EP2158303B1 - Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch - Google Patents

Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch Download PDF

Info

Publication number
EP2158303B1
EP2158303B1 EP08805641.1A EP08805641A EP2158303B1 EP 2158303 B1 EP2158303 B1 EP 2158303B1 EP 08805641 A EP08805641 A EP 08805641A EP 2158303 B1 EP2158303 B1 EP 2158303B1
Authority
EP
European Patent Office
Prior art keywords
range
measured
process according
weight
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08805641.1A
Other languages
German (de)
English (en)
Other versions
EP2158303A2 (fr
Inventor
Nathalie Marchal-George
Jean Cosyns
Vincent Coupard
Eric Caprani
Damien Douziech
Aurélie DANDEU
Stéphane FEDOU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Eni SpA
Original Assignee
IFP Energies Nouvelles IFPEN
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Eni SpA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2158303A2 publication Critical patent/EP2158303A2/fr
Application granted granted Critical
Publication of EP2158303B1 publication Critical patent/EP2158303B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins

Definitions

  • the present invention describes a process for the hydrocracking and hydroisomerization treatment of feedstocks from the Fischer-Tropsch process, making it possible to obtain middle distillates (gas oil, kerosene), ie initial boiling point cuts. at least 150 ° C and final at most 340 ° C and optionally oil bases.
  • the synthesis gas (CO + H 2 ) is catalytically converted into oxygenates and substantially linear hydrocarbons in gaseous, liquid or solid form.
  • these products mainly made of normal paraffins, can not be used as such, in particular because of their cold-holding properties that are not very compatible with the usual uses of petroleum fractions.
  • the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule (boiling point equal to about 340 ° C., ie often included in the middle distillate cut) is + 37 ° C. about which makes its use impossible, the specification being -15 ° C for diesel.
  • the hydrocarbons from the Fischer-Tropsch process comprising mainly n-paraffins must be converted into more valuable products such as, for example, gas oil, kerosene, which are obtained, for example, after catalytic hydrocracking / hydroisomerization reactions.
  • These products are generally free of heteroatomic impurities such as sulfur, nitrogen or metals. They contain practically no aromatics, naphthenes and more generally cycles, in particular in the case of cobalt catalysts.
  • oxygenated compounds may have a significant content of unsaturated compounds of olefinic type and oxygenated products (such as alcohols, carboxylic acids, ketones, aldehydes and esters). These oxygenated and unsaturated compounds are more concentrated in the light fractions. Thus in the C5 + fraction corresponding to the products boiling at an initial boiling point of between 20 ° C. and 40 ° C., these compounds represent between 10-20% by weight of olefinic type unsaturated compounds and between 5-10% by weight. of oxygenated compounds.
  • One of the objectives of the invention is to eliminate, during a hydrotreatment step, upstream of a hydrocracking step, the olefinic type unsaturated compounds, said hydrotreatment step being carried out under less severe conditions. than those of the hydrocracking step. Unsaturated olefinic compounds present in the hydrocracking feeds reduce the service life of a hydrocracking catalyst.
  • the transformation of the unsaturated compounds can have a negative impact on the hydroisomerization / hydrocracking step and cause, for example, a thermal runaway of the reaction, a large coking of the catalyst or the formation of gum by oligomerization.
  • One of the advantages of the invention is to provide a method for producing middle distillates from a paraffinic feedstock produced by Fischer Tropsch synthesis in which the hydrocracking step is preceded by a hydrogenation step allowing elimination previously and under less severe conditions than those used in the hydrocracking step, the most reactive elements and in particular unsaturated compounds of olefinic type.
  • the Shell patent application discloses a process for the production of middle distillates from a filler obtained by Fischer-Tropsch synthesis.
  • the feedstock resulting from the Fischer-Tropsch synthesis can be treated in its entirety, but preferably the C4- fraction is withdrawn from the feedstock so that only the C5 + fraction boiling at a temperature above 20 ° C. be introduced in the subsequent step.
  • Said feedstock is subjected to a hydrotreatment to hydrogenate the olefins and alcohols in the presence of a large excess of hydrogen, so that the conversion of products boiling above 370 ° C into products with a lower boiling point is less than 20%.
  • the hydrotreated effluent consisting of high molecular weight paraffinic hydrocarbons is preferably separated from the hydrocarbon compounds having a low molecular weight and in particular the C4- fraction before the second hydroconversion stage. At least a portion of the remaining C5 + fraction is then subjected to a hydrocracking / hydroisomerization step with a conversion of products boiling above 370 ° C into products having a boiling point of at least 40% by weight.
  • the patent application US 2002/0169219 discloses a process for producing a C5-C20 cut from a paraffinic feedstock produced by Fischer Tropsch synthesis, however the feedstock undergoing the hydrotreatment and hydrocracking steps described in D1 results from a mixture of a fraction C5-C20 from the Fischer Tropsch process and a C5 + fraction containing sulfur from the fractionation of a natural gas source.
  • the step of hydrotreating said feedstock is carried out at a temperature of between 204 and 482 ° C. and at a hydrogen flow rate corresponding to a hydrogen / hydrocarbon volume ratio of between 53.4 and 356 Nl / l / h. .
  • the patent GB 1,430,973 discloses a two-stage hydrocracking process of an aromatic charge comprising 20 to 70% by volume of aromatics and a boiling point between 221 and 537 ° C, in order to obtain a rich naphtha fraction in aromatic and a kerosene fraction with a low aromatic content.
  • the hydrotreatment stage upstream of the hydrocracking stages operates at a temperature of between 287 and 454 ° C.
  • Step a) according to the invention is a step of separation of at least one C4- fraction, called light, with a final boiling point of less than 20 ° C, preferably less than 10 ° C and very preferably less than 0 ° C, of the effluent resulting from the Fischer Tropsch synthesis so as to obtain a single C5 + fraction, so-called heavy, with an initial boiling point of between 20 and 40 ° C and preferably having a boiling point greater than or equal to 30 ° C , constituting at least a part of the charge of the hydrogenation step b) according to the invention.
  • the effluent from the Fischer-Tropsch synthesis unit is, at the outlet of the Fischer-Tropsch synthesis unit advantageously divided into two fractions, a light fraction, called cold condensate, (line (1)) and a fraction heavy, called waxes, (pipe (3)).
  • the two fractions thus defined comprise water, carbon dioxide (CO 2 ), carbon monoxide (CO) and unreacted hydrogen (H 2 ).
  • the light fraction, cold condensate contains light hydrocarbon compounds C1 to C4, called C4- fraction, in the form of gas.
  • the light fraction, called cold condensate (1), and the heavy fraction, called waxes (3) are separately treated in separate fractionation means and then recombined in line (5), so as to obtain a single C5 + fraction.
  • said heavy, initial boiling point between 20 and 40 ° C and preferably having a boiling temperature greater than or equal to 30 ° C.
  • the heavy fraction, called waxes enters a fractionation means (4) via line (3).
  • the fractionation means (4) may for example consist of methods well known to those skilled in the art such as rapid expansion (or flash, according to the English terminology), distillation or stripping.
  • a flash or flash tank or a stripper is sufficient to remove most of the water, carbon dioxide (CO 2 ) and carbon monoxide (CO) through the line (4 ') of the heavy fraction, called waxes.
  • the light fraction enters a fractionation means (2) via the pipe (1).
  • the fractionation means (2) may for example consist of methods well known to those skilled in the art such as a flash or flash tank, distillation or stripping.
  • the fractionation means (2) is a distillation column allowing the elimination of the light and gaseous hydrocarbon compounds C1 to C4, called gas fraction C4-, corresponding to products boiling at a temperature below 20 ° C, preferably below at 10 ° C and very preferably, below 0 ° C, through the pipe (2 ').
  • a stabilized C5 + liquid fraction corresponding to products boiling at an initial boiling point of between 20 and 40 ° C. and preferably having a boiling point greater than or equal to 30 ° C., is thus recovered in the pipe (5) and constitutes the charge of the hydrogenation step b) of the process according to the invention.
  • the light fraction, called cold condensate, leaving the Fischer-Tropsch synthesis unit via line (1) and the heavy fraction, called waxes, leaving the Fischer-Tropsch synthesis unit via line (3) are recombined in the pipe (18) and treated in the same fractionation means (4).
  • the fractionation means (4) may for example consist of methods well known to those skilled in the art such as flash, distillation or stripping.
  • the fractionation means (4) is a distillation column allowing the removal of the gas fraction C4-, water, carbon dioxide (CO 2 ) and carbon monoxide (CO) through the pipe (4 ').
  • a stabilized C5 + liquid fraction corresponding to the products boiling at a boiling point of between 20 and 40 ° C. and preferably having a boiling point greater than or equal to 30 ° C., is thus recovered at the outlet of the fractionation means (4). ) in the pipe (5) and constitutes the charge of the hydrogenation step b) of the process according to the invention.
  • Step b) of the process according to the invention is a step of hydrogenation of the olefinic type unsaturated compounds of at least a part and preferably of the whole of the C5 + heavy liquid fraction resulting from step a) of the process according to the invention, in the presence of hydrogen and a hydrogenation catalyst.
