EP2158303A2 - Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluent - Google Patents
Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluentInfo
- Publication number
- EP2158303A2 EP2158303A2 EP08805641A EP08805641A EP2158303A2 EP 2158303 A2 EP2158303 A2 EP 2158303A2 EP 08805641 A EP08805641 A EP 08805641A EP 08805641 A EP08805641 A EP 08805641A EP 2158303 A2 EP2158303 A2 EP 2158303A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- measured
- weight
- fraction
- less
- hydrogenation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004517 catalytic hydrocracking Methods 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title description 5
- 239000003054 catalyst Substances 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 68
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 33
- 239000001257 hydrogen Substances 0.000 claims abstract description 33
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 18
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 16
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 8
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract 2
- 230000008569 process Effects 0.000 claims description 48
- 239000011148 porous material Substances 0.000 claims description 47
- 238000009835 boiling Methods 0.000 claims description 38
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 34
- 238000002459 porosimetry Methods 0.000 claims description 34
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 32
- 229910052753 mercury Inorganic materials 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 238000005194 fractionation Methods 0.000 claims description 12
- 239000003350 kerosene Substances 0.000 claims description 12
- 229910000510 noble metal Inorganic materials 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 238000004821 distillation Methods 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 8
- 239000001993 wax Substances 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 239000000945 filler Substances 0.000 claims description 4
- 238000012856 packing Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 239000002283 diesel fuel Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 claims 1
- 239000012188 paraffin wax Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 description 10
- 239000003921 oil Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- -1 for example Substances 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/043—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
Definitions
- the present invention describes a process for the hydrocracking and hydroisomerization treatment of feedstocks from the Fischer-Tropsch process, making it possible to obtain middle distillates (gas oil, kerosene), ie initial boiling point cuts. at least 150 ° C and final of at most 34O 0 C and optionally oil bases.
- the synthesis gas (CO + H 2 ) is catalytically converted into oxygenates and substantially linear hydrocarbons in gaseous, liquid or solid form.
- these products mainly made of normal paraffins, can not be used as such, in particular because of their cold-holding properties that are not very compatible with the usual uses of petroleum fractions.
- the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule (boiling point equal to about 350 ° C., that is often included in the middle distillate cut) is + 37 ° C. about which makes its use impossible, the specification being -15 ° C for diesel.
- the hydrocarbons from the Fischer-Tropsch process comprising mainly n-paraffins must be converted into more valuable products such as, for example, gas oil, kerosene, which are obtained, for example, after catalytic hydrocracking / hydroisomerization reactions.
- These products are generally free of heteroatomic impurities such as sulfur, nitrogen or metals. They contain practically no aromatics, naphthenes and more generally cycles, in particular in the case of cobalt catalysts.
- these compounds may have a significant content of unsaturated compounds of olefinic type and oxygenated products (such as alcohols, carboxylic acids, ketones, aldehydes and esters). These oxygenated and unsaturated compounds are more concentrated in the light fractions. Thus in the C5 + fraction corresponding to products boiling at an initial boiling point of between 20 ° C. and 40 ° C., these compounds represent between 10-20% by weight of olefinic type unsaturated compounds and between 5-10% by weight. of oxygenated compounds.
- One of the objectives of the invention is to eliminate, during a hydrotreatment step, upstream of a hydrocracking step, the olefinic type unsaturated compounds, said hydrotreatment step being carried out under less severe conditions. than those of the hydrocracking step. Unsaturated olefinic compounds present in the hydrocracking feeds reduce the service life of a hydrocracking catalyst.
- the transformation of the unsaturated compounds can have a negative impact on the hydroisomerization / hydrocracking step and cause, for example, a thermal runaway of the reaction, a large coking of the catalyst or the formation of gum by oligomerization.
- One of the advantages of the invention is to provide a method for producing middle distillates from a paraffinic feedstock produced by Fischer Tropsch synthesis in which the hydrocracking step is preceded by a hydrogenation step allowing elimination previously and under less severe conditions than those used in the hydrocracking step, the most reactive elements and in particular unsaturated compounds of olefinic type.
- the Shell patent application (EP-583,836) describes a process for the production of middle distillates from a filler obtained by Fischer-Tropsch synthesis.
- the feedstock resulting from the Fischer-Tropsch synthesis can be treated in its entirety, but preferably the C4- fraction is withdrawn from the feedstock so that only the C5 + fraction boiling at a temperature above 20 ° C. be introduced in the subsequent step.
- Said feedstock is subjected to a hydrotreatment to hydrogenate the olefins and alcohols, in the presence of a large excess of hydrogen, so that the conversion of products boiling above 370 ° C. into products with a lower boiling point is less than 20%.
