EP2161415B1 - Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen - Google Patents

Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen Download PDF

Info

Publication number
EP2161415B1
EP2161415B1 EP09166731.1A EP09166731A EP2161415B1 EP 2161415 B1 EP2161415 B1 EP 2161415B1 EP 09166731 A EP09166731 A EP 09166731A EP 2161415 B1 EP2161415 B1 EP 2161415B1
Authority
EP
European Patent Office
Prior art keywords
cavity
delimiting
line
shielding element
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09166731.1A
Other languages
English (en)
French (fr)
Other versions
EP2161415A3 (de
EP2161415A2 (de
Inventor
Detlef Haje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2161415A2 publication Critical patent/EP2161415A2/de
Publication of EP2161415A3 publication Critical patent/EP2161415A3/de
Application granted granted Critical
Publication of EP2161415B1 publication Critical patent/EP2161415B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49323Assembling fluid flow directing devices, e.g., stators, diaphragms, nozzles

Definitions

  • the present invention relates to a device, in particular a steam turbine, comprising at least a first boundary part and at least a second boundary part, wherein the boundary parts are fastened to each other to form a parting line and thereby enclose at least a portion of a first pressure chamber. Furthermore, the invention relates to a method for lowering the on a parting line, which is formed by the joining together of at least a first boundary part and at least a second boundary part of a device, in particular a steam turbine, acting pressure and to reduce the forces acting on the parting line fastening forces, wherein the Enclosing parts enclose at least a portion of a first pressure chamber.
  • a flow channel is formed by various boundary parts or flow channel parts which are joined together.
  • the flow channel formed is subjected to superheated steam under high pressure.
  • Along the longitudinal axis of the flow channel pressure chambers are formed with different levels of internal pressures. Therefore, it is crucial that the connection of the various boundary parts is sufficiently dense, so that no leaks occur. This is particularly difficult because in a steam turbine steam or steam temperatures of more than 600 ° C can occur at a vapor pressure of about 250 bar.
  • a parting line is formed, with four boundary parts a so-called cross-sectional joint.
  • a cross-sectional joint has both a horizontal and a vertical parting line.
  • the formation of a cross-sectional joint is required if for manufacturing reasons or from Due to the choice of materials the first boundary parts and the second boundary parts of the flow channel separated, must be performed.
  • the limitation parts generally have different materials with different thermal expansion coefficients and different constructions.
  • a boundary part of a cast steel and the other boundary part may be formed as a welded construction or of a ductile iron.
  • the flange connection on the joints, in particular the cross-part joints must be designed for overpressure, for underpressure or usually for changing pressure conditions.
  • a steam turbine with a double-walled flange connection with an outer flange and provided with, between which a through-flow of a cooling medium space is formed.
  • the object of the invention is to provide a device and a method which make it possible to reduce the pressure and the forces on a parting line, in particular on a cross-sectional joint, between at least two mutually attached boundary parts of the device, in particular a steam turbine reduce if high pressures occur during operation of the device.
  • a cross-sectional joint at boundary parts of a steam turbine is to be made accessible to a larger area of use.
  • the object is achieved by a device, in particular a steam turbine, comprising at least a first boundary part and at least a second boundary part, wherein the boundary parts are fastened to each other to form a parting line and thereby enclose at least a portion of a first pressure chamber, in the a shielding element is provided on the sides facing the first pressure chamber sides of the limiting parts, which is arranged sealingly opposite the at least one first boundary part and the at least one second boundary part and thereby completely covers the parting line, so that between the boundary parts and the shielding element a cavity is formed, and that a conduit is guided into the cavity, which connects the cavity with a second pressure chamber, dissolved.
  • a device in particular a steam turbine, comprising at least a first boundary part and at least a second boundary part, wherein the boundary parts are fastened to each other to form a parting line and thereby enclose at least a portion of a first pressure chamber
  • a shielding element is provided on the sides facing the first pressure chamber sides of the
  • the core of the invention is that the region of the parting line which faces the first pressure chamber is subjected to a lower pressure than prevails in the flow channel when the device, in particular the steam turbine, is in operation.
  • the forces acting on the attachment of the limiting parts in particular the axial forces, can be reduced.
  • the at least one first and the at least one second boundary part of the device are joined together.
  • a parting line, in particular a cross-sectional joint is formed.
  • the limitation parts are fastened to each other in particular by means of fastening screws.
  • a shielding element is provided on the sides of the delimiting parts facing the first pressure chamber, which is sealingly arranged relative to the at least one first delimiting part and the at least one second delimiting part, thereby completely covering the parting line.
  • a cavity is formed between the boundary parts and the shielding in the region of the parting line.
  • a conduit is guided, which connects the cavity with a second, external pressure chamber. If the boundary parts form a flow channel of a steam turbine, then the area of the parting line or the cross-part joint is protected on the steam side by the shielding element, so that lower environmental parameters, ie a lower pressure and a moderately lower temperature, can be set in this shielded area.
  • the pressure in the cavity can be adjusted to the pressure in the second pressure chamber.
  • the shielding effect is achieved in that a shielding element located inside the first pressure space formed by the delimiting parts completely covers the parting line or the cross-parting joint and seals on all sides of the joint, ie is arranged sealingly opposite at least one first and at least one second delimiting part.
  • the pressure reduction takes place through the line which connects the cavity between the shielding, the boundary parts and the joint with a second pressure chamber located further downstream in the expansion.
  • the second pressure chamber or the line to the second pressure chamber may, for example, be fixed to the inside of the at least one first and / or the at least one second boundary part or to a guide blade carrier of the device, in particular the steam turbine.
  • Such a device or such a steam turbine makes it possible to make the area of use of a joint joint, in particular a cross-part joint connection, accessible between the delimiting parts to a larger area of use.
  • a reduction of the pressure in the cavity by about 15 to 20 bar compared to the pressure in the first pressure chamber of the steam turbine formed by the boundary parts can be achieved. Furthermore, a reduction of the effective internal pressure-related axial forces on the fastening screws by about 1/3 compared to conventional steam turbines is possible.
  • the pressure reduction is accompanied by a moderate temperature reduction by throttling. This throttling comes about by the pressure reduction of any leakage mass flows from the interior into the cavity without performing technical work.
  • the shielding element can be designed in various ways. For example, this may have an angular or a curved profile.
  • the parting line may for example be formed next to a cross-parting joint as a Stoßteilfuge.
  • three boundary parts abut each other.
  • the at least one first and the at least one second boundary part preferably represent rotationally symmetrical or essentially rotationally symmetrical elements.
  • Essentially rotationally symmetrical means that the elements can have cylindrical, conical or curved partial areas.
  • Substantially rotationally symmetric elements may at certain points not rotationally symmetrical additions or sections, such as inflows, reinforcements or flanges exhibit.
  • These rotationally symmetric or substantially rotationally symmetrical elements form the flow channel of the device or the steam turbine. It can also be provided more than two limiting parts, wherein the joints or the cross-sectional joints between the respective boundary parts are shielded according to the invention.
  • the shielding element preferably also has a rotationally symmetrical or substantially rotationally symmetrical profile.
  • a device is preferred in which the line is led to the cavity through one of the limiting parts or through the shielding element.
  • the conduit is preferably formed as a conduit and advantageously connects the cavity to a downstream flow direction, i. downstream in the expansion, lying second pressure chamber.
  • the line in particular the pipeline, partially or completely within and / or outside the boundary parts, that is, the first pressure chamber, are performed.
  • a device or a steam turbine is preferred in which the shielding element and the sealing of the shielding element are designed to be heat-movable. This allows different deformations of the limiting parts or the shield due to the partially prevailing high temperatures and the high pressures are compensated.
  • a device or a steam turbine wherein the shielding attached to at least two circumferential receptacles on the boundary parts, in particular suspended, or that the shielding sealingly seated by at least two heat-resistant seals on the boundary parts or that the shielding at least one circumferential Receiving attached to at least one of the boundary parts, in particular suspended, and is sealingly seated by at least one heat-movable seal on the at least one other boundary part.
  • a circumferential receptacle is provided, to which a first axial region, in particular a first free end of the shielding is sealingly secured, and that a heat-movable seal between the inside of the second boundary parts and a second axial region, in particular of the second free end, of the shielding element is provided.
  • the attachment of the first axial region or of the first free end of the shielding element to the peripheral receptacle can be effected for example by means of screw connections or by insertion into a circumferential groove.
  • the fixing of the shielding advantageously takes place axially and radially to the longitudinal axis of the flow channel at the peripheral receptacle.
