EP2161698A1 - Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten in einem Straßennetz - Google Patents
Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten in einem Straßennetz Download PDFInfo
- Publication number
- EP2161698A1 EP2161698A1 EP09165735A EP09165735A EP2161698A1 EP 2161698 A1 EP2161698 A1 EP 2161698A1 EP 09165735 A EP09165735 A EP 09165735A EP 09165735 A EP09165735 A EP 09165735A EP 2161698 A1 EP2161698 A1 EP 2161698A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- intensity
- vehicle
- node
- signal
- signal group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000009826 distribution Methods 0.000 claims abstract description 99
- 238000005457 optimization Methods 0.000 claims abstract description 56
- 238000000819 phase cycle Methods 0.000 claims description 12
- 230000000644 propagated effect Effects 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 230000000903 blocking effect Effects 0.000 claims description 3
- 230000011664 signaling Effects 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 241001295925 Gegenes Species 0.000 description 3
- 101000796140 Homo sapiens Ankyrin-1 Proteins 0.000 description 1
- 101000617808 Homo sapiens Synphilin-1 Proteins 0.000 description 1
- 102100021997 Synphilin-1 Human genes 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 201000008112 hereditary spherocytosis type 1 Diseases 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
- G08G1/081—Plural intersections under common control
- G08G1/082—Controlling the time between beginning of the same phase of a cycle at adjacent intersections
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
Definitions
- the invention relates to a method for the coordination of light signal-controlled nodes of a road network according to the preamble of claim 1.
- a traffic signal system comprises signal generators grouped for signal groups for different traffic flows for emitting light signals to the road users.
- a main direction signal group for controlling the traffic along a main traffic direction at the node
- a sub direction signal group for controlling the traffic turning in or out of a side traffic direction.
- the traffic signal system further comprises a control device in which a signal program runs to switch on the signal groups according to specific signal times.
- the signal times comprise, for each signal group, the green times, defined by the times green start and end of green within one round trip time, as well as a phase sequence of the vehicle traffic blocking red and releasing green phases.
- the signal program is specified as a frame signal plan whose phase transitions are immutable while maintaining intermediate times, but whose durations can be expanded or compressed as required within predefinable permission ranges.
- the Green Wave is of particular importance for controlling the traffic flow through traffic lights over several nodes. It is achieved by coordinating the signal programs of adjacent nodes, in which the majority of vehicles can pass several nodes without stopping, while maintaining a certain speed. In this case, the green times in the direction of travel of successive nodes are matched by offsetting the signal programs.
- the Green Wave on the road or in the street is mainly used to reduce the sum of all personal travel times, to improve driving comfort, to reduce fuel consumption and to minimize the impact of the environment on noise and pollutants. For this purpose - as well as to increase traffic safety - the aim is to keep the scattering of the speeds of the individual vehicles and the number of stops of all vehicles as small as possible. In the road network, a total optimization is to be striven for. Green waves for motor vehicle traffic are recommended for distances between traffic signals of up to 750 m, in special cases up to 1000 m. At longer distances, vehicle spools dissolve to such an extent that it is no longer sensible to coordinate the traffic lights.
- the optimization task is a problem of the complexity class NP, short for: non-deterministic with polynomial computation time. There is no known optimization technique that solves the original optimization task while guaranteeing the global minimum.
- Another approach is to use such heuristic optimization techniques that are known to avoid local optima, such as genetic algorithms, to arrive at an optimum without changing the original optimization task. Usually, additional constraints are introduced that narrow the potential solution space.
- Optimum skew times are determined between the signal time schedules of the node currently to be coordinated, referred to below as the main node, and the already coordinated adjacent node, referred to hereinafter as the last or last pre-node.
- an objective function in the form of a weighted sum of waiting times and numbers of vehicle stops is minimized in and against the optimization direction between the last Vorknoten and the main node moving vehicle body.
- the waiting times and numbers of stops thereby depend on the phase sequences of the signal time schedules of the main node and the last predecode, on the offset time between these signal timetables and on the vehicle pulse-modeling intensity distributions.
- Each signal group becomes one Intensity distribution of a vehicle body approaching the signal group and an intensity distribution of a transmitted from the signal group vehicle pulse modeled.
- intensity distributions rectangular profiles with a high and low intensity section, parabolic approximated profiles or any profile shapes obtained from measured data are used.
- this known coordination method suffers from the disadvantage that the modeled intensity distributions before and after the signal groups of the main node do not simulate the real vehicle pulse well enough and therefore lead to suboptimal coordination results.
- the invention is therefore based on the object to provide a method of the type mentioned, which compared to the cited prior art provides improved coordination results.
- the object is achieved by a generic coordination method with the features specified in the characterizing part of claim 1.
- determining the optimal offset time for the main node it is evaluated how well an intensity distribution modeled for a vehicle cluster approaching the signal group of the last predecode against the optimization direction agrees with the intensity distribution that is involved in coordinating the last predecode for one of the signal group of the last predecode against the optimization direction to the penultimate preselected transmitted vehicle pulse was modeled.
- the intensity distribution which was modeled for a vehicle pulse transmitted from a main direction signal group of the penultimate node to the last precursor is taken into account for the signaling of the main direction signal group of the last forward node for a vehicle pulse transmitted from the last precursor node to the main node undpropagiert.
- the intensity distributions are thus calculated away in the optimization direction over the main node to be coordinated or propagated unchanged on arrival of the vehicle body during the green time, which corresponds graphically in a time-path diagram pushing through the main direction vehicle pulse.
- the vehicle spools are used as they were sent by the Vorknoten.
- the intensity distribution which was modeled for a vehicle pulse sent by a pitch signal group of the penultimate forecast node and approaching the last pitch node during its red phase is sent as part of the main node from the main direction signal group of the last forward node Vehicle Pulse propagated.
- the secondary directional vehicle pulse accumulating in the optimization direction at the preselected node is further propagated from the start of green with high intensity, where it merges with the main direction vehicle pulse sent from the pre-node to the main node.
- two-stage intensity distributions with two sections of constant intensity of different heights or one-stage intensity distributions with only one section of constant intensity are provided for modeling the vehicle pulse moving against the optimization direction.
- main directional pulses which are preferably used in accesses at the edge of the network
- one-level intensity distribution which better corresponds to the expected vehicle shape in a coordinated road and is therefore preferably used for such coordination units in the network.
- the width of the pulse shape is not dependent on the green time distribution, which is the case for both the high and low intensity sections when using the two-step shape.
- the intended intensity distributions differ by a time interval by which the constant-intensity section in a single-level intensity distribution or by the higher-intensity section of constant intensity in a two-level intensity distribution within the green period of Main direction signal group is shifted from green start.
- the solution space of possible intensity distributions is advantageously extended, preferably for main direction and coordination pulse moving in the direction of optimization.
- the objective function is varied over a multiplicity of possible phase sequences and / or over a plurality of intensity distributions with possible time intervals, in order to determine the optimum phase sequence and / or the intensity distribution with optimum time interval each with optimum offset time.
- these intensity distributions can advantageously be applied automatically in order to determine an optimized coordination.
- the invention can be used not only to optimize the offset times alone, but also to optimize the phase sequences and / or the intensity distributions.
- the intensity distribution for a vehicle group transmitted by a signal group is modeled with at least one section of constant, maximum intensity whose value is less than the maximum possible intensity, in order to take into account a dispersion and / or deflections of a vehicle group.
- the reduced intensity value corresponds more closely to the real or in reality expected, maximum intensity, which can be determined from the real or expected vehicle pulse approaching this signal group on the basis of real time pulse lengths. This allows a dispersion of in and against the particular Optimizing direction moving vehicle pulse and by turning data related effects of reality are modeled, which is particularly necessary for a correct offset time measurement. Otherwise there is a risk of modeling to narrow green bands.
- the coordination method according to the invention is not restricted to a specific network topology or to special signaling at the node.
- the following explanations will refer to the topology of a network section FIG. 1 basis, according to which the motor vehicle traffic along a road is controlled by at three consecutive nodes 1, 2, 3 arranged light signal systems.
- the main traffic direction runs along this road, on the drawing sheet from bottom to top or from top to bottom, with side branches defining secondary traffic directions at the nodes 1, 2, 3 turn vehicles in the main traffic direction and turn it.
- Light signal systems with two- or three-pronged signal generators, which are grouped into signal groups and controlled by a running in a node control unit signal program with a traffic-dependent or daytime-dependent signal timing plan, are known per se and in FIG. 1 not fully illustrated.
- the traffic in the main traffic direction is controlled by a signal group H1 having a signal time plan SZP H1 and in the secondary traffic direction by a signal group N1 having a signal time plan SZP N1 .