- the hydrotreated effluent consisting of high molecular weight paraffinic hydrocarbons is preferably separated from the hydrocarbon compounds having a low molecular weight and in particular the C4- fraction before the second hydroconversion stage. At least part of the remaining C5 + fraction is then subjected to a hydrocracking / hydroisomerization step with a conversion of products boiling above 370 0 C into products with a boiling point of at least 40% by weight.
- the present invention provides an alternative process for the production of middle distillates.
- the advantages of the present invention are: to protect the hydroisomerization / hydrocracking catalyst from the most reactive elements such as unsaturated compounds of olefinic type by the use upstream of the hydroisomerization / hydrocracking stage, a step of hydrogenation of the unsaturated compounds, the elimination of unsaturated compounds of the olefinic type before the hydroisomerization / hydrocracking step making it possible to avoid the formation of coke or gum in the hydroisomerization / hydrocracking zone, to facilitate the control of the temperature profile inside the hydroisomerization / hydrocracking zone by the upstream implementation of the hydroisomerization / hydrocracking step of a hydrogenation step of the unsaturated compounds.
- the hydrogenation of the olefinic type unsaturated compounds is in fact a strongly exothermic reaction which may have a negative impact on the hydroisomerization / hydrocracking step and cause, for example, a thermal runaway of the reaction in the case where these unsaturated compounds are not not removed upstream of the hydroisomerization / hydrocracking step, - to implement a simplified process in which the amount of hydrogen introduced into the hydrogenation zone corresponds to a quantity of hydrogen slightly in excess of the amount strictly necessary to carry out the hydrogenation reaction of olefinic type unsaturated compounds so that the process does not require the integration of a recycle compressor and that no cracking is carried out in the hydrogenation zone.
- This allows the direct sending, preferably by pumping, of all the liquid hydrogenated effluent, without intermediate separation step, in the hydroisomerization / hydrocracking zone, as well as the use of a quantity of hydrogen considerably. scaled down.
- Tropsch and having boiling points corresponding to those of diesel and kerosene fractions, (also called middle distillates) and especially to improve the freezing point of kerosene.
- Figure 1 shows the embodiment of the method according to the largest invention.
- FIG. 1 represents a process for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis, comprising the following successive stages: a) separation of at least one so-called light C4- gas fraction, with a final boiling point below 20 ° C., of the effluent from the Fischer Tropsch synthesis unit so as to to obtain a single liquid fraction C5 +, said heavy, with initial boiling point between 20 and 40 0 C 1 b) hydrogenation of unsaturated compounds of olefinic type of at least a part of said heavy fraction C5 +, in the presence of hydrogen and a hydrogenation catalyst at a temperature of between 100 ° C.
- Step a) according to the invention is a step of separation of at least one C4- fraction, called light, with a final boiling point of less than 20 ° C., preferably less than 20 ° C. 10 0 C and very preferably, below 0 0 C, the effluent from the Fischer Tropsch synthesis so as to obtain a single C5 + fraction, called heavy, initial boiling point between 20 and 40 0 C and preferably having a boiling point greater than or equal to 30 0 C 1 constituting at least a part of the feedstock of the hydrogenation stage b) according to the invention.
- a single C5 + fraction called heavy, initial boiling point between 20 and 40 0 C and preferably having a boiling point greater than or equal to 30 0 C 1 constituting at least a part of the feedstock of the hydrogenation stage b) according to the invention.
- the effluent from the Fischer-Tropsch synthesis unit is, at the output of the Fischer-Tropsch synthesis unit advantageously divided into two fractions, a light fraction, called cold condensate, (line (1)) and a fraction heavy, called waxes, (pipe (3)).
- the two fractions thus defined comprise water, carbon dioxide (CO 2 ), carbon monoxide (CO) and unreacted hydrogen (H 2 ).
- the light fraction, cold condensate contains light hydrocarbon compounds C1 to C4, called C4- fraction, in the form of gas.
- the light fraction, called cold condensate (1), and the heavy fraction, called waxes (3) are treated separately in separate fractionation means and then recombined in the pipe ( 5), so as to obtain a single C5 + fraction, so-called heavy, with an initial boiling point of between 20 and 40 ° C. and preferably having a boiling point greater than or equal to 30 ° C.
- the heavy fraction enters a splitting means (4) via the pipe (3).
- the fractionation means (4) may for example consist of methods well known to those skilled in the art such as rapid expansion (or flash, according to the English terminology), distillation or stripping.
- a flash or flash tank or a stripper is sufficient to remove most of the water, carbon dioxide (CO 2 ) and carbon monoxide (CO) through the line (4 1 ) of the heavy fraction, called waxes.
- the light fraction enters a fractionation means (2) via the pipe (1).
- the fractionation means (2) may for example consist of methods well known to those skilled in the art such as a flash or flash tank, distillation or stripping.
