EP2159531B1 - Hit detection method - Google Patents

Hit detection method Download PDF

Info

Publication number
EP2159531B1
EP2159531B1 EP08405201.8A EP08405201A EP2159531B1 EP 2159531 B1 EP2159531 B1 EP 2159531B1 EP 08405201 A EP08405201 A EP 08405201A EP 2159531 B1 EP2159531 B1 EP 2159531B1
Authority
EP
European Patent Office
Prior art keywords
intensity
datum
energy beam
high intensity
hit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08405201.8A
Other languages
German (de)
French (fr)
Other versions
EP2159531A1 (en
Inventor
Roland Lüthi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUAG Schweiz AG
Original Assignee
RUAG Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUAG Schweiz AG filed Critical RUAG Schweiz AG
Priority to EP08405201.8A priority Critical patent/EP2159531B1/en
Publication of EP2159531A1 publication Critical patent/EP2159531A1/en
Application granted granted Critical
Publication of EP2159531B1 publication Critical patent/EP2159531B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2655Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2666Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with means for selecting or varying PRF or time coding of the emitted beam

Definitions

  • the present invention relates to a method for generating a directed energy selection for the detection of hits according to the preamble of claim 1. Furthermore, it relates to uses and devices for carrying out the method.
  • Data is modulated onto the laser light.
  • the modulation is carried out by changing the intensity, in the simplest case by switching the light on and off.
  • the transmitted data thus appear as light pulses.
  • laser light Another aspect of using laser light is the safety of the participants.
  • the laser sources must comply with the highest safety class, so that a direct look into the laser source with the naked eye or even through binoculars cannot cause any damage to the eye.
  • the energy distribution of the laser beam is used for this.
  • the laser light sources usually used have a bell-shaped distribution of the intensity over the cross section with the maximum in the center of the light beam.
  • the sensors measure the intensity of the light beam that hits them.
  • a close mistake (missed shot) or a "hit" outside the range of the weapon is characterized by an intensity below a predetermined threshold. Hits with a light intensity above this threshold are recognized as hits.
  • a disadvantage of this method is that the sensors used must have an increased sensitivity in order to be able to detect with certainty the lower intensity of a short error up to a minimum intensity.
  • the intensity of the laser transmitter cannot be increased arbitrarily because the safety requirements set an upper limit.
  • the laser beam is swung from the weapon, with other data being modulated depending on the angle to the firing direction.
  • the recipient can use the data to derive the angle at which the firing path is located and to determine whether there is a hit or a close mistake.
  • the disadvantage of this solution is that increased effort in the laser source for the swiveling of the laser light and the dependent coding of different data, the higher evaluation effort on the part of the receiver and also the high expenditure of time, since in particular a complete swivel cycle has to be waited over all positions until it is certain that no hit at all is present.
  • the two laser light sources having intensity distributions of different widths.
  • the light from one laser light source can thus be recognized as a hit at a greater distance from the center of the beam than that from the other. It can thus be concluded from the detection of the first-mentioned laser light source at the hit location and the non-detection of the second laser light source that there is a scarce error.
  • a disadvantage of this solution is the need to provide two laser light sources in the weapon.
  • the temporal transmission of the data from the two laser light sources must be coordinated with one another in order to be able to reliably detect the impingement of both beams for a direct hit.
  • the GB-A-2 290 483 provides for additional data components to identify scarce errors. These additional data components are sent with a lower intensity. If these weaker parts are also recognized in addition to the data sent with "normal" intensity, the result is a hit. If, on the other hand, only the data without the weaker parts is detected, it is a short error. The disadvantage of this solution is the considerably increased amount of data, which leads to a higher expenditure of time for the distinction between a short error and a hit.
  • Another object of the present invention is the simplified detection of a short fault.
  • Another object of the invention is to reduce the total energy of an energy beam used for the shot simulation.
  • data for identifying the weapon are transmitted by pulses or intensity modulation of the laser.
  • part of the data is sent with a significantly increased intensity or increased modulation stroke. For example, this is simply done by increasing the power of the laser while sending these data parts.
  • This particular piece of data is also an integral part of the data that is normally transmitted, so that no additional time is required to transmit it.
  • the data parts transmitted with higher intensity preferably comprise only a subordinate portion of the total data sent, so that the upper limit of the total intensity given for security reasons, eg laser class I, can be achieved by only slightly reducing the intensity of the other data.
  • Diagram 1 of the Fig. 1 is a plot of time 3 (t) against intensity 5 (I).
  • a pulse 14 consists of a light pulse of a certain duration.
  • the pulses 17, 18 are transmitted with a much higher intensity I 2 than the intensity I 1 of the "normal" pulses 14.
  • the intensity I 2 must be at least twice the intensity I 1 , preferred Values of at least three to four times I 1 with I 0 as the zero point, in the simplest case corresponding to the intensity 0.
  • the pulses 17, 18 can also serve to secure the transmission, since they detect with greater certainty because of their significantly higher intensity will.
  • a target 25 for example a simulation participant or an object such as a vehicle
  • the target 25 is struck by the laser beam of a weapon.
  • the laser beam has a core zone 31 in which the intensity of the normal data pulses 14 lies above the detection threshold. In the surrounding zone 33, on the other hand, the intensity of the data pulses is below the detection threshold, but the intensity I 2 of the missile pulses 17, 18 is above.
  • Fig. 2 represents a target 25, which is provided with sensors 27.
  • the sensors 27 are set to emit a signal when they are struck by a simulated shot, ie the laser pulse emitted by the training device.
  • Fig. 3 represents the situation of a hit: One of the sensors 27, the sensor 35, is in the area of the core zone 31 and can therefore receive the date 9. A number of others Detectors 37 lie in the area of the edge zone 33, but not the core zone 31. The detection of the complete date by the sensor 35 has priority over the signal from the sensors 37 and leads to the detection of a hit. The situation is different in that Fig. 4 : Here none of the sensors 27 are hit by the core zone 31, only two sensors 37 are located in the area of the shooting zone 33 of the laser beam 29. The sensors 37 thus detect the presence of a weapon laser beam, but none of the detectors can completely decode a data item 9. However, the data components can be decoded with higher intensity (pulses 17, 18). As a result, 25 missed the target.
  • Fig. 1 it can also be seen that in the event of a close-by shot, where only a small number of pulses 17, 18 are detected by the sensors 37, the complete information of the date 9 is not available to identify the sending weapon. Nevertheless, a rough identification of the weapon, for example the assignment to a group of simulation participants or to a weapon type, is possible by evaluating the time period between the pulses. Pulse 17 is sent at time t 0 , here at the beginning of date 9, while pulse 18 is sent at time t 1 . A pulse 42 is sent out from another transmitter (different weapon type; weapon of another exercise participant) instead of pulse 18 at time t 2 (in Fig. 1 shown in dashed lines).
  • the different time intervals t 1 - t 0 or. t 2 - t 0 can be used to obtain an indication of the transmitters of the respective data 9. It is also conceivable to send the pulse 17 at other times within the date 9. Since this is preferably used for the purpose of transmission synchronization or the like, it is preferably sent at the beginning of the date 9.
  • Fig. 5 shows the block diagram of a light beam transmitter.
  • the controller 45 receives a signal 47, for example when a shot is triggered, and then generates the control signals 49 which control the light transmitter 51. Under control of the control signals 49, the light transmitter 51 emits the light beam 29 onto which the date 9 is modulated.
  • Diagram 53 schematically shows the distribution of intensity I over the radius r of light beam 29.
  • Curve 55 is the intensity of data pulses 14
  • curve 57 is that of pulses 17, 18 and 42 for a close pass.
  • the line 59 is the intensity detection threshold I c of the detectors 27. The intersections of the detection threshold 59 with the curves 55 and 57 result in the zones 31 (hit area) and 33 (close shot).
  • Fig. 5 shows schematically a hit detection device 63.
  • a number of detectors 27, which are located at a target 25, are connected to an evaluation unit 65. If one of the detectors 27 delivers a hit signal, ie a complete data item 9, the evaluation unit 65 recognizes a direct hit and triggers the corresponding actions. On the other hand, if the evaluation unit 65 receives a signal from at least one of the detectors 27 for the detection of shot pulses 17, 18 or 42, but from none of the detectors 27 a signal that represents a complete date 9, it detects a close shot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Erzeugung eines gerichteten Energieshahls zur Erkennung von Treffern gemäss Oberbegriff des Patentanspruchs 1. Des Weiteren betrifft sie Verwendungen und Vorrichtungen zur Durchführung des Verfahrens.The present invention relates to a method for generating a directed energy selection for the detection of hits according to the preamble of claim 1. Furthermore, it relates to uses and devices for carrying out the method.

