 3, 4 and 5 OH groups, which carry about 5 to 10 mol of structural units derived from ethylene oxide per hydroxyl group of the polyol and are largely completely esterified with largely saturated C 7 -C 24 -fatty acids.
  • Further particularly preferred polyoxyalkylene compounds are polyethylene glycols which have been esterified with largely saturated C 17 -C 24 -fatty acids and have molecular weights of about 350 to 1,000 g / mol.
  • polyoxyalkylene compounds examples include stearic and especially behenic acid esterified polyethylene glycols having molecular weights between 350 and 800 g / mol; Neopentyl glycol 14-ethylene oxide distearate (neopentyl glycol alkoxylated with 14 moles of ethylene oxide and then esterified with 2 moles of stearic acid), and especially neopentyl glycol 14-ethylene oxide dibehenate; Glycerol 20-ethylene oxide tristearate, glycerol 20-ethylene oxide dibehenate, and especially glycerol 20-ethylene oxide tribehenate; Trimethylolpropane-22-ethylene oxide tribehenate; Sorbitan 25-ethylene oxide tristearate, sorbitan 25- ethylene oxide tetrastearate, sorbitan 25-ethylene oxide tribehenate, and especially sorbitan 25-ethylene oxide tetrabehenate; Pentaerythritol-30-ethylene oxide tribehenate, pentaerythr
  • the mixing ratio between the additives according to the invention and the further constituents V, VI and VII is generally in each case between 1:10 and 10: 1, preferably between 1: 5 and 5: 1.
  • detergent additive A) and Nucleator B) containing inventive additives preferably contain 10 to 90 wt .-% and in particular 20 to 80 wt .-% such as 30 to 70 wt .-% detergent additive A) and 10-90 wt .-% and in particular 20-80% by weight, for example 30-70% by weight of nucleator B). If also another cold flow improver C) is present, contain the
  • Additives preferably 15-80% by weight, preferably 20-70% by weight of detergent additive A), 2-40% by weight, preferably 5-25% by weight of nucleator B) and 15-80% by weight, preferably 20-70% by weight of cold flow improver C).
  • the additives according to the invention are preferably used as concentrates which contain from 10 to 95% by weight and preferably from 20 to 80% by weight, for example from 25 to 60% by weight, of solvent.
  • Preferred solvents are higher-boiling aliphatic, aromatic hydrocarbons, alcohols, esters, ethers and mixtures thereof.
  • Such concentrates preferably contain from 0.01 to 10 parts by weight, preferably from 0.05 to 5 parts by weight, for example from 0.1 to 3 parts by weight of the nucleator compound B) per part by weight of detergent additive A).
  • the novel nucleators B) improve the response of detergent-containing middle distillates such as kerosene, jet fuel, diesel and heating oil for conventional flow improvers with regard to the reduction of pour point and CFPP value and the improvement of paraffin dispersion.
  • Particularly preferred mineral oil distillates are middle distillates.
  • the middle distillate is especially those mineral oils which are obtained by distillation of crude oil, in the range of about 150 to 450 0 C and in particular in the range of about 170 to 390 0 C boiling, for example kerosene, jet fuel, diesel and fuel oil.
  • middle distillates typically contain about 5 to 50 wt .-%, such as about 10 to 35 wt .-% n-paraffins, of which the longer-chain crystallize on cooling and can affect the flowability of the middle distillate.
  • Particularly advantageous are the compositions of the invention in middle aromatics with low aromatic content of less than 21 wt .-%, such as less than 19 wt .-%.
  • Particularly advantageous compositions of the invention are further described in middle distillates with low final boiling point, i.e.
  • aromatic compounds is meant the sum of mono-, di- and polycyclic aromatic compounds as determinable by HPLC according to DIN EN 12916 (2001 edition).
  • the middle distillates may also contain minor amounts, for example up to 40% by volume, preferably 1 to 20% by volume, especially 2 to 15, for example 3 to 10% by volume of the oils of animal and / or vegetable origin described in more detail below such as fatty acid methyl esters.
  • compositions according to the invention are also suitable for improving the cold properties of detergent additives containing fuels based on renewable raw materials (biofuels).