  • a sealing element may be provided in this attachment. If the shielding element is seated in a sealing manner with respect to the delimiting parts by means of at least two heat-resistant seals, the shielding element is preferably axially fixed by an axial fixation. This fixation can be done on a boundary part or a circumferential groove. In particular screw connections are particularly suitable.
  • At least one circumferential receptacle is formed by a stator part.
  • the Stator part is sealingly fixed to at least one boundary part.
  • the circumferential receptacle can be formed by an inwardly and / or axially projecting circumferential web. The shape or the configuration of the at least one circumferential receptacle can be varied.
  • the at least one heat-movable seal is sealingly seated on the at least one peripheral receptacle, in particular on the stator part or the surrounding web.
  • the heat-permeable sealing can be formed by a pressure and / or spring force-loadable piston ring, by a labyrinth or transparent seal or by at least one sealing plate.
  • piston ring seals and labyrinth seals are very suitable for use under extreme operating conditions, ie at high pressures and temperatures.
  • Labyrinth or see-through seals can have small games. It is also conceivable that a plurality of seals or sealing plates are provided for the heat-permeable sealing of an axial region, in particular a free end, of the shielding element.
  • At least one of the boundary parts of the device has a groove for receiving the heat-movable seal. This creates a particularly good attachment and sealing of the shielding to the corresponding boundary parts. As a particularly sealing has proven to introduce a piston ring seal in the groove. The seal can be adjusted in the groove.
  • the heat-movable seal is a split seal.
  • a part of the split seal is after lifting the first boundary part in the vicinity of the parting line, in particular the Wienteilfuge, separable, so that thereafter, the remaining part of the shield can be dismantled.
  • So can be provided as a split seal a piston ring seal in two parts and with two joints.
  • Such a split seal can be arranged directly on the shielding element and / or on one of the delimiting parts and / or on at least one peripheral receptacle.
  • a shock forms a separation point on the circumference of the piston ring.
  • the joints have seals and optional entanglements.
  • the line is preferably designed to be flexible and / or at least slidably mounted on the passage to the cavity. This can be avoided that the line breaks when it comes to thermal expansion of individual components. Despite the displaceability or flexibility of the line this is arranged sealed in the implementation of the cavity. If the line is designed as a pipe, this is preferably mounted displaceably, since the pipe is designed to be less flexible than a flexible line from the outset.
  • the shielding element is at least divided into two, wherein the at least two parts of the shielding element are sealingly fastened to one another. It is particularly advantageous if the shielding element is divided axially.
  • the segment of the shielding element, on which the heat-movable seal is arranged is fastened to the second boundary part, and that the second segment is arranged on the first boundary part.
  • the segment with the heat-movable seal after disassembly of the first boundary part and the second segment of the shielding can be excavated together with a rotor of the steam turbine and then disassembled.
  • a piston ring seal is particularly proven.
  • the respective segments of the shielding element can by means of Screw and heat-resistant seals are sealingly fixed together.
  • the shielding element of the device preferably has at least one heating bore. Through a Anicarmbohrung a targeted mass flow of the hot steam flowing in the flow channel can be discharged into the cavity.
  • heat-resistant seals may be used which have certain permeability. Such leaks having seals allow moderate leakage through the seals.
  • a heating line which can be locked by means of a locking element can be led to the cavity.
  • the shielded hot steam can be temporarily supplied to the cavity via the lockable Anürm ein.
  • the warming up line has at least one locking element.
  • This locking element may for example be a slide, a regulator, a tap or a valve. But other types of locking elements are conceivable. If the shielding element heating holes or the seals have certain permeabilities, then a certain amount of superheated steam can be continuously supplied to the cavity.
  • the line to the pressure chamber also has a locking element which can be closed if necessary, to increase the temperature and pressure in the cavity in the short term.
  • the locking element of the conduit can also be designed as a slide, a regulator, a cock, a valve, etc.
  • the locking element in the conduit to the second pressure chamber allows a temporary damming of the pressure and also the temperature in the cavity and the line connection to the, usually downstream, second pressure chamber. After reaching a desired temperature level in the cavity and / or in the flange portions of the parting line, in particular the funnelteilfuge, or in the relevant for the unsteady operation sections of the delimiting the line to the second pressure chamber is fully opened again, so that for the stationary Operation again a lowered pressure in the cavity and thus adjusts the parting line. Through the opening of the line and the temperature level in the cavity or in the line is again adjustable.
  • a device is preferred in which at least one cooling steam line, which can be locked by means of a locking element, is guided to the hollow space via which cooling steam can be fed into the hollow space. That is, in addition to the above-mentioned improvements in terms of the pressure at the parting line or the cross-sectional joint and the axial force and the possible moderate temperature reduction by throttling can, if necessary, a further stationary temperature reduction at the parting line or the vertical parting of the cross-sectional joint can be achieved. This is necessary, for example, if admissible operating temperatures of limiting parts, of the shielding element or of screw materials are complied with or if a lowering of the component temperatures requires an increase in the strength characteristics.
  • cooling steam is advantageously passed from a first, downstream with respect to the parting line, passage through the cooling steam line in the cavity between the shield and the parting line and returned through the line to a second, further downstream point.
  • the pressure in the cavity may be due to the special piping design, in particular Pipe design, and any damming in the line, also referred to as discharge line, are set, in the limits of the pressure levels of the first and the second digit.
  • This solution is technically sophisticated and requires a more massive design of the shield, ie the shielding.
  • the additional benefit of the described measures for lowering the temperature can then be checked case by case.
  • the Anürm technisch, the cooling steam line and the discharge line have corresponding locking elements, by which a regulation of the pressure level is made possible.
  • the locking elements may be, for example, a slide, a regulator, a tap or a valve. But other locking elements are conceivable. Furthermore, instead of or in addition to the locking elements, flow resistances, such as orifices, throttles, etc., can be used for the regulation of the pressure level within the lines, ie the line, the heating line and / or the cooling steam line.
  • a suction device can be sucked through the leakage quantities.
  • a sealing seam is welded to the side of the parting line facing the first pressure chamber, in particular the vertical cross-part joint. It is important to ensure the safe and sufficiently heat-mobile design of the weld, so that damage is avoided even in transient processes.
  • the object is achieved by a method for lowering the pressure acting on a parting line, which is formed by the joining together of at least one first delimiting part and at least one second delimiting part of a device, in particular a steam turbine, and for reducing the pressure acting on the part Dividing joint acting fastening forces, wherein the boundary parts at least enclosing a part of a first pressure chamber, a shielding element being provided sealingly opposite the at least one first boundary part and the at least one second boundary part at the sides of the boundary parts facing the flow channel interior, thereby completely covering the parting line, so that between the boundary parts and the shielding a cavity is formed, and wherein from a second pressure chamber, a conduit is guided into the cavity, via which the pressure in the cavity is lowered to a lower level, dissolved.
  • the tight cover of the parting line on the inside of the boundary parts by a shielding creates a cavity.
  • a conduit is guided, which is connected to a lying outside the cavity second pressure chamber.
  • other operating conditions in particular other temperatures and pressures, can be set in the cavity than in the first pressure chamber.
  • the burden on the parting line, in particular on the cross-part joint reduced. It has been proven that a reduction of the pressure by 15 to 20 bar is possible.
  • the application of the parting line, in particular the cross-sectional joint is significantly increased in steam turbines and other devices. That is, the application of a joint connection, in particular a cross-part joint connection is extended.
  • the pressure reduction in the region of the parting line or cross-parting joint is made possible by a reliable heat-resistant shielding.
  • Due to the pressure reduction in the region of the parting line or cross-part joint a reduction of the effective internal pressure-related axial forces by about 1/3 compared to the known devices in which no pressure reduction takes place, possible.
  • Particularly preferred is a method in which the pressure acting on the parting line and the fastening forces acting on the parting line are lowered or reduced by a device, in particular a steam turbine, according to the first aspect of the invention.
  • the Fig. 1 to 5 show schematically different connection possibilities of two limiting elements 1, 2 of a steam turbine.
  • the shielding element 5 completely covers the parting line 3, so that a sealed cavity 6 is formed between the two inner sides of the delimiting elements 1, 2, the parting line 3 and the shielding element 5.
  • the shielding element 5 protects the parting line in front of the prevailing in the flow channel or in the first pressure chamber, which is at least partially formed by the two limiting elements 1, 2, prevailing conditions.
  • the shielding element 5 is sealingly attached to the boundary elements 1, 2 around the region of the parting line 3 or the cross-sectional joint.
  • the boundary elements 1, 2 are formed as rotationally symmetric or substantially rotationally symmetrical elements or sub-elements.
  • the shielding element 5 is sealingly attached to an axial region, in this case at a free end, on a circumferential receptacle 9 arranged on the first boundary part 1.