  • Said C5 + liquid heavy fraction is admitted in the presence of hydrogen (line 6) in a hydrogenation zone (7) containing a hydrogenation catalyst which aims to saturate the unsaturated olefinic compounds present in the C5 + heavy liquid fraction. described above.
  • the catalyst used in step (b) according to the invention is a non-crunchy or slightly cracking hydrogenation catalyst comprising at least one metal of group VIII of the periodic table of the elements and comprising at least one carrier with refractory oxide base.
  • said catalyst comprises at least one group VIII metal chosen from nickel, molybdenum, tungsten, cobalt, ruthenium, indium, palladium and platinum and comprising at least one oxide-based support refractory selected from alumina and silica alumina.
  • group VIII metal chosen from nickel, molybdenum, tungsten, cobalt, ruthenium, indium, palladium and platinum and comprising at least one oxide-based support refractory selected from alumina and silica alumina.
  • the Group VIII metal is chosen from nickel, palladium and platinum.
  • the group VIII metal is chosen from palladium and / or platinum and the content of this metal is advantageously between 0.1% and 5%. % by weight, and preferably between 0.2% and 0.6% by weight relative to the total weight of the catalyst.
  • the Group VIII metal is palladium.
  • the metal of group VIII is nickel and the content of this metal is advantageously between 5% and 25% by weight, preferably between 7%. and 20% by weight based on the total weight of the catalyst.
  • the catalyst support used in step (b) of the process according to the invention is a refractory oxide-based support, preferably chosen from alumina and silica-alumina.
  • the support When the support is an alumina, it has a BET specific surface to limit the polymerization reactions on the surface of the hydrogenation catalyst, said surface being between 5 and 140 m 2 / g.
  • the support When the support is a silica-alumina, the support contains a percentage of silica of between 5 and 95% by weight, preferably between 10 and 80%, more preferably between 20 and 60% and very preferably between 30 and 50%. a BET specific surface area of between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g, preferably less than 350 m 2 / g and even more preferably less than 250 m 2 / g ,
  • the hydrogenation stage b) of the process according to the invention is preferably carried out in one or more fixed bed reactor (s).
  • the feedstock is brought into contact with the hydrogenation catalyst in the presence of hydrogen and at operating temperatures and pressures allowing the hydrogenation of the olefinic unsaturated compounds present in the feedstock.
  • the oxygenated compounds are not converted, the liquid hydrogen effluent from step b) of the process according to the invention therefore does not contain water resulting from the conversion of said oxygenated compounds.
  • the operating conditions of the hydrogenation stage b) are chosen so that the effluent leaving said hydrogenation zone (7) is in the liquid state: indeed, the amount of hydrogen introduced into the hydrogenation zone (7) corresponds to a quantity of hydrogen in slight excess with respect to the quantity of hydrogen strictly necessary to carry out the hydrogenation reaction of the unsaturated compounds of the type olefin.
  • the liquid hydrogenated effluent does not contain hydrocarbon compounds boiling at a temperature below 20 ° C., preferably below 10 ° C. and very preferred, lower than 0 ° C, corresponding to the gaseous fraction C4-.
  • the operating conditions of the hydrogenation step b) of the process according to the invention are the following: the temperature within said hydrogenation zone (7) is between 100 and 180 ° C. and preferably between 120 and 180 ° C. and 165 ° C, the total pressure is between 0.5 and 6 MPa, preferably between 1 and 5 MPa and even more preferably between 2 and 5 MPa.
  • the feedstock flow rate is such that the hourly space velocity (ratio of the hourly flow rate at 15 ° C of liquid fresh feed over the catalyst volume loaded) is between 1 and 10 h -1, preferably between 1 and 5 h -1 and even more preferably between 1 and 4 h -1 .
  • the hydrogen that feeds the hydrotreating zone is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 10 and 50 Nl / l / h, and preferably between 15 and 35 Nl / l / h.
  • the olefinic type unsaturated compounds are hydrogenated more than 50%, preferably more than 75% and preferably more than 85%.
  • the hydrogenation step b) of the process according to the invention is preferably carried out under conditions such as conversion to products having boiling points greater than or equal to 370 ° C in products having lower boiling points. at 370 ° C is zero.
  • the hydrogenated effluent from step b) of the process according to the invention therefore does not contain compounds boiling at a temperature below 20 ° C, preferably below 10 ° C and very preferably below 0 ° C C, corresponding to the gas fraction C4-.
  • step b) of the process according to the invention use is made of a guard bed (not shown in the figures) containing at least one guard bed catalyst upstream of the hydrogenation zone ( 7) to reduce the content of solid mineral particles and possibly reduce the content of harmful metal compounds for hydrogenation catalysts.
  • the guard bed may advantageously be either integrated in the hydrogenation zone (7) upstream of the hydrogenation catalyst bed or be placed in a separate zone upstream of the hydrogenation zone (7).
  • the treated fractions may optionally contain solid particles such as inorganic solids. They may optionally contain metals contained in hydrocarbon structures such as more or less soluble organometallic compounds.
  • fines fines resulting from a physical or chemical attrition of the catalyst. They can be micron or sub-micron. These mineral particles then contain the active components of these catalysts without the following list being limiting: alumina, silica, titanium, zirconia, cobalt oxide, iron oxide, tungsten, rhuthenium oxide, etc.
  • These solid minerals may be present under the calcined mixed oxide form: for example, alumina-cobalt, alumina-iron, alumina-silica, alumina-zirconia, alumina-titanium, alumina-silica-cobalt, alumina-zirconia-cobalt, ....
  • the catalyst fines described above may have a higher silica content than the catalyst formulation resulting from the intimate interaction between the catalyst fines and anti-foaming agents described above.
  • the guard bed catalysts used may advantageously be in the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes are cylindrical (which can be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings.
  • the cylindrical shape is preferably used, but any other shape may be used.
  • the bed bed catalysts may, in another preferred embodiment, have more specific geometric shapes in order to increase their void fraction.
  • the void fraction of these catalysts is between 0.2 and 0.75.
  • Their outer diameter can vary between 1 and 35 mm.
  • guard bed catalysts used are not impregnated with an active phase.
  • Guard beds can be marketed by Norton- Saint-Gobain, for example example MacroTrap® guard beds.
  • Guard beds can be marketed by Axens in the ACT family: ACT077, ACT935, ACT961 or HMC841, HMC845, HMC941 or HMC945. It may be particularly advantageous to superpose these catalysts in at least two different beds of varying heights.
  • the catalysts having the highest void content are preferably used in the first catalytic bed or first catalytic reactor inlet. It may also be advantageous to use at least two different reactors for these catalysts.
  • These guard bed catalysts used may advantageously have macroporosity.
  • the macroporous volume for a mean diameter at 50 nm is greater than 0.1 cm 3 / g and a total volume greater than 0.60 cm 3 / g.
  • the mercury volume for a pore diameter greater than 1 micron is greater than 0.5 cm 3 / g and the mercury volume for a pore diameter greater than 10 microns is greater than 0.25 cm 3 /boy Wut.
  • the solids content is advantageously less than 20 ppm, preferably less than 10 ppm and even more preferably less than 5 ppm.
  • the soluble silicon content is advantageously less than 5 ppm, preferably less than 2 ppm and even more preferably less than 1 ppm.
  • step b) of the process according to the invention all the liquid hydrogenated effluent is directly sent to a hydrocracking / hydroisomerization zone (10).
  • step c) of the process according to the invention the totality of the liquid hydrogenated effluent resulting from step b) of the process according to the invention is directly sent, without prior separation step, to the zone of hydroisomerization / hydrocracking (10) containing the hydroisomerization / hydrocracking catalyst and preferably at the same time as a hydrogen stream (line 9).
  • the temperature used in this step is generally between 200 and 450 ° C. and preferably from 250 ° C. to 450 ° C., advantageously from 300 to 450 ° C., and even more advantageously above 320 ° C. or for example between 320 ° -420 ° C. vs.
  • the hydroisomerization and hydrocracking step c) of the process according to the invention is advantageously carried out under conditions such that the pass conversion into products with boiling points greater than or equal to 370 ° C. into products having points. boiling point below 370 ° C. is greater than 80% by weight, and even more preferably at least 85%, preferably greater than 88%, so as to obtain middle distillates (gas oil and kerosene) having sufficiently good cold (pour point, freezing point) to meet the specifications in force for this type of fuel.
  • the majority of catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function.
  • the acid function is generally provided by supports with large surface areas (150 to 800 m2.g-1 generally) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus aluminas, combinations of oxides of boron and aluminum, silica aluminas.
  • the hydrogenating function is generally provided either by one or more metals of group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by an association of at least a Group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
  • the equilibrium between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst.
  • a weak acidic function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts.
  • a third possibility is to use a strong acid function and a strong hydrogenating function to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, judiciously choosing each of the functions to adjust the activity / selectivity of the catalyst.