  • biofuels oils obtained from animal and preferably vegetable material or both, and derivatives thereof, which can be used as fuel and especially as diesel or fuel oil.
  • biofuels oils obtained from animal and preferably vegetable material or both, and derivatives thereof, which can be used as fuel and especially as diesel or fuel oil.
  • biofuels examples include rapeseed oil, coriander oil, soybean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, corn oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, beef tallow, bone oil, fish oils and used edible oils.
  • Other examples include oils derived from wheat, jute, sesame, shea nut, arachis oil and linseed oil.
  • the fatty acid alkyl esters, also referred to as biodiesel can be derived from these oils by methods known in the art.
  • Rapeseed oil which is a mixture of glycerol esterified fatty acids, is preferred because it is available in large quantities and is readily available by squeezing rapeseed.
  • sunflower, palm and soybeans and their mixtures with rapeseed oil are preferred.
  • esters of fatty acids are particularly suitable as biofuels.
  • Preferred esters have an iodine value of from 50 to 150 and in particular from 90 to 125.
  • Mixtures with particularly advantageous properties are those which are principally, i. H. to contain at least 50 wt .-% of methyl esters of fatty acids having 16 to 22 carbon atoms and 1, 2 or 3 double bonds.
  • the preferred lower alkyl esters of fatty acids are the methyl esters of oleic, linoleic, linolenic and erucic acids.
  • the additives can be used alone or together with other additives, for.
  • pour point depressants or dewaxing aids with other detergents, with antioxidants, cetane number improvers, dehazers, Demulsifiers, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or additives for lowering the cloud point.
  • paraffin dispersion in middle distillates is determined in the short sediment test as follows:
  • test oils used were current middle distillates from European refineries.
  • the CFPP value was determined in accordance with EN 116 and the determination of the cloud point in accordance with ISO 3015.
  • the determination of the aromatic hydrocarbon groups was carried out in accordance with DIN EN 12916 (November 2001 edition)
  • ASA alkenyl succinic anhydrides
  • highly reactive polyolefins proportion of terminal double bonds> 90%, degree of maleation about 1, 2 to 1, 3
  • Alkenylsuccinic anhydride and polyamine were reacted in a molar ratio of 1, 0 to 1, 5 moles of alkenylsuccinic anhydride per mole of polyamine (see Table 2).
  • the detergent additives were used as 33% solutions in higher boiling aromatic solvent.
  • the dosage rates given in Tables 2 to 4 for the detergent additives A) and nucleators B) relate to the active ingredients used.
  • test oil 1 The determination of the CFPP values in test oil 1 was carried out after adding the oil with 200 ppm C2 and 150 ppm C3.
  • DA detergent additive
  • P2B poly (butene) from a mixture of different butene isomers with a proportion of 2-butene of about 80%;
  • TEPA tetraethylenepentamine;
  • PEHA pentaethylenehexamine;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne l'utilisation d'au moins un composé B) oléosoluble agissant comme agent de nucléation pour la cristallisation de paraffines, ce composé B) étant choisi parmi des copolymères constitués d'éthylène et de 2 à 10,5 % en moles d'au moins un ester d'acide carboxylique éthyléniquement insaturé, pour renforcer la réponse d'améliorants C) de la fluidité à froid des huiles minérales dans des distillats moyens contenant au moins un additif détergent A) azoté exempt de cendres, les améliorants C) étant différents du composé B). L'additif détergent A) est un composé amphiphile oléosoluble qui comprend au moins un groupe alkyle ou alcényle lié à un groupe polaire, le groupe alkyle ou alcényle comportant 10 à 500 atomes de carbone et le groupe polaire comportant au moins deux atomes d'azote.
EP08773478.6A 2007-06-20 2008-06-17 Utilisation dans des huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée Active EP2162514B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007028306A DE102007028306A1 (de) 2007-06-20 2007-06-20 Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
PCT/EP2008/004852 WO2008155090A1 (fr) 2007-06-20 2008-06-17 Huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée

Publications (2)

Publication Number Publication Date
EP2162514A1 true EP2162514A1 (fr) 2010-03-17
EP2162514B1 EP2162514B1 (fr) 2017-08-09

Family

ID=39734949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08773478.6A Active EP2162514B1 (fr) 2007-06-20 2008-06-17 Utilisation dans des huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée

Country Status (8)

Country Link
US (1) US8734542B2 (fr)
EP (1) EP2162514B1 (fr)
JP (1) JP5800410B2 (fr)
KR (1) KR101498002B1 (fr)
CA (1) CA2691069A1 (fr)
DE (1) DE102007028306A1 (fr)
RU (1) RU2475518C2 (fr)
WO (1) WO2008155090A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875747B2 (en) * 2006-10-10 2011-01-25 Afton Chemical Corporation Branched succinimide dispersant compounds and methods of making the compounds
DE102007028307A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028305A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028304A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
JP2018090652A (ja) * 2015-04-09 2018-06-14 株式会社クラレ 原油分散安定剤
GB201810852D0 (en) 2018-07-02 2018-08-15 Innospec Ltd Compositions, uses and methods
WO2020092209A1 (fr) 2018-10-29 2020-05-07 Ecolab Usa Inc. Alcénylsuccinimides et leur utilisation en tant qu'inhibiteurs d'hydrates de gaz naturel
EP4166633A1 (fr) * 2021-10-15 2023-04-19 Innospec Fuel Specialties LLC Améliorations de carburants
WO2023057748A1 (fr) * 2021-10-04 2023-04-13 Innospec Fuel Specialties Llc Améliorations de carburants

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961916A (en) * 1972-02-08 1976-06-08 Exxon Research And Engineering Company Middle distillate compositions with improved filterability and process therefor
US4022589A (en) * 1974-10-17 1977-05-10 Phillips Petroleum Company Fuel additive package containing polybutene amine and lubricating oil
US4108613A (en) * 1977-09-29 1978-08-22 Chevron Research Company Pour point depressants
DE2921330A1 (de) * 1978-05-25 1979-12-06 Exxon Research Engineering Co Additiv-zubereitung fuer destillat- heizoele aus drei (oder mehr) komponenten
CA1120269A (fr) * 1978-05-25 1982-03-23 Robert D. Tack Combinaisons d'additifs, et carburants qui les renferment
US4211534A (en) 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
US4357148A (en) * 1981-04-13 1982-11-02 Shell Oil Company Method and fuel composition for control or reversal of octane requirement increase and for improved fuel economy
DE3405843A1 (de) 1984-02-17 1985-08-29 Bayer Ag, 5090 Leverkusen Copolymere auf basis von maleinsaeureanhydrid und (alpha), (beta)-ungesaettigten verbindungen, ein verfahren zu ihrer herstellung und ihre verwendung als paraffininhibitoren
GB2174102A (en) * 1985-04-24 1986-10-29 Shell Int Research Diesel fuel composition
US4968321A (en) * 1989-02-06 1990-11-06 Texaco Inc. ORI-inhibited motor fuel composition
DE3916366A1 (de) 1989-05-19 1990-11-22 Basf Ag Neue umsetzungsprodukte von aminoalkylenpolycarbonsaeuren mit sekundaeren aminen und erdoelmitteldestillatzusammensetzungen, die diese enthalten
US5006130A (en) * 1989-06-28 1991-04-09 Shell Oil Company Gasoline composition for reducing intake valve deposits in port fuel injected engines
DE3926992A1 (de) * 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
GB9213870D0 (en) * 1992-06-30 1992-08-12 Exxon Chemical Patents Inc Oil additives and compositions
US5286264A (en) * 1992-12-21 1994-02-15 Texaco Inc. Gasoline detergent additive composition and motor fuel composition
EP0606055B1 (fr) 1993-01-06 1997-09-17 Hoechst Aktiengesellschaft Terpolymères à base d'anhydrydes d'acides dicarboxyliques alpha, bêta insaturés, de composés alpha, bêta insaturés et de polyoxyalkylène éther d'alcools inférieurs insaturés
GB9315205D0 (en) * 1993-07-22 1993-09-08 Exxon Chemical Patents Inc Additives and fuel compositions
DE4430294A1 (de) 1994-08-26 1996-02-29 Basf Ag Polymermischungen und ihre Verwendung als Zusatz für Erdölmitteldestillate
ATE223953T1 (de) * 1997-01-07 2002-09-15 Clariant Gmbh Verbesserung der fliessfähigkeit von mineralölen und mineralöldestillaten unter verwendung von alkylphenol-aldehydharzen
US6733550B1 (en) * 1997-03-21 2004-05-11 Shell Oil Company Fuel oil composition
GB9725579D0 (en) 1997-12-03 1998-02-04 Exxon Chemical Patents Inc Additives and oil compositions
DE10155748B4 (de) * 2001-11-14 2009-04-23 Clariant Produkte (Deutschland) Gmbh Schwefelarme Mineralöldestillate mit verbesserten Kälteeigenschaften, umfassend einen Ester eines alkoxylierten Polyols und ein Copolymer aus Ethylen und ungesättigten Estern
HUE028316T2 (en) * 2005-12-22 2016-12-28 Clariant Produkte Deutschland Gmbh Mineral oils containing detergent additives with improved cold flow properties
DE102007028305A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028307A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028304A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2008155090A1 *