  • the circumferential receptacle 9 may also be a stator of the steam turbine or a circumferential, inwardly projecting web.
  • the shielding element 5 can be suspended from the circulated receptacle 9 at least slightly movably.
  • a second axial region, in particular the second free end, of the shielding element 5 is arranged sealed on the inside of the second boundary part 2.
  • This heat-resistant seal 10 may be, for example, a pressure and / or spring-loaded piston ring seal or labyrinth seal.
  • the shielding element 5 has a passage in which a line 7 rests sealed.
  • the conduit 7 connects the cavity 6 with a second, not shown, pressure chamber arranged outside the shielding element 5.
  • the line 7 is preferably at least partially flexibly formed and / or is slidably mounted in the passage to the cavity 6.
  • the line 7 is preferably designed as a pipeline.
  • the conduit 7 is arranged sealed by a sealing element 16.
  • the conduit 7 is further downstream of a vane support 15, which is arranged on the circumferential receptacle 9 a, attached.
  • the second pressure space may be provided downstream of the vane support, for example.
  • the line 7 preferably has a locking element 13, in particular in the form of a valve. About this locking element 13, the conditions, in particular the pressure and the temperature within the cavity 6 can be controlled.
  • the shielding element 5 has a Anicarmbohrung 12 through which a defined amount of superheated steam can be continuously supplied to the cavity 6. This serves to improve the transient behavior of the shielded parting line or cross-parting joint.
  • a temporary increase in the heat transfer coefficient of the cavity 6 surrounding components is possible.
  • the locking element 13 and thus the line 7 can be fully opened again, so that the pressure in the cavity 6 lowers again for stationary operation of the steam turbine.
  • the two boundary parts 1, 2 have flange connections, are guided by the fastening screws 14.
  • the heat-movable seal 10 has a certain permeability, can flow through the continuously a defined amount of superheated steam in the cavity 6.
  • the risk of leakage at the parting line 3 is reduced.
  • boundary parts 1, 2 are provided, these are connected to one another at a parting line 3.
  • Three boundary parts form a Stoßteilfuge and four boundary parts form a Wienteilfuge.
  • Fig. 2 shows a further embodiment of the sealing of a parting line 3 and a funnelteilfuge between at least two boundary parts 1, 2 of a steam turbine.
  • the heat-movable seal 10 is designed in two parts.
  • the two-part seal 11 has advantages when mounting or dismounting the shielding element 5 on the at least one second boundary part 2.
  • the split seal 11 is a piston ring seal in two parts and with two joints.
  • the second pressure chamber is also in this and in the Fig. 3-5 not shown embodiments shown.
  • the second pressure chamber is formed by the interior of the at least one first boundary part 1 and sealed lead carrier used.
  • the second pressure chamber in addition to the arrangement in the flow channel, can also be arranged outside the flow channel, ie outside the boundary parts 1, 2.
  • the flange 8 of the shielding element 5 serves to close the parting line of the at least two-part shielding element 5.
  • the in the Fig. 3 shown variant of the sealing of a parting line 3 and a funnelteilfuge between at least two boundary parts 1, 2 of a steam turbine, has a different leadership of the line 7 between the cavity 6 and a second pressure chamber.
  • the passage to the cavity 6 is not provided in the shielding member 5 but in the first restriction member 1.
  • the line 7 is outside the flow channel, ie outside the first boundary part 1, out and is first performed in a downstream region in the flow channel interior 4 and connected there to the second pressure chamber, not shown.
  • the conduit 7 is sealingly secured in the passage to the cavity 6 in the at least one first boundary part 1 by sealing elements.
  • the shielding element 5 is divided in this embodiment into two segments 5a, 5b. In this case, the shielding element 5 is divided axially.
  • the heat-movable seal 10 here in the form of a split seal 11, respectively.
  • the second shielding element segment 5b is fixed to the circumferential receptacle 9 on the inside of the at least one first limiting part 1.
  • the split seal 11 allows the first shield member segment 5a with the split seal 11, after disassembly of the first restriction member 1 and the second shield member segment 5b, to be excavated together with the rotor of the steam turbine provided in the flow passage interior 4 and disassembled accordingly.
  • a split seal 11 is a piston ring seal.
  • the line is preferably mounted slidably in the passages or formed flexible at least one point.
  • the Ablelementsegmente 5a, 5b each have a flange 8a, 8b, through which the at least two divided Ablelementsegmente 5a, 5b together and possibly on at least one of the boundary members 1, 2 and / or at least one circumferential groove 9, for example, a stator axially can be fixed.
  • Fig. 4 shows a further possible embodiment variant of the sealing of a parting line 3 and a funnelteilfuge between at least two boundary parts 1, 2 of a steam turbine.
  • a Anürmtechnisch 17 is guided from the flow channel interior 4 in the cavity 6 in this embodiment.
  • the Anürmtechnisch 17 is not performed by the shielding 5, but by the at least one second boundary part 2 sealingly.
  • the Anürmtechnisch 17 hot steam from the flow channel interior 4 and from the first pressure chamber into the cavity 6 to achieve a temporary pressure increase and an increase in the temperature in the cavity 6.
  • a conduit 7 is provided, which is guided partly outside the flow channel. With an opening of the locking element 18 of the Anürmtechnisch 17 and a simultaneous closure of the locking element 13 of the line 7, the pressure and the temperature in the cavity 6 can be temporarily increased.
  • cooling steam from a first downstream point through a further cooling steam line 19 into the cavity 6 between the shielding 5, the parting line 2 and the boundary parts 1, 2 are passed.
  • the line 7 which ends at a second, more downstream point in the flow channel, in particular in a third pressure chamber, the supplied cooling steam can be removed again.
  • the pressure in the cavity 6 can be adjusted by the specific design of the cooling steam line 19 and the line 7 and a damming in the line 7, in the limits of the pressure levels of the first and the second location.
  • this solution is technically demanding and requires a more solid design of the shielding 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung, insbesondere eine Dampfturbine, aufweisend wenigstens ein erstes Begrenzungsteil und wenigstens ein zweites Begrenzungsteil, wobei die Begrenzungsteile unter Bildung einer Trennfuge aneinander befestigbar sind und dabei zumindest einen Teil eines ersten Druckraumes umschließen. Ferner betrifft die Erfindung ein Verfahren zur Absenkung des auf eine Trennfuge, die durch das Aneinanderfügen wenigstens eines ersten Begrenzungsteils und wenigstens eines zweiten Begrenzungsteils einer Vorrichtung, insbesondere einer Dampfturbine, gebildet wird, wirkenden Druckes und zur Reduzierung der auf die Trennfuge wirkenden Befestigungskräfte, wobei die Begrenzungsteile wenigstens einen Teil eines ersten Druckraumes umschließen.
  • Bei Dampfturbinen wird ein Strömungskanal durch verschiedene Begrenzungsteile bzw. Strömungskanalteile, die aneinandergefügt werden, gebildet. Der gebildete Strömungskanal wird mit Heißdampf unter hohem Druck beaufschlagt. Entlang der Längsachse des Strömungskanals werden Druckräume mit unterschiedlich hohen Innendrücken gebildet. Daher ist entscheidend, dass die Verbindung der verschiedenen Begrenzungsteile ausreichend dicht ist, so dass keine Leckagen auftreten. Dies ist insbesondere deshalb schwierig, da bei einer Dampfturbine Dampf- bzw. Frischdampftemperaturen von mehr als 600°C bei einem Dampfdruck von über 250 bar auftreten können.
  • An der Verbindung zwischen wenigstens zwei Begrenzungsteilen des Strömungskanals wird eine Trennfuge, bei vier Begrenzungsteilen eine sogenannte Kreuzteilfuge, gebildet. Eine Kreuzteilfuge weist sowohl eine waagerechte als auch eine senkrechte Teilfuge auf. Die Ausbildung einer Kreuzteilfuge ist dann erforderlich, wenn aus Fertigungsgründen oder aus Gründen der Werkstoffwahl die ersten Begrenzungsteile und die zweiten Begrenzungsteile des Strömungskanals getrennt, ausgeführt werden müssen. Die Begrenzungsteile weisen in der Regel unterschiedliche Werkstoffe mit unterschiedlichen Wärmeausdehnungskoeffizienten und unterschiedliche Konstruktionen auf. So kann ein Begrenzungsteil aus einem Stahlguss und das andere Begrenzungsteil kann als Schweißkonstruktion oder aus einem Sphäroguss gebildet sein. Die Flanschverbindung an den Trennfugen, insbesondere den Kreuzteilfugen, ist für Überdruck, für Unterdruck oder meist für wechselnde Druckverhältnisse auszulegen.
  • Die Ausführung von Dampfturbinengehäusen mit einer Kreuzteilfuge besitzt den Vorteil, dass die Herstellung der Rohteile und die Bearbeitung der Begrenzungsteile an jeweils kleineren Komponenten erfolgen können. Damit lassen sich Vorteile sowohl hinsichtlich der Kosten als auch der Beschaffungs- und Bearbeitungskapazität erschließen. Kreuzteilfugen besitzen allerdings den Nachteil, dass aufgrund der räumlichen Enge um den Schnittpunkt der Teilfugen herum nur begrenzte Möglichkeiten der sicheren Verschraubung bestehen. Damit weisen Kreuzteilfugen eher als andere Teilfugen die Gefahr einer Leckage auf und werden für Dampfturbinen nur bis zu bestimmten begrenzten Dampfparametern ausgeführt.
  • Es ist bekannt, Kreuzteilfugen mit Absaugungen auszustatten, um etwaige auftretende Leckagemengen aufzufangen. Weiterhin ist bekannt, eine Dichtnaht auf der Innenseite der senkrechten Teilfuge zu schweißen. Problematisch ist hier eine sichere und ausreichend wärmebewegliche Gestaltung der Schweißnaht, so dass eine Beschädigung auch bei instationären Vorgängen vermieden wird. Durch die hohen Drücke und Temperaturen kann es zu Ausdehnungen der entsprechenden Begrenzungsteile kommen, so dass es an der Dichtnaht zu Rissen und damit zu Leckagen kommen kann.
  • Aus der WO 99/00620 A1 ist eine Dampfturbine mit einer doppelwandigen Flanschverbindung mit einem Außenflansch und mit vorgesehen, zwischen denen ein von einem Kühlmedium durchströmbarer Zwischenraum gebildet ist.
    Die Aufgabe der Erfindung besteht darin, eine Vorrichtung und ein Verfahren zu schaffen, die es ermöglichen den Druck und die Kräfte auf eine Trennfuge, insbesondere auf eine Kreuzteilfuge, zwischen wenigstens zwei aneinander befestigten Begrenzungsteilen der Vorrichtung, insbesondere einer Dampfturbine, zu senken bzw. zu reduzieren, wenn bei einem Betrieb der Vorrichtung hohe Drücke auftreten. Insbesondere soll eine Kreuzteilfuge an Begrenzungsteilen einer Dampfturbine einem größeren Einsatzbereich zugänglich gemacht werden.
  • Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung, insbesondere eine Dampfturbine, mit den Merkmalen gemäß dem unabhängigen Patentanspruch 1 sowie durch ein Verfahren mit den Merkmalen gemäß dem unabhängigen Patentanspruch 19 gelöst. Weitere Merkmale und Details der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung sowie den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit der erfindungsgemäßen Vorrichtung, insbesondere der Dampfturbine, beschrieben sind, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Verfahren, und jeweils umgekehrt, so dass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird.
  • Gemäß dem ersten Aspekt der Erfindung wird die Aufgabe durch eine Vorrichtung, insbesondere eine Dampfturbine, aufweisend wenigstens ein erstes Begrenzungsteil und wenigstens ein zweites Begrenzungsteil, wobei die Begrenzungsteile unter Bildung einer Trennfuge aneinander befestigbar sind und dabei zumindest einen Teil eines ersten Druckraumes umschließen, bei der an den dem ersten Druckraum zugewandten Seiten der Begrenzungsteile ein Abschirmelement vorgesehen ist, das abdichtend gegenüber dem wenigstens einen ersten Begrenzungsteil und dem wenigstens einen zweiten Begrenzungsteil angeordnet ist und dabei die Trennfuge vollständig abdeckt, so dass zwischen den Begrenzungsteilen und dem Abschirmelement ein Hohlraum gebildet ist, und dass eine Leitung in den Hohlraum geführt ist, die den Hohlraum mit einem zweiten Druckraum verbindet, gelöst.
  • Kern der Erfindung ist, dass der Bereich der Trennfuge, der dem ersten Druckraum zugewandt ist, mit einem niedrigeren Druck beaufschlagt wird, als in dem Strömungskanal bei Betrieb der Vorrichtung, insbesondere der Dampfturbine, vorherrscht. Durch die Druckabsenkung an der Trennfuge können auch die auf die Befestigung der Begrenzungsteile wirkenden Kräfte, insbesondere die Axialkräfte, reduziert werden. Das wenigstens eine erste und das wenigstens eine zweite Begrenzungsteil der Vorrichtung werden aneinandergefügt. An der Verbindungsstelle wird eine Trennfuge, insbesondere eine Kreuzteilfuge, gebildet. Die Begrenzungsteile werden insbesondere mittels Befestigungsschrauben aneinander befestigt. Durch die Abschirmung der Trennfuge bzw. der Kreuzteilfuge kann der Druck auf die Fuge reduziert werden und damit insbesondere die Axialkräfte auf die Befestigungsschrauben der Flanschverbindung zwischen den Begrenzungsteilen reduziert werden.
  • Erfindungsgemäß ist an den dem ersten Druckraum zugewandten Seiten der Begrenzungsteile ein Abschirmelement vorgesehen, das abdichtend gegenüber dem wenigstens einen ersten Begrenzungsteil und dem wenigstens einen zweiten Begrenzungsteil angeordnet ist und dabei die Trennfuge vollständig abdeckt. Durch die Abdeckung der Trennfuge durch das Abschirmelement wird zwischen den Begrenzungsteilen und dem Abschirmelement im Bereich der Trennfuge ein Hohlraum gebildet. In diesen Hohlraum wird eine Leitung geführt, die den Hohlraum mit einem zweiten, externen Druckraum verbindet. Bilden die Begrenzungsteile einen Strömungskanal einer Dampfturbine, so wird der Bereich der Trennfuge beziehungsweise der Kreuzteilfuge dampfseitig durch das Abschirmelement geschützt, so dass in diesem abgeschirmten Bereich niedrigere Umgebungsparameter, d.h. ein niedrigerer Druck und eine moderat niedrigere Temperatur, eingestellt werden können. Durch die Verbindung des Hohlraums mit dem zweiten Druckraum kann der Druck in dem Hohlraum dem Druck in dem zweiten Druckraum angepasst werden.
  • Die Abschirmwirkung wird dadurch erreicht, dass ein innerhalb des durch die Begrenzungsteile gebildeten ersten Druckraumes befindliches Abschirmelement die Trennfuge bzw. die Kreuzteilfuge vollständig überdeckt und auf allen Seiten der Fuge abdichtet, also dichtend gegenüber wenigstens einen ersten und am wenigstens einen zweiten Begrenzungsteil angeordnet ist. Die Druckabsenkung erfolgt durch die Leitung, welche den Hohlraum zwischen dem Abschirmelement, den Begrenzungsteilen und der Fuge mit einem weiter stromab in der Expansion liegenden zweiten Druckraum verbindet. Der zweite Druckraum oder die Leitung zu dem zweiten Druckraum kann beispielsweise an der Innenseite des wenigstens einen ersten und/oder des wenigstens einen zweiten Begrenzungsteils oder an einem Leitschaufelträger der Vorrichtung, insbesondere der Dampfturbine, befestigt sein.
  • Durch eine derartige Vorrichtung beziehungsweise eine derartige Dampfturbine kann der Einsatzbereich einer Trennfugenverbindung, insbesondere einer Kreuzteilfugenverbindung, zwischen den Begrenzungsteilen einem größeren Einsatzbereich zugänglich gemacht werden.
  • Bei einer derartigen Vorrichtung beziehungsweise einer derartigen Dampfturbine kann eine Absenkung des Drucks in dem Hohlraum um circa 15 bis 20 bar gegenüber dem Druck in dem durch die Begrenzungsteile gebildeten ersten Druckraum der Dampfturbine erreicht werden. Ferner ist eine Reduzierung der wirksamen Innendruck-bedingten Axialkräfte an den Befestigungsschrauben um etwa 1/3 gegenüber üblichen Dampfturbinen möglich. Die Druckabsenkung geht einher mit einer moderaten Temperaturabsenkung durch Drosselung. Diese Drosselung kommt zustande durch die Druckabsenkung etwaiger Leckagemassenströme vom Innenraum in den Hohlraum ohne Verrichtung technischer Arbeit.
  • Das Abschirmelement kann verschiedenartig ausgebildet sein. So kann dieses beispielsweise ein eckiges oder ein gebogenes Profil aufweisen.
  • Die Trennfuge kann beispielsweise neben einer Kreuzteilfuge auch als eine Stoßteilfuge ausgebildet sein. Hierbei stoßen drei Begrenzungsteile aneinander.
  • Das wenigstens eine erste und das wenigstens eine zweite Begrenzungsteil stellen vorzugsweise rotationssymmetrische bzw. im Wesentlichen rotationssymmetrisch ausgebildete Elemente dar. Im Wesentlichen rotationssymmetrisch bedeutet, dass die Elemente zylindrische, kegelige oder gekrümmte Teilbereiche aufweisen können. Im Wesentlichen rotationssymmetrische Elemente können an bestimmten Stellen nicht rotationssymmetrisch ausgebildete Ergänzungen oder Abschnitte, wie beispielsweise Einströmungen, Verstärkungen oder Flansche, aufweisen. Diese rotationssymmetrischen bzw. im Wesentlichen rotationssymmetrisch ausgebildeten Elemente bilden den Strömungskanal der Vorrichtung beziehungsweise der Dampfturbine. Es können auch mehr als zwei Begrenzungsteile vorgesehen sein, wobei die Trennfugen bzw. die Kreuzteilfugen zwischen den jeweiligen Begrenzungsteilen entsprechend der Erfindung abgeschirmt sind. Das Abschirmelement weist bevorzugt ebenfalls ein rotationssymmetrisches bzw. im Wesentlichen rotationssymmetrisches Profil auf.
  • Bevorzugt ist eine Vorrichtung, bei der die Leitung zu dem Hohlraum durch eines der Begrenzungsteile oder durch das Abschirmelement geführt ist. Die Leitung ist bevorzugt als Rohrleitung ausgebildet und verbindet den Hohlraum vorteilhafterweise mit einem in Strömungsrichtung stromab, d.h. stromab in der Expansion, liegenden zweiten Druckraum. Dabei kann die Leitung, insbesondere die Rohrleitung, teilweise oder ganz innerhalb und/oder außerhalb der Begrenzungsteile, das heißt des ersten Druckraumes, geführt werden.
  • Ferner ist eine Vorrichtung bzw. eine Dampfturbine bevorzugt, bei der das Abschirmelement und die Abdichtung des Abschirmelementes wärmebeweglich ausgebildet sind. Hierdurch können unterschiedliche Verformungen der Begrenzungsteile beziehungsweise der Abschirmung aufgrund der teilweise vorherrschenden hohen Temperaturen und der hohen Drücke ausgeglichen werden.
  • Besonders bevorzugt ist eine Vorrichtung bzw. eine Dampfturbine, bei der das Abschirmelement an zumindest zwei umlaufenden Aufnahmen an den Begrenzungsteilen befestigt, insbesondere aufgehängt, ist oder dass das Abschirmelement durch wenigstens zwei wärmebewegliche Dichtungen an den Begrenzungsteilen abdichtend sitzt oder dass das Abschirmelement an wenigstens einer umlaufenden Aufnahme an zumindest einem der Begrenzungsteile befestigt, insbesondere aufgehängt, ist und durch wenigstens eine wärmebewegliche Dichtung an dem zumindest einem anderen Begrenzungsteil abdichtend sitzt. So kann vorgesehen sein, dass an der Innenseite der ersten Begrenzungsteile eine umlaufende Aufnahme vorgesehen ist, an der ein erster axialer Bereich, insbesondere ein erstes freies Ende, des Abschirmelementes abdichtend befestigt ist, und dass eine wärmebewegliche Dichtung zwischen der Innenseite der zweiten Begrenzungsteile und eines zweiten axialen Bereiches, insbesondere des zweiten freien Endes, des Abschirmelementes vorgesehen ist. Die Befestigung des ersten axialen Bereiches bzw. des ersten freien Endes des Abschirmelementes an der umlaufenden Aufnahme kann beispielsweise mittels Schraubverbindungen oder durch Einfügen in eine umlaufende Nut erfolgen. Dabei erfolgt die Fixierung des Abschirmelementes vorteilhafterweise axial sowie radial zu der Längsachse des Strömungskanals an der umlaufenden Aufnahme. Zur besseren Abdichtung kann bei dieser Befestigung ein Dichtelement vorgesehen sein. Sitzt das Abschirmelement durch wenigstens zwei wärmebewegliche Dichtungen abdichtend gegenüber den Begrenzungsteilen wird das Abschirmelement vorzugsweise durch eine axiale Fixierung axial fixiert. Diese Fixierung kann an einen Begrenzungsteil oder einer umlaufenden Nut erfolgen. Insbesondere Schraubverbindungen sind besonders geeignet.
  • Bevorzugt ist ferner eine Vorrichtung, bei der wenigstens eine umlaufende Aufnahme durch ein Statorteil gebildet ist. Das Statorteil ist an wenigstens einem Begrenzungsteil abdichtend fixiert. Ferner kann die umlaufende Aufnahme durch einen nach Innen und/oder axial vorstehenden umlaufenden Steg gebildet sein. Die Form bzw. die Ausgestaltung der wenigstens einen umlaufenden Aufnahme kann verschiedenartig sein.
  • Des Weiteren ist bevorzugt, wenn die wenigstens eine wärmebewegliche Dichtung an der wenigstens einen umlaufenden Aufnahme, insbesondere an dem Statorteil oder dem umlaufenden Steg, abdichtend sitzt.
  • Die wärmebewegliche Abdichtung kann durch einen druck- und/oder federkraftbelastbaren Kolbenring, durch eine Labyrinth- bzw. Durchblickdichtung oder durch wenigstens ein Dichtblech gebildet sein. Insbesondere Kolbenringdichtungen und Labyrinthdichtungen sind bei extremen Betriebsbedingungen, das heißt bei hohen Drücken und Temperaturen, sehr gut einsetzbar. Labyrinth- bzw. Durchblickdichtungen können kleine Spiele aufweisen. Es ist auch denkbar, dass zur wärmebeweglichen Abdichtung eines axialen Bereiches, insbesondere eines freien Endes, des Abschirmelementes mehrere Dichtungen oder Dichtbleche vorgesehen werden.
  • Bei einer anderen bevorzugten Vorrichtung weist wenigstens eines der Begrenzungsteile der Vorrichtung eine Nut zur Aufnahme der wärmebeweglichen Abdichtung auf. Dies schafft eine besonders gute Befestigung und Abdichtung des Abschirmelementes an den entsprechenden Begrenzungsteilen. Als besonders abdichtend hat sich erwiesen, eine Kolbenringdichtung in die Nut einzuführen. Die Dichtung kann dabei in die Nut eingestellt werden.