- the fractionation means (2) is a distillation column allowing the elimination of the light and gaseous hydrocarbon compounds C1 to C4, called gas fraction C4-, corresponding to products boiling at a temperature below 20 ° C., preferably below at 10 ° C and very preferably, below 0 ° C, by the pipe (2 1 ).
- a stabilized C5 + liquid fraction corresponding to the products boiling at an initial boiling point of between 20 and 40 ° C. and preferably having a boiling point greater than or equal to 30 ° C., is thus recovered in the pipe (5) and constitutes the charge of the hydrogenation step b) of the process according to the invention.
- the light fraction, called cold condensate, leaving the Fischer-Tropsch synthesis unit via line (1) and the heavy fraction, called waxes, coming out of the Fischer-Tropsch synthesis unit via the pipe (3), are recombined in the pipe (18) and treated in the same fractionation means (4).
- the fractionation means (4) may for example consist of methods well known to those skilled in the art such as flash, distillation or stripping.
- the fractionation means (4) is a distillation column allowing the elimination of the gas fraction C4-, water, carbon dioxide (CO 2 ) and carbon monoxide (CO) through the pipe (4 1 ).
- a stabilized C5 + liquid fraction corresponding to products boiling at a boiling point of between 20 and 40 ° C. and preferably having a boiling point greater than or equal to 30 ° C., is thus recovered at the outlet of the fractionation means (4). ) in the line (5) and constitutes the charge of the hydrogenation step b) of the process according to the invention.
- Step b) of the process according to the invention is a step of hydrogenation of the olefinic type unsaturated compounds of at least a part and preferably of the whole of the C5 + heavy liquid fraction resulting from step a) of the process according to the invention, in the presence of hydrogen and a hydrogenation catalyst.
- Said C5 + liquid heavy fraction is admitted in the presence of hydrogen (line 6) in a hydrogenation zone (7) containing a hydrogenation catalyst which aims to saturate the unsaturated olefinic compounds present in the C5 + heavy liquid fraction. described above.
- the catalyst used in step (b) according to the invention is a non-crunchy or slightly cracking hydrogenation catalyst comprising at least one metal of group VIIl of the periodic table of the elements and comprising at least one support for refractory oxide base.
- said catalyst comprises at least one metal of the group VH1 chosen from nickel, molybdenum, tungsten, cobalt, ruthenium, indium, palladium and platinum and comprising at least one oxide-based support refractory selected from alumina and silica alumina.
- the Group VIII metal is chosen from nickel, palladium and platinum.
- the Group VIII metal is chosen from palladium and / or platinum and the content of this metal is advantageously between 0.1% and 5%. % by weight, and preferably between 0.2% and 0.6% by weight relative to the total weight of the catalyst.
- the Group VIII metal is palladium.
- the metal of group VIII is nickel and the content of this metal is advantageously between 5% and 25% by weight, preferably between 7%. and 20% by weight based on the total weight of the catalyst.
- the catalyst support used in step (b) of the process according to the invention is a refractory oxide-based support, preferably chosen from alumina and silica-alumina.
- the support When the support is an alumina, it has a BET specific surface to limit the polymerization reactions on the surface of the hydrogenation catalyst, said surface being between 5 and 140 m 2 / g.
- the support When the support is a silica-alumina, the support contains a percentage of silica of between 5 and 95% by weight, preferably between 10 and 80%, more preferably between 20 and 60% and very preferably between 30 and 50%. , a BET specific surface of between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g, preferably less than 350 m z / g and even more preferably less than 250 m 2 / g ,
- the hydrogenation stage b) of the process according to the invention is preferably carried out in one or more fixed bed reactor (s).
- the feedstock is brought into contact with the hydrogenation catalyst in the presence of hydrogen and at operating temperatures and pressures allowing the hydrogenation of the olefinic unsaturated compounds present in the feedstock.
- the oxygenated compounds are not converted, the liquid hydrogen effluent from step b) of the process according to the invention therefore does not contain water resulting from the conversion of said oxygenated compounds.
- the operating conditions of the hydrogenation stage b) are chosen so that the effluent leaving said hydrogenation zone (7) is in the liquid state: indeed, the amount of hydrogen introduced into the hydrogenation zone (7) corresponds to a quantity of hydrogen in slight excess with respect to the quantity of hydrogen strictly necessary to carry out the hydrogenation reaction of the unsaturated compounds of the type olefin.
- the liquid hydrogenated effluent does not contain hydrocarbon compounds boiling at a temperature below 20 ° C., preferably below 10 ° C. and very preferred, less than 0 0 C, corresponding to the gaseous fraction C4-.