Für Gefechtsübungen ist es bekannt, Waffen zu verwenden, bei denen Schüsse durch Laserlichtstrahlen simuliert werden. Die Teilnehmer an den Übungen, aber auch mögliche Zielobjekte sind mit Sensoren bestückt, die beim Auftreffen eines Laserstrahls, d.h. eines simulierten Schusses, ein Signal abgeben. Das Auftreten eines solchen Signales wird für die Anzeige eines Treffers verwendet. Die Auswertung kann auf verschiedene Arten erfolgen, z.B. durch zentrale Registrierung, wobei das Signal z.B. per Funk übertragen wird, lokale Signaturen (Feuererscheinungen, usw.), akustische Signale usw.For combat exercises, it is known to use weapons in which shots are simulated by laser light beams. The participants in the exercises, but also possible target objects, are equipped with sensors which, when a laser beam strikes, i.e. of a simulated shot, give a signal. The occurrence of such a signal is used to display a hit. The evaluation can be done in different ways, e.g. by central registration, the signal e.g. is transmitted by radio, local signatures (signs of fire, etc.), acoustic signals etc.

Dem Laserlicht sind Daten aufmoduliert. Die Modulation erfolgt dabei durch Änderungen der Intensität, im einfachsten Fall durch Ein- und Ausschalten des Lichts. Die übertragenen Daten treten damit als Lichtpulse auf.Data is modulated onto the laser light. The modulation is carried out by changing the intensity, in the simplest case by switching the light on and off. The transmitted data thus appear as light pulses.

Ein anderer Aspekt bei der Verwendung von Laserlicht ist die Sicherheit der Teilnehmer. Generell müssen die Laserquellen der höchsten Sicherheitsklasse entsprechen, sodass auch ein direkter Blick in die Laserquelle mit nacktem Auge oder sogar durch ein Fernglas keine Schäden am Auge hervorrufen kann.Another aspect of using laser light is the safety of the participants. In general, the laser sources must comply with the highest safety class, so that a direct look into the laser source with the naked eye or even through binoculars cannot cause any damage to the eye.