  • the hydroisomerization-hydrocracking catalysts are bifunctional catalysts comprising an amorphous acid support (preferably a silica-alumina) and a hydro-dehydrogenating metal function preferably provided by at least one noble metal.
  • the support is said to be amorphous, that is to say devoid of molecular sieves, and in particular of zeolite, as well as the catalyst.
  • the amorphous acidic support is advantageously a silica-alumina but other supports are usable.
  • the catalyst preferably does not contain added halogen, other than that which could be introduced for the impregnation of the noble metal, for example.
  • the catalyst does not contain added halogen, for example fluorine.
  • the support has not been impregnated with a silicon compound.
  • the two stages b) and c) of the process according to the invention, hydrogenation and hydroisomerization-hydrocracking, can advantageously be carried out on the two types of catalysts in two or more different reactors, and / or in the same reactor.
  • the characteristics associated with the corresponding catalyst are identical to those of the silica alumina described above.
  • step c) of the process according to the invention said catalyst is sulphurized.
  • a palladium-containing catalyst is used in the hydrogenation step b) and in the hydroisomerization / hydrocracking step c), a platinum-containing catalyst.
  • a palladium-containing catalyst is used in the hydrogenation step b) and in the hydroisomerization / hydrocracking step c), a sulphurized catalyst containing at least one hydro-dehydrogenating element selected from Group VIII non-noble metals and Group VIB metals.
  • a catalyst containing at least one non-noble hydro-dehydrogenating element of group VIII and in step c) of hydroisomerization is used.
  • hydrocracking a sulphurized catalyst containing at least one hydro-dehydrogenating element chosen from Group VIII non-noble metals and Group VIB metals.
  • the effluent (so-called hydrocracked / hydroisomerized fraction) leaving the hydroisomerization / hydrocracking zone (10), resulting from step (c) of the process according to the invention, is sent, in accordance with step d) of process according to the invention, in a distillation train (11), which incorporates an atmospheric distillation and optionally a vacuum distillation, which aims to separate the conversion products of boiling point below 340 ° C and preferably less than 370 ° C and including in particular those formed during step (c) in the hydroisomerization / hydrocracking reactor (10), and to separate the residual fraction whose initial boiling point is generally greater than at least 340 ° C and preferably greater than or equal to at least 370 ° C.
  • the conversion products and hydroisomerized is separated in addition to the light gases C1-C4 (line 12) at least one gasoline fraction (or naphtha) (line 13), and at least one middle distillate fraction kerosene (line 14) and diesel (line 15).
  • the residual fraction whose initial boiling point is generally greater than at least 340 ° C and preferably greater than or equal to at least 370 ° C is recycled (line 16) in step c) of the process according to the invention at the head of the zone (10) for hydroisomerization and hydrocracking.
  • said residual fraction can provide excellent bases for the oils.
  • step (c) zone 10
  • step (c) zone 10
  • the gas oil and kerosene cuts are preferably recovered separately or mixed, but the cutting points are adjusted by the operator according to his needs. It has been found that it is advantageous to recycle a portion of the kerosene to improve its cold properties.
  • the gas oil (s) obtained has a pour point of at most 0 ° C, generally below -10 ° C and often below -15 ° C.
  • the cetane number is greater than 60, generally greater than 65, often greater than 70.
  • the resulting kerosene (s) has a freezing point of not more than -35 ° C, generally less than -40 ° C.
  • the smoke point is greater than 25 mm, usually greater than 30 mm.
  • the yield of gasoline is always less than 50% by weight, preferably less than 40% by weight, advantageously less than 30% by weight or 20% by weight or even 15% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • La présente invention décrit un procédé de traitement avec hydrocraquage et hydroisomérisation, de charges issues du procédé Fischer-Tropsch, permettant d'obtenir des distillats moyens (gazole, kérosène), c'est à dire des coupes à point d'ébullition initial d'au moins 150°C et final d'au plus 340°C et éventuellement des bases huiles.
  • Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H2) est transformé catalytiquement en produits oxygénés et en hydrocarbures essentiellement linéaires sous forme gazeuse, liquide ou solide. Cependant, ces produits, principalement constitués de normales paraffines, ne peuvent être utilisés tels quels, notamment à cause de leurs propriétés de tenue à froid peu compatibles avec les utilisations habituelles des coupes pétrolières. Par exemple, le point d'écoulement d'un hydrocarbure linéaire contenant 20 atomes de carbone par molécule (température d'ébullition égale à 340°C environ c'est à dire souvent comprise dans la coupe distillat moyen) est de +37°C environ ce qui rend son utilisation impossible, la spécification étant de -15°C pour le gasoil. Ainsi, les hydrocarbures issus du procédé Fischer-Tropsch comprenant majoritairement des n-paraffines doivent être transformés en produits plus valorisables tels que par exemple le gazole, kérosène, qui sont obtenus, par exemple, après des réactions catalytiques d'hydrocraquage/hydroisomérisation. Ces produits sont généralement exempt d'impuretés hétéroatomiques telles que le soufre, l'azote ou les métaux. Ils ne contiennent pratiquement pas d'aromatiques, de naphtènes et plus généralement de cycles en particulier dans le cas de catalyseurs au cobalt.
  • En revanche, ils peuvent présenter une teneur non négligeable en composés insaturés de type oléfiniques et produits oxygénés (tels que des alcools, acides carboxyliques, cétones, aldéhydes et esters). Ces composés oxygénés et insaturés sont davantage concentrés dans les fractions légères. Ainsi dans la fraction C5+ correspondant aux produits bouillant à une température d'ébullition initiale comprise entre 20°C et 40°C, ces composés représentent entre 10-20% en poids de composés insaturés de type oléfiniques et entre 5-10% en poids de composés oxygénés.
  • Un des objectifs de l'invention est d'éliminer au cours d'une étape d'hydrotraitement, en amont d'une étape d'hydrocraquage, les composés insaturés de type oléfiniques, ladite étape d'hydrotraitement étant réalisée dans des conditions moins sévères que celles de l'étape d'hydrocraquage. Les composés insaturés de type oléfiniques présents dans les charges d'hydrocraquage réduisent la durée de vie d'un catalyseur d'hydrocraquage. En effet, dans les conditions opératoires sévères d'hydrocraquage/hydroisomérisation, l'hydrogénation des composés insaturés de type oléfiniques étant une réaction fortement exothermique, la transformation des composés insaturés peut avoir un impact négatif sur l'étape d'hydroisomérisation / hydrocraquage et provoquer par exemple un emballement thermique de la réaction, un cokage important du catalyseur ou la formation de gomme par oligomérisation.
  • Un des avantages de l'invention est de fournir un procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer Tropsch dans lequel l'étape d'hydrocraquage est précédée d'une étape d'hydrogénation permettant l'élimination au préalable et dans des conditions moins sévères que celles utilisées dans l'étape d'hydrocraquage, des éléments les plus réactifs et en particulier, des composés insaturés de type oléfiniques.
  • État de la technique
  • La demande de brevet Shell ( EP-583,836 ) décrit un procédé pour la production de distillats moyens à partir d'une charge obtenue par la synthèse Fischer-Tropsch. Dans ce procédé, la charge issue de la synthèse Fischer-Tropsch peut être traitée dans sa globalité, mais de préférence la fraction C4- est soutirée de la charge de manière à ce que seule la fraction C5+ bouillant à une température supérieure à 20°C soit introduite dans l'étape ultérieure. Ladite charge est soumise à un hydrotraitement pour hydrogéner les oléfines et alcools, en présence d'un fort excès d'hydrogène, de sorte que la conversion de produits bouillant au-dessus de 370°C en produits à point d'ébullition inférieur, soit inférieure à 20%. L'effluent hydrotraité constitué d'hydrocarbures paraffiniques à haut poids moléculaire est, de préférence séparé des composés hydrocarbonés ayant un poids moléculaire bas et en particulier de la fraction C4- avant la deuxième étape d'hydroconversion. Au moins une partie de la fraction restante C5+ est ensuite soumise à une étape d'hydrocraquage/hydroisomérisation avec une conversion de produits bouillant au-dessus de 370°C en produits à point d'ébullition inférieur d'au moins 40% poids.
  • La demande de brevet US 2002/0169219 décrit un procédé de production d'une coupe C5-C20 à partir d'une charge paraffinique produite par synthèse Fischer Tropsch, cependant la charge subissant les étapes d'hydrotraitement et d'hydrocraquage décrite dans D1 résulte d'un mélange d'une fraction C5-C20 issue du procédé Fischer Tropsch et d'une fraction C5+ contenant du soufre issue du fractionnement d'une source de gaz naturel. L'étape d'hydrotraitement de ladite charge mise en oeuvre opère à une température comprise entre 204 et 482 °C et à un débit d'hydrogène correspondant à un rapport volumique hydrogène / hydrocarbures compris entre 53,4 et 356 Nl/l/h.
  • Le brevet GB 1 430 973 décrit un procédé d'hydrocraquage en deux étapes d'une charge aromatique comprenant 20 à 70% en volume d'aromatiques et d'un point d'ébullition compris entre 221 et 537°C, dans le but d'obtenir une fraction naphta riche en aromatique et une fraction kérosène à faible teneur en aromatique. L'étape d'hydrotraitement en amont des étapes d'hydrocraquage opère à une température comprise entre 287 et 454 °C.
  • La présente invention propose un procédé alternatif pour la production de distillats moyens. Les avantages de la présente invention sont :