Also Published As

Publication number Publication date
US20100192455A1 (en) 2010-08-05
JP2010530453A (ja) 2010-09-09
WO2008155090A1 (fr) 2008-12-24
US8734542B2 (en) 2014-05-27
RU2475518C2 (ru) 2013-02-20
EP2162514B1 (fr) 2017-08-09
KR101498002B1 (ko) 2015-03-03
RU2010101588A (ru) 2011-07-27
JP5800410B2 (ja) 2015-10-28
CA2691069A1 (fr) 2008-12-24
KR20100049036A (ko) 2010-05-11
DE102007028306A1 (de) 2008-12-24

Similar Documents

Publication Publication Date Title
EP1801187B1 (fr) Huiles minérales contenant des additifs détergents avec capacité de fluidité au froid améliorée
EP2516604B1 (fr) Additifs polyfonctionnels ayant une meilleure aptitude à l'écoulement
EP2162513B1 (fr) Huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée
EP2162512B1 (fr) Huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée
DE102005035277B4 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
EP2516605B1 (fr) Additifs de refroidissement ayant une meilleure aptitude à l'écoulement
EP2162514A1 (fr) Huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée
EP1749874B1 (fr) Utilisation de résines d'alkylphénol-aldéhyde pour la production d'huiles minérales à conductivité et écoulement à froid améliorés
EP2162515B1 (fr) Huiles minérales contenant des additifs détergents dotées d'une fluidité à froid améliorée
DE102006001381A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
EP1752513A2 (fr) Huiles minérales ayant une conductivité et un écoulement à froid améliorés
EP4127106B1 (fr) Compositions et procédés de dispersion des paraffines dans des huiles de combustible à faible teneur en soufre
DE102005061465B4 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100906

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT INTERNATIONAL LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT INTERNATIONAL LTD

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB LT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB NL

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015525

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015525

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

26N No opposition filed

Effective date: 20180511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200625

Year of fee payment: 13

Ref country code: NL

Payment date: 20200625

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210701

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 16

Ref country code: DE

Payment date: 20230627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 16