Es hat sich gezeigt, dass die Erkennung ausschliesslich von Treffern einen wesentlichen Mangel an Realitätsnähe aufweist. Es ist daher wünschenswert, auch knappe Fehlschüsse zu erkennen. Ein solcher knapper Fehlschuss kann durch optische oder akustische Signale angedeutet werden und z.B. die Aufmerksamkeit darauf lenken, dass ein Beschuss stattfindet.It has been shown that the detection of hits only has a significant lack of realism. It is therefore desirable to recognize short misses. Such a close miss can are indicated by optical or acoustic signals and, for example, draw attention to the fact that a bombardment is taking place.

Gemäss DE-A1-42 13 209 wird hierfür die Energieverteilung des Laserstrahls ausgenutzt. Die üblicherweise verwendeten Laserlichtquellen weisen eine glockenkurvenförmige Verteilung der Intensität über den Querschnitt auf mit dem Maximum im Zentrum des Lichtstrahls. Die Sensoren messen die Intensität des Lichtstrahls, von dem sie getroffen werden. Ein knapper Fehler (Vorbeischuss) oder auch ein "Treffer" ausserhalb der Reichweite der Waffe zeichnet sich durch eine Intensität unterhalb einer vorgegebenen Schwelle aus. Treffer mit einer Lichtintensität oberhalb dieser Schwelle werden als Treffer erkannt. Nachteilig an diesem Verfahren ist, dass die verwendeten Sensoren eine erhöhte Empfindlichkeit aufweisen müssen, um auch noch mit nötiger Sicherheit die niedrigere Intensität eines knappen Fehlers bis zu einer Mindestintensität erfassen zu können. Wie oben erwähnt, kann dabei die Intensität des Lasersenders nicht beliebig erhöht werden, da die Sicherheitsauflagen eine obere Grenze setzen.According to DE-A1-42 13 209 the energy distribution of the laser beam is used for this. The laser light sources usually used have a bell-shaped distribution of the intensity over the cross section with the maximum in the center of the light beam. The sensors measure the intensity of the light beam that hits them. A close mistake (missed shot) or a "hit" outside the range of the weapon is characterized by an intensity below a predetermined threshold. Hits with a light intensity above this threshold are recognized as hits. A disadvantage of this method is that the sensors used must have an increased sensitivity in order to be able to detect with certainty the lower intensity of a short error up to a minimum intensity. As mentioned above, the intensity of the laser transmitter cannot be increased arbitrarily because the safety requirements set an upper limit.

In der US-A-4,373,916 wird ebenfalls die Amplitude oder Intensität des Laserstrahls ausgewertet. Hier wird jedoch vorgeschlagen, Sensoren mit verschiedenen Empfindlichkeiten einzusetzen. Offensichtlich tritt damit der Nachteil auf, dass eine erhöhte Anzahl oder teurere Sensoren nötig sind.In the US-A-4,373,916 the amplitude or intensity of the laser beam is also evaluated. Here, however, it is proposed to use sensors with different sensitivities. Obviously, this has the disadvantage that an increased number or more expensive sensors are necessary.

Gemäss der US-A-3,588,108 wird der Laserstrahl von der Waffe geschwenkt, wobei je nach Winkel zur Schussrichtung andere Daten aufmoduliert werden. Der Empfänger kann damit aus den Daten ableiten, in welchem Winkel zur Schussbahn er sich befindet und daraus ableiten, ob ein Treffer oder ein knapper Fehler vorliegt. Nachteilig an dieser Lösung ist der erhöhte Aufwand in der Laserquelle für das Schwenken des Laserlichts und die davon abhängige Codierung verschiedener Daten, der höhere Auswertungsaufwand auf Seiten des Empfängers und auch der hohe Zeitaufwand, da insbesondere ein vollständiger Schwenkzyklus über alle Positionen abgewartet werden muss, bis feststeht, dass überhaupt kein Treffer vorliegt.According to the US-A-3,588,108 the laser beam is swung from the weapon, with other data being modulated depending on the angle to the firing direction. The recipient can use the data to derive the angle at which the firing path is located and to determine whether there is a hit or a close mistake. The disadvantage of this solution is that increased effort in the laser source for the swiveling of the laser light and the dependent coding of different data, the higher evaluation effort on the part of the receiver and also the high expenditure of time, since in particular a complete swivel cycle has to be waited over all positions until it is certain that no hit at all is present.

In der GB-A-2 259 559 wird vorgeschlagen, zwei Lasersender in der Waffe einzusetzen, wobei die beiden Laserlichtquellen unterschiedlich breite Intensitätsverteilungen aufweisen. Insbesondere ist damit das Licht der einen Laserlichtquelle in einem grösseren Abstand vom Zentrum des Strahls als Treffer erkennbar als dasjenige der anderen. Damit kann aus der Detektion der erstgenannten Laserlichtquelle am Trefferort und der Nichtdetektion der zweiten Laserlichtquelle geschlossen werden, dass ein knapper Fehler vorliegt. Nachteilig an dieser Lösung ist die Notwendigkeit, in der Waffe zwei Laserlichtquellen vorzusehen. Ausserdem muss die zeitliche Übertragung der Daten der beiden Laserlichtquellen aufeinander abgestimmt werden, um auch sicher das Auftreffen beider Strahlen für einen direkten Treffer erkennen zu können.In the GB-A-2 259 559 It is proposed to use two laser transmitters in the weapon, the two laser light sources having intensity distributions of different widths. In particular, the light from one laser light source can thus be recognized as a hit at a greater distance from the center of the beam than that from the other. It can thus be concluded from the detection of the first-mentioned laser light source at the hit location and the non-detection of the second laser light source that there is a scarce error. A disadvantage of this solution is the need to provide two laser light sources in the weapon. In addition, the temporal transmission of the data from the two laser light sources must be coordinated with one another in order to be able to reliably detect the impingement of both beams for a direct hit.