- the operating conditions of the hydrogenation step b) of the process according to the invention are as follows: the temperature within said hydrogenation zone (7) is between 100 and 180 ° C. and preferably between 120 and 180 ° C. and 165 ° C, the total pressure is between 0.5 and 6 MPa, preferably between 1 and 5 MPa and even more preferably between 2 and 5 MPa.
- the charge flow rate is such that the hourly volume velocity (ratio of the hourly volume flow rate at 15 ° C. of fresh liquid charge to the loaded catalyst volume) is between 1 and 10 h -1 , preferably between 1 and 5 h -1. and even more preferably between 1 and 4 h -1 .
- the hydrogen which feeds the hydrotreating zone is introduced at a rate such that the hydrogen / hydrocarbon volume ratio is between 5 and 80 Nl / l / h, preferably between 5 and 60, preferably between 10 and 50 Nl / l / h, and even more preferably between 15 and 35 Nl / l / h.
- the olefinic type unsaturated compounds are hydrogenated more than 50%, preferably more than 75% and preferably more than 85%.
- the hydrogenation step b) of the process according to the invention is preferably carried out under conditions such as conversion to products having boiling points greater than or equal to 370 ° C in products having lower boiling points. at 370 0 C is zero. Hydrogenated effluent from step b) of the process according to the invention therefore contains no compounds boiling at a temperature below 20 ° C, preferably less than 1O 0 C and very preferably less than 0 0 C, corresponding to the gas fraction C4-.
- step b) of the process according to the invention use is made of a guard bed (not shown in the figures) containing at least one guard bed catalyst upstream of the hydrogenation zone ( 7) to reduce the content of solid mineral particles and possibly reduce the content of harmful metal compounds for hydrogenation catalysts.
- the guard bed may advantageously be either integrated in the hydrogenation zone (7) upstream of the hydrogenation catalyst bed or be placed in a separate zone upstream of the hydrogenation zone (7).
- the treated fractions may optionally contain solid particles such as inorganic solids. They may optionally contain metals contained in hydrocarbon structures such as more or less soluble organometallic compounds.
- fines fines resulting from a physical or chemical attrition of the catalyst.
- These mineral particles then contain the active components of these catalysts without the following list being limiting: alumina, silica, titanium, zirconia, cobalt oxide, iron oxide, tungsten, rhuthenium oxide, etc.
- These solid minerals may be present under the calcined mixed oxide form: for example, alumina-cobalt, alumina-iron, alumina-silica, alumina-zirconia, alumina-titanium, alumina-silica-cobalt, alumina-zirconia-cobalt, ....
- the catalyst fines described above may have a higher silica content than the catalyst formulation resulting from the intimate interaction between the catalyst fines and anti-foaming agents described above.
- the guard bed catalysts used may advantageously be in the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
- the shapes are cylindrical (which can be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings.
- the cylindrical shape is preferably used, but any other shape may be used.
- the bed bed catalysts may, in another preferred embodiment, have more specific geometric shapes in order to increase their void fraction.
- the void fraction of these catalysts is between 0.2 and 0.75.
- Their outer diameter can vary between 1 and 35 mm.
- guard bed catalysts used are not impregnated with an active phase.
- Guard beds can be marketed by Norton- Saint-Gobain, for example example MacroTrap® guard beds.
- Guard beds can be marketed by Axens in the ACT family: ACT077, ACT935, ACT961 or HMC841, HMC845, HMC941 or HMC945. It may be particularly advantageous to superpose these catalysts in at least two different beds of varying heights. Catalysts having the highest void content are preferably used in the first catalytic bed or first catalytic reactor inlet. It may also be advantageous to use at least two different reactors for these catalysts. These guard bed catalysts used may advantageously have macroporosity.
- the macroporous volume for a mean diameter at 50 nm is greater than 0.1 cm 3 / g and a total volume greater than 0.60 cm 3 / g.
- the mercury volume for a pore diameter greater than 1 micron is greater than 0.5 cm 3 / g and the mercury volume for a pore diameter greater than 10 microns is greater than 0.25 cm 3 /boy Wut.
- the preferred guard beds according to the invention are HMC and I ⁇ CT961. After passing over the guard bed, the solids content is advantageously less than 20 ppm, preferably less than 10 ppm and even more preferably less than 5 ppm.
- the soluble silicon content is advantageously less than 5 ppm, preferably less than 2 ppm and even more preferably less than 1 ppm.
- step b) of the process according to the invention all the liquid hydrogenated effluent is directly sent to a hydrocracking / hydroisomerization zone (10).
- Step c) According to step c) of the process according to the invention, all the liquid hydrogenated effluent from step b) of the process according to the invention is directly sent, without prior separation step, in the zone hydroisomerization / hydrocracking system (10) containing the hydroisomerization / hydrocracking catalyst and preferably at the same time as a hydrogen stream (line 9).