- the traffic at the second node 2 or at the third node 3 is controlled by signal groups H2 and H3 with signal time schedules SZP H2 and SZP H3 for the main traffic direction and signal groups N2 and N3 with signal time plans SZP N2 and SZP N3 for the secondary traffic directions.
- a uniform circulation time t U is assumed for all signal time schedules, so that the best possible offset times between their signal time schedules, ie their relative start time shifts, are to be determined in order to coordinate the traffic light systems.
- a so-called optimization plan is first defined, which specifies the order in which the nodes 1, 2, 3 are included in the optimization.
- the optimization plan "1 - 2 - 3" can be specified: After optimization of node 1, the optimization of node 2 and then finally the optimization of node 3.
- Each node 1, 2, 3 is optimized individually.
- the procedure is as follows: For example, if the node 1 is already optimized, ie the optimal timing position of the signal time plan SZP H1 or SZP N1 set, so is an offset time-dependent objective function, for example, enter the respective holding and waiting times, by variation minimizes the offset time between the coordinated signal time plan SZP H1 and the signal timing plan SZP H2 to be coordinated.
- the effects are determined only at the immediately adjacent, already coordinated, preliminary nodes 1.
- distributions of the traffic intensities are modeled via a signal circulation of a vehicle pulse approaching a signal group and a vehicle pulse transmitted by the signal group.
- FIG. 2 modeled for aharipulk from the secondary directions N a constant intensity during the green time of the transmitting signal group N and a negligible intensity during the red time, namely for the intensity distributions of both before i N - and after i N + of the signal group N.
- the unit time t with the start and 0 at the rotation time t U ends; the green period is marked by an empty bar between green start t Gb and end of green t Ge , the rest of the red period by a bar with a dash.
- the intensity distribution i H - of the approaching in the main traffic direction of the signal group H vehicle pulse is in accordance with FIG. 3 is modeled as constant throughout the orbital period t U ; the intensity distribution i H + after the signal group H is modeled with a high intensity i h at the level of the saturation traffic intensity starting at green start t Gb and then with a lower intensity in for the remaining green time until end t Ge .
- the intensity distributions for vehicle pulse resulting in each case from an offset time optimized according to the prior art are shown against the optimization direction OPT.
- the intensity distribution of a vehicle body is modeled from node 2 to node 1.
- the two-level intensity distribution for a main directional pulse is determined according to FIG. 3 the hatched area marks the high intensity portion i h , the unshaded area the low intensity portion i n .
- the offset time of the signal time chart SZP H2 is optimized for the signal time schedule SPH1.
- the intensity distribution of a vehicle body is modeled from node 3 to node 2 in order to optimize the offset time of the signal time schedule SZP H3 to the signal time schedule SP H2 .
- the vehicle cluster from node 3 to node 2 has a different location at node 2 than the vehicle cluster from node 2 to node 1. Assuming that node 3 is the first in the street, that corresponds to Modeled intensity of the vehicle pulse from node 3 to node 2 largely reality, but not the modeled intensity of the vehicle body from node 2 to node 1.
- this error modeling in the optimization direction is avoided by "shifting" the intensity distribution: after optimizing the offset time at node 1, the intensity distributions of the vehicle pulse are modeled from node 1 to node 2. After optimization of the offset time at node 2, the intensity distributions of the vehicle pulse are then modeled from node 2 to node 3, the intensity distribution no longer being present in front of signal group H2 at node 2 (as in FIG FIG. 3 ) is assumed to be equally distributed over the orbital period t U , but according to the intensity distribution modeled from node 1. Accordingly remains FIG. 5 the main directional pulse from node 1 through node 2 to node 3 is unchanged in the form of its intensity distribution.
- the main directional pulse of node 1 with its high intensity i 1 from green start and its low intensity i 2 to green end passes node 2 in green and remains unchanged in shape from node 2 to node 3 with the two stepped areas of high intensity i 4 and then low intensity i 3 .
- the tributary pulse of node 1 of low intensity i 5 appears at node 2 during its red-time and is then propagated there as a high-intensity region i 6 from node 2 to node 3.
- the intensity ranges i 3 , i 4 and i 6 merge into a new main direction pulse, only its intensity components i 3 and i 4 from the main direction come.
- the accumulated portions of the main direction pulse i 3 , i 4 and i 6 merge with the intensity i 7 of the secondary direction pulse from node 2 to node 3 to a new vehicle pulse with an intensity distribution, not shown.
- the individual intensity profiles are folded to illustrate each as a cross section to the left in the drawing plane.
- the intensity distributions of the vehicle pulse can not be "pushed through” against the optimization direction OPT.
- the intensity distributions of the incoming vehicle pulse are not known, because the nodes of the required signal groups are not yet optimized. Accordingly, uniformly distributed intensities in front of the signal groups continue to be used here.
- the accuracy of the pulse modeling is improved according to the invention by evaluating, when optimizing a node, how well the intensity distributions of the vehicle pulse arriving at the adjacent, already optimized nodes match those intensity distributions previously used for their optimization.
- the main node 3 is optimized so that the intensity distributions of the vehicle node arriving from the main node 3 at the last Vorknoten 2 as possible correspond to the intensity distributions of the vehicle pulse previously modeled for vehicle pulse, which were sent from the last Vorknoten 2 to its Vorknoten 1 to to optimize the offset time at node 2.
- a simple embodiment for compliance with the intensity distribution of incoming vehicle pulse is a modification of the target function PI.
- this consists of a weighted sum of waiting times w s (t) and holding h s (t) per signal group s at the node with a total of S signal groups, for example H and N, over a signal revolution t from 0 to t U -1, where ⁇ s (eg 0.01) and ⁇ s (eg 0.8) are weighting factors with, for example, the values given in parentheses:
- the target function PI is extended by an additional term multiplied by the weighting factor ⁇ s (eg 0.8) per signal group s and circulating time t, which indicates the modeling accuracy of the respective vehicle pulse.
- c s (t) is the number of vehicles arriving at the signal group s for the circulating time unit t.
- g s (t) models a linearly increasing function, which assumes the value 0 at green start t Gb and the value 1 at green end t Ge , if t Gb is coordinated at green start, and a correspondingly linear falling function, if co-ordinates at end of green t Ge becomes.
- i max, s are the maximum intensity at the signal group s, which corresponds to the main direction pulse of the high intensity i h at the green start t Gb .
- i s + (t) indicates the intensity distribution according to the signal group s.
- a further advantage results if, instead of the standard profile, a profile with only one pulse intensity i k is optionally selected for the direction of optimization FIG. 6 is used.
- the underlying vehicle pulse is called a coordination pulse because its intensity distribution better corresponds to the expected shape of a coordinated node where the intensity before and after the transmitting signal group from green start t Gb has a constant value i k for a certain time, which then - still during green time - drops to zero when all the vehicles in the Coordination Pack have passed the node.
- the width of the coordination pulse is not dependent on the length of the blocking period.
- intensity distributions i Ge of the coordination pulse and the main directional pulse in which the intensity distribution or the high-intensity region are shifted to the end of the t Ge .
- i Gb and i Ge provides very good coordination solutions.
- a plurality of intensity distributions with time intervals ⁇ t of different lengths can be included in the solution space.
- time intervals ⁇ t such as the existing green time minus the time width of the coordination pulse or the high-intensity region of the main directional pulse, measured in seconds.
- the application of the different intensity distributions can either be done via planning specifications or automated, in that the optimization method evaluates all permitted time intervals ⁇ t for all phase sequences at the best offset time and that selects the best combination of phase sequence and time shift.
- FIG. 3 shows a coordination structure from node 3 via node 2 to node 1, in which there is always a coordination pulse with an intensity distribution according to FIG. 7 has been used.
- a coordination was carried out with an intensity distribution i Ge shifted to the end of the earth t Ge .
- the intensity of a vehicle cluster coordinated over several nodes decreases from traffic signal to traffic signal system, since a dispersion of the vehicle body can be detected by vehicles moving at different speeds and by vehicles turning off the road to be coordinated.
- both effects are imaged when "pushing through” the intensity distribution of the vehicle pulse.
- the intensity distributions of the vehicle pulse are again and again set against the optimization direction OPT, whereby initially the maximum intensity is always assumed. So that the pulse dispersion can also be imaged here, the maximum intensity i max is determined according to FIG. 10 percentage - for example, to 75% - reduced to the actual Reproduce pulse lengths. The reduction of the maximum intensity i max results in a time extension of the vehicle body.
- the determination of the intensity reduction can be carried out automatically from the perspective, for example by taking into account the turning rates or by planning specifications.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten eines Straßennetzes nach dem Oberbegriff des Patentanspruches 1.