Die GB-A-2 290 483 sieht zusätzliche Datenanteile vor, um knappe Fehler zu erkennen. Diese zusätzlichen Datenanteile werden mit geringerer Intensität gesendet. Werden auch diese schwächeren Anteile zusätzlich zu den mit "normaler" Intensität gesendeten Daten erkannt, so handelt es sich um einen Treffer. Werden dagegen nur die Daten ohne die schwächeren Anteile detektiert, handelt es sich um einen knappen Fehler. Nachteilig an dieser Lösung ist die beträchtlich erhöhte Menge an Daten, die zu einem höheren Zeitaufwand für die Unterscheidung zwischen einem knappen Fehler und einem Treffer führt.The GB-A-2 290 483 provides for additional data components to identify scarce errors. These additional data components are sent with a lower intensity. If these weaker parts are also recognized in addition to the data sent with "normal" intensity, the result is a hit. If, on the other hand, only the data without the weaker parts is detected, it is a short error. The disadvantage of this solution is the considerably increased amount of data, which leads to a higher expenditure of time for the distinction between a short error and a hit.

Ausgehend insbesondere von der letzt genannten Schrift ist es eine Aufgabe der vorliegenden, Erfindung, ein Verfahren anzugeben, um einen Energiestrahl zu erzeugen, der eine schnellere Erkennung eines knappen Fehlers bzw. eines Treffers gestattet.Starting in particular from the last-mentioned document, it is an object of the present invention to provide a method for generating an energy beam which allows a quicker detection of a short error or a hit.

Eine weitere Aufgabe der vorliegenden Erfindung ist die vereinfachte Erkennung eines knappen Fehlers.Another object of the present invention is the simplified detection of a short fault.

Eine weitere Aufgabe der Erfindung besteht darin, die Gesamtenergie eines für die Schussimulation verwendeten Energiestrahls zu verringern.Another object of the invention is to reduce the total energy of an energy beam used for the shot simulation.

Ein Verfahren, das wenigstens die erstgenannte Aufgabe löst, ist im Patentanspruch 1 angegeben. Die weiteren Patentansprüche geben bevorzugte Ausführungsformen sowie Verwendungen und Vorrichtungen zur Durchführung des Verfahrens an.A method that solves at least the first-mentioned object is specified in claim 1. The further claims specify preferred embodiments as well as uses and devices for carrying out the method.

Demgemäss werden wie üblich Daten zur Identifikation der Waffe durch Pulse oder Intensitätsmodulation des Lasers übertragen. Zusätzlich wird ein Teil der Daten mit deutlich erhöhter Intensität bzw. erhöhtem Modulationshub gesendet. Beispielsweise wird dies einfach durch Erhöhung der Leistung des Lasers während des Sendens dieser Datenteile bewirkt.Accordingly, as usual, data for identifying the weapon are transmitted by pulses or intensity modulation of the laser. In addition, part of the data is sent with a significantly increased intensity or increased modulation stroke. For example, this is simply done by increasing the power of the laser while sending these data parts.

Durch die Erhöhung der Intensität dieser Datenteile sind sie noch in grösserem Abstand vom Zentrum des Laserstrahls detektierbar, d.h. ein Sensor mit vorgegebener Erkennungsschwelle kann sie noch in grösserem Abstand vom Zentrum erkennen. Dieser besondere Datenteil stellt auch einen integralen Bestandteil der normalerweise übertragenen Daten dar, sodass für ihre Übertragung keine zusätzliche Zeit erforderlich ist. Bevorzugt umfassen die mit höherer Intensität übertragenen Datenteile nur einen untergeordneten Anteil der insgesamt gesendeten Daten, sodass die aus Sicherheitsgründen gegebene Obergrenze der Gesamtintensität, z.B. die Laserklasse I, durch eine nur geringe Absenkung der Intensität der übrigen Daten erzielt werden kann.By increasing the intensity of these data parts, they can be detected even at a greater distance from the center of the laser beam, ie a sensor with a predetermined detection threshold can recognize them at a greater distance from the center. This particular piece of data is also an integral part of the data that is normally transmitted, so that no additional time is required to transmit it. The data parts transmitted with higher intensity preferably comprise only a subordinate portion of the total data sent, so that the upper limit of the total intensity given for security reasons, eg laser class I, can be achieved by only slightly reducing the intensity of the other data.

Die Erfindung soll weiter an einem bevorzugten Ausführungsbeispiel unter Bezugnahme auf Figuren erläutert werden.

Fig. 1
Schematische Darstellung eines Datenpakets in einem Zeit-Intensitäts-Diagramm;
Fig. 2
Schematische Darstellung eines Ziels mit Sensoren;
Fig. 3
Prinzipdarstellung einer Treffererkennungssituation;
Fig. 4
Schematische Darstellung einer Situation eines knappen Vorbeischusses;
Fig. 5
Blockschema eines Laserstrahlsenders; und
Fig. 6
Blockschema eines Detektors.
The invention will be further explained in a preferred embodiment with reference to figures.
Fig. 1
Schematic representation of a data packet in a time-intensity diagram;
Fig. 2
Schematic representation of a target with sensors;
Fig. 3
Principle representation of a hit detection situation;
Fig. 4
Schematic representation of a situation of a short shot past;
Fig. 5
Block diagram of a laser beam transmitter; and
Fig. 6
Block diagram of a detector.