- the operating conditions in which the hydroisomerization / hydrocracking step (c) of the process according to the invention is carried out are preferably as follows:
- the pressure is generally maintained between 0.2 and 15 MPa and preferably between 0.5 and 10 MPa and advantageously from 1 to 9 MPa
- the space velocity is generally comprised between 0.1 h -1 and 10 h -1 and preferably between 0.2 and 7 h -1 is advantageously between 0.5 and 5.0 h -1.
- the hydrogen content is generally between 100 and 2000 normal liters of hydrogen per liter of filler and per hour and preferably between 150 and 1500 liters of hydrogen per liter of filler.
- the temperature used in this step is generally between 200 and 450 ° C. and preferably from 250 ° C. to 450 ° C., advantageously from 300 to 450 ° C., and still more advantageously greater than 32 ° C. or for example between 320-420 ° C. vs.
- Step c) of hydroisomerization and hydrocracking of the process according to the invention is advantageously carried out under conditions such that the pass conversion into products with boiling points greater than or equal to 37O 0 C into products having points.
- boiling point below 370 ° C. is greater than 80% by weight, and even more preferably at least 85%, preferably greater than 88%, so as to obtain middle distillates (gas oil and kerosene) having sufficiently good cold (pour point, freezing point) to meet the specifications in force for this type of fuel.
- the majority of catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function.
- the acid function is generally provided by supports with large surface areas (150 to 800 m2.g-1 generally) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus aluminas, combinations of oxides of boron and aluminum, silica aluminas.
- the hydrogenating function is generally provided either by one or more metals of group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by an association of at least a group VI metal such as chromium, molybdenum and tungsten and at least one group VIIl metal.
- the equilibrium between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst.
- a weak acidic function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts.
- a third possibility is to use a strong acid function and a strong hydrogenating function to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, judiciously choosing each of the functions to adjust the activity / selectivity of the catalyst.
- the hydroisomerization-hydrocracking catalysts are bifunctional catalysts comprising an amorphous acid support (preferably a silica-alumina) and a hydro-dehydrogenating metal function preferably provided by at least one noble metal.
- the support is said to be amorphous, that is to say devoid of molecular sieves, and in particular of zeolite, as well as the catalyst.
- the amorphous acidic support is advantageously a silica-alumina but other supports are usable.
- the catalyst preferably does not contain added halogen, other than that which could be introduced for the impregnation of the noble metal, for example.
- the catalyst does not contain added halogen, for example fluorine.
- the support has not been impregnated with a silicon compound.
- a preferred hydroisomerization / hydrocracking catalyst used in step c) of the process according to the invention comprises up to 3% by weight of metal of at least one hydro-dehydrogenating element chosen from noble metals of group VIII, preferably deposited on the support, and very preferably, the noble metal of group VIII being platinum and a support comprising (or preferably consisting of) at least one silica-alumina, said silica-alumina having the following characteristics: a weight content silica SiO 2 between 5 and 95%, preferably between 10 and 80%, more preferably between 20 and 60% and even more preferably between 30 and 50% by weight.
- the volume of the mesopores whose diameter is between 40 ° and 150 ° and whose mean diameter varies between 80 and 140 ⁇ and preferably between 80 and 120 ⁇ , represents between 20 and 80% of the total pore volume measured by porosimetry.
- Mercury, ii / The volume of the macropores, whose diameter is greater than 500 ⁇ , and preferably between 1000 A and 10000 A represents between 20 and 80% of the total measured pore volume by mercury porosimetry,
- a specific surface area of between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g, preferably less than 350 m 2 / g and even more preferably less than 250 m 2 / g .
- a second preferred hydroisomerization / hydrocracking catalyst used in stage c) of the process according to the invention comprises up to 3% by weight of metal of at least one hydro-dehydrogenating element chosen from the noble metals of group VIII of the periodic classification and preferably the noble metal of group VIII being platinum, from 0.01 to 5.5% by weight of oxide of a doping element selected from phosphorus, boron and silicon and a non-zeolitic support to silica-alumina base containing an amount greater than 15% by weight and less than or equal to 95% by weight of silica (SiO 2 ), said silica-alumina having the following characteristics: a mean pore diameter, measured by mercury porosimetry, including between 20 and 140 ⁇ , a total pore volume, measured by mercury porosimetry, of between 0.1 ml / g and 0.5 ml / g, a total pore volume, measured by nitrogen porosimetry, of between 0.1 ml / g and 0.6 ml / g
- a BET specific surface area of between 100 and 550 m 2 / g a pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 140 ⁇ of less than 0.1 ml / g, a pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 160 ⁇ less than 0.1 ml / g, a pore volume, measured by mercury porosimetry, contained in pores with diameters greater than 200 ⁇ , less than 0.1 ml g, a pore volume, measured by mercury porosimetry, included in pores with diameters greater than 500 ⁇ less than 0.1 ml / g.