- In innerstädtischen Straßennetzen wird der Fahrzeugverkehr an Knotenpunkten, im Folgenden kurz Knoten genannt, durch Lichtsignalanlagen gesteuert. Eine Lichtsignalanlage umfasst zu Signalgruppen für unterschiedliche Verkehrsströme gruppierte Signalgeber zur Abgabe von Lichtsignalen an die Verkehrsteilnehmer. Typischerweise liegt an einem Knoten eine Hauptrichtungs-Signalgruppe zur Steuerung des Verkehrs längs einer Hauptverkehrsrichtung am Knoten und eine Nebenrichtungs-Signalgruppe zur Steuerung des in eine Nebenverkehrsrichtung abbiegenden oder aus dieser einbiegenden Verkehrs vor. Die Lichtsignalanlage umfasst ferner ein Steuergerät, in welchem ein Signalprogramm abläuft, um die Signalgruppen gemäß bestimmter Signalzeiten anzuschalten. Die Signalzeiten umfassen für jede Signalgruppe die Grünzeiten, definiert durch die Zeitpunkte Grünbeginn und Grünende innerhalb einer Umlaufzeit, sowie eine Phasenfolge von den Fahrzeugverkehr sperrenden Rot- und freigebenden Grünphasen. Grundsätzlich unterscheidet man Festzeit-Signalsteuerungen mit festgelegten, beispielsweise tageszeitabhängigen, Signalzeiten ohne Einwirkungsmöglichkeiten durch Verkehrsteilnehmer und verkehrsabhängige Signalsteuerungen, bei welchen der Verkehrsteilnehmer das Signalprogramm beeinflussen kann. Bei teil- oder vollverkehrsabhängigen Steuerungen ist das Signalprogramm als Rahmensignalplan vorgegeben, dessen Phasenübergänge unter Einhaltung von Zwischenzeiten unveränderlich sind, dessen Dauern jedoch bedarfsweise innerhalb vorgebbarer Erlaubnisbereiche gedehnt oder gestaucht werden können.
- Für die Steuerung des Verkehrsablaufs durch Lichtsignalanlagen über mehrere Knoten hinweg ist die Grüne Welle von besonderer Bedeutung. Sie wird durch Koordinierung der Signalprogramme benachbarter Knoten erreicht, bei der die Mehrzahl der Fahrzeuge unter Einhaltung einer bestimmten Geschwindigkeit mehrere Knoten ohne Halt passieren kann. Dabei werden die Grünzeiten in Fahrtrichtung hintereinander liegender Knoten durch Versatz der Signalprogramme aufeinander abgestimmt. Die Grüne Welle im Straßennetz oder im Straßenzug dient vorwiegend dazu, die Summe aller personenbezogenen Reisezeiten zu verringern, den Fahrkomfort zu verbessern, den Kraftstoffverbrauch zu senken und die Umwelt möglichst wenig durch Lärm und Schadstoffe zu beeinträchtigen. Dazu - wie auch zur Erhöhung der Verkehrssicherheit - wird angestrebt, die Streuung der Geschwindigkeiten der einzelnen Fahrzeuge sowie die Anzahl der Halte aller Fahrzeuge möglichst klein zu halten. Im Straßennetz ist eine Gesamtoptimierung anzustreben. Grüne Wellen für den Kraftfahrzeugverkehr sind bei Entfernungen zwischen Lichtsignalanlagen von bis zu 750 m, in besonderen Fällen auch bis zu 1000 m, zu empfehlen. Bei größeren Abständen lösen sich Fahrzeugpulks so weit auf, dass eine Koordinierung der Lichtsignalanlagen nicht mehr sinnvoll ist.
- Zur Koordinierung von Lichtsignalanlagen steht neben der Versatzzeit die Auswahl der Phasenfolge als Stellgröße zur Verfügung. Bei der Optimierungsaufgabe handelt es sich um ein Problem der Komplexitätsklasse NP, kurz für: nichtdeterministisch mit polynomieller Rechenzeit. Es ist kein Optimierungsverfahren bekannt, das die ursprüngliche Optimierungsaufgabe löst und dabei das globale Minimum garantiert.
- Ein Ansatz, mit diesem Dilemma umzugehen, besteht darin, die Versatzzeiten regelbasiert zu ermitteln. Dies wird insbesondere bei der Offline-Planung Grüner Wellen eingesetzt. Unter Berücksichtigung der Reisezeiten zwischen den Knoten werden paarweise möglichst breite Grünbandüberlappungen verwendet. Eine Optimierung im eigentlichen Sinne findet nicht statt. Ein Wirkungsmodell zur Ermittlung von Wartezeiten und Halten wird nicht benötigt.
- Ein anderer Ansatz sieht die Anwendung solcher heuristischer Optimierungsverfahren vor, die dafür bekannt sind, lokale Optima zu vermeiden, wie zum Beispiel Genetische Algorithmen, um zu einem Optimum zu gelangen, ohne dabei die ursprüngliche Optimierungsaufgabe zu verändern. Gewöhnlich werden zusätzliche Randbedingungen eingeführt, die den möglichen Lösungsraum einengen.
- Ein weiterer Ansatz formuliert die Optimierungsaufgabe so um, dass sie nicht mehr NP-schwer ist. Hierzu ist aus der Broschüre "Versatzoptimierung im Straßennetz: VERO", herausgegeben 11/1994 von Siemens AG, Bestell-Nr. A24705-X-A367-*-04, ein Verfahren zur Optimierung der Koordinierung von Lichtsignalanlagen in einem Straßennetz bekannt, das von den Intensitätsverteilungen der einzelnen Zuflüsse an einer Lichtsignalanlage, also der Aufteilung der jeweils am Ende der Zufahrt ankommenden Verkehrsintensität, ausgeht. In einem Optimierungsplan wird eine Reihenfolge der Knoten festgelegt - und damit eine Optimierungsrichtung -, in der die Knoten koordiniert werden. Zwischen den Signalzeitenplänen des aktuell zu koordinierenden Knotens, im Folgenden Hauptknoten genannt, und dem oder den bereits koordinierten benachbarten Knoten, im Folgenden letzter oder letzte Vorknoten genannt, werden optimale Versatzzeiten ermittelt. Hierzu wird eine Zielfunktion in Form einer gewichteten Summe aus Wartezeiten und Anzahlen von Halten von Fahrzeugen sich in und gegen Optimierungsrichtung zwischen dem letzten Vorknoten und dem Hauptknoten bewegender Fahrzeugpulks minimiert. Die Wartezeiten und Anzahlen von Halten hängen dabei von den Phasenfolgen der Signalzeitenpläne des Hauptknotens und des letzten Vorknotens, von der Versatzzeit zwischen diesen Signalzeitenplänen sowie von die Fahrzeugpulks modellierenden Intensitätsverteilungen ab. Je Signalgruppe werden eine Intensitätsverteilung eines sich der Signalgruppe nähernden Fahrzeugpulks und eine Intensitätsverteilung eines von der Signalgruppe gesendeten Fahrzeugpulks modelliert. Als Intensitätsverteilungen werden rechteckförmige Profile mit einem Abschnitt hoher und einem niedriger Intensität, parabelförmig approximierte Profile oder beliebige, aus gemessenen Daten gewonnene Profilformen verwendet.
- Wie weiter unten näher beschrieben, leidet dieses bekannte Koordinierungsverfahren unter dem Nachteil, dass die modellierten Intensitätsverteilungen vor und nach den Signalgruppen des Hauptknotens die realen Fahrzeugpulks nicht gut genug nachbilden und daher zu suboptimalen Koordinierungsergebnissen führen.
- Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art bereitzustellen, welches gegenüber dem genannten Stand der Technik verbesserte Koordinierungsergebnisse liefert.