    • de protéger le catalyseur d'hydroisomérisation / hydrocraquage des éléments les plus réactifs tels que les composés insaturés de type oléfinique par la mise en oeuvre en amont de l'étape d'hydroisomérisation / hydrocraquage, d'une étape d'hydrogénation des composés insaturés, l'élimination des composés insaturés de type oléfinique avant l'étape d'hydroisomérisation / hydrocraquage permettant d'éviter la formation de coke ou de gomme dans la zone d'hydroisomérisation / hydrocraquage,
    • de faciliter le contrôle du profil de température à l'intérieur de la zone d'hydroisomérisation / hydrocraquage par la mise en oeuvre en amont de l'étape d'hydroisomérisation / hydrocraquage d'une étape d'hydrogénation des composés insaturés. L'hydrogénation des composés insaturés de type oléfiniques est en effet une réaction fortement exothermique qui peut avoir un impact négatif sur l'étape d'hydroisomérisation / hydrocraquage et provoquer par exemple un emballement thermique de la réaction dans le cas ou ces composés insaturés ne seraient pas éliminés en amont de l'étape d'hydroisomérisation / hydrocraquage,
    • de mettre en oeuvre un procédé simplifié dans lequel la quantité d'hydrogène introduite dans la zone d'hydrogénation correspond à une quantité d'hydrogène en léger excès par rapport à la quantité strictement nécessaire pour réaliser la réaction d'hydrogénation des composés insaturés de type oléfinique de sorte que le procédé ne nécessite pas l'intégration d'un compresseur de recycle et que l'on ne réalise pas de craquage dans la zone d'hydrogénation. Ceci permet l'envoi direct, de préférence par pompage, de la totalité de l'effluent hydrogéné liquide, sans étape de séparation intermédiaire, dans la zone d'hydroisomérisation / hydrocraquage, ainsi que l'utilisation d'une quantité d'hydrogène considérablement réduite.
    • d'améliorer fortement les propriétés à froid des paraffines issues du procédé Fisher-Tropsch et ayant des points d'ébullition correspondants à ceux des fractions gazole et kérosène, (encore appelées distillats moyens) et notamment d'améliorer le point de congélation des kérosènes.
    • d'augmenter la quantité de distillats moyens disponibles par hydrocraquage des composés paraffiniques les plus lourds, présents dans l'effluent de sortie de l'unité Fischer-Tropsch, et qui ont des points d'ébullition supérieurs à ceux des coupes kérosène et gazole, par exemple la fraction 370°C+.
  • La figure 1 représente le mode de réalisation du procédé selon l'invention le plus large. Plus précisément, la figure 1 représente un procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, comprenant les étapes successives suivantes :
    1. a) séparation d'au moins une fraction gazeuse C4-, dite légère, à point d'ébullition final inférieur à 20°C, de l'effluent issu de l'unité de synthèse Fischer Tropsch de façon à obtenir une seule fraction liquide C5+, dite lourde, à point d'ébullition initial compris entre 20 et 40°C,
    2. b) hydrogénation des composés insaturés de type oléfiniques d'au moins une partie de ladite fraction lourde C5+, en présence d'hydrogène et d'un catalyseur d'hydrogénation à une température comprise entre 100°C et 180 °C, à une pression totale comprise entre 0,5 et 6 MPa, à une vitesse volumique horaire comprise entre 1 et 10h-1, et à un débit d'hydrogène correspondant à un rapport volumique hydrogène/hydrocarbures compris entre 10 et 50 Nl/l/h,
    3. c) hydroisomérisation/hydrocraquage de la totalité de l'effluent hydrogéné liquide issu de l'étape b), sans étape de séparation préalable, en présence d'hydrogène et d'un catalyseur d'hydroisomérisation/hydrocraquage,
    4. d) distillation de l'effluent hydrocraqué / hydroisomérisé.
    Description détaillée de l'invention
  • Dans toute la suite de la description, nous allons détailler les différentes étapes du procédé selon l'invention en se référant aux figures 2 et 3 qui représentent des modes de réalisation préférés du procédé selon l'invention sans en limiter la portée.
  • Étape (a)
  • L'étape a) selon l'invention, non représentée sur la figure 1, est une étape de séparation d'au moins une fraction C4-, dite légère, à point d'ébullition final inférieur à 20°C, de préférence inférieur à 10°C et de manière très préférée, inférieur à 0°C, de l'effluent issu de la synthèse Fischer Tropsch de façon à obtenir une seule fraction C5+, dite lourde, à point d'ébullition initial compris entre 20 et 40°C et de préférence ayant une température d'ébullition supérieure ou égale à 30 °C, constituant au moins une partie de la charge de l'étape b) d'hydrogénation selon l'invention.
  • L'effluent issu de l'unité de synthèse Fischer-Tropsch est, en sortie de l'unité de synthèse Fischer-Tropsch avantageusement divisé en deux fractions, une fraction légère, appelée condensat à froid, (conduite (1)) et une fraction lourde, appelée cires, (conduite (3)).
  • Les deux fractions ainsi définies comportent de l'eau, du dioxyde de carbone (CO2), du monoxyde de carbone (CO) et de l'hydrogène (H2) non réagi. De plus, la fraction légère, condensat à froid, contient des composés hydrocarbures légers C1 à C4, appelés fraction C4-, sous forme de gaz.
  • Selon un mode de réalisation préféré représenté sur la figure 2, la fraction légère, appelée condensat à froid (1), et la fraction lourde, appelée cires (3), sont traitées séparément dans des moyens de fractionnement séparés puis recombinées dans la conduite (5), de façon à obtenir une seule fraction C5+, dite lourde, à point d'ébullition initial compris entre 20 et 40°C et de préférence ayant une température d'ébullition supérieure ou égale à 30 °C. La fraction lourde, appelée cires, entre dans un moyen de fractionnement (4) par la conduite (3). Le moyen de fractionnement (4) peut être par exemple constitué par des méthodes bien connues de l'homme du métier telles que une détente rapide (ou flash, selon la terminologie anglo-saxonne), une distillation ou un stripage. Avantageusement, un ballon de détente ou flash ou un strippeur suffit pour éliminer la majeure partie de l'eau, le dioxyde de carbone (CO2) et le monoxyde de carbone (CO) par la conduite (4') de la fraction lourdes, appelée cires.
  • La fraction légère, appelée condensat à froid, entre dans un moyen de fractionnement (2) par la conduite (1). Le moyen de fractionnement (2) peut être par exemple constitué par des méthodes bien connues de l'homme du métier telles que un ballon de détente ou flash, une distillation ou un strippage. Avantageusement, le moyen de fractionnement (2) est une colonne de distillation permettant l'élimination des composés hydrocarbures légers et gazeux C1 à C4, appelés fraction gazeuse C4-, correspondant aux produits bouillant à une température inférieure à 20°C, de préférence inférieure à 10°C et de manière très préférée, inférieure à 0°C, par la conduite (2').
  • Les effluents stabilisés issus des moyens de fractionnement (2) et (4) sont ensuite recombinés dans la conduite (5). Une fraction liquide C5+ stabilisée, correspondant aux produits bouillant à une température d'ébullition initiale comprise entre 20 et 40°C et de préférence ayant une température d'ébullition supérieure ou égale à 30 °C est ainsi récupérée dans la conduite (5) et constitue la charge de l'étape b) d'hydrogénation du procédé selon l'invention.
  • Selon un autre mode de réalisation préféré représenté sur la figure 3, la fraction légère, appelée condensat à froid, sortant de l'unité de synthèse Fischer-Tropsch par la conduite (1) et la fraction lourde, appelée cires, sortant de l'unité de synthèse Fischer-Tropsch par la conduite (3), sont recombinées dans la conduite (18) et traitées dans un même moyen de fractionnement (4). Le moyen de fractionnement (4) peut être par exemple constitué par des méthodes bien connues de l'homme du métier telles que le flash, la distillation ou le strippage. Avantageusement, le moyen de fractionnement (4) est une colonne de distillation permettant l'élimination de la fraction gazeuse C4-, de l'eau, du dioxyde de carbone (CO2) et du monoxyde de carbone (CO) par la conduite (4').
  • Une fraction liquide C5+ stabilisée, correspondant aux produits bouillant à une température d'ébullition comprise entre 20 et 40 °C et de préférence ayant une température d'ébullition supérieure ou égale à 30 °C est ainsi récupérée en sortie du moyen de fractionnement (4) dans la conduite (5) et constitue la charge de l'étape b) d'hydrogénation du procédé selon l'invention.
  • Étape b)
  • L'étape b) du procédé selon l'invention est une étape d'hydrogénation des composés insaturés de type oléfiniques d'au moins une partie et de préférence de la totalité de la fraction lourde liquide C5+ issu de l'étape a) du procédé selon l'invention, en présence d'hydrogène et d'un catalyseur d'hydrogénation.
  • Ladite fraction lourde liquide C5+ est admise en présence d'hydrogène (conduite 6) dans une zone d'hydrogénation (7) contenant un catalyseur d'hydrogénation qui a pour objectif de saturer les composés insaturés de type oléfiniques présents dans la fraction lourde liquide C5+ décrite ci-dessus.
  • De manière préférée, le catalyseur utilisé dans l'étape (b) selon l'invention est un catalyseur d'hydrogénation non craquants ou peu craquants comportant au moins un métal du groupe VIII de la classification périodique des éléments et comportant au moins un support à base d'oxyde réfractaire.
  • De préférence, ledit catalyseur comprend au moins un métal du groupe VIII choisi parmi le nickel, le molybdène, le tungstène, le cobalt, le ruthénium, l'indium, le palladium et le platine et comportant au moins un support à base d'oxyde réfractaire choisi parmi l'alumine et la silice alumine.
  • De manière préférée, le métal du groupe VIII est choisi, parmi le nickel, le palladium et le platine.
  • Selon un mode de réalisation préféré de l'étape b) du procédé selon l'invention, le métal du groupe VIII est choisi parmi le palladium et/ou le platine et la teneur en ce métal est avantageusement comprise entre 0,1% et 5 % poids, et de préférence entre 0,2% et 0,6 % poids par rapport au poids total du catalyseur.
  • Selon un mode de réalisation très préféré de l'étape b) du procédé selon l'invention, le métal du groupe VIII est le palladium.
  • Selon un autre mode de réalisation préféré de l'étape b) du procédé selon l'invention, le métal du groupe VIII est le nickel et la teneur en ce métal est avantageusement comprise entre 5% et 25 % poids, de préférence entre 7% et 20 % poids par rapport au poids total du catalyseur.
  • Le support du catalyseur utilisé dans l'étape (b) du procédé selon l'invention est un support à base d'oxyde réfractaire, de préférence choisi parmi l'alumine et la silice alumine.