- an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, chi, eta, gamma, kappa, theta and delta alumina. a packed packing density of the catalysts greater than 0.55 g / cm 3 .
- the characteristics associated with the corresponding catalyst are identical to those of the silica alumina described above.
- the two stages b) and c) of the process according to the invention, hydrogenation and hydroisomerization-hydrocracking, can advantageously be carried out on the two types of catalysts in two or more different reactors, and / or in the same reactor.
- a third preferred hydroisomerization / hydrocracking catalyst used in step c) of the process according to the invention comprises at least one hydro-dehydrogenating element chosen from the non-noble metals of group VIII and the metals of group VIB of the periodic table, preferably between 2.5 and 5% by weight of Group VIII non-noble elemental oxide and between 20 and 35% by weight of Group VIB element oxide with respect to the weight of the final catalyst and, preferably, the non-noble metal of group VIIl is nickel and the metal of group VIB is tungsten, optionally from 0.01 to 5.5% by weight of oxide of a doping element chosen from phosphorus, boron and silicon and preferably, from 0.01 to 2.5% by weight of oxide of a doping element and a non-zeolitic support based on silica-alumina containing an amount greater than 15% by weight and less than or equal to 95% by weight of silica (SiO 2), preferably an amount greater than 15% by weight and less than or equal to 50% by weight of silic
- an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, chi, eta, gamma, kappa, theta and delta alumina. a packed packing density of the catalysts greater than 0.55 g / cm 3 .
- the characteristics associated with the corresponding catalyst are identical to those of the silica alumina described above.
- step c) of the process according to the invention said catalyst is sulphurized.
- a palladium-containing catalyst is used in the hydrogenation step b) and in the hydroisomerization / hydrocracking step c), a platinum-containing catalyst.
- a palladium-containing catalyst is used in the hydrogenation step b) and in the hydroisomerization / hydrocracking step c), a sulphurized catalyst containing at least one hydro-dehydrogenating element selected from Group VIII non-noble metals and Group VIB metals.
- a catalyst containing at least one non-noble group VIII hydroxide dehydrogenating element and in the hydroisomerisation stage c) is used.
- hydrocracking a sulphurized catalyst containing at least one hydro-dehydrogenating element chosen from Group VIII non-noble metals and Group VIB metals.
- Step (d) The effluent (so-called hydrocracked / hydroisomerized fraction) leaving the hydroisomerization / hydrocracking zone (10), resulting from step (c) of the process according to the invention, is sent, in accordance with the step d) of the process according to the invention, in a distillation train (11), which incorporates an atmospheric distillation and optionally a vacuum distillation, which aims to separate the conversion products of boiling point below 34O 0 C and preferably less than 370 0 C and including in particular those formed during step (c) in the hydroisomerization / hydrocracking reactor (10), and to separate the residual fraction whose initial boiling point is generally higher at least 340 ° C.
- a distillation train (11) which incorporates an atmospheric distillation and optionally a vacuum distillation, which aims to separate the conversion products of boiling point below 34O 0 C and preferably less than 370 0 C and including in particular those formed during step (c) in the hydroisomerization / hydrocracking reactor
- At least one gasoline (or naphtha) fraction is separated from the light C1-C4 gases (line 14) (conduct 13), and at least one middle distillate fraction kerosene (line 14) and diesel (line 15).
- the residual fraction whose initial boiling point is generally greater than at least 340 ° C. and preferably greater than or equal to at least 37 ° C. C is recycled (line 16) in step c) of the process according to the invention at the head of the zone (10) for hydroisomerization and hydrocracking.
- said residual fraction can provide excellent bases for the oils.
- step (c) zone 10
- step (c) zone 10
- the gas oil and kerosene cuts are preferably recovered separately or mixed, but the cutting points are adjusted by the operator according to his needs. It has been found that it is advantageous to recycle a portion of the kerosene to improve its cold properties.
- the gas oil (s) obtained has a pour point of at most 0 ° C., generally below -10 ° C. and often below -15 ° C.
- the cetane number is greater than 60, generally greater than 65, often greater than 70.
- the kerosene (s) obtained has a freezing point of not more than -35 ° C, generally less than -40 ° C.
- the smoke point is greater than 25 mm, generally greater than 30 mm. In this process, the production of gasoline (not sought) is as low as possible.