Das Diagramm 1 der Fig. 1 ist eine Auftragung der Zeit 3 (t) gegen die Intensität 5 (I). Die Gesamtzeit 7 (T = t1 - t0) eines Datums 9 beträgt beispielsweise einige ms. Genauer umfasst es eine Anzahl 11 von Datenplätzen (z.B. 8 - 128), die jeweils von einem Puls 14 belegt werden können.Diagram 1 of the Fig. 1 is a plot of time 3 (t) against intensity 5 (I). The total time 7 (T = t 1 - t 0 ) of a date 9 is, for example, a few ms. More precisely, it comprises a number 11 of data locations (for example 8-128), each of which can be occupied by a pulse 14.

Ein Puls 14 besteht aus einem Lichtpuls bestimmter Dauer. Die Pulse 17, 18 werden mit einer wesentlich höheren Intensität I2 als die Intensität I1 der "normalen" Pulse 14 gesendet. Die Intensität I2 muss erfahrungsgemäss mindestens das Doppelte der Intensität I1 betragen, bevorzugt sind Werte von mindestens dem Dreifachen bis dem Vierfachen von I1 mit I0 als Nullpunkt, im einfachsten Fall entsprechend der Intensität 0. Die Pulse 17, 18 können daneben der Sicherung der Übertragung dienen, da sie wegen ihrer wesentlich höheren Intensität auch mit grösserer Sicherheit detektiert werden.A pulse 14 consists of a light pulse of a certain duration. The pulses 17, 18 are transmitted with a much higher intensity I 2 than the intensity I 1 of the "normal" pulses 14. Experience has shown that the intensity I 2 must be at least twice the intensity I 1 , preferred Values of at least three to four times I 1 with I 0 as the zero point, in the simplest case corresponding to the intensity 0. The pulses 17, 18 can also serve to secure the transmission, since they detect with greater certainty because of their significantly higher intensity will.

Offensichtlich wird für die zusätzliche Erkennung eines knappen Fehlers hier keinerlei zusätzliche Zeit benötigt, da die Pulse 17, 18 ein integraler Bestandteil des Datums 9 sind. Ausserdem werden nur Detektoren einer bestimmten Empfindlichkeit und eine Auswertung mit genau einer Detektionsschwelle benötigt, da sich der grössere Radius für die Erkennung eines knappen Fehlers aus der Verbindung zwischen der höheren Intensität I2 und der glockenkurvenförmigen Intensitätsverteilung im Lichtstrahl 29 ergibt. Diese Situation wird in den Figg. 2 und 3 grafisch dargestellt. Ein Ziel 25 (z.B. ein Simulationsteilnehmer oder ein Objekt wie ein Fahrzeug), ist mit Sensoren 27 bestückt. Das Ziel 25 wird vom Laserstrahl einer Waffe getroffen. Der Laserstrahl weist eine Kernzone 31 auf, in der die Intensität der normalen Datenpulse 14 oberhalb der Detektionsschwelle liegt. In der umgebenden Zone 33 liegt dagegen die Intensität der Datenpulse unterhalb der Detektionsschwelle, aber die Intensität I2 der Vorbeischusspulse 17, 18 oberhalb.Obviously, no additional time is required for the additional detection of a short error, since the pulses 17, 18 are an integral part of the data 9. In addition, only detectors of a certain sensitivity and an evaluation with exactly one detection threshold are required, since the larger radius for the detection of a short error results from the connection between the higher intensity I 2 and the bell-shaped intensity distribution in the light beam 29. This situation is shown in Figs. 2 and 3 shown graphically. A target 25 (for example a simulation participant or an object such as a vehicle) is equipped with sensors 27. The target 25 is struck by the laser beam of a weapon. The laser beam has a core zone 31 in which the intensity of the normal data pulses 14 lies above the detection threshold. In the surrounding zone 33, on the other hand, the intensity of the data pulses is below the detection threshold, but the intensity I 2 of the missile pulses 17, 18 is above.

Fig. 2 stellt ein Ziel 25 dar, das mit Sensoren 27 versehen ist. Die Sensoren 27 sind eingestellt, ein Signal abzugeben, wenn sie von einem simulierten Schuss, d.h. dem vom Übungsgerät abgegebenen Laserpuls, getroffen werden. Fig. 2 represents a target 25, which is provided with sensors 27. The sensors 27 are set to emit a signal when they are struck by a simulated shot, ie the laser pulse emitted by the training device.