  • Des Weiteren ist eine Vorrichtung bzw. eine Dampfturbine bevorzugt, bei der die wärmebewegliche Dichtung eine geteilte Dichtung ist. Ein Teil der geteilten Dichtung ist nach dem Anheben des ersten Begrenzungsteils in der Nähe der Trennfuge, insbesondere der Kreuzteilfuge, trennbar, so dass danach der restliche Teil der Abschirmung demontiert werden kann. So kann als geteilte Dichtung eine Kolbenringdichtung in zwei Teilen und mit zwei Stößen vorgesehen sein. Eine derartige geteilte Dichtung kann unmittelbar an dem Abschirmelement und/oder an einem der Begrenzungsteile und/oder an wenigstens einer umlaufenden Aufnahme angeordnet sein. Ein Stoß bildet eine Trennstelle am Umfang des Kolbenringes. Die Stöße weisen Abdichtungen und optional Verhakungen auf.
  • Aufgrund der möglichen Ausdehnung einzelner Bauteile durch den Wärmeeinfluss ist die Leitung vorzugsweise flexibel ausgebildet und/oder wenigstens an der Durchführung zu dem Hohlraum verschiebbar gelagert. Hierdurch kann vermieden werden, dass die Leitung reißt, wenn es zu einer Wärmeausdehnung einzelner Bauteile kommt. Trotz der Verschiebbarkeit beziehungsweise Flexibilität der Leitung ist diese in der Durchführung zum Hohlraum abgedichtet angeordnet. Wenn die Leitung als Rohrleitung ausgebildet ist, ist diese bevorzugt verschiebbar gelagert, da die Rohrleitung weniger flexibel ausgebildet ist, als eine von vornherein flexible Leitung.
  • In einer weiteren bevorzugten Ausführungsform der Vorrichtung, insbesondere der Dampfturbine, ist vorgesehen, dass das Abschirmelement zumindest zweigeteilt ist, wobei die zumindest zwei Teile des Abschirmelementes abdichtend aneinander befestigbar sind. Insbesondere vorteilhaft ist es, wenn das Abschirmelement axial geteilt ist. So kann vorgesehen sein, dass das Segment des Abschirmungselementes, an dem die wärmebewegliche Dichtung angeordnet ist, an dem zweiten Begrenzungsteil befestigt ist, und dass das zweite Segment an dem ersten Begrenzungsteil angeordnet ist. Bei diesem Ausführungsbeispiel kann das Segment mit der wärmebeweglichen Dichtung nach der Demontage des ersten Begrenzungsteils und des zweiten Segmentes des Abschirmelementes gemeinsam mit einem Rotor der Dampfturbine ausgehoben und anschließend demontiert werden. Bei einer derartigen Ausführungsform des Abschirmelementes ist eine Kolbenringdichtung besonders bewährt. Die jeweiligen Segmente des Abschirmelementes können mittels Schraubverbindungen und wärmebeweglichen Dichtungen aneinander abdichtend fixiert werden.
  • Vorzugsweise weist das Abschirmelement der Vorrichtung wenigstens eine Anwärmbohrung auf. Durch eine Anwärmbohrung ist ein gezielter Massenstrom des in dem Strömungskanal strömenden Heißdampfes in den Hohlraum abführbar. Alternativ oder zusätzlich hierzu können wärmebewegliche Dichtungen eingesetzt werden, die bestimmte Lässigkeiten aufweisen. Derartige Lässigkeiten aufweisende Dichtungen lassen moderate Leckagemengen durch die Dichtungen hindurch. Des Weiteren kann eine mittels eines Verriegelungselementes verriegelbare Anwärmleitung zu dem Hohlraum geführt sein. Diese Maßnahmen dienen zur Erreichung eines verbesserten instationären Verhaltens der abgeschirmten Trennfuge bzw. Kreuzteilfuge. Sie ermöglichen eine vorübergehende Erhöhung des Wärmeübergangskoeffizienten der abgeschirmten Bauteile, und zwar mit Hilfe einer temporären Druckerhöhung zwischen der Abschirmung, d.h. dem Abschirmelement, und der Trennfuge bzw. der senkrechten Teilfuge der Kreuzteilfuge. Dies erfolgt beispielsweise durch eine gezielte Zuführung einer bestimmten Menge des ursprünglich abgeschirmten Heißdampfes. Der abgeschirmte Heißdampf kann zeitweise über die verriegelbare Anwärmleitung dem Hohlraum zugeführt werden. Die Anwärmleitung weist zumindest ein Verriegelungselement auf. Dieses Verriegelungselement kann beispielsweise ein Schieber, ein Regler, ein Hahn oder ein Ventil sein. Aber auch andere Arten von Verriegelungselementen sind denkbar. Weisen das Abschirmelement Anwärmbohrungen oder die Dichtungen bestimmte Lässigkeiten auf, so kann kontinuierlich eine bestimmte Menge an Heißdampf dem Hohlraum zugeführt werden. Damit der zugeführte Heißdampf in dem Hohlraum gehalten werden kann, weist die Leitung zu dem Druckraum ebenfalls ein Verriegelungselement auf, welches bei Bedarf geschlossen werden kann, um kurzfristig die Temperatur und den Druck im Hohlraum zu erhöhen. Das Verriegelungselement der Leitung kann ebenfalls als ein Schieber, ein Regler, ein Hahn, ein Ventil, etc. ausgebildet sein.
  • Insbesondere durch das Verriegelungselement in der Leitung zu dem zweiten Druckraum können die Betriebsbedingungen innerhalb des Hohlraums einfach geregelt werden. Das Verriegelungselement in der Leitung ermöglicht ein temporäres Aufstauen des Druckes und auch der Temperatur in dem Hohlraum und der Leitungsverbindung zum dem, in der Regel stromab liegenden, zweiten Druckraum. Nach dem Erreichen eines gewünschten Temperaturniveaus in dem Hohlraum und/oder in den Flanschabschnitten der Trennfuge, insbesondere der Kreuzteilfuge, bzw. in den für den instationären Betrieb maßgeblichen Abschnitten der Begrenzungsteile wird die Leitung zum zweiten Druckraum wieder voll geöffnet, so dass sich für den stationären Betrieb wieder ein abgesenkter Druck in dem Hohlraum und damit an der Teilfuge einstellt. Durch die Öffnung der Leitung ist auch das Temperaturniveau in dem Hohlraum beziehungsweise in der Leitung wieder regelbar.
  • Ferner ist eine Vorrichtung bevorzugt, bei der wenigstens eine mittels eines Verriegelungselementes verriegelbare Kühldampfleitung zu dem Hohlraum geführt ist, über die Kühldampf in den Hohlraum zuführbar ist. Das heißt zusätzlich zu den zuvor genannten Verbesserungen hinsichtlich des Druckes an der Trennfuge beziehungsweise der Kreuzteilfuge und der auftretenden Axialkraft sowie der möglichen moderaten Temperatursenkung durch Drosselung kann, falls erforderlich, eine weitere stationäre Temperaturabsenkung an der Trennfuge beziehungsweise der senkrechten Teilfuge der Kreuzteilfuge erreicht werden. Dies ist beispielsweise dann erforderlich, wenn zulässige Einsatztemperaturen von Begrenzungsteilen, des Abschirmelementes oder von Schraubenwerkstoffen eingehalten oder mit einer Absenkung der Bauteiltemperaturen eine Erhöhung der Festigkeitskennwerte erreicht werden müssen. Hierzu wird vorteilhafterweise Kühldampf von einer ersten, in bezug auf die Trennfuge stromab liegenden, Stelle durch die Kühldampfleitung in den Hohlraum zwischen dem Abschirmelement und der Teilfuge geleitet und durch die Leitung zu einer zweiten, weiter stromab liegenden Stelle zurückgeleitet. Der Druck in dem Hohlraum kann durch die spezielle Leitungsgestaltung, insbesondere Rohrleitungsgestaltung, und ein etwaiges Anstauen in der Leitung, auch als Abführleitung bezeichnet, eingestellt werden, und zwar in den Grenzen der Druckniveaus der ersten und der zweiten Stelle. Diese Lösung ist regelungstechnisch anspruchsvoll und verlangt eine massivere Ausführung der Abschirmung, d.h. des Abschirmelementes. Der zusätzliche Nutzen der beschriebenen Maßnahmen zur Temperaturabsenkung kann dann fallweise geprüft werden. Die Anwärmleitung, die Kühldampfleitung und die Abführleitung weisen entsprechende Verriegelungselemente auf, durch die eine Regelung des Druckniveaus ermöglicht wird. Die Verriegelungselemente können beispielsweise ein Schieber, ein Regler, ein Hahn oder ein Ventil sein. Aber auch andere Verriegelungselemente sind denkbar. Weiterhin können anstelle oder zusätzlich zu den Verriegelungselementen Strömungswiderstände, wie beispielsweise Blenden, Drosseln, etc., für die Regelung des Druckniveaus innerhalb der Leitungen, d.h. der Leitung, der Anwärmleitung und/oder der Kühldampfleitung, eingesetzt werden.
  • Zusätzlich zu den zuvor beschriebenen Maßnahmen, kann an den dem ersten Druckraum abgewandten Seiten der Begrenzungsteile über der Trennfuge, insbesondere der Kreuzteilfuge, eine Absaugeinrichtung angeordnet sein, über die Leckagemengen abgesaugt werden können. Desweiteren kann zusätzlich vorgesehen sein, dass eine Dichtnaht an der dem ersten Druckraum zugewandten Seite der Trennfuge, insbesondere der senkrechten Kreuzteilfuge, geschweißt ist. Hierbei ist auf die sichere und ausreichend wärmebewegliche Gestaltung der Schweißnaht zu achten, so dass eine Beschädigung auch bei instationären Vorgängen vermieden wird.
  • Gemäß dem zweiten Aspekt der Erfindung wird die Aufgabe durch ein Verfahren zur Absenkung des auf eine Trennfuge, die durch das Aneinanderfügen wenigstens eines ersten Begrenzungsteils und wenigstens eines zweiten Begrenzungsteils einer Vorrichtung, insbesondere einer Dampfturbine, gebildet wird, wirkenden Druckes und zur Reduzierung der auf die Trennfuge wirkenden Befestigungskräfte, wobei die Begrenzungsteile wenigstens einen Teil eines ersten Druckraumes umschließen, wobei an den dem Strömungskanalinneren zugewandten Seiten der Begrenzungsteile ein Abschirmelement vorgesehen wird, das abdichtend gegenüber dem wenigstens einen ersten Begrenzungsteil und dem wenigstens einen zweiten Begrenzungsteil angeordnet wird und dabei die Trennfuge vollständig abdeckt, so dass zwischen den Begrenzungsteilen und dem Abschirmelement ein Hohlraum gebildet wird, und wobei aus einem zweiten Druckraum eine Leitung in den Hohlraum geführt wird, über die der Druck in dem Hohlraum auf ein niedrigeres Niveau gesenkt wird, gelöst.
  • Durch die dichte Abdeckung der Trennfuge an der Innenseite der Begrenzungsteile durch ein Abschirmelement entsteht ein Hohlraum. Zu dem Hohlraum wird eine Leitung geführt, die mit einem außerhalb des Hohlraums liegenden zweiten Druckraum verbunden ist. Durch die Verbindung des Hohlraums mit dem zweiten Druckraum können in dem Hohlraum andere Betriebsbedingungen, insbesondere andere Temperaturen und Drücke, als im ersten Druckraum eingestellt werden. Insbesondere durch die Druckabsenkung wird die Belastung auf die Trennfuge, insbesondere auf die Kreuzteilfuge, reduziert. Dabei hat sich erwiesen, dass eine Reduzierung des Drucks um 15 bis 20 bar möglich ist. Durch dieses Verfahren der Druckabsenkung wird der Einsatzbereich der Trennfuge, insbesondere der Kreuzteilfuge, bei Dampfturbinen und sonstigen Vorrichtungen deutlich erhöht. D.h., der Einsatzbereich einer Trennfugenverbindung, insbesondere einer Kreuzteilfugenverbindung, wird erweitert. Die Druckabsenkung im Bereich der Trennfuge bzw. Kreuzteilfuge wird durch eine zuverlässige wärmebewegliche Abschirmung ermöglicht. Durch eine entsprechend geeignete Gestaltung des Abschirmelementes wird ein Schubausgleich zur Reduzierung der Flanschkräfte, d.h., der auf die Befestigungsschrauben der zwei Begrenzungsteile wirkenden Kräfte, erreicht. Durch die Druckabsenkung im Bereich der Trennfuge bzw. Kreuzteilfuge ist eine Reduzierung der wirksamen Innendruck-bedingten Axialkräfte um etwa 1/3 gegenüber den bekannten Vorrichtungen, bei den denen keine Druckabsenkung stattfindet, möglich. Durch die Abschirmung der Trennfuge bzw. der Kreuzteilfuge kann eine deutliche Steigerung des Einsatzbereiches derartiger Fugen erreicht werden.
  • Insbesondere bevorzugt ist ein Verfahren, bei dem der auf die Trennfuge wirkende Druck und die an der Trennfuge wirkenden Befestigungskräfte durch eine Vorrichtung, insbesondere eine Dampfturbine, gemäß des ersten Aspektes der Erfindung abgesenkt bzw. reduziert werden.
  • Die Erfindung wird nun anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    einen Schnitt durch eine schematisch dargestellte erste Verbindungsmöglichkeit zweier Begrenzungselemente einer Dampfturbine;
    Figur 2