  • Lorsque le support est une alumine, il présente une surface spécifique BET permettant de limiter les réactions de polymérisation à la surface du catalyseur d'hydrogénation, ladite surface étant comprise entre 5 et 140 m2/g.
  • Lorsque le support est une silice alumine, le support contient un pourcentage de silice compris entre 5 et 95 % poids, de préférence entre 10 et 80%, de manière plus préférée entre 20 et 60 % et de manière très préférée entre 30 et 50%, une surface spécifique BET comprise entre 100 et 550 m2/g, de préférence comprise entre 150 et 500 m2/g, de manière préférée inférieure à 350 m2/g et de manière encore plus préférée inférieure à 250 m2/g,
  • L'étape b) d'hydrogénation du procédé selon l'invention est de préférence conduite dans un ou plusieurs réacteur(s) à lit fixe.
  • Dans la zone d'hydrogénation (7), la charge est mise en contact du catalyseur d'hydrogénation en présence d'hydrogène et à des températures et des pressions opératoires permettant l'hydrogénation des composés insaturés de type oléfiniques présents dans la charge. Dans ces conditions opératoires, les composés oxygénés ne sont pas convertis, l'effluent hydrogéné liquide issu de l'étape b) du procédé selon l'invention ne contient donc pas d'eau issue de la transformation desdits composés oxygénés.
  • Selon l'invention, les conditions opératoires de l'étape b) d'hydrogénation sont choisies de sorte que l'effluent en sortie de ladite zone d'hydrogénation (7) soit à l'état liquide : en effet, la quantité d'hydrogène introduite dans la zone d'hydrogénation (7) correspond à une quantité d'hydrogène en léger excès par rapport à la quantité d'hydrogène strictement nécessaire pour réaliser la réaction d'hydrogénation des composés insaturés de type oléfinique. Ainsi, on ne réalise pas de craquage dans la zone d'hydrogénation (7), et l'effluent hydrogéné liquide ne contient pas de composés hydrocarbonés bouillant à une température inférieure à 20°C, de préférence inférieure à 10°C et de manière très préférée, inférieure à 0°C, correspondant à la fraction gazeuse C4-.
  • Les conditions opératoires de l'étape b) d'hydrogénation du procédé selon l'invention sont les suivantes : la température au sein de ladite zone d'hydrogénation (7) est comprise entre 100 et 180 °C et de manière préférée, entre 120 et 165°C, la pression totale est comprise entre 0,5 et 6 MPa, de préférence entre 1 et 5 MPa et de manière encore plus préférée entre 2 et 5 MPa. Le débit de charge est tel que la vitesse volumique horaire (rapport du débit volumique horaire à 15°C de charge fraîche liquide sur le volume de catalyseur chargé) est comprise entre 1 et 10h-1, de préférence entre 1 et 5 h-1 et de manière encore plus préférée entre 1 et 4 h-1. L'hydrogène qui alimente la zone d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 10 et 50 NI/I/h, et de manière préférée entre 15 et 35 Nl/l/h.
  • Dans ces conditions, les composés insaturés de type oléfinique sont hydrogénés à plus de 50%, de préférence à plus de 75% et de manière préférée, à plus de 85%.
  • L'étape d'hydrogénation b) du procédé selon l'invention est de préférence conduite dans des conditions telles que la conversion en produits ayant des points d'ébullition supérieurs ou égaux à 370 °C en des produits ayant des points d'ébullition inférieurs à 370 °C est nulle. L'effluent hydrogéné issu de l'étape b) du procédé selon l'invention ne contient donc pas de composés bouillant à une température inférieure à 20°C, de préférence inférieure à 10°C et de manière très préférée, inférieure à 0°C, correspondant à la fraction gazeuse C4-.
  • Selon un mode de réalisation préféré de l'étape b) du procédé selon l'invention, on utilise un lit de garde (non représenté sur les figures) contenant au moins un catalyseur de lit de garde en amont de la zone d'hydrogénation (7) afin de réduire la teneur en particules minérales solides et éventuellement de réduire la teneur en composés métalliques néfastes pour les catalyseurs d'hydrogénation. Le lit de garde peut avantageusement être soit intégré dans la zone d'hydrogénation (7) en amont du lit de catalyseur d'hydrogénation soit être placé dans une zone séparée en amont de la zone d'hydrogénation (7).
  • En effet, les fractions traitées peuvent éventuellement contenir des particules solides tels que des solides minéraux. Elles peuvent éventuellement contenir des métaux contenus dans des structures hydrocarbonés tels que des composés organo-métalliques plus ou moins solubles. Par le terme fines, on entend des fines résultant d'une attrition physique ou chimique du catalyseur. Elles peuvent être microniques ou sub-microniques. Ces particules minérales contiennent alors les composants actifs de ces catalyseurs sans que la liste suivante soit limitative : alumine, silice, titane, zircone, oxyde de cobalt, oxyde de fer, tungstène, oxyde de rhuthénium... Ces solides minéraux peuvent se présenter sous la forme d'oxyde mixte calciné : par exemple, alumine-cobalt, alumine-fer, alumine-silice, alumine-zircone, alumine-titane, alumine-silice-cobalt, alumine-zircone-cobalt,....
  • Elles peuvent également contenir des métaux au sein de structures hydrocarbonées, pouvant éventuellement contenir de l'oxygène ou des composés organo-métalliques plus ou moins solubles. Plus particulièrement, ces composés peuvent être à base de silicium. Il peut s'agir par exemple des agents anti-moussants utilisés dans le procédé de synthèse. Par ailleurs, les fines de catalyseurs décrites ci-dessus peuvent avoir une teneur en silice supérieure à la formulation du catalyseur, résultant de l'interaction intime entre les fines de catalyseurs et des agents anti-moussants décrits ci-dessus.
  • Les catalyseurs de lits de garde utilisés peuvent avantageusement avoir la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est utilisée de manière préférée, mais toute autre forme peut être utilisée.
  • Afin de remédier à la présence de contaminants et/ou de poisons dans la charge, les catalyseurs de lits de garde peuvent, dans un autre de mode de réalisation préféré, avoir des formes géométriques plus particulières afin d'augmenter leur fraction de vide. La fraction de vide de ces catalyseurs est comprise entre 0,2 et 0,75. Leur diamètre extérieur peut varier entre 1 et 35 mm. Parmi les formes particulières possibles sans que cette liste soit limitative : les cylindres creux, les anneaux creux, les anneaux de Raschig, les cylindres creux dentelés, les cylindres creux crénelés, les roues de charrettes pentaring, les cylindres à multiples trous...
  • De préférence, lesdits catalyseurs de lits de garde utilisés ne sont pas imprégnés par une phase active. Les lits de garde peuvent être commercialisés par Norton-Saint-Gobain, par exemple les lits de garde MacroTrap®. Les lits de garde peuvent être commercialisés par Axens dans la famille ACT : ACT077, ACT935, ACT961 ou HMC841, HMC845, HMC941 ou HMC945. Il peut particulièrement avantageux de superposer ces catalyseurs dans au moins deux lits différents de hauteurs variable. Les catalyseurs ayant le plus fort taux de vide sont de préférence utilisés dans le ou les premiers lits catalytiques en entrée de réacteur catalytique. Il peut également être avantageux d'utiliser au moins deux réacteurs différents pour ces catalyseurs. Ces catalyseurs de lits de garde utilisés peuvent avantageusement présenter de la macroporosité. Dans un mode préférée de réalisation, le volume macroporeux pour un diamètre moyen à 50 nm est supérieur à 0,1 cm3/g et un volume total supérieur à 0,60 cm3/g. Dans un autre mode de réalisation, le volume mercure pour un diamètre de pores supérieur à 1 microns est supérieur à 0,5 cm3/g et le volume mercure pour un diamètre de pores supérieur à 10 microns est supérieur à 0,25 cm3/g. Ces deux modes de réalisation peuvent de manière avantageuse être associés dans un lit mixte ou un lit combiné. Les lits de garde préférés selon l'invention sont les HMC et l'ACT961.
  • Après passage sur le lit de garde, la teneur en particules solides est avantageusement inférieure à 20 ppm, de manière préférée inférieure à 10 ppm et de manière encore plus préférée inférieure à 5 ppm . La teneur en silicium soluble est avantageusement inférieure à 5 ppm, de manière préférée inférieure à 2 ppm et de manière encore plus préférée inférieure à 1 ppm.
  • A l'issu de l'étape b) du procédé selon l'invention, la totalité de l'effluent hydrogéné liquide est directement envoyée dans une zone d'hydrocraquage/hydroisomérisation (10).
  • Étape c)
  • Conformément à l'étape c) du procédé selon l'invention, la totalité de l'effluent hydrogéné liquide issu de l'étape b) du procédé selon l'invention est directement envoyée, sans étape de séparation préalable, dans la zone d'hydroisomérisation / hydrocraquage (10) contenant le catalyseur d'hydroisomérisation / hydrocraquage et de préférence en même temps qu'un flux d'hydrogène (conduite 9).
  • Les conditions opératoires dans lesquelles est effectuée l'étape (c) d'hydroisomérisation / hydrocraquage du procédé selon l'invention sont de préférence les suivantes :
    • La pression est généralement maintenue entre 0,2 et 15 MPa et de préférence entre 0,5 et 10 MPa et avantageusement de 1 à 9 MPa, la vitesse spatiale est généralement comprise entre 0,1 h-1 et 10 h-1 et de préférence entre 0,2 et 7 h-1 est avantageusement entre 0,5 et 5,0 h-1. Le taux d'hydrogène est généralement compris entre 100 et 2000 Normaux litres d'hydrogène par litre de charge et par heure et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.
  • La température utilisée dans cette étape est généralement comprise entre 200 et 450°C et préférentiellement de 250°C à 450°C avantageusement de 300 à 450°C, et encore plus avantageusement supérieure à 320°C ou par exemple entre 320-420°C.
  • L'étape c) d'hydroisomérisation et d'hydrocraquage du procédé selon l'invention est avantageusement conduite dans des conditions telles que la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 370°C en des produits ayant des points d'ébullition inférieurs à 370°C est supérieure à 80% poids, et de façon encore plus préférée d'au moins 85% de préférence supérieure à 88%, de manière à obtenir des distillats moyens (gazole et kérosène) ayant des propriétés à froid suffisamment bonnes (point d'écoulement, point de congélation) pour satisfaire aux spécifications en vigueur pour ce type de carburant.
  • Les catalyseurs d'hydroisomérisation / hydrocraquage