- Die Aufgabe wird erfindungsgemäß gelöst durch ein gattungsgemäßes Koordinierungsverfahren mit den im kennzeichnenden Teil des Patentanspruches 1 angegebenen Merkmalen. Bei der Ermittlung der optimalen Versatzzeit für den Hauptknoten wird bewertet, wie gut eine Intensitätsverteilung, die für einen sich der Signalgruppe des letzten Vorknotens gegen die Optimierungsrichtung nähernden Fahrzeugpulk modelliert wird, mit der Intensitätsverteilung übereinstimmt, die bei Koordinierung des letzten Vorknotens für einen von der Signalgruppe des letzen Vorknotens gegen die Optimierungsrichtung zum vorletzten Vorknoten gesendeten Fahrzeugpulk modelliert wurde. Alternativ oder gleichzeitig wird bewertet, wie gut eine Intensitätsverteilung, die für einen sich der Signalgruppe des Hauptknotens in Optimierungsrichtung nähernden Fahrzeugpulk modelliert wird, mit der Intensitätsverteilung übereinstimmt, die bei Koordinierung eines nächsten Folgeknotens, also eines dem Hauptknoten benachbarten und im Optimierungsplan folgenden Knoten, für einen von der Signalgruppe des Hauptknotens in Optimierungsrichtung gesendeten Fahrzeugpulk modelliert werden wird. Hierdurch wird dem Problem begegnet, dass Ankunftsverteilungen von sich gegen die Optimierungsrichtung bzw. Abfahrtsverteilungen von sich in Optimierungsrichtung bewegenden Fahrzeugpulks wegen der noch nicht koordinierten Signalgruppen am Hauptknoten noch nicht bekannt sind. Hierdurch können Intensitätsverteilungen für Fahrzeugpulks nachgebildet werden, die der Realität näher kommen und zu besseren Koordinierungsergebnissen führen.
- In einer vorteilhaften Ausführungsform des erfindungsgemäßen Koordinierungsverfahrens wird die Intensitätsverteilung, die für einen von einer Hauptrichtungs-Signalgruppe des vorletzten Vorknotens zum letzten Vorknoten gesendeten Fahrzeugpulk modelliert wurde, unter Berücksichtigung der Signalisierung der Hauptrichtungs-Signalgruppe des letzten Vorknotens für einen vom letzten Vorknoten zum Hauptknoten gesendeten Fahrzeugpulk weiterpropagiert. Die Intensitätsverteilungen werden also in Optimierungsrichtung über den zu koordinierenden Hauptknoten hinweggerechnet bzw. bei Ankunft des Fahrzeugpulks während der Grünzeit unverändert weiterpropagiert, was grafisch in einem Zeit-Weg-Diagramm einem Durchschieben des Hauptrichtungs-Fahrzeugpulks entspricht. Die Fahrzeugpulks werden so angesetzt, wie sie vom Vorknoten gesendet wurden. Damit wird die Modellierungsunzulänglichkeit, die dadurch entstand, dass die Form der sich nähernden Fahrzeugpulks bei jedem neu zu koordinierenden Hauptknoten als gleichverteilt angenommen wurde, vermieden. Die Form des Fahrzeugpulks ist damit nicht mehr nur von der Grünzeitverteilung der sendenden Signalgruppe des letzten Vorknotens abhängig, sondern auch vom vorletzten oder weiteren Vorknoten. Bei Ankunft des Fahrzeugpulks während der Rotzeit wird dieser von der Signalgruppe mit zweistufiger Intensitätsverteilung ab Grünbeginn weiterpropagiert.
- In einer bevorzugten Ausgestaltung des erfindungsgemäßen Koordinierungsverfahrens wird die Intensitätsverteilung, die für einen von einer Nebenrichtungs-Signalgruppe des vorletzten Vorknotens gesendeten und sich dem letzten Vorknoten während dessen Rotphase nähernden Fahrzeugpulk modelliert wurde, als Teil des von der Hauptrichtungs-Signalgruppe des letzten Vorknotens zum Hauptknoten gesendeten Fahrzeugpulks weiterpropagiert. Der in Optimierungsrichtung am Vorknoten auflaufende Nebenrichtungs-Fahrzeugpulk wird ab Grünbeginn mit hoher Intensität weiterpropagiert, wobei er mit dem vom Vorknoten zum Hauptknoten gesendeten Hauptrichtungs-Fahrzeugpulk verschmilzt.
- In einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Koordinierungsverfahrens werden zur Modellierung von sich gegen die Optimierungsrichtung bewegenden Fahrzeugpulks zweistufige Intensitätsverteilungen mit zwei Abschnitten konstanter Intensität unterschiedlicher Höhe oder einstufige Intensitätsverteilungen mit nur einem Abschnitt konstanter Intensität vorgesehen sind. Damit kann gewählt werden zwischen den bekannten zweistufigen Intensitätsverteilungen für Hauptrichtungspulks, die bevorzugt in Zufahrten am Netzrand verwendet werden, und einer alternativen einstufigen Intensitätsverteilung, die besser der erwarteten Fahrzeugpulkform in einem koordinierten Straßenzug entspricht und daher bevorzugt für solche Koordinierungspulks im Netzinneren verwendet wird. Die Breite der Pulkform ist dabei nicht abhängig von der Grünzeitverteilung, was bei Verwendung der zweistufigen Form sowohl für den Abschnitt hoher als auch für den niedriger Intensität der Fall ist.
- Vorzugsweise unterscheiden sich die vorgesehenen Intensitätsverteilungen durch einen Zeitabstand, um den der Abschnitt konstanter Intensität bei einer einstufigen Intensitätsverteilung bzw. um den der Abschnitt konstanter Intensität höheren Wertes bei einer zweistufigen Intensitätsverteilung innerhalb der Grünzeit der Hauptrichtungs-Signalgruppe von Grünbeginn verschoben ist. Indem Koordinierungen nicht nur bei Grünbeginn und bei Grünende in Betracht gezogen werden, die bereits gute Koordinierungsergebnisse liefern, sondern auch noch Zwischenlösungen, wird der Lösungsraum möglicher Intensitätsverteilungen mit Vorteil erweitert, vorzugsweise für sich gegen die Optimierungsrichtung bewegende Hauptrichtungs- und Koordinierungspulks.
- In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Koordinierungsverfahrens wird die Zielfunktion über eine Vielzahl an möglichen Phasenfolgen und/oder über eine Vielzahl an Intensitätsverteilungen mit möglichen Zeitabständen variiert, um die optimale Phasenfolge und/oder die Intensitätsverteilung mit optimalem Zeitabstand jeweils bei optimaler Versatzzeit zu bestimmen. Neben planerischen Vorgaben können diese Intensitätsverteilungen mit Vorteil automatisiert angewendet werden, um eine optimierte Koordinierung zu bestimmen. Damit kann die Erfindung nicht nur zur Optimierung der Versatzzeiten allein, sondern auch zur Optimierung der Phasenfolgen und/oder der Intensitätsverteilungen verwendet werden.
- In einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Koordinierungsverfahrens wird zur Berücksichtigung einer Dispersion und/oder von Ausbiegern eines Fahrzeugpulks die Intensitätsverteilung für einen von einer Signalgruppe gesendeten Fahrzeugpulk mit wenigstens einem Abschnitt konstanter, maximaler Intensität modelliert, deren Wert geringer als die maximal mögliche Intensität angesetzt wird.
- Der reduzierte Intensitätswert entspricht eher der realen bzw. in Realität erwarteten, maximalen Intensität, die aus den sich dieser Signalgruppe nähernden realen bzw. in Realität erwarteten Fahrzeugpulks anhand realer zeitlicher Pulklängen ermittelt werden kann. Hierdurch kann eine Dispersion der sich in und insbesondere gegen die Optimierungsrichtung bewegenden Fahrzeugpulks sowie durch Abbiegeraten bedingte Effekte der Realität nachgebildet werden, was besonders für eine richtige Versatzzeitbemessung erforderlich ist. Ansonsten besteht die Gefahr der Modellierung zu schmaler Grünbänder.