Fig. 3 stellt die Situation eines Treffers dar: Einer der Sensoren 27, der Sensor 35, liegt im Bereich der Kernzone 31 und kann daher das Datum 9 empfangen. Eine Anzahl anderer Detektoren 37 liegt im Bereich der Randzone 33, jedoch nicht der Kernzone 31. Die Erkennung des vollständigen Datums durch den Sensor 35 hat Vorrang vor dem Signal der Sensoren 37 und führt zur Erkennung eines Treffers. Anders liegt die Situation in der Fig. 4: Hier wird keiner der Sensoren 27 von der Kernzone 31 getroffen, nur zwei Sensoren 37 liegen im Bereich der Vorbeischusszone 33 des Laserstrahls 29. Die Sensoren 37 detektieren damit das Vorhandensein eines Waffenlaserstrahls, aber keiner der Detektoren kann ein Datum 9 vollständig dekodieren. Jedoch können die Datenanteile mit höherer Intensität (Pulse 17, 18) dekodiert werden. Daraus ergibt sich, dass am Ziel 25 vorbeigeschossen wurde. Fig. 3 represents the situation of a hit: One of the sensors 27, the sensor 35, is in the area of the core zone 31 and can therefore receive the date 9. A number of others Detectors 37 lie in the area of the edge zone 33, but not the core zone 31. The detection of the complete date by the sensor 35 has priority over the signal from the sensors 37 and leads to the detection of a hit. The situation is different in that Fig. 4 : Here none of the sensors 27 are hit by the core zone 31, only two sensors 37 are located in the area of the shooting zone 33 of the laser beam 29. The sensors 37 thus detect the presence of a weapon laser beam, but none of the detectors can completely decode a data item 9. However, the data components can be decoded with higher intensity (pulses 17, 18). As a result, 25 missed the target.

Aus der vorangehenden Darstellung, namentlich Fig. 1, ist auch ersichtlich, dass im Falle eines nahen Vorbeischusses, wo nur eine geringe Anzahl Pulse 17, 18 von den Sensoren 37 erkannt werden, nicht die vollständige Information des Datums 9 zur Verfügung steht, um die sendende Waffe zu identifizieren. Trotzdem ist eine grobe Identifizierung der Waffe, z.B. die Zuordnung zu einer Gruppe von Simulationsteilnehmern oder zu einer Waffenart, möglich, indem die Zeitspanne zwischen den Impulsen ausgewertet wird. Impuls 17 wird zur Zeit t0, hier also zu Anfang des Datums 9, gesendet, während Puls 18 zur Zeit t1 gesendet wird. Von einem anderen Sender (anderer Waffentyp; Waffe eines anderes Übungsteilnehmers) wird anstelle des Pulses 18 ein Puls 42 ausgesandt zum Zeitpunkt t2 (in Fig. 1 gestrichelt dargestellt). Die unterschiedlichen zeitlichen Abstände t1 - t0 bwz. t2 - t0 können verwendet werden, um einen Hinweis auf die Sender der jeweiligen Daten 9 zu erhalten. Denkbar ist auch, den Puls 17 zu anderen Zeitpunkten innerhalb des Datums 9 zu senden. Da dieser bevorzugt zum Zwecke der Übertragungssynchronisation oder ähnliches Verwendung findet, wird er bevorzugt zu Anfang des Datums 9 gesendet.From the previous illustration, especially Fig. 1 , it can also be seen that in the event of a close-by shot, where only a small number of pulses 17, 18 are detected by the sensors 37, the complete information of the date 9 is not available to identify the sending weapon. Nevertheless, a rough identification of the weapon, for example the assignment to a group of simulation participants or to a weapon type, is possible by evaluating the time period between the pulses. Pulse 17 is sent at time t 0 , here at the beginning of date 9, while pulse 18 is sent at time t 1 . A pulse 42 is sent out from another transmitter (different weapon type; weapon of another exercise participant) instead of pulse 18 at time t 2 (in Fig. 1 shown in dashed lines). The different time intervals t 1 - t 0 or. t 2 - t 0 can be used to obtain an indication of the transmitters of the respective data 9. It is also conceivable to send the pulse 17 at other times within the date 9. Since this is preferably used for the purpose of transmission synchronization or the like, it is preferably sent at the beginning of the date 9.

Fig. 5 zeigt das Blockschema eines Lichtstrahlsenders. Die Steuerung 45 erhält z.B. bei Auslösung eines Schusses ein Signal 47 und erzeugt daraufhin die Steuersignale 49, die den Lichtsender 51 ansteuern. Der Lichtsender 51 sendet unter Kontrolle der Steuersignale 49 den Lichtstrahl 29 aus, auf den das Datum 9 aufmoduliert ist. Das Diagramm 53 stellt schematisch die Verteilung der Intensität I über den Radius r des Lichtstrahls 29 dar. Die Kurve 55 ist die Intensität der Datenpulse 14, die Kurve 57 diejenige der Pulse 17, 18 bzw. 42 für einen nahen Vorbeischuss. Die Linie 59 ist die Intensitätsdetektionsschwelle Ic der Detektoren 27. Aus den Schnittpunkten der Detektionsschwelle 59 mit den Kurven 55 und 57 ergeben sich die Zonen 31 (Trefferbereich) und 33 (naher Vorbeischuss). Fig. 5 shows the block diagram of a light beam transmitter. The controller 45 receives a signal 47, for example when a shot is triggered, and then generates the control signals 49 which control the light transmitter 51. Under control of the control signals 49, the light transmitter 51 emits the light beam 29 onto which the date 9 is modulated. Diagram 53 schematically shows the distribution of intensity I over the radius r of light beam 29. Curve 55 is the intensity of data pulses 14, curve 57 is that of pulses 17, 18 and 42 for a close pass. The line 59 is the intensity detection threshold I c of the detectors 27. The intersections of the detection threshold 59 with the curves 55 and 57 result in the zones 31 (hit area) and 33 (close shot).