    einen Schnitt durch eine schematisch dargestellte zweite Verbindungsmöglichkeit zweier Begrenzungselemente einer Dampfturbine;
    Figur 3
    einen Schnitt durch eine schematisch dargestellte dritte Verbindungsmöglichkeit zweier Begrenzungselemente einer Dampfturbine;
    Figur 4
    einen Schnitt durch eine schematisch dargestellte vierte Verbindungsmöglichkeit zweier Begrenzungselemente einer Dampfturbine;
    Figur 5
    einen Schnitt durch eine schematisch dargestellte fünfte Verbindungsmöglichkeit zweier Begrenzungselemente einer Dampfturbine.
  • Die Fig. 1 bis 5 zeigen schematisch verschiedene Verbindungsmöglichkeiten zweier Begrenzungselemente 1, 2 einer Dampfturbine. An der Seiten der Begrenzungselemente 1, 2, die dem Strömungskanalinneren 4 zugewandt sind, ist um den Bereich der Trennfuge 3, die insbesondere als eine Kreuzteilfuge ausgebildet ist, ein Abschirmelement 5 abgeordnet. Dabei überdeckt das Abschirmelement 5 die Trennfuge 3 vollständig, so dass zwischen den beiden Innenseiten der Begrenzungselemente 1, 2, der Trennfuge 3 und dem Abschirmelement 5 ein abgedichteter Hohlraum 6 entsteht. Das Abschirmelement 5 schützt die Trennfuge vor den im Strömungskanal bzw. im ersten Druckraum, der zumindest teilweise durch die beiden Begrenzungselemente 1, 2 gebildet wird, vorherrschenden Bedingungen. In einem Strömungskanal bzw. in einem Druckraum innerhalb eines Strömungskanals einer im Betrieb befindlichen Dampfturbine können Temperaturen von über 600°C und Drücke von mehr als 250bar vorherrschen. Damit die Trennfuge 3 bzw. die Kreuzteilfuge diesen hohen Bedingungen nicht ausgesetzt wird, ist das Abschirmelement 5 abdichtend um den Bereich der Trennfuge 3 bzw. der Kreuzteilfuge an den Begrenzungselementen 1, 2 befestigt. Die Begrenzungselemente 1, 2 sind als rotationssymmetrische bzw. als im Wesentlichen rotationssymmetrische Elemente bzw. Teilelemente ausgebildet. Das Abschirmelement 5 ist an einem axialen Bereich, hier an einem freien Ende, an einer an dem ersten Begrenzungsteil 1 angeordneten umlaufenden Aufnahme 9 abdichtend befestigt. Die umlaufende Aufnahme 9 kann auch ein Statorteil der Dampfturbine oder eine umlaufender, nach Innen vorstehender Steg sein. Dabei kann das Abschirmelement 5 an der umlaufenen Aufnahme 9 zumindest leicht beweglich aufgehängt sein. Ein zweiter axialer Bereich, insbesondere das zweite freie Ende, des Abschirmelementes 5 ist an der Innenseite des zweiten Begrenzungsteils 2 abgedichtet angeordnet. Zu Abdichtung dient eine wärmebewegliche Dichtung 10. Diese wärmebewegliche Dichtung 10 kann beispielsweise eine druck- und/oder federkraftbelastbaren Kolbenringdichtung oder Labyrinthdichtung sein. Das Abschirmelement 5 weist eine Durchführung auf, in der eine Leitung 7 abgedichtet einliegt. Die Leitung 7 verbindet den Hohlraum 6 mit einem außerhalb des Abschirmelementes 5 angeordneten zweiten, nicht dargestellten, Druckraum. Da in dem zweiten Druckraum ein niedrigeres Druckniveau vorherrscht, als im Strömungskanalinneren, kann über die Leitung 7 eine Druckabsenkung in dem Hohlraum 6 erfolgen. Die Leitung 7 ist bevorzugt zumindest bereichsweise flexibel ausgebildet und/oder ist verschiebbar in der Durchführung zu dem Hohlraum 6 gelagert. Die Leitung 7 ist bevorzugt als Rohrleitung ausgebildet. In der Durchführung zu dem Hohlraum 6 ist die Leitung 7 durch ein Dichtelement 16 abgedichtet angeordnet. Die Leitung 7 ist stromabwärts ferner an einem Leitschaufelträger 15, der an der umlaufenden Aufnahme 9a angeordnet ist, befestigt. Der zweite Druckraum kann beispielsweise stromabwärts von dem Leitschaufelträger vorgesehen sein. Vorzugsweise weist die Leitung 7 ein Verriegelungselement 13, insbesondere in Form eines Ventils, auf. Über dieses Verriegelungselement 13 können die Bedingungen, insbesondere der Druck und die Temperatur, innerhalb des Hohlraums 6 geregelt werden. In dieser Ausführungsvariante der Dampfturbine weist das Abschirmelement 5 eine Anwärmbohrung 12 auf, durch die kontinuierlich eine definierte Menge an Heißdampf dem Hohlraum 6 zugeführt werden kann. Dies dient zur Verbesserung des instationären Verhaltens der abgeschirmten Trennfuge bzw. Kreuzteilfuge. Durch das kontinuierliche Einströmen einer bestimmten Menge an Heißdampf und die durch Schließen des Verriegelungselementes 13 in der Leitung 7 erreichbare vorübergehende Druckerhöhung in dem Hohlraum 6, ist eine vorübergehende Erhöhung des Wärmeübergangskoeffizienten der dem Hohlraum 6 umgebenden Bauteile möglich. Nach dem Erreichen des gewünschten Druck- und Temperaturniveaus kann das Verriegelungselement 13 und damit die Leitung 7 wieder voll geöffnet werden, so dass sich für den stationären Betrieb der Dampfturbine der Druck in dem Hohlraum 6 wieder absenkt. Die beiden Begrenzungsteile 1, 2 weisen Flanschverbindungen auf, durch die Befestigungsschrauben 14 geführt sind. Alternativ oder zusätzlich zu der Anwärmbohrung 12 kann vorgesehen sein, dass die wärmebewegliche Dichtung 10 eine bestimmte Lässigkeit aufweist, durch die kontinuierlich eine definierte Menge an Heißdampf in den Hohlraum 6 einströmen kann. Durch die Abschirmung der Trennfuge 3 wird die Gefahr einer Leckage an der Trennfuge 3 verringert. Ferner wird durch die Druckabsenkung eine Reduzierung der auf die Befestigungsschrauben 14 wirkenden Kräfte, insbesondere der Axialkräfte, erreicht.
  • Sind zwei Begrenzungsteile 1, 2 vorgesehen, sind diese an einer Trennfuge 3 miteinander verbunden. Drei Begrenzungsteile bilden eine Stoßteilfuge und vier Begrenzungsteile bilden eine Kreuzteilfuge.
  • Fig. 2 zeigt eine weitere Ausführungsvariante der Abdichtung einer Trennfuge 3 bzw. einer Kreuzteilfuge zwischen zumindest zwei Begrenzungsteilen 1, 2 einer Dampfturbine. Der Unterschied zu der Ausführungsvariante gemäß der Fig. 1 liegt in der wärmebeweglichen Dichtung 10. In dieser Ausführungsvariante ist die wärmebewegliche Dichtung 10 zweigeteilt ausgeführt. Neben der erhöhten Dichtfunktion hat die zweigeteilte Dichtung 11 Vorteile beim Montieren beziehungsweise Demontieren des Abschirmelementes 5 an dem wenigstens einen zweiten Begrenzungsteil 2. Besonders bevorzugt ist die geteilte Dichtung 11 eine Kolbenringdichtung in zwei Teilen und mit zwei Stößen. Der zweite Druckraum ist auch in dieser und in den in den Fig. 3-5 gezeigten Ausführungsvarianten nicht dargestellt. Der zweite Druckraum ist durch den Innenraum des wenigstens einen ersten Begrenzungsteils 1 und von abgedichtet eingesetzten Leitträger gebildet. Der zweite Druckraum kann neben der Anordnung in dem Strömungskanal auch außerhalb des Strömungskanals, d.h. außerhalb der Begrenzungsteile 1, 2 angeordnet sein. Der Flansch 8 des Abschirmelementes 5 dient zum Verschließen der Teilfuge des zumindest zweigeteilten Abschirmelementes 5.
  • Die in der Fig. 3 gezeigte Ausführungsvariante der Abdichtung einer Trennfuge 3 bzw. einer Kreuzteilfuge zwischen wenigstens zwei Begrenzungsteilen 1, 2 einer Dampfturbine, weist eine andere Führung der Leitung 7 zwischen dem Hohlraum 6 und einem zweiten Druckraum auf. Die Durchführung zu dem Hohlraum 6 ist nicht in dem Abschirmelement 5, sondern in dem ersten Begrenzungsteil 1 vorgesehen. Die Leitung 7 wird außerhalb des Strömungskanals, d.h. außerhalb des ersten Begrenzungsteils 1, geführt und wird erst in einem stromabwärts liegenden Bereich wieder in das Strömungskanalinnere 4 geführt und dort mit dem nicht dargestellten zweiten Druckraum verbunden.
  • Die Leitung 7 ist in der Durchführung zu dem Hohlraum 6 in dem wenigstens einen ersten Begrenzungsteil 1 durch Dichtelemente abdichtend befestigt. Das Abschirmelement 5 ist in dieser Ausführungsvariante in zwei Segmente 5a, 5b geteilt. Dabei ist das Abschirmelement 5 axial geteilt. An dem ersten Abschirmelementsegment 5a ist die wärmebewegliche Dichtung 10, hier in Form einer geteilten Dichtung 11, angeordnet. Das zweite Abschirmelementsegment 5b ist an der umlaufenden Aufnahme 9 an der Innenseite des wenigstens einen ersten Begrenzungsteils 1 fixiert. Die geteilte Dichtung 11 ermöglicht, dass das erste Abschirmelementsegment 5a mit der geteilten Dichtung 11, nach der Demontage des ersten Begrenzungsteils 1 und des zweiten Abschirmelementsegmentes 5b, gemeinsam mit dem in dem Strömungskanalinneren 4 vorgesehenen Rotor der Dampfturbine ausgehoben und entsprechend demontiert werden kann. Besonders geeignet als geteilte Dichtung 11 ist eine Kolbenringdichtung. Um einer möglichen Wärmeausdehnung eines Bauteils, insbesondere des ersten Begrenzungsteils 1, vorzubeugen, ist die Leitung vorzugsweise verschiebbar in den Durchführungen gelagert oder an zumindest einer Stelle flexibel ausgebildet. Die Abschirmelementsegmente 5a, 5b weisen jeweils einen Flansch 8a, 8b auf, durch die die zumindest zweigeteilten Abschirmelementsegmente 5a, 5b miteinander und ggf. an wenigstens einem der Begrenzungsteile 1, 2 und/oder an wenigstens einer umlaufenden Nut 9, beispielsweise einem Statorteil, axial fixiert werden können.
  • Fig. 4 zeigt eine weitere mögliche Ausführungsvariante der Abdichtung einer Trennfuge 3 bzw. einer Kreuzteilfuge zwischen wenigstens zwei Begrenzungsteilen 1, 2 einer Dampfturbine. Anstelle einer Anwärmbohrung oder einer eine Lässigkeit aufweisenden wärmebeweglichen Dichtung ist in dieser Ausführungsvariante eine Anwärmleitung 17 aus dem Strömungskanalinneren 4 in den Hohlraum 6 geführt. Dabei ist die Anwärmleitung 17 nicht durch das Abschirmelement 5, sondern durch das wenigstens eine zweite Begrenzungsteil 2 abdichtend geführt. Durch die Anwärmleitung 17 kann Heißdampf aus dem Strömungskanalinneren 4 bzw. aus dem ersten Druckraum in den Hohlraum 6 geführt werden, um eine temporäre Druckerhöhung und eine Anhebung der Temperatur in dem Hohlraum 6 zu erreichen. Zur Regelung des Durchfluss des Heißdampfes weist die Anwärmleitung 17 ein Verriegelungselement 18, insbesondere ein Ventil, auf. Zur Druckabsenkung ist, wie in Fig. 3, eine Leitung 7 vorgesehen, die zum Teil außerhalb des Strömungskanals geführt ist. Bei einer Öffnung des Verriegelungselementes 18 der Anwärmleitung 17 und einer gleichzeitigen Schließung des Verriegelungselementes 13 der Leitung 7 können der Druck und die Temperatur in dem Hohlraum 6 temporär erhöht werden.
  • Falls eine weitere stationäre Temperaturabsenkung und Druckabsenkung an der Teilfuge 3 beziehungsweise der Kreuzteilfuge erreicht werden soll, beispielsweise um zulässige Einsatztemperaturen der Begrenzungsteile 1, 2 oder von Befestigungsschrauben 14 einzuhalten oder mit einer Absenkung der Bauteiltemperaturen eine Erhöhung der Festigkeitskennwerte zu erreichen, kann Kühldampf von einer ersten stromab liegenden Stelle durch eine weitere Kühldampfleitung 19 in den Hohlraum 6 zwischen dem Abschirmelement 5, der Trennfuge 2 und den Begrenzungsteilen 1, 2 geleitet werden. Durch die Leitung 7, die an einer zweiten, weiter stromab liegenden Stelle in den Strömungskanal, insbesondere in einem dritten Druckraum, endet, kann der zugeführte Kühldampf wieder abgeführt werden. Der Druck in dem Hohlraum 6 kann durch die spezielle Leitungsgestaltung der Kühldampfleitung 19 und der Leitung 7 und ein Anstauen in der Leitung 7 eingestellt werden, und zwar in den Grenzen der Druckniveaus der ersten und der zweiten Stelle. Diese Lösung ist allerdings regelungstechnisch anspruchsvoll und verlangt eine massivere Ausführung des Abschirmelementes 5.