- Weitere Merkmale und Vorteile des erfindungsgemäßen Koordinierungsverfahrens ergeben sich aus einem anhand der Zeichnungen näher erläuterten Ausführungsbeispiels, in deren
- FIG 1
- die Topologie eines zu koordinierenden Straßenzugs,
- FIG 2
- Intensitätsverteilungen eines Fahrzeugpulks an einer Nebenrichtungs-Signalgruppe gemäß Stand der Technik,
- FIG 3
- Intensitätsverteilungen eines Fahrzeugpulks an einer Hauptrichtungs-Signalgruppe gemäß Stand der Technik,
- FIG 4
- ein Zeit-Weg-Diagramm mit gegen die Optimierungsrichtung koordinierten Knoten gemäß Stand der Technik,
- FIG 5
- ein Zeit-Weg-Diagramm mit in Optimierungsrichtung koordinierten Knoten gemäß dem erfindungsgemäßen Verfahren,
- FIG 6
- eine alternative Intensitätsverteilung eines Fahrzeugpulks an einer Signalgruppe bei angenommenem koordinierten Knoten,
- FIG 7
- Intensitätsverteilungen eines Fahrzeugpulks an einer Signalgruppe bei zu Grünbeginn und zu Grünende koordiniertem Knoten,
- FIG 8
- Intensitätsverteilungen eines Fahrzeugpulks an einer Hauptrichtungs-Signalgruppe bei zu Grünbeginn und zu Grünende koordiniertem Knoten,
- FIG 9
- ein Zeit-Weg-Diagramm mit gegen die Optimierungsrichtung koordinierten Knoten unter Verwendung der Intensitätsverteilungen nach
FIG 7 , - FIG 10
- Intensitätsverteilungen eines sich gegen die Optimierungsrichtung bewegenden Fahrzeugpulks mit Berücksichtung einer Pulkdispersion,
- Das erfindungsgemäße Koordinierungsverfahren ist nicht auf eine bestimmte Netztopologie oder auf spezielle Signalisierungen an den Knoten beschränkt. Der Einfachheit halber wird den nachfolgenden Ausführungen jedoch die Topologie eines Netzausschnittes gemäß
FIG 1 zugrunde gelegt, wonach der Kraftfahrzeugverkehr längs eines Straßenzuges durch an drei hintereinander liegenden Knoten 1, 2, 3 angeordnete Lichtsignalanlagen gesteuert wird. Die Hauptverkehrsrichtung verläuft entlang dieses Straßenzuges, auf dem Zeichnungsblatt von unten nach oben bzw. von oben nach unten, wobei über Nebenverkehrsrichtungen definierende Seitenäste an den Knoten 1, 2, 3 Kraftfahrzeuge in die Hauptverkehrsrichtung einbiegen bzw. daraus abbiegen. Lichtsignalanlagen mit zwei- oder dreibegriffigen Signalgebern, die zu Signalgruppen zusammengefasst und durch ein in einem Knotenpunkt-Steuergerät ablaufenden Signalprogramm mit einem verkehrsabhängigen oder tageszeitabhängigen Signalzeitenplan angesteuert werden, sind an sich bekannt und inFIG 1 nicht vollständig dargestellt. - Am ersten Knoten 1 wird der Verkehr in Hauptverkehrsrichtung durch eine Signalgruppe H1 mit einem Signalzeitenplan SZPH1 und in Nebenverkehrsrichtung durch eine Signalgruppe N1 mit einem Signalzeitenplan SZPN1 gesteuert. Entsprechend wird der Verkehr am zweiten Knoten 2 bzw. am dritten Knoten 3 durch Signalgruppen H2 bzw. H3 mit Signalzeitenplänen SZPH2 bzw. SZPH3 für die Hauptverkehrsrichtung und Signalgruppen N2 bzw. N3 mit Signalzeitenplänen SZPN2 bzw. SZPN3 für die Nebenverkehrsrichtungen gesteuert. Im Folgenden wird von einer einheitlichen Umlaufzeit tU für sämtliche Signalzeitenpläne ausgegangen, so dass zur Koordinierung der Lichtsignalanlagen möglichst optimale Versatzzeiten zwischen deren Signalzeitenplänen, also deren relative Startzeitverschiebungen, zu bestimmen sind.
- Hierzu wird zunächst ein sogenannter Optimierungsplan festgelegt, der die Reihenfolge angibt, in der die Knoten 1, 2, 3 in die Optimierung einbezogen werden. Beispielsweise kann der Optimierungsplan "1 - 2 - 3" vorgegeben werden: Nach Optimierung des Knotens 1 folgt die Optimierung des Knotens 2 und danach schließlich die Optimierung des Knotens 3. Jeder Knoten 1, 2, 3 wird dabei einzeln optimiert.
Zur Optimierung der Versatzzeit wird folgendermaßen vorgegangen: Ist beispielsweise der Knoten 1 bereits optimiert, d.h. die optimale zeitliche Lage des Signalzeitenplans SZPH1 bzw. SZPN1 festgelegt, so wird eine versatzzeitabhängige Zielfunktion, in die beispielsweise die jeweils bewirkten Halte und Wartezeiten eingehen, durch Variation der Versatzzeit zwischen dem koordinierten Signalzeitenplan SZPH1 und dem zu koordinierenden Signalzeitenplan SZPH2 minimiert. - Die Wirkungen werden gemäß dem eingangs geschilderten Stand der Technik nur an den jeweils unmittelbar benachbarten, bereits koordinierten Vorknoten 1 ermittelt. Bei Optimierung des Hauptknotens 2 werden also einerseits die Wirkungen am Vorknoten 1 durch die sich vom Hauptknoten 2 zum Vorknoten 1 - entgegen die Optimierungsrichtung OPT - bewegenden Fahrzeuge und andererseits die Wirkungen am Hautpknoten 2 durch die sich vom Vorknoten 1 zum Hauptknoten 2 - in Optimierungsrichtung OPT - bewegenden Fahrzeuge berücksichtigt.
- Zur Ermittlung der Wirkungen einer Versatzzeit auf die Bewegungen der Fahrzeuge werden Verteilungen der Verkehrsintensitäten über einen Signalumlauf eines sich einer Signalgruppe nähernden Fahrzeugpulks und eines von der Signalgruppe gesendeten Fahrzeugpulks modelliert. Der Fahrzeugpulk vom Vorknoten 1 zum Hauptknoten 2 wird beispielsweise von einer oder mehreren Signalgruppen H1, N1 am Vorknoten 1 gesendet. Im eingangs geschilderten Stand der Technik wird gemäß
FIG 2 für einen Fahrzeugpulk aus den Nebenrichtungen N eine gleichbleibende Intensität während der Grünzeit der sendenden Signalgruppe N und eine verschwindende Intensität während deren Rotzeit modelliert, und zwar für die Intensitätsverteilungen sowohl vor iN - als auch nach iN + der Signalgruppe N. Im Signalzeitenplan SZPN ist ein Signalumlauf dargestellt, der mit der Zeiteinheit t bei 0 beginnt und mit der Umlaufzeit tU endet; die Grünzeit ist zwischen Grünbeginn tGb und Grünende tGe durch einen leeren Balken, die restliche Rotzeit durch einen Balken mit Strich gekennzeichnet. Die Intensitätsverteilung iH - des sich in Hauptverkehrsrichtung der Signalgruppe H nähernden Fahrzeugpulks wird gemäßFIG 3 als konstant während der gesamten Umlaufzeit tU modelliert; die Intensitätsverteilung iH + nach der Signalgruppe H wird mit einer hohen Intensität ih in Höhe der Sättigungsverkehrsstärke ab Grünbeginn tGb und dann mit einer niedrigeren Intensität in für die restliche Grünzeit bis Grünende tGe modelliert. - In dem Zeit-Weg-Diagramm gemäß
FIG 4 sind die sich jeweils aus einer gemäß Stand der Technik optimierten Versatzzeit ergebenden Intensitätsverteilungen für Fahrzeugpulks gegen die Optimierungsrichtung OPT gezeigt. Die Intensitätsverteilung eines Fahrzeugpulks wird von Knoten 2 nach Knoten 1 modelliert. Dabei wird die zweistufige Intensitätsverteilung für einen Hauptrichtungspulk gemäßFIG 3 verwendet, wobei der schraffierte Bereich den Anteil hoher Intensität ih markiert, der unschraffierte Bereich den Anteil niedriger Intensität in. Nach diesem Modell wird die Versatzzeit des Signalzeitenplans SZPH2 zum Signalzeitenplan SPH1 optimiert. Anschließend wird die Intensitätsverteilung eines Fahrzeugpulks von Knoten 3 nach Knoten 2 modelliert, um die Versatzzeit des Signalzeitenplans SZPH3 zum Signalzeitenplan SPH2 zu optimieren. Der Fahrzeugpulk von Knoten 3 zu Knoten 2 hat am Knoten 2 eine andere Lage als der Fahrzeugpulk von Knoten 2 zum Knoten 1. Unter der Annahme, dass der Knoten 3 der erste im Straßenzug ist, entspricht die modellierte Intensität des Fahrzeugpulks von Knoten 3 zu Knoten 2 weitgehend der Realität, nicht aber die modellierte Intensität des Fahrzeugpulks von Knoten 2 nach Knoten 1. Verlängert man gedanklich den Anteil hoher Intensität ih des Fahrzeugpulks von Knoten 3 nach Knoten 2, der diesen ja während der Grünzeit am Knoten 2 passiert, bis zum Knoten 1, so stell man fest, dass die meisten Fahrzeuge dieses Fahrzeugpulks an Knoten 1 während dessen Sperrzeit eintreffen - also halten müssen. Diese problematische Modellierung der Fahrzeugpulks wird im eingangs genannten Stand der Technik sowohl in als auch gegen Optimierungsrichtung verwendet. - Erfindungsgemäß wird nun diese Fehlmodellierung in Optimierungsrichtung vermieden, indem die Intensitätsverteilung "durchgeschoben" wird: nach Optimierung der Versatzzeit am Knoten 1 werden die Intensitätsverteilungen der Fahrzeugpulks von Knoten 1 nach Knoten 2 modelliert. Anschließend werden nach Optimierung der Versatzzeit am Knoten 2 die Intensitätsverteilungen der Fahrzeugpulks von Knoten 2 nach Knoten 3 modelliert, wobei vor der Signalgruppe H2 am Knoten 2 die Intensitätsverteilung nicht mehr (wie in