Fig. 5 zeigt schematisch eine Treffererkennungsvorrichtung 63. Eine Anzahl Detektoren 27, die sich an einem Ziel 25 befinden, sind mit einer Auswertungseinheit 65 verbunden. Liefert einer der Detektoren 27 ein Treffersignal, also ein vollständiges Datum 9, so erkennt die Auswertungseinheit 65 einen direkten Treffer und löst die entsprechenden Aktionen aus. Erhält die Auswertungseinheit 65 dagegen von wenigstens einem der Detektoren 27 ein Signal der Erkennung von Vorbeischusspulsen 17, 18 bzw. 42, jedoch von keinem der Detektoren 27 ein Signal, das ein vollständiges Datum 9 darstellt, so erkennt sie auf einen nahen Vorbeischuss. Fig. 5 shows schematically a hit detection device 63. A number of detectors 27, which are located at a target 25, are connected to an evaluation unit 65. If one of the detectors 27 delivers a hit signal, ie a complete data item 9, the evaluation unit 65 recognizes a direct hit and triggers the corresponding actions. On the other hand, if the evaluation unit 65 receives a signal from at least one of the detectors 27 for the detection of shot pulses 17, 18 or 42, but from none of the detectors 27 a signal that represents a complete date 9, it detects a close shot.

Ausgehend von der vorangehenden Beschreibung der Erfindung und eines bevorzugten Ausführungsbeispieles sind dem Fachmann zahlreiche Abwandlungen zugänglich, ohne den Schutzbereich der Erfindung zu verlassen, der durch die Patentansprüche gegeben ist. Denkbar sind namentlich:

  • Es sind mehr als zwei Pulse 17, 18 mit erhöhter Intensität vorhanden, z.B. drei oder vier. Entsprechend steigen damit auch die Möglichkeiten bzw. die Genauigkeit, mit der der Sender selbst bei einem nahen Vorbeischuss identifiziert werden kann, und/oder die Sicherheit der Treffererkennung. Denkbar ist auch nur ein derartiger Puls 17, wodurch eine Identifikation des Senders ausscheidet.
  • Es sind Pulse 17, 18 für die Erkennung eines nahen Fehlschusses mit verschiedener, jedoch deutlich unterschiedlicher Intensität vorhanden. Damit ergibt sich mehr als ein Vorbeischussbereich 33 um die Kernzone 31, wodurch in Stufen die Entfernung eines Vorbeischusses bestimmbar ist.
  • Die Modulation muss nicht 100 % sein, d.h. zwischen den Pulsen, innerhalb der Pulse und/oder zwischen den Datenpaketen kann der Lichtsender einen schwachen Lichtstrahl aussenden. Entscheidend ist die Differenz zwischen dieser Grundhelligkeit I0 und der Spitzenintensität I1 der Pulse 14 bzw. I2 der Pulse 17, 18 bzw. 42.
Starting from the preceding description of the invention and a preferred exemplary embodiment, numerous modifications are accessible to the person skilled in the art without departing from the scope of protection of the invention, which is given by the patent claims. The following are conceivable:
  • There are more than two pulses 17, 18 with increased intensity, for example three or four. Accordingly, the possibilities or the accuracy with which the transmitter can be identified even in the event of a close pass and / or the security of the hit detection also increase. Only such a pulse 17 is also conceivable, as a result of which the transmitter cannot be identified.
  • There are pulses 17, 18 for the detection of a close miss with different but clearly different intensities. This results in more than one shot-in area 33 around the core zone 31, whereby the distance of a shot-in can be determined in stages.
  • The modulation does not have to be 100%, ie between the pulses, within the pulses and / or between the data packets, the light transmitter can emit a weak light beam. The difference between this basic brightness I 0 and the peak intensity I 1 of the pulses 14 and I 2 of the pulses 17, 18 and 42 is decisive.

Claims (7)

  1. Method for generating a directed energy beam (29) for the detection of a hit in a simulation environment, the energy beam being modulated during its transmission with at least one datum (9) and having an intensity distribution (55, 57) according to which the intensity decreases from the centre of the energy beam outwards, and a high intensity portion (17, 18; 42) of the datum (9) being imprinted on the energy beam with a substantially higher intensity (I2) than the remainder (14) of the datum so that the impact of the high intensity portion of the datum on a target area with at least a predetermined minimum intensity and the fact that the remainder of the datum is below the minimum intensity (59) on the target area is recognizable as a near hit of the target area, characterised in that the proportion of time of the high intensity portion (17, 18; 42) in a datum (9) is at most one fifth, preferably at most one tenth, and/or the high intensity portion (17, 18; 42) of the datum (9) comprises at least two temporally separated periods, the time lag between those periods being utilisable as an indication regarding the emitter of the energy beam.
  2. Method according to claim 1, characterised in that the energy beam (29) is laser light, preferably infrared laser light.
  3. Method according to one of claims 1 to 2, characterised in that imprinting is achieved by amplitude modulation of the intensity, specifically by switching the beam on and off, the beam intensity being increased during the transmission of the high intensity portion (17, 18; 42) of the datum (9).
  4. Method according to one of claims 1 to 3, characterised in that the beam intensity during the transmission of the high intensity portion (17, 18; 42) of the datum (9) is at least twice, preferably three times, and particularly preferably four times as high as it is during the transmission of the remainder (14) of the datum.
  5. Method according to one of claims 1 to 4, characterised in that the high intensity portion (17, 18; 42) of the data (9) includes elements of the data that serve for the control of the data transmission, preferably for synchronisation purposes.
  6. Hit detection method in which a directed energy beam according to one of claims 1 to 5 is used, wherein the impact of the high intensity portion of the datum on a target area with at least a predetermined minimum intensity and the fact that the remainder of the datum is below the minimum intensity on the target area (59) is classified as a near hit of the target area.
  7. Device for carrying out the method according to one of claims 1 to 6, characterised in that it includes a transmitter (51) for generating the energy beam (29) that is operatively connected to a control unit (45) so that the beam intensity (I) is controllable by the control unit, and the control unit is configured to cause the transmission of a modulated energy beam by the transmitter as a function of a datum (9) to be transmitted, a high intensity portion (17, 18; 42) of the datum (9) being modulated with increased intensity (I2).
EP08405201.8A 2008-08-25 2008-08-25 Hit detection method Active EP2159531B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08405201.8A EP2159531B1 (en) 2008-08-25 2008-08-25 Hit detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08405201.8A EP2159531B1 (en) 2008-08-25 2008-08-25 Hit detection method