  • La majorité des catalyseurs utilisés actuellement en hydroisomérisation / hydrocraquage sont du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est généralement apportée par des supports de grandes surfaces (150 à 800 m2.g-1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silices alumines. La fonction hydrogénante est généralement apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe VI tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.
  • Dans le cas des catalyseurs bi-fonctionnels, l'équilibre entre les deux fonctions acide et hydrogénante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.
  • Avantageusement, les catalyseurs d'hydroisomérisation-hydrocraquage sont des catalyseurs bifonctionnels comportant un support acide amorphe (de préférence une silice-alumine) et une fonction métallique hydro-déshydrogénante assurée de préférence par au moins un métal noble. Le support est dit amorphe, c'est-à-dire dépourvu de tamis moléculaire, et en particulier de zéolithe, ainsi que le catalyseur. Le support acide amorphe est avantageusement une silice-alumine mais d'autres supports sont utilisables. Lorsque il s'agit d'une silice-alumine, le catalyseur, de préférence, ne contient pas d'halogène ajouté, autre que celui qui pourrait être introduit pour l'imprégnation du métal noble par exemple.
  • De façon plus générale et de préférence, le catalyseur ne contient pas d'halogène ajouté, par exemple fluor. De façon générale et de préférence le support n'a pas subi d'imprégnation par un composé de silicium.
  • Un catalyseur d'hydroisomérisation / hydrocraquage préféré utilisé dans l'étape c) du procédé selon l'invention comporte jusqu'à 3 % poids de métal d'au moins un élément hydro-déshydrogénant choisi parmi les métaux nobles du groupe VIII, de préférence déposé sur le support, et de manière très préférée, le métal noble du groupe VIII étant le platine et un support comprenant (ou de préférence constitué par) au moins une silice-alumine, ladite silice-alumine possédant les caractéristiques suivantes :
    • une teneur pondérale en silice SiO2 comprise entre 5 et 95% de préférence entre 10 et 80%, de manière plus préférée, entre 20 et 60% et de manière encore plus préférée entre 30 et 50% poids.
    • une teneur en Na inférieure à 300 ppm poids et de préférence inférieure à 200 ppm poids,
    • un volume poreux total compris entre 0,45 et 1,2 ml/g mesuré par porosimétrie au mercure,
    • la porosité de ladite silice-alumine étant la suivante :
      1. i/ Le volume des mésopores dont le diamètre est compris entre 40Å et 150Å, et dont le diamètre moyen varie entre 80 et 140 Å et de préférence entre 80 et 120 A, représente entre 20 et 80% du volume poreux total mesuré par porosimétrie au mercure,
      2. ii/ Le volume des macropores, dont le diamètre est supérieur à 500 Å, et de préférence compris entre 1000 Å et 10000 Å représente entre 20 et 80% du volume poreux total mesuré par porosimétrie au mercure,
    • une surface spécifique comprise entre 100 et 550 m2/g, de préférence comprise entre 150 et 500 m2/g, de manière préférée inférieure à 350 m2/g et de manière encore plus préférée, inférieure à 250 m2/g.
  • Un deuxième catalyseur d'hydroisomérisation / hydrocraquage préféré utilisé dans l'étape c) du procédé selon l'invention comporte jusqu'à 3% en poids de métal d'au moins un élément hydro-déshydrogénant choisi parmi les métaux nobles du groupe VIII de la classification périodique et de préférence le métal noble du groupe VIII étant le platine, de 0,01 à 5,5% poids d'oxyde d'un élément dopant choisi parmi le phosphore, le bore et le silicium et un support non zéolitique à base de silice - alumine contenant une quantité supérieure à 15% poids et inférieure ou égale à 95% poids de silice (SiO2) ladite silice - alumine présentant les caractéristiques suivantes :
    • un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 Å,
    • un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g,
    • un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g,
    • une surface spécifique BET comprise entre 100 et 550 m2/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 Å inférieur à 0,1 ml/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Å inférieur à 0,1 ml/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 Å, inférieur à 0,1 ml/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 Å inférieur à 0,1 ml/g.
    • un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
    • une densité de remplissage tassée des catalyseurs supérieure à 0,55 g/cm3. Avantageusement, les caractéristiques associées au catalyseur correspondant sont identiques à celles de la silice alumine décrite ci-dessus.
  • Les deux étapes b) et c) du procédé selon l'invention, hydrogénation et hydroisomérisation-hydrocraquage, peuvent avantageusement être réalisées sur les deux types de catalyseurs dans deux ou plusieurs réacteurs différents, ou/et dans un même réacteur.
  • Un troisième catalyseur d'hydroisomérisation / hydrocraquage préféré utilisé dans l'étape c) du procédé selon l'invention comporte au moins un élément hydro-déshydrogénant choisi parmi les métaux non nobles du groupe VIII et les métaux du groupe VIB de la classification périodique, de préférence entre 2,5 et 5% poids d'oxyde d'élément non nobles du groupe VIII et entre 20 et 35% en poids d'oxyde d'élément du groupe VIB par rapport au poids du catalyseur final et de manière préférée, le métal non noble du groupe VIII est le nickel et le métal du groupe VIB est le tungstène, éventuellement de 0,01 à 5,5% poids d'oxyde d'un élément dopant choisi parmi le phosphore, le bore et le silicium et de manière préférée, de 0,01 à 2,5% poids d'oxyde d'un élément dopant et un support non zéolitique à base de silice
    • alumine contenant une quantité supérieure à 15% poids et inférieure ou égale à 95% poids de silice (SiO2), de préférence une quantité supérieure à 15% poids et inférieure ou égale à 50% poids de silice, ladite silice - alumine présentant les caractéristiques suivantes :
    • un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 Å,
    • un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g,
    • un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g,
    • une surface spécifique BET comprise entre 100 et 550 m2/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 Å inférieur à 0,1 ml/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Å inférieur à 0,1 ml/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 Å, inférieur à 0,1 ml/g,
    • un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 Å inférieur à 0,1 ml/g.
    • un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
    • une densité de remplissage tassée des catalyseurs supérieure à 0,55 g/cm3.
  • Avantageusement, les caractéristiques associées au catalyseur correspondant sont identiques à celles de la silice alumine décrite ci-dessus.
  • Lorsque le troisième catalyseur d'hydroisomérisation / hydrocraquage préféré est utilisé dans l'étape c) du procédé selon l'invention, ledit catalyseur est sulfuré.
  • Selon un premier mode de réalisation préféré du procédé selon l'invention, on utilise dans l'étape b) d'hydrogénation un catalyseur contenant du palladium et dans l'étape c) d'hydroisomérisation / hydrocraquage, un catalyseur contenant du platine.
  • Selon un deuxième mode de réalisation préféré du procédé selon l'invention, on utilise dans l'étape b) d'hydrogénation un catalyseur contenant du palladium et dans l'étape c) d'hydroisomérisation / hydrocraquage, un catalyseur sulfuré contenant au moins un élément hydro-déshydrogénant choisi parmi les métaux non nobles du groupe VIII et les métaux du groupe VIB.
  • Selon un troisième mode de réalisation préféré du procédé selon l'invention, on utilise dans l'étape b) d'hydrogénation un catalyseur contenant au moins un élément hydro-déshydrogénant non noble du groupe VIII et dans l'étape c) d'hydroisomérisation / hydrocraquage, un catalyseur sulfuré contenant au moins un élément hydro-déshydrogénant choisi parmi les métaux non nobles du groupe VIII et les métaux du groupe VIB.
  • Étape (d)
  • L'effluent (fraction dite hydrocraquée / hydroisomérisée) en sortie de la zone d'hydroisomérisation / hydrocraquage (10), issu de l'étape (c) du procédé selon l'invention, est envoyé, conformément à l'étape d) du procédé selon l'invention, dans un train de distillation (11), qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, qui a pour but de séparer les produits de conversion de point d'ébullition inférieur à 340°C et de préférence inférieur à 370°C et incluant notamment ceux formés lors de l'étape (c) dans le réacteur d'hydroisomérisation / hydrocraquage (10), et de séparer la fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 340°C et de préférence supérieur ou égal à au moins 370°C. Parmi les produits de conversion et hydroisomérisés, il est séparé outre les gaz légers C1-C4 (conduite 12) au moins une fraction essence (ou naphta) (conduite 13), et au moins une fraction distillat moyen kérosène (conduite 14) et gazole (conduite 15). De préférence, la fraction résiduelle, dont le point initial d'ébullition est généralement supérieur à au moins 340°C et de préférence supérieur ou égal à au moins 370°C est recyclée (conduite 16) dans l'étape c) du procédé selon l'invention en tête de la zone (10) d'hydroisomérisation et d'hydrocraquage. Selon un autre mode de réalisation de l'étape d) du procédé selon l'invention, ladite fraction résiduelle peut fournir d'excellentes bases pour les huiles.
  • Il peut être également avantageux de recycler (conduite 17) au moins en partie et de préférence en totalité, dans l'étape (c) (zone 10) l'une au moins des coupes kérosène et gazole ainsi obtenus. Les coupes gazoles et kérosènes sont de préférence récupérées séparément ou mélangées, mais les points de coupe sont ajustés par l'exploitant en fonction de ses besoins. On a pu constater qu'il est avantageux de recycler une partie du kérosène pour améliorer ses propriétés à froid.
  • Les produits obtenus
  • Le(s) gazole(s) obtenu présente un point d'écoulement d'au plus 0°C, généralement inférieur à -10°C et souvent inférieur à -15°C. L'indice de cétane est supérieur à 60, généralement supérieur à 65, souvent supérieur à 70.
  • Le(s) kérosène(s) obtenu(s) présente un point de congélation d'au plus -35°C, généralement inférieur à -40°C. Le point de fumée est supérieur à 25 mm, généralement supérieur à 30 mm. Dans ce procédé, la production d'essence (non recherchée) est la plus faible possible. Le rendement en essence est toujours inférieur à 50% pds, de préférence inférieur à 40% pds, avantageusement inférieur à 30% pds ou encore 20% pds ou même de 15% pds.