FIG 3 ) als über die Umlaufzeit tU gleichverteilt angenommen wird, sondern entsprechend der vom Knoten 1 her modellierten Intensitätsverteilung. Entsprechend bleibt gemäßFIG 5 der Hauptrichtungspulk von Knoten 1 über Knoten 2 bis hin zum Knoten 3 unverändert in der Form seiner Intensitätsverteilung. Der Hauptrichtungspulk von Knoten 1 mit seiner hohen Intensität i1 ab Grünbeginn und seiner niedrigen Intensität i2 bis Grünende passiert den Knoten 2 bei Grün und bleibt in seiner Form unverändert von Knoten 2 nach Knoten 3 mit den zwei gestuften Bereichen erst hoher Intensität i4 und dann niedriger Intensität i3. Der Nebenrichtungspulk von Knoten 1 mit niedriger Intensität i5 läuft am Knoten 2 während dessen Rotzeit auf und wird dort dann als Bereich hoher Intensität i6 von Knoten 2 zu Knoten 3 weiterpropagiert. Die Intensitätsbereiche i3, i4 und i6 verschmelzen dabei zu einem neuen Hauptrichtungspulk, wobei nur dessen Intensitätsanteile i3 und i4 aus der Hauptrichtung stammen. Am Knoten 3 verschmelzen entsprechend die aufgelaufenen Anteile des Hauptrichtungspulks i3, i4 und i6 mit der Intensität i7 des Nebenrichtungspulks von Knoten 2 zu Knoten 3 zu einem neuen Fahrzeugpulk mit nicht dargestellter Intensitätsverteilung. Die einzelnen Intensitätsprofile sind zur Veranschaulichung jeweils als Querschnitt nach links in die Zeichenebene geklappt. - Gegen die Optimierungsrichtung OPT können die Intensitätsverteilungen der Fahrzeugpulks nicht "durchgeschoben" werden. Die Intensitätsverteilungen der ankommenden Fahrzeugpulks sind nicht bekannt, weil die Knoten der dazu benötigten Signalgruppen noch nicht optimiert sind. Entsprechend wird hier weiterhin mit gleichverteilten Intensitäten vor den Signalgruppen gerechnet.
- Die Genauigkeit der Pulkmodellierung wird erfindungsgemäß verbessert, indem beim Optimieren eines Knotens bewertet wird, wie gut die die Intensitätsverteilungen der an den benachbarten, schon optimierten Knoten ankommenden Fahrzeugpulks mit denjenigen Intensitätsverteilungen übereinstimmen, die zuvor zu deren Optimierung verwendet wurden. Im dargestellten Ausführungsbeispiel wird der Hauptknoten 3 so optimiert, dass die Intensitätsverteilungen der vom Hauptknoten 3 am letzen Vorknoten 2 ankommenden Fahrzeugpulks möglichst den Intensitätsverteilungen der Fahrzeugpulks entsprechen, die zuvor für Fahrzeugpulks modelliert wurden, die vom letzten Vorknoten 2 zu dessen Vorknoten 1 gesendet wurden, um die Versatzzeit am Knotenpunkt 2 zu optimieren.
- Eine einfache Ausführung zur Einhaltung der Intensitätsverteilung ankommender Fahrzeugpulks besteht in einer Modifizierung der Zielfunktion PI. Diese besteht nach dem eingangs erwähnten Stand der Technik aus einer gewichteten Summe von Wartezeiten ws(t) und Halten hs(t) je Signalgruppe s am Knoten mit insgesamt S Signalgruppen, beispielsweise H und N, über einen Signalumlauf t von 0 bis tU-1, wobei αs (z.B. 0,01) und βs (z.B. 0,8) Gewichtungsfaktoren mit beispielsweise den in Klammern angegebenen Werten sind:
- Erfindungsgemäß wird die Zielfunktion PI um einen zusätzlichen, mit dem Gewichtungsfaktor γs (z.B. 0,8) multiplizierten Term je Signalgruppe s und Umlaufzeiteinheit t erweitert, der die Modellierungsgenauigkeit des jeweiligen Fahrzeugpulks angibt.
-
- Hierbei sind imax,s die maximale Intensität an der Signalgruppe s, die im Hauptrichtungspulk der hohen Intensität ih zu Grünbeginn tGb entspricht. is +(t) gibt die Intensitätsverteilung nach der Signalgruppe s an.
- Ein weiterer Vorteil ergibt sich, wenn für die Optimierungsrichtung anstelle des Standardprofils wahlweise ein Profil mit nur einer Pulkintensität ik gemäß
FIG 6 verwendet wird. Der zugrunde liegende Fahrzeugpulk wird Koordinierungspulk genannt, weil seine Intensitätsverteilung besser der erwarteten Form eines koordinierten Knotens entspricht, bei dem die Intensität vor und nach der sendenden Signalgruppe ab Grünbeginn tGb für eine bestimmte Zeit einen konstanten Wert ik hat, der dann - noch während der Grünzeit - auf Null abfällt, wenn alle Fahrzeuge des Koordinierungspulks den Knoten passiert haben. Bei gegebener Verkehrsstärke ist die Breite des Koordinierungspulks nicht von der Länge der Sperrzeit abhängig. Hingegen sind bei Verwendung der Intensitätsverteilung für den Hauptrichtungspulk gemäßFIG 3 die Breiten sowohl des Bereichs hoher Intensität ih als auch des Bereichs niedriger Intensität in von der Grünzeitverteilung abhängig.
Der Koordinierungspulk und der Hauptrichtungspulk starten normalerweise bei Grünbeginn tGb, wie dies inFIG 7 bzw.FIG 8 jeweils im oberen Bild der zugehörigen Intensitätsverteilungen iGb dargestellt ist. Dies schränkt den Lösungsraum jedoch stark ein, da gegen die Optimierungsrichtung OPT dadurch nur Lösungen erlaubt werden, bei welchen der koordinierte Fahrzeugpulk möglichst bei Grünbeginn tGb durchfährt. Erfindungsgemäß kann daher vorgesehen werden, für den Koordinierungspulk und für den Hauptrichtungspulk Intensitätsverteilungen zuzulassen, die unterschiedlich große Zeitabstände Δt von Grünbeginn tGb aufweisen. Die unteren Bilder inFIG 7 bzw.FIG 8 zeigen Intensitätsverteilungen iGe des Koordinierungspulks und des Hauptrichtungspulks, bei welchen die Intensitätsverteilung bzw. der Bereich hoher Intensität bis zum Grünende tGe hin verschoben sind. Allein die Auswahl dieser beiden Formen von Intensitätsverteilungen iGb und iGe liefert sehr gute Koordinierungslösungen. Prinzipiell können jedoch mehrere Intensitätsverteilungen mit unterschiedlich langen Zeitabständen Δt in den Lösungsraum aufgenommen werden. Bei sekündlicher Auflösung ergeben sich maximal so viele verschiedene Zeitabstände Δt, wie die vorhandene Grünzeit abzüglich der zeitlichen Breite des Koordinierungspulks bzw. des Bereichs hoher Intensität des Hauptrichtungspulks, gemessen in Sekunden. Die Anwendung der unterschiedlichen Intensitätsverteilungen kann entweder über planerische Vorgaben oder automatisiert erfolgen, indem das Optimierungsverfahren alle erlaubten Zeitabstände Δt für alle Phasenfolgen bei bester Versatzzeit bewertet und dass die beste Kombination aus Phasenfolge und Zeitverschiebung auswählt. - Im Zeit-Weg-Diagramm gemäß
FIG 9 ist eine Koordinierungsstruktur von Knoten 3 über Knoten 2 nach Knoten 1 dargestellt, bei der immer ein Koordinierungspulk mit einer Intensitätsverteilung gemäßFIG 7 verwendet wurde. Am Knoten 2 wurde eine Koordinierung mit einer nach Grünende tGe verschobenen Intensitätsverteilung iGe durchgeführt. Während die aus dem Stand der Technik bekannte Lösung gemäßFIG 4 für die meisten Fahrzeuge der Hauptverkehrsrichtung einen Halt ergibt, erzeugt die inFIG 9 dargestellte Lösung keinen Halt gegen die Optimierungsrichtung OPT. Auch in Optimierungsrichtung OPT müssen nachFIG 5 die wenigsten Fahrzeuge halten. - Die Intensität eines über mehrere Knotenpunkte koordinierten Fahrzeugpulks nimmt von Lichtsignalanlage zu Lichtsignalanlage ab, da durch unterschiedlich schnell fahrende Fahrzeuge sowie durch abbiegende Fahrzeuge, die den zu koordinierenden Straßenzug verlassen, eine Dispersion des Fahrzeugpulks festzustellen ist. In Optimierungsrichtung OPT werden beide Effekte beim "Durchschieben" der Intensitätsverteilung des Fahrzeugpulks abgebildet. Gegen die Optimierungsrichtung OPT werden die Intensitätsverteilungen der Fahrzeugpulks immer wieder von Neuem angesetzt, wodurch zunächst immer von der maximalen Intensität ausgegangen wird. Damit auch hier die Pulkdispersion abgebildet werden kann, wird die maximale Intensität imax gemäß
FIG 10 prozentual - beispielsweise auf 75% - reduziert, um die tatsächlichen Pulklängen nachzubilden. Die Reduktion der maximalen Intensität imax ergibt eine zeitliche Verlängerung des Fahrzeugpulks. Hierdurch wird vermieden, die Intensitätsverteilungen der Fahrzeugpulks gegenüber der Realität räumlich und zeitlich zu kurz zu modellieren. Damit werden auch die Grünbänder nicht zu kurz ermittelt. Die Bestimmung der Intensitätsreduktion kann vom Ansatz her automatisch erfolgen, zum Beispiel durch Berücksichtigung der Abbiegeraten oder durch planerische Vorgaben.