Publications (2)

Publication Number Publication Date
EP2159531A1 EP2159531A1 (en) 2010-03-03
EP2159531B1 true EP2159531B1 (en) 2020-04-01

Family

ID=40626649

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08405201.8A Active EP2159531B1 (en) 2008-08-25 2008-08-25 Hit detection method

Country Status (1)

Country Link
EP (1) EP2159531B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211335B (en) * 2018-01-19 2023-12-05 南京先进激光技术研究院 Laser simulated combat system and hit judgment method
IT202100007349A1 (en) * 2021-03-25 2022-09-25 Delcon S A S Di F Delmastro & C APPARATUS AND PROCEDURE FOR SHOOTING TRAINING WITH A WEAPON OF THE NON-CONTACT TYPE

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1228143A (en) 1967-04-11 1971-04-15
GB2062821B (en) 1979-05-25 1983-05-18 Solartron Electronic Group Weapon effect simulators
US5148174A (en) * 1991-02-13 1992-09-15 Geophysical Survey Systems, Inc. Selective reception of carrier-free radar signals with large relative bandwidth
GB2259559B (en) 1991-07-12 1995-01-25 Jonathan Martin Robert Watkins Simulated weapon systems
DE4213209A1 (en) 1992-04-22 1993-10-28 Rudolf De Wall Pulsed laser-multidetector simulator device for hand firearm training - deduces accuracy of marksmanship from comparison of signals from spatially sepd. photodetectors having different sensitivities
GB2290483B (en) 1994-06-21 1998-07-01 Eclipse Concepts Ltd Simulated weapon
DE19634486C2 (en) * 1996-08-26 1999-11-18 Siemens Ag Circuit arrangement for generating an amplitude-modulated oscillation
US6885283B2 (en) * 2001-02-20 2005-04-26 Siemens Vdo Automotive Corporation Combined tire pressure monitoring and keyless entry receiver
FR2834148A1 (en) * 2002-05-31 2003-06-27 Siemens Vdo Automotive Car hands free access communication system having coded signal transmission car receiver sent with coding amplitude modulation index below ten per cent.
EP1884900A1 (en) * 2006-07-31 2008-02-06 Cobra Automotive Technologies S.P.A. Apparatus for remotely activating/deactivating security systems for vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2159531A1 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
EP0945697B1 (en) Identification system
AT511310B1 (en) PROCESS FOR REMOTE MEASUREMENT
EP2638359B1 (en) Construction laser system comprising a rotation laser and a laser receiver, and method
EP2399148A1 (en) Method for operating a pulsed interference laser in an eye-safe manner in a dircm system
EP3822666B1 (en) Light barrier device
EP2159531B1 (en) Hit detection method
EP1154221B1 (en) System and method for simulation of firing
DE3028545C2 (en) Method for simulating a shot at moving targets by means of light signals
EP1130351A2 (en) Device for determining the position and/or movement of a weapon and safety device for a fire weapon
DE102018109160A1 (en) Shoe for access control and corresponding system
DE2523362C2 (en) Electronic shooting simulator
DE4135225C2 (en) Methods for simulating the effect of mines on different mine targets and simulation mines for carrying out such a method
DE2337757A1 (en) DEVICE FOR MONITORING AND / OR CONTROLLING THE FIRING OF COMBAT VEHICLES
DE3837998A1 (en) Method for simulation of the effects of a field of influence
WO2014015983A1 (en) Method for simulating an extended operating range of a projectile
DE2633964A1 (en) Fight simulator with electromagnetic radiation beam - produces divergent beam above exercise participant on approaching ground mine
EP0859243A1 (en) Laser identification system
EP4092449B1 (en) Light barrier assembly and method for detecting objects in a surveillance area
DE3229298C2 (en) Shot simulation method and device for its implementation
DE102013223703A1 (en) Device and method for directionally sensitive detection of access and / or departure of persons
DE102018005297B4 (en) Procedure and arrangement for protecting an object
DE102021108364A1 (en) System with firing device and aiming device
DE102004039336B4 (en) Device for improving performance and improving the evaluation in a combat training center
EP1972881A1 (en) Optical system and method for constructing projectile path by means of a laser ray
DE2149701C3 (en) MH laser light working simulator for the remote control of military missiles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17P Request for examination filed

Effective date: 20100817

RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20110126

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RUAG SCHWEIZ AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20191014

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017049

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008017049

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008017049

Country of ref document: DE

Owner name: RUAG SIMULATION & TRAINING AG, CH

Free format text: FORMER OWNER: RUAG SCHWEIZ AG, EMMEN, CH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230823

Year of fee payment: 16

Ref country code: DE

Payment date: 20230821

Year of fee payment: 16