- the yield of gasoline is always less than 50% by weight, preferably less than 40% by weight, advantageously less than 30% by weight or 20% by weight or even 15% by weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0704224A FR2917419B1 (en) | 2007-06-12 | 2007-06-12 | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT |
PCT/FR2008/000753 WO2009004179A2 (en) | 2007-06-12 | 2008-06-03 | Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluent |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2158303A2 true EP2158303A2 (en) | 2010-03-03 |
EP2158303B1 EP2158303B1 (en) | 2017-01-04 |
Family
ID=38944565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08805641.1A Active EP2158303B1 (en) | 2007-06-12 | 2008-06-03 | Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluent |
Country Status (10)
Country | Link |
---|---|
US (1) | US8709234B2 (en) |
EP (1) | EP2158303B1 (en) |
CN (1) | CN101730732B (en) |
BR (1) | BRPI0813815A8 (en) |
CA (1) | CA2689932C (en) |
FR (1) | FR2917419B1 (en) |
MY (1) | MY157735A (en) |
RU (1) | RU2469069C2 (en) |
WO (1) | WO2009004179A2 (en) |
ZA (1) | ZA200908037B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2944028B1 (en) * | 2009-04-03 | 2011-05-06 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT USING A RESIN |
FR2944027B1 (en) * | 2009-04-03 | 2011-05-06 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT |
FR2963015B1 (en) | 2010-07-22 | 2012-09-07 | Centre Nat Rech Scient | THERMAL PHOTOCOMMUTATION METHOD OF SPIN TRANSITION MATERIALS AND APPLICATIONS |
RU2623088C1 (en) * | 2016-06-16 | 2017-06-22 | Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") | Method of obtaining motor fuel |
CN109722291B (en) * | 2017-10-27 | 2020-11-13 | 中国石油化工股份有限公司 | Method for reducing freezing point of aviation kerosene with high dry point |
US11685869B2 (en) | 2021-10-01 | 2023-06-27 | Emerging Fuels Technology, Inc. | Method for the production of synthetic jet fuel |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3726788A (en) * | 1970-10-15 | 1973-04-10 | Exxon Research Engineering Co | Two-stage hydrocracking with intermediate fractionation |
US5057635A (en) * | 1990-02-08 | 1991-10-15 | Uop | Process for isomerizing olefins in gasoline streams |
MY108862A (en) * | 1992-08-18 | 1996-11-30 | Shell Int Research | Process for the preparation of hydrocarbon fuels |
US20040112792A1 (en) * | 1998-02-13 | 2004-06-17 | Murphy William J. | Method for making lube basestocks |
TW511030B (en) * | 2000-12-04 | 2002-11-21 | Ren-Huang Weng | A method and system providing on-line web page reading record |
US6515033B2 (en) * | 2001-05-11 | 2003-02-04 | Chevron U.S.A. Inc. | Methods for optimizing fischer-tropsch synthesis hydrocarbons in the distillate fuel range |
FR2826973B1 (en) * | 2001-07-06 | 2005-09-09 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF 2 FRACTIONS FROM LOADS FROM THE FISCHER-TROPSCH PROCESS |
FR2850393B1 (en) * | 2003-01-27 | 2005-03-04 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESS |
US7332073B2 (en) * | 2004-03-31 | 2008-02-19 | Chevron U.S.A. Inc. | Process for removing contaminants from Fischer-Tropsch feed streams |
-
2007
- 2007-06-12 FR FR0704224A patent/FR2917419B1/en active Active
-
2008
- 2008-06-03 US US12/664,187 patent/US8709234B2/en active Active
- 2008-06-03 BR BRPI0813815A patent/BRPI0813815A8/en not_active IP Right Cessation
- 2008-06-03 MY MYPI20095264A patent/MY157735A/en unknown
- 2008-06-03 WO PCT/FR2008/000753 patent/WO2009004179A2/en active Application Filing
- 2008-06-03 CN CN200880019675.3A patent/CN101730732B/en active Active
- 2008-06-03 EP EP08805641.1A patent/EP2158303B1/en active Active
- 2008-06-03 CA CA2689932A patent/CA2689932C/en not_active Expired - Fee Related
- 2008-06-03 RU RU2010100634/04A patent/RU2469069C2/en not_active IP Right Cessation
-
2009
- 2009-11-16 ZA ZA2009/08037A patent/ZA200908037B/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2009004179A2 * |
Also Published As
Publication number | Publication date |
---|---|
FR2917419A1 (en) | 2008-12-19 |
WO2009004179A2 (en) | 2009-01-08 |
AU2008270132A1 (en) | 2009-01-08 |
WO2009004179A3 (en) | 2009-02-19 |
BRPI0813815A8 (en) | 2017-03-14 |
CN101730732B (en) | 2014-05-28 |
EP2158303B1 (en) | 2017-01-04 |
RU2469069C2 (en) | 2012-12-10 |
RU2010100634A (en) | 2011-07-20 |
US8709234B2 (en) | 2014-04-29 |
CN101730732A (en) | 2010-06-09 |
BRPI0813815A2 (en) | 2014-12-30 |
MY157735A (en) | 2016-07-15 |
US20100298451A1 (en) | 2010-11-25 |
CA2689932A1 (en) | 2009-01-08 |
ZA200908037B (en) | 2012-04-25 |
FR2917419B1 (en) | 2014-10-24 |
CA2689932C (en) | 2016-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2239827C (en) | Procedure for the conversion of heavy petroleum fractions and consisting of an ebullating-bed conversion stage and a hydroprocessing stage | |
WO2017186484A1 (en) | Conversion process comprising permutable hydrodemetallization guard beds, a fixed-bed hydrotreatment step and a hydrocracking step in permutable reactors | |