Claims (7)
- Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten (1, 2, 3) in einem Straßennetz, wobei der Fahrzeugverkehr an einem Knoten (1, 2, 3) durch wenigstens eine Signalgruppe (H, N) einer Lichtsignalanlage gesteuert wird, wobei in einem Signalzeitenplan (SZPH, SZPN) der Lichtsignalanlage für die Signalgruppe (H, N) innerhalb einer Umlaufzeit (tU) durch Vorgabe von Grünbeginn (tGb) und Grünende (tGe) eine Phasenfolge von den Fahrzeugverkehr sperrenden Rot- und freigebenden Grünphasen festgelegt wird, wobei in einem Optimierungsplan eine Reihenfolge der Knoten (1, 2, 3) und damit eine Optimierungsrichtung (OPT) festgelegt werden, in welcher die Knoten (1, 2, 3) koordiniert werden, wobei eine optimale Versatzzeit zwischen den Signalzeitenplänen (SZPH, SZPN) des jeweils zu koordinierenden Hauptknotens (2, 3) und eines zuvor koordinierten Vorknotens (1, 2) ermittelt wird, indem eine Zielfunktion in Form einer gewichteten Summe aus Wartezeiten und Anzahlen von Halten von Fahrzeugen sich in und/oder gegen Optimierungsrichtung (OPT) zwischen dem letzten Vorknoten (1, 2) und dem Hauptknoten (2, 3) bewegender Fahrzeugpulks minimiert wird, wobei die Wartezeiten und Anzahlen von Halten von den Phasenfolgen der Signalzeitenpläne (SZPH, SZPN) des Hauptknotens (2, 3) und des letzten Vorknotens (1, 2), von der Versatzzeit zwischen diesen Signalzeitenplänen (SZPH, SZPN) sowie von die Fahrzeugpulks modellierenden Intensitätsverteilungen abhängen, wobei je Signalgruppe (H, N) eine Intensitätsverteilung (iH -, iN -) eines sich der Signalgruppe (H, N) nähernden Fahrzeugpulks und eine Intensitätsverteilung (iH +, iN +) eines von der Signalgruppe (H, N) gesendeten Fahrzeugpulks modelliert werden, dadurch gekennzeichnet, dass bei der Ermittlung der optimalen Versatzzeit für den Hauptknoten (3) bewertet wird, wie gut eine Intensitätsverteilung, die für einen sich der Signalgruppe (H2) des letzten Vorknotens (2) gegen die Optimierungsrichtung (OPT) nähernden Fahrzeugpulk modelliert wird, mit der Intensitätsverteilung übereinstimmt, die bei Koordinierung des letzten Vorknotens (2) für einen von der Signalgruppe (H2) des letzen Vorknotens (2) gegen die Optimierungsrichtung (OPT) zum vorletzten Vorknoten (1) gesendeten Fahrzeugpulk modelliert wurde, und/oder wie gut eine Intensitätsverteilung, die für einen sich der Signalgruppe (H3) des Hauptknotens (3) in Optimierungsrichtung (OPT) nähernden Fahrzeugpulk modelliert wird, mit der Intensitätsverteilung übereinstimmt, die bei Koordinierung eines nächsten Folgeknotens für einen von der Signalgruppe (H3) des Hauptknotens (3) in Optimierungsrichtung (OPT) gesendeten Fahrzeugpulk modelliert werden wird.
- Koordinierungsverfahren nach Anspruch 1, wobei die Intensitätsverteilung, die für einen von einer Hauptrichtungs-Signalgruppe (H1) des vorletzten Vorknotens(1) zum letzten Vorknoten (2) gesendeten Fahrzeugpulk modelliert wurde, unter Berücksichtigung der Signalisierung der Hauptrichtungs-Signalgruppe (H2) des letzten Vorknotens(2) für einen zum Hauptknoten (3) gesendeten Fahrzeugpulk weiterpropagiert wird.
- Koordinierungsverfahren nach Anspruch 1 oder 2, wobei die Intensitätsverteilung, die für einen von einer Nebenrichtungs-Signalgruppe (N1) des vorletzten Vorknotens(1) gesendeten und sich dem letzten Vorknoten (2) während dessen Rotphase nähernden Fahrzeugpulk modelliert wurde, als Teil des von der Hauptrichtungs-Signalgruppe (H2) des letzten Vorknotens (2) zum Hauptknoten (3) gesendeten Fahrzeugpulks weiterpropagiert wird.
- Koordinierungsverfahren nach einem der Ansprüche 1 bis 3, wobei zur Modellierung von sich bewegenden Fahrzeugpulks zweistufige Intensitätsverteilungen mit zwei Abschnitten konstanter Intensität (ih, in) unterschiedlicher Höhe oder einstufige Intensitätsverteilungen (ik) mit nur einem Abschnitt konstanter Intensität vorgesehen sind.
- Koordinierungsverfahren nach Anspruch 4, wobei die vorgesehenen Intensitätsverteilungen sich durch einen Zeitabstand (Δt) unterscheiden, um den der Abschnitt konstanter Intensität bei einer einstufigen Intensitätsverteilung bzw. um den der Abschnitt konstanter Intensität höheren Wertes bei einer zweistufigen Intensitätsverteilung innerhalb der Grünzeit der Hauptrichtungs-Signalgruppe (H) von Grünbeginn (tGb) verschoben ist.
- Koordinierungsverfahren nach Anspruch 5, wobei die Zielfunktion über eine Vielzahl an möglichen Phasenfolgen und/oder über eine Vielzahl an Intensitätsverteilungen mit möglichen Zeitabständen (Δt) variiert wird, um die optimale Phasenfolge und/oder die Intensitätsverteilung mit optimalem Zeitabstand jeweils bei optimaler Versatzzeit zu bestimmen.