Claims (20)

  1. Vorrichtung aufweisend wenigstens ein erstes Begrenzungsteil (1) und wenigstens ein zweites Begrenzungsteil (2), wobei die Begrenzungsteile (1, 2) unter Bildung einer Trennfuge (3) aneinander befestigbar sind und dabei zumindest einen Teil eines ersten Druckraumes umschließen, wobei an den dem ersten Druckraum zugewandten Seiten der Begrenzungsteile (1, 2) ein Abschirmelement (5) vorgesehen ist, das abdichtend gegenüber dem wenigstens einen ersten Begrenzungsteil (1) und dem wenigstens einen zweiten Begrenzungsteil (2) angeordnet ist und dabei die Trennfuge (3) vollständig abdeckt, so dass zwischen den Begrenzungsteilen (1, 2) und dem Abschirmelement (5) ein Hohlraum (6) gebildet ist, und dass eine Leitung (7) in den Hohlraum (6) geführt ist, die den Hohlraum (6) mit einem zweiten Druckraum verbindet,
    dadurch gekennzeichnet, dass
    das Abschirmelement (5) wenigstens eine Anwärmbohrung (12) aufweist, dass die wärmebeweglichen Dichtungen (10) Lässigkeiten aufweisen und/oder dass wenigstens eine mittels eines Verriegelungselementes (18) verriegelbare Anwärmleitung (17) zu dem Hohlraum (6) geführt ist, über die Heißdampf in den Hohlraum (6) zuführbar ist/sind, und dass die Leitung (7) zwischen dem zweiten Druckraum und dem Hohlraum (6) durch ein Verriegelungselement (13) verriegelbar ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Trennfuge (3) eine Stoßteilfuge oder eine Kreuzteilfuge ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Begrenzungsteile (1, 2) rotationssymmetrisch bzw. im Wesentlichen rotationssymmetrisch ausgebildete Elemente sind.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Leitung (7) zu dem Hohlraum (6) durch eines der Begrenzungsteile (1, 2) oder durch das Abschirmelement (5) geführt ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Abschirmelement (5) und die Abdichtung des Abschirmelementes (5) wärmebeweglich ausgebildet sind.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Abschirmelement (5) an zumindest zwei umlaufenden Aufnahmen (9) an den Begrenzungsteilen (1, 2) befestigt, insbesondere aufgehängt, ist oder dass das Abschirmelement (5) durch wenigstens zwei wärmebewegliche Dichtungen (10) an den Begrenzungsteilen (1, 2) abdichtend sitzt oder dass das Abschirmelement (5) an wenigstens einer umlaufenden Aufnahme (9) an zumindest einem der Begrenzungsteile (1, 2) befestigt, insbesondere aufgehängt, ist und durch wenigstens eine wärmebewegliche Dichtung (10) an dem zumindest einem anderen Begrenzungsteil (1, 2) abdichtend sitzt.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die wenigstens eine umlaufende Aufnahme (9) durch ein Statorteil gebildet ist.
  8. Vorrichtung nach einem der Ansprüche 6 bis 7, dadurch gekennzeichnet, dass die wenigstens eine wärmebewegliche Dichtung (10) an der wenigstens einen umlaufenden Aufnahme (9) abdichtend sitzt.
  9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die wärmebewegliche Dichtung (10) durch einen druck- und/oder federkraftbelastbaren Kolbenring, durch eine Labyrinth- bzw. Durchblickdichtung oder durch wenigstens ein Dichtblech gebildet ist.
  10. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass wenigstens eines der Begrenzungsteile (1, 2) eine Nut zur Aufnahme der wärmebeweglichen Dichtung (10) aufweist.
  11. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die wärmebewegliche Dichtung (10) eine geteilte Dichtung (11) ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die geteilte Dichtung (11) an dem Abschirmelement (5) und/oder an einem der Begrenzungsteile (1, 2) und/oder an wenigstens einer umlaufenden Aufnahme (9) angeordnet ist.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Leitung (7) flexibel ausgebildet ist und/oder wenigstens an der Durchführung zu dem Hohlraum (6) verschiebbar gelagert ist.
  14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Abschirmelement (5) zumindest zweigeteilt ist, wobei die zumindest zwei Teile (5a, 5b) des Abschirmelementes (5) abdichtend aneinander befestigbar sind.
  15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass wenigstens eine mittels eines Verriegelungselementes (20) verriegelbare Kühldampfleitung (19) zu dem Hohlraum (6) geführt ist, über die Kühldampf in den Hohlraum (6) zuführbar ist.
  16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass an den dem ersten Druckraum abgewandten Seiten der Begrenzungsteile (1, 2) über der Trennfuge (3) eine Absaugeinrichtung angeordnet ist, um Leckagemengen abzusaugen.
  17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass Strömungswiderstände für die Regelung des Druckniveaus innerhalb der Leitung (7), der Anwärmleitung (17) und/oder der Kühldampfleitung (19) vorgesehen sind.
  18. Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass eine Dichtnaht an der dem ersten Druckraum zugewandten Seite der senkrechten Trennfuge (3) geschweißt ist.
  19. Verfahren zur Absenkung des auf eine Trennfuge (3), die durch das Aneinanderfügen wenigstens eines ersten Begrenzungsteils (1) und wenigstens eines zweiten Begrenzungsteils (2) einer Vorrichtung gebildet wird, wirkenden Druckes und zur Reduzierung der auf die Trennfuge (3) wirkenden Befestigungskräfte, wobei die Begrenzungsteile (1, 2) wenigstens einen Teil eines ersten Druckraumes umschließen, wobei an den dem ersten Druckraum zugewandten Seiten der Begrenzungsteile (1, 2) ein Abschirmelement (5) vorgesehen wird, das abdichtend gegenüber dem wenigstens einen ersten Begrenzungsteil (1) und dem wenigstens einen zweiten Begrenzungsteil (2) angeordnet wird und dabei die Trennfuge (3) vollständig abdeckt, so dass zwischen den Begrenzungsteilen (1, 2) und dem Abschirmelement (5) ein Hohlraum (6) gebildet wird, und dass aus einem zweiten Druckraum eine Leitung (7) in den Hohlraum (6) geführt wird, über die der Druck in dem Hohlraum (6) auf ein niedrigeres Niveau gesenkt wird,
    dadurch gekennzeichnet, dass
    das Abschirmelement (5) mit wenigstens einer Anwärmbohrung (12) vorgesehen wird, durch welche die wärmebeweglichen Dichtungen (10) Lässigkeiten aufweisen und/oder dass wenigstens eine mittels eines Verriegelungselementes (18) verriegelbare Anwärmleitung (17) zu dem Hohlraum (6) geführt wird, über die Heißdampf in den Hohlraum (6) zugeführt wird/werden, und dass die Leitung (7) zwischen dem zweiten Druckraum und dem Hohlraum (6) durch ein Verriegelungselement (13) verriegelt wird.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass der auf die Trennfuge (3) wirkende Druck und die an der Trennfuge (3) wirkenden Befestigungskräfte durch eine Vorrichtung, insbesondere eine Dampfturbine, nach einem der vorherigen Ansprüche 1 bis 19 abgesenkt werden.
EP09166731.1A 2008-09-03 2009-07-29 Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen Not-in-force EP2161415B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008045657.8A DE102008045657B4 (de) 2008-09-03 2008-09-03 Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen

Publications (3)

Publication Number Publication Date
EP2161415A2 EP2161415A2 (de) 2010-03-10
EP2161415A3 EP2161415A3 (de) 2014-08-13
EP2161415B1 true EP2161415B1 (de) 2016-07-27

Family

ID=41349510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09166731.1A Not-in-force EP2161415B1 (de) 2008-09-03 2009-07-29 Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen

Country Status (4)

Country Link
US (1) US8419357B2 (de)
EP (1) EP2161415B1 (de)
DE (1) DE102008045657B4 (de)
PL (1) PL2161415T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215795A1 (de) * 2016-08-23 2018-03-01 Siemens Aktiengesellschaft Dampfturbine mit Strömungsabschirmung
DE102017203210A1 (de) 2017-02-28 2018-08-30 Siemens Aktiengesellschaft Turbinengehäuse und Verfahren zur Montage eines Turbinengehäuses
JP6971924B2 (ja) * 2018-07-06 2021-11-24 三菱重工コンプレッサ株式会社 持ち上げ治具、蒸気タービンの分解方法、蒸気タービンの部品交換方法、及び蒸気タービンの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB510505A (en) * 1938-01-27 1939-08-02 British Thomson Houston Co Ltd Improvements in casings for elastic fluid turbines
DE853451C (de) * 1950-05-28 1952-10-23 Brown Flanschverbindung an Druckgefaessen, insbesondere an Gehaeusen von Dampf- und Gasturbinen
JPS5537681Y2 (de) 1976-12-27 1980-09-04
US4296538A (en) * 1978-05-24 1981-10-27 Carrier Corporation Method of providing a sealing assembly between a steam chest and turbine casing
GB2111607B (en) * 1981-12-08 1985-09-18 Rolls Royce Bearing chamber pressurisation system for a machine
PL337281A1 (en) * 1997-06-25 2000-08-14 Siemens Ag Device for connecting together ends of conductor sections
JPH11229817A (ja) * 1998-02-09 1999-08-24 Hitachi Ltd 蒸気タービンの主蒸気管冷却装置及び蒸気タービン発電プラント
GB2393766A (en) * 2002-10-03 2004-04-07 Alstom A sealing arrangement for a turbine
EP1744017A1 (de) * 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Kombinierte Dampfturbine, Dampf- oder Gas- und Dampf- Turbinenanlage, Verfahren zum Betrieb einer kombinierten Dampfturbine

Also Published As

Publication number Publication date
US20100054925A1 (en) 2010-03-04
DE102008045657A1 (de) 2010-03-11
EP2161415A3 (de) 2014-08-13
PL2161415T3 (pl) 2017-01-31
DE102008045657B4 (de) 2014-11-06
EP2161415A2 (de) 2010-03-10
US8419357B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
DE69000984T2 (de) Einstueckiges innengehaeuse fuer eine hochdruck-mitteldruck-dampfturbine mit geregelter kuehlung.
DE102006027237A1 (de) Dampfturbine
DE102014209544A1 (de) Turbinenanordnung
DE102013003458A1 (de) Abgasrückführanordnung für ein Kraftfahrzeug und Motor mit einer solchen Abgasrückführanordnung
EP2161415B1 (de) Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen
EP1724526A1 (de) Brennkammerschale, Gasturbinenanlage und Verfahren zum An- oder Abfahren einer Gasturbinenanlage
EP2820309A1 (de) Strömungsmaschine mit temperiertem deckel
EP3159505B1 (de) Zwischengehàuse für eine gasturbine
EP2601414A1 (de) Zentrierende befestigung eines verdichtergehäusedeckels
EP0891471B1 (de) Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
EP2396517B1 (de) Dreischalige dampfturbine
EP2344730B1 (de) Innengehäuse für eine strömungsmaschine
DE10303340A1 (de) Kühleinrichtung
EP2665896B1 (de) Zwischengehäuse einer Gasturbine mit einer aussen liegenden Begrenzungswand welche stromaufwärts einer Stützrippe eine in Umfangrichtung verändernde Kontur aufweist zur Verringerung der Sekundärströmungsverluste
EP2295730A2 (de) Turbinengehäuse mit wärmeabschirmender Wandverkleidung
EP1877650B1 (de) Dampfturbine
DE102013203870B4 (de) Verdrehsicherung für Turbomaschinen
EP3976934A1 (de) Verfahren zur modernisierung einer gasturbinenanlage sowie gasturbinenanlage
DE102016203731A1 (de) Dampfturbine
EP2101042A1 (de) Dampfturbine mit Schrumpfringen
EP0926316B1 (de) Kombinierte Mehrdruck-Dampfturbine
DE102004012599A1 (de) Druckentlastung einer Flanschverbindung in Überströmleitungen zwischen Frischdampfventil und HD-Dampfturbineneintritt
DE1030358B (de) Befestigung eines Duesenkastens im Innengehaeuse einer Doppelgehaeuse-Hochtemperaturturbine
EP1944412B1 (de) Walze und Verfahren zum Betrieb derselben
DE102009054006A1 (de) Vorrichtung zur Abstandsverstellung zwischen einem Turbinenrad und einem Turbinengehäuse einer Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F16J 15/32 20060101ALI20140709BHEP

Ipc: F01D 11/00 20060101AFI20140709BHEP

17P Request for examination filed

Effective date: 20150119

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 815979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012867

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160920

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012867

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161027

26N No opposition filed

Effective date: 20170502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160729

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 815979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170727

Year of fee payment: 9

Ref country code: IT

Payment date: 20170726

Year of fee payment: 9

Ref country code: FR

Payment date: 20170713

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20170717

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009012867

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729