EP1048346B1 (en) | Catalyst with a weakly dispersed noble metal and the use thereof for hydocarbon feedstock conversion | |
EP2158303B1 (en) | Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluent | |
FR2926087A1 (en) | MULTI-PROCESS PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF AN EFFLUENT PRODUCED BY THE FISCHER-TROPSCH PROCESS | |
EP1406989B1 (en) | Method for production of medium distillates by hydroisomerisation and hydrocracking of a heavy fraction from the residue obtained by the fischer-tropsch process | |
WO2010112691A1 (en) | Method for the production of middle distillates, comprising the hydroisomerisation and hydrocracking of a heavy fraction originating from a fischer-tropsch effluent using a resin | |
EP1406988B1 (en) | Method for production of medium distillates by hydroisomerisation and hydrocracking of material produced by the fischer-tropsch process | |
WO2009106704A2 (en) | Method of producing middle distillates by sequenced hydroisomeration and hydrocracking of effluent produced by the fischer-tropsch process | |
FR2989381A1 (en) | PRODUCTION OF MEDIUM DISTILLATES FROM AN EFFLUENT FROM THE FISCHER-TROPSCH SYNTHESIS COMPRISING A STEP FOR REDUCING OXYGEN COMPOUND CONTENT | |
FR2944027A1 (en) | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT | |
WO2020144095A1 (en) | Two-stage hydrocracking process for producing naphtha, comprising a hydrogenation stage implemented downstream of the second hydrocracking stage | |
EP2586851B1 (en) | Method for producing middle distillates in which the feedstock from the Fischer-Tropsch process and the hydrogen stream have limited oxygen levels | |
FR2805543A1 (en) | Production of base oil from hydrocarbon charging material, involves performing simultaneous hydrogenation and isomerization of charging material and contact deparaffination of the effluent under specific conditions | |
EP3476917B1 (en) | Starting method of a method for producing kerosene and diesel oil from hydrocarbon compounds produced by fischer-tropsch synthesis | |
WO2005012461A1 (en) | Method for improving a flow point of bituminous fillers obtainable by a fisher-tropsch method using a zeolite mixture-based catalyst | |
WO2020144096A1 (en) | Two-stage hydrocracking process comprising a hydrogenation stage upstream of the second hydrocracking stage, for the production of middle distillates | |
WO2020144097A1 (en) | Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates | |
FR2950896A1 (en) | Making middle distillates from paraffin charge produced by Fischer-Tropsch synthesis comprises implementing hydrocracking catalyst comprising hydrodehydrogenating metal and composite support formed by Y-type zeolite and silicon carbide | |
FR2989380A1 (en) | OPTIMIZED PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES FROM A FISCHER-TROPSCH LOAD COMPRISING A LIMITED QUANTITY OF OXYGEN COMPOUNDS | |
WO2005012460A1 (en) | Method for improving a flow point of bituminous fillers obtainable by a fisher-tropsch method using a zeolite zbm 30-based catalyst | |
WO2008065284A2 (en) | Gas-to-lquid conversion method with simplified logistics | |
FR2970478A1 (en) | Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent | |
FR3084084A1 (en) | PROCESS FOR PRODUCING OLEFINS AND MEDIUM DISTILLATES FROM A HYDROCARBON EFFLUENT FROM FISCHER-TROPSCH SYNTHESIS | |
FR2792945A1 (en) | Production of oils and middle distillates, useful as lubricants, involves successive conversion of hydrocarbons by hydroisomerization and catalytic deparaffination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100112 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ENI S.P.A. Owner name: IFP ENERGIES NOUVELLES |
|
17Q | First examination report despatched |
Effective date: 20101228 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160824 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 859246 Country of ref document: AT Kind code of ref document: T Effective date: 20170115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008048261 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 859246 Country of ref document: AT Kind code of ref document: T Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170404 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170404 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170504 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008048261 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: IFP ENERGIES NOUVELLES Owner name: ENI S.P.A. |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
26N | No opposition filed |
Effective date: 20171005 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008048261 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170603 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170603 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170603 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180103 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240625 Year of fee payment: 17 |