- Koordinierungsverfahren nach einem der Ansprüche 1 bis 6, wobei zur Berücksichtigung einer Dispersion und/oder von Ausbiegern eines Fahrzeugpulks die Intensitätsverteilung (i+) für einen von einer Signalgruppe gesendeten Fahrzeugpulk mit wenigstens einem Abschnitt konstanter, maximaler Intensität (imax, red) modelliert wird, deren Wert geringer als die maximal mögliche Intensität (imax) angesetzt wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL09165735T PL2161698T3 (pl) | 2008-09-03 | 2009-07-17 | Sposób koordynacji sygnału świetlnego sterowanego w węźle sieci drogowej |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008045631A DE102008045631A1 (de) | 2008-09-03 | 2008-09-03 | Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten in einem Straßennetz |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2161698A1 true EP2161698A1 (de) | 2010-03-10 |
EP2161698B1 EP2161698B1 (de) | 2012-08-29 |
Family
ID=41284210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09165735A Active EP2161698B1 (de) | 2008-09-03 | 2009-07-17 | Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten in einem Straßennetz |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2161698B1 (de) |
DE (1) | DE102008045631A1 (de) |
DK (1) | DK2161698T3 (de) |
PL (1) | PL2161698T3 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103544840A (zh) * | 2013-10-15 | 2014-01-29 | 华南理工大学 | 一种城市信号交叉口协调控制图解方法 |
CN104112366A (zh) * | 2014-07-25 | 2014-10-22 | 中国科学院自动化研究所 | 基于隐语义模型的交通信号优化方法 |
CN110930735A (zh) * | 2019-11-06 | 2020-03-27 | 北京百度网讯科技有限公司 | 智能交通控制方法、装置、设备和存储介质 |
WO2021051214A1 (zh) * | 2019-09-17 | 2021-03-25 | 孟卫平 | 交通信号线型混合波模式控制方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019212655A1 (de) * | 2019-08-23 | 2021-02-25 | Siemens Mobility GmbH | Ermittlung und/oder Optimierung einer Effizienz einer Lichtsignalsteuerung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3608890A1 (de) * | 1986-03-17 | 1987-09-24 | Siemens Ag | Verfahren zur koordinierung von strassenverkehrssignalanlagen |
EP0293724A1 (de) * | 1987-05-27 | 1988-12-07 | Siemens Aktiengesellschaft | Verfahren zur messtechnischen Erfassung der Intensität des Strassenverkehrs |
DE3738174A1 (de) * | 1987-11-10 | 1989-05-18 | Siemens Ag | Verfahren zur verkehrsabhaengigen gruenzeit-anpassung bei einer optimalen koordinierung von lichtsignalanlagen |
-
2008
- 2008-09-03 DE DE102008045631A patent/DE102008045631A1/de not_active Withdrawn
-
2009
- 2009-07-17 PL PL09165735T patent/PL2161698T3/pl unknown
- 2009-07-17 EP EP09165735A patent/EP2161698B1/de active Active
- 2009-07-17 DK DK09165735.3T patent/DK2161698T3/da active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3608890A1 (de) * | 1986-03-17 | 1987-09-24 | Siemens Ag | Verfahren zur koordinierung von strassenverkehrssignalanlagen |
EP0293724A1 (de) * | 1987-05-27 | 1988-12-07 | Siemens Aktiengesellschaft | Verfahren zur messtechnischen Erfassung der Intensität des Strassenverkehrs |
DE3738174A1 (de) * | 1987-11-10 | 1989-05-18 | Siemens Ag | Verfahren zur verkehrsabhaengigen gruenzeit-anpassung bei einer optimalen koordinierung von lichtsignalanlagen |
Non-Patent Citations (1)
Title |
---|
SIEMENS AG, ANL A8: "Versatzoptimierung im Strassennetz VERO", STRASSENVERKEHRSTECHNIK, vol. 1994, no. 11, 30 November 1994 (1994-11-30), München, pages 1 - 50, XP002558034 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103544840A (zh) * | 2013-10-15 | 2014-01-29 | 华南理工大学 | 一种城市信号交叉口协调控制图解方法 |
CN103544840B (zh) * | 2013-10-15 | 2016-04-13 | 华南理工大学 | 一种城市信号交叉口协调控制图解方法 |
CN104112366A (zh) * | 2014-07-25 | 2014-10-22 | 中国科学院自动化研究所 | 基于隐语义模型的交通信号优化方法 |
WO2021051214A1 (zh) * | 2019-09-17 | 2021-03-25 | 孟卫平 | 交通信号线型混合波模式控制方法 |
CN110930735A (zh) * | 2019-11-06 | 2020-03-27 | 北京百度网讯科技有限公司 | 智能交通控制方法、装置、设备和存储介质 |
CN110930735B (zh) * | 2019-11-06 | 2021-05-28 | 北京百度网讯科技有限公司 | 智能交通控制方法、装置、设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP2161698B1 (de) | 2012-08-29 |
DK2161698T3 (da) | 2012-12-17 |
PL2161698T3 (pl) | 2013-01-31 |
DE102008045631A1 (de) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3611710B1 (de) | Verkehrsflusssimulator | |
EP2329476B1 (de) | Verfahren zur optimierung der verkehrssteuerung an einem lichtsignalgesteuerten knoten in einem strassenverkehrsnetz | |
EP2280383B1 (de) | Verfahren zur Ermittlung von Verkehrsinformationen für eine Straßenstrecke eines Straßennetzes sowie Verkehrsrechner zur Durchführung des Verfahrens | |
EP2881829A2 (de) | Verfahren zum automatischen Steuern eines Fahrzeugs, Vorrichtung zum Erzeugen von Steuersignalen für ein Fahrzeug und Fahrzeug | |
EP2161698B1 (de) | Verfahren zur Koordinierung von lichtsignalgesteuerten Knoten in einem Straßennetz | |
EP2989421B1 (de) | Verfahren zum bestimmen eines fahrspurverlaufes einer fahrspur | |
DE10022812A1 (de) | Verfahren zur Verkehrslagebestimmung auf Basis von Meldefahrzeugdaten für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten | |
EP2819902A2 (de) | Verfahren und vorrichtung zur ermittlung einer prädiktionsgüte | |
EP1293948A2 (de) | Verfahren und Anordnung zur Farhrplanoptimierung in Liniennetzen | |
EP3438946A2 (de) | Verfahren zur vorhersage eines schaltzeitpunktes einer signalgruppe einer signalanlage | |
DE102012214164B3 (de) | Verfahren und Vorrichtung zur dynamischen Steuerung mindestens einer Lichtsignalanlage | |
DE19821740A1 (de) | Automatisch fahrendes Fahrzeug | |
DE19940957C2 (de) | Verkehrsprognoseverfahren für ein Verkehrsnetz mit verkehrsgeregelten Netzknoten | |
DE10108611A1 (de) | Verfahren zur Simulation und Prognose der Bewegung von Einzelfahrzeugen auf einem Verkehrswegenetz | |
EP0821334B1 (de) | Verfahren und Vorrichtung zur Verkehrsregelung | |
DE102015202434B4 (de) | Verfahren und Vorrichtung zur dynamischen Steuerung einer Signalanlage | |
EP3937151A1 (de) | Vorrichtung und verfahren zur steuerung eines verkehrsflusses in einem verkehrsnetz durch einen optimalen signalphasenplan | |
WO1997009218A2 (de) | Verfahren zur regelung von verkehrsmitteln | |
EP2261876B1 (de) | Verfahren und Vorrichtung zum Umschalten von Signalprogrammen | |
EP2466530A1 (de) | Verfahren zum Simulieren eines Personenstroms und Vorrichtung zum Generieren eines zellularen Automaten zum Simulieren eines Personenstroms | |
AT510247B1 (de) | Verfahren zur regelung einer signalanlage | |
AT510248B1 (de) | Verfahren zur verkehrsregelung eines strassenzuges | |
DE4436339A1 (de) | Verfahren zur verkehrsadaptiven Steuerung einer Verkehrsampelanlage | |
EP2887332B1 (de) | Verfahren und System zum Ermitteln einer Verkehrssituation auf einer Straßenstrecke | |
DE102015203115B4 (de) | Ermitteln von fehlerhaften Konfigurationen von Detektoren und Signalen von Lichtsignalanlagen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20100910 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G08G 1/01 20060101ALI20120223BHEP Ipc: G08G 1/082 20060101AFI20120223BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 573419 Country of ref document: AT Kind code of ref document: T Effective date: 20120915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009004513 Country of ref document: DE Effective date: 20121018 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120829 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121229 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121129 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121130 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121231 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121210 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E015631 Country of ref document: HU |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121129 |
|
26N | No opposition filed |
Effective date: 20130530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009004513 Country of ref document: DE Effective date: 20130530 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130717 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130717 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120829 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20160915 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170913 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20170719 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170718 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502009004513 Country of ref document: DE Owner name: YUNEX GMBH, DE Free format text: FORMER OWNER: SIEMENS AG, 80333 MUENCHEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502009004513 Country of ref document: DE Owner name: SIEMENS MOBILITY GMBH, DE Free format text: FORMER OWNER: SIEMENS AG, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SIEMENS MOBILITY GMBH, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180717 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 573419 Country of ref document: AT Kind code of ref document: T Owner name: SIEMENS MOBILITY GMBH, DE Effective date: 20190506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502009004513 Country of ref document: DE Owner name: YUNEX GMBH, DE Free format text: FORMER OWNER: SIEMENS MOBILITY GMBH, 81739 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502009004513 Country of ref document: DE Representative=s name: PATENTANWALTSKANZLEI WILHELM & BECK, DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 573419 Country of ref document: AT Kind code of ref document: T Owner name: YUNEX GMBH, DE Effective date: 20220719 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240718 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240801 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240718 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240705 Year of fee payment: 16 |