Claims (14)

  1. Procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, comprenant les étapes successives suivantes:
    a) séparation d'au moins une fraction gazeuse C4-, dite légère, à point d'ébullition final inférieur à 20°C, de l'effluent issu de l'unité de synthèse Fischer Tropsch de façon à obtenir une seule fraction liquide C5+, dite lourde, à point d'ébullition initial compris entre 20 et 40°C,
    b) hydrogénation des composés insaturés de type oléfiniques d'au moins une partie de ladite fraction lourde C5+, en présence d'hydrogène et d'un catalyseur d'hydrogénation à une température comprise entre 100°C et 180 °C, à une pression totale comprise entre 0,5 et 6 MPa, à une vitesse volumique horaire comprise entre 1 et 10h-1, et à un débit d'hydrogène correspondant à un rapport volumique hydrogène/hydrocarbures compris entre 10 et 50 Nl/l/h,
    c) hydroisomérisation/hydrocraquage de la totalité de l'effluent hydrogéné liquide issu de l'étape b), sans étape de séparation préalable, en présence d'hydrogène et d'un catalyseur d'hydroisomérisation/hydrocraquage,
    d) distillation de l'effluent hydrocraqué / hydroisomérisé.
  2. Procédé selon la revendication 1 dans lequel ledit effluent issu de l'unité de synthèse Fischer Tropsch est, en sortie de l'unité de synthèse Fischer-Tropsch divisé en deux fractions, une fraction légère, appelée condensat à froid, et une fraction lourde, appelée cires.
  3. Procédé selon la revendication 2 dans lequel la fraction légère, appelée condensat à froid, et la fraction lourde, appelée cires, sont traitées séparément dans des moyens de fractionnement séparés puis recombinées, de façon à obtenir une seule fraction C5+, dite lourde, à point d'ébullition initial compris entre 20 et 40°C.
  4. Procédé selon la revendication 2 dans lequel la fraction légère, appelée condensat à froid et la fraction lourde, appelée cires, sont recombinées et traitées dans un même moyen de fractionnement.
  5. Procédé selon l'une des revendications 1 à 4 dans lequel ledit catalyseur d'hydrogénation comporte au moins un métal du groupe VIII de la classification périodique des éléments et comportant au moins un support à base d'oxyde réfractaire.
  6. Procédé selon l'une des revendications 1 à 5 dans lequel le métal du groupe VIII est le palladium.
  7. Procédé selon la revendication 6 dans lequel l'hydrogénation des composés insaturés de type oléfiniques d'au moins une partie de ladite fraction lourde, opère à un rapport volumique hydrogène/hydrocarbures compris entre 15 et 35 Nl/l/h.
  8. Procédé selon l'une des revendications 1 à 7 dans lequel on utilise un lit de garde contenant au moins un catalyseur de lit de garde en amont de la zone d'hydrogénation, ledit lit de garde étant soit intégré dans la zone d'hydrogénation en amont du lit de catalyseur d'hydrogénation soit placé dans une zone séparée en amont de la zone d'hydrogénation.
  9. Procédé selon l'une des revendications 1 à 8 dans lequel ladite étape (c) d'hydroisomérisation / hydrocraquage est effectuée à une pression comprise entre 0,2 et 15 MPa, à une la vitesse spatiale est comprise entre 0,1 h-1 et 10 h-1 , à un taux d'hydrogène compris entre 100 et 2000 Normaux litres d'hydrogène par litre de charge et par heure et à une température comprise entre 200 et 450°C.
  10. Procédé selon l'une des revendications 1 à 9 dans lequel ledit catalyseur d'hydroisomérisation / hydrocraquage comporte jusqu'à 3 % poids de métal d'au moins un élément hydro-déshydrogénant choisi parmi les métaux nobles du groupe VIII et un support comprenant (ou de préférence constitué par) au moins une silice-alumine, ladite silice-alumine possédant les caractéristiques suivantes :
    - une teneur pondérale en silice SiO2 comprise entre 5 et 95%
    - une teneur en Na inférieure à 300 ppm poids,
    - un volume poreux total compris entre 0,45 et 1,2 ml/g mesuré par porosimétrie au mercure,
    - la porosité de ladite silice-alumine étant la suivante :
    i/ Le volume des mésopores dont le diamètre est compris entre 40Å et 150Å. et dont le diamètre moyen varie entre 80 et 140 Å, représente entre 20 et 80% du volume poreux total mesuré par porosimétrie au mercure.
    ii/ Le volume des macropores, dont le diamètre est supérieur à 500 A, et de préférence compris entre 1000 Å et 10000 Å représente entre 20 et 80% du volume poreux total mesuré par porosimétrie au mercure,
    - une surface spécifique comprise entre 100 et 550 m2/g.
  11. Procédé selon l'une des revendications 1 à 9 dans lequel ledit catalyseur d'hydroisomérisation hydrocraquage comporte jusqu'à 3% en poids de métal d'au moins un élément hydro-déshydrogénant choisi parmi les métaux nobles du groupe VIII de la classification périodique, de 0,01 à 5,5% poids d'oxyde d'un élément dopant choisi parmi le phosphore, le bore et le silicium et un support non zéolitique à base de silice - alumine contenant une quantité supérieure à 15% poids et inférieure ou égale à 95% poids de silice (SiO2), ladite silice - alumine présentant les caractéristiques suivantes :
    - un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 Å,
    - un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g,
    - un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g,
    - une surface spécifique BET comprise entre 100 et 550 m2/g.
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 Å inférieur à 0,1 ml/g.
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Å inférieur à 0,1 ml/g,
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 Å, inférieur à 0,1 ml/g,
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 Å inférieur à 0,1 ml/g.
    - un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
    - une densité de remplissage tassée des catalyseurs supérieure à 0,55 g/cm3.
  12. Procédé selon l'une des revendications 1 à 9 dans lequel ledit catalyseur d'hydroisomérisation / hydrocraquage comporte entre 2,5 et 5% poids d'oxyde d'élément du groupe VIII et entre 20 et 35% en poids d'oxyde d'élément du groupe VIB par rapport au poids du catalyseur final, éventuellement de 0,01 à 5,5% poids d'oxyde d'un élément dopant choisi parmi le phosphore, le bore et le silicium et un support non zéolitique à base de silice - alumine contenant une quantité supérieure à 15% poids et inférieure ou égale à 95% poids de silice (SiO2), ladite silice - alumine présentant les caractéristiques suivantes :
    - un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 Å.
    - un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g.
    - un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g,
    - une surface spécifique BET comprise entre 100 et 550 m2/g,
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 Å inférieur à 0,1 ml/g,
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Å inférieur à 0,1 ml/g,
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 Å, inférieur à 0,1 ml/g,
    - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 Å inférieur à 0,1 ml/g.
    - un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
    - une densité de remplissage tassée des catalyseurs supérieure à 0,55 g/cm3.
  13. Procédé selon la revendication 12 dans lequel ledit catalyseur est sulfuré.
  14. Procédé selon l'une des revendications 1 à 13. dans lequel l'une au moins des coupes kérosène et gazole issue de l'étape d) est recyclée au moins en partie dans l'étape c).
EP08805641.1A 2007-06-12 2008-06-03 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch Active EP2158303B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704224A FR2917419B1 (fr) 2007-06-12 2007-06-12 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
PCT/FR2008/000753 WO2009004179A2 (fr) 2007-06-12 2008-06-03 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch

Publications (2)

Publication Number Publication Date
EP2158303A2 EP2158303A2 (fr) 2010-03-03
EP2158303B1 true EP2158303B1 (fr) 2017-01-04

Family

ID=38944565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805641.1A Active EP2158303B1 (fr) 2007-06-12 2008-06-03 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch

Country Status (10)

Country Link
US (1) US8709234B2 (fr)
EP (1) EP2158303B1 (fr)
CN (1) CN101730732B (fr)
BR (1) BRPI0813815A8 (fr)
CA (1) CA2689932C (fr)
FR (1) FR2917419B1 (fr)
MY (1) MY157735A (fr)
RU (1) RU2469069C2 (fr)
WO (1) WO2009004179A2 (fr)
ZA (1) ZA200908037B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944027B1 (fr) * 2009-04-03 2011-05-06 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
FR2944028B1 (fr) * 2009-04-03 2011-05-06 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch mettant en oeuvre une resine
FR2963015B1 (fr) 2010-07-22 2012-09-07 Centre Nat Rech Scient Procede de photocommutation thermique de materiaux a transition de spin et applications
RU2623088C1 (ru) * 2016-06-16 2017-06-22 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ получения моторных топлив
CN109722291B (zh) * 2017-10-27 2020-11-13 中国石油化工股份有限公司 降低高干点航煤冰点的方法
US11685869B2 (en) 2021-10-01 2023-06-27 Emerging Fuels Technology, Inc. Method for the production of synthetic jet fuel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726788A (en) * 1970-10-15 1973-04-10 Exxon Research Engineering Co Two-stage hydrocracking with intermediate fractionation
US5057635A (en) * 1990-02-08 1991-10-15 Uop Process for isomerizing olefins in gasoline streams
ZA935964B (en) * 1992-08-18 1994-03-15 Shell Res Ltd Process for the preparation of hydrocarbon fuels
US20040112792A1 (en) * 1998-02-13 2004-06-17 Murphy William J. Method for making lube basestocks
TW511030B (en) * 2000-12-04 2002-11-21 Ren-Huang Weng A method and system providing on-line web page reading record
US6515033B2 (en) * 2001-05-11 2003-02-04 Chevron U.S.A. Inc. Methods for optimizing fischer-tropsch synthesis hydrocarbons in the distillate fuel range
FR2826973B1 (fr) * 2001-07-06 2005-09-09 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch
FR2850393B1 (fr) * 2003-01-27 2005-03-04 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
US7332073B2 (en) * 2004-03-31 2008-02-19 Chevron U.S.A. Inc. Process for removing contaminants from Fischer-Tropsch feed streams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2689932A1 (fr) 2009-01-08
FR2917419B1 (fr) 2014-10-24
WO2009004179A2 (fr) 2009-01-08
US20100298451A1 (en) 2010-11-25
FR2917419A1 (fr) 2008-12-19
AU2008270132A1 (en) 2009-01-08
MY157735A (en) 2016-07-15
EP2158303A2 (fr) 2010-03-03
ZA200908037B (en) 2012-04-25
WO2009004179A3 (fr) 2009-02-19
CN101730732A (zh) 2010-06-09
CA2689932C (fr) 2016-05-03
RU2469069C2 (ru) 2012-12-10
CN101730732B (zh) 2014-05-28
BRPI0813815A2 (pt) 2014-12-30
US8709234B2 (en) 2014-04-29
BRPI0813815A8 (pt) 2017-03-14
RU2010100634A (ru) 2011-07-20

Similar Documents

Publication Publication Date Title
CA2239827C (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape de conversion en lit bouillonnant et une etape d'hydrocraquage
EP3448967A1 (fr) Procédé de conversion comprenant des lits de garde permutables d'hydrodemétallation, une étape d'hydrotraitement en lit fixe et une étape d'hydrocraquage en réacteurs permutables
EP2158303B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
FR2776297A1 (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape de conversion en lit bouillonnant et une etape de craquage catalytique
FR2718145A1 (fr) Procédé de traitement avec hydroisomérisation de charges issues du procédé fischer-tropsch.
FR2792851A1 (fr) Catalyseur a base de metal noble faiblement disperse et son utilisation pour la conversion de charges hydrocarbonees
FR2797883A1 (fr) Procede de production d'huiles ayant un indice de viscosite eleve
FR2926087A1 (fr) Procede multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procede fischer-tropsch
WO2010112691A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch mettant en oeuvre une resine
WO2008017742A1 (fr) Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique
WO2009106704A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch
FR2989381A1 (fr) Production de distillats moyens a partir d'un effluent issu de la synthese fischer-tropsch comprenant une etape de reduction de la teneur en composes oxygenes
FR3091533A1 (fr) Procede d’ hydrocraquage en deux etapes pour la production de naphta comprenant une etape d’hydrogenation mise en œuvre en amont de la deuxieme etape d’hydrocraquage
WO2010112690A1 (fr) Procédé de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
WO2020144095A1 (fr) Procede d' hydrocraquage en deux etapes pour la production de naphta comprenant une etape d'hydrogenation mise en œuvre en aval de la deuxieme etape d'hydrocraquage
WO2020144096A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en amont de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
WO2020144097A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
WO2008065284A2 (fr) Procede de conversion de gaz en liquides a logistique simplifiee
EP2586851A1 (fr) Procédé de production de distillats moyens dans lequel la charge issue du procédé fischer-tropsch et le flux d'hydrogéne contiennent une teneur limitée en oxygène
EP3476917B1 (fr) Procede de demarrage d'un procede de production de kerosene et de gazole a partir de composes hydrocarbones produits par synthese fischer-tropsch
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
FR2857019A1 (fr) Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch, utilisant un catalyseur a base de zeolithe zbm-30
FR2989380A1 (fr) Procede optimise de production de distillats moyens a partir d'une charge issue du procede fischer-tropsch contenant une quantite limitee de composes oxygenes
FR3084084A1 (fr) Procede de production d'olefines et de distillats moyens a partir d'un effluent hydrocarbone issu de la synhtese fischer-tropsch
FR3091537A1 (fr) Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de distillats moyens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENI S.P.A.

Owner name: IFP ENERGIES NOUVELLES

17Q First examination report despatched

Effective date: 20101228

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 859246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008048261

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20170104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 859246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008048261

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: ENI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

26N No opposition filed

Effective date: 20171005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008048261

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170603

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170603

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170603

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230808