WO2010112691A1 - Method for the production of middle distillates, comprising the hydroisomerisation and hydrocracking of a heavy fraction originating from a fischer-tropsch effluent using a resin - Google Patents

Method for the production of middle distillates, comprising the hydroisomerisation and hydrocracking of a heavy fraction originating from a fischer-tropsch effluent using a resin Download PDF

Info

Publication number
WO2010112691A1
WO2010112691A1 PCT/FR2010/000252 FR2010000252W WO2010112691A1 WO 2010112691 A1 WO2010112691 A1 WO 2010112691A1 FR 2010000252 W FR2010000252 W FR 2010000252W WO 2010112691 A1 WO2010112691 A1 WO 2010112691A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
resin
effluent
hydrocracking
catalyst
Prior art date
Application number
PCT/FR2010/000252
Other languages
French (fr)
Inventor
Aurélie DANDEU
Vincent Coupard
Original Assignee
IFP Energies Nouvelles
Eni S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Eni S.P.A. filed Critical IFP Energies Nouvelles
Priority to US13/262,681 priority Critical patent/US20120048775A1/en
Publication of WO2010112691A1 publication Critical patent/WO2010112691A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the synthesis gas (CO + H2) is catalytically converted into oxygenates and substantially linear hydrocarbons in gaseous, liquid or solid form, these products constitute the charge of the process according to the invention.
  • the paraffinic feedstock produced by Fischer-Tropsch synthesis used in the process according to the invention is produced from a synthesis gas in the Fischer Tropsch process, the synthesis gas (CO + H2) is advantageously produced in three ways.
  • the synthesis gas (CO + H2) is produced from natural gas according to the GTL route, also known in the English-German gas-to-liquid terminology.
  • the synthesis gas (CO + H2) is produced from coal according to the CTL route, also known in the Anglo-Saxon coal-liquid terminology.
  • the synthesis gas (CO + H2) is produced from biomass according to the BTL pathway, also called according to the Anglo-Saxon biomass-to-liquid terminology.
  • oxygenated compounds may have a significant content of unsaturated compounds of olefinic type and oxygenated products (such as alcohols, carboxylic acids, ketones, aldehydes and esters). These oxygenated and unsaturated compounds are more concentrated in the light fractions. Thus, in the C5 + fraction corresponding to the products boiling at an initial boiling point of between 15 ° C. and 40 ° C., these compounds represent between 10-20% by weight of olefinic type unsaturated compounds and between 5-10% by weight. of oxygenated compounds.
  • These products are generally free of heteroatomic impurities such as sulfur, nitrogen but may contain small amounts of Fe, Co, Zn, Ni or Mo from the dissolution of catalyst fines by the carboxylic acids. These metals can form complexes with oxygenates. These products practically do not contain little or no aromatics, naphthenes and more generally cycles especially in the case of cobalt catalysts.
  • the hydrogenation of the olefinic unsaturated compounds present in the Fischer-Tropsch hydrocarbons is a strongly exothermic reaction.
  • the transformation of said unsaturated compounds may have a negative impact on the hydrocracking step such as a thermal runaway of the reaction, a large coking of the catalyst or gum formation by oligomerization.
  • a hydrotreatment step is performed under less severe conditions than those for hydrocracking.
  • the impurities of the feedstock, the oxygenated compounds and the metals have a detrimental effect not only on the activity of the hydrotreatment and hydrocracking catalysts but also on the stability of the feedstock.
  • the operating temperature conditions are such that the oxygenated compounds do not decompose but adsorb on the catalyst and form coke.
  • the severe operating conditions cause the decomposition of the oxygenated compounds into water, carbon monoxide (CO) and carbon dioxide (CO2), which are inhibitors of the acid functions (water) and the hydrogenating function (CO).
  • CO 2 carbon dioxide
  • the presence of oxygenated alcohols or acids present in the feeds requires an increase in the temperature in the hydrotreatment and hydrocracking stage to compensate for the decrease in activity and to maintain the conversion.
  • the carboxylic acids can extract the active particles from the hydrotreatment and hydrocracking catalysts, thereby decreasing the life of said catalysts.
  • the metals complexed by the oxygenated compounds are decomposed on the active site of said hydrotreatment and hydroisomerization / hydrocracking catalysts in the presence of hydrogen and very selectively poison the active sites of said catalysts.
  • One of the objectives of the invention is therefore to reduce the total oxygen content of the feedstock and thus to limit the inhibitory effects of the oxygenated compounds and thus to limit the increase in temperature to compensate for the drop in activity and to maintain the conversion on the two stages of hydrotreatment and hydrocracking.
  • the Applicant therefore implemented upstream of the hydrotreatment step and in order to increase the life of the hydrotreatment catalyst and the hydrocracking catalyst a step allowing, simultaneously or not, to transform on a resin exchange of ions, the alcohols and carboxylic acids constituting the oxygenated compounds in ester and of capturing the metals complexed by said oxygenated compounds.
  • This step is followed by a separation of water before the hydrotreatment step which makes it possible to reduce the total oxygen content and thus limit the inhibitory effects of the oxygenated compounds and thus limit the increase in temperature to compensate for the decrease. of activity and maintain the conversion on the two hydrotreatment and hydrocracking stages.
  • the separation of the water also makes it possible to wash and capture CO and CO2 dissolved in the charge, which are inhibitors.
  • the Shell patent application (EP-583,836) describes a process for the production of middle distillates from a filler obtained by Fischer-Tropsch synthesis.
  • the feed resulting from the Fischer-Tropsch synthesis can be treated in its entirety, but preferably the C4- fraction is withdrawn from the feedstock so that only the C5 + fraction boiling at a temperature above 15 ° C. be introduced in the subsequent step.
  • Said feedstock is subjected to a hydrotreatment to hydrogenate the olefins and alcohols, in the presence of a large excess of hydrogen, so that the conversion of products boiling above 370 ° C. into products with a lower boiling point is less than 20%.
  • the hydrotreated effluent consisting of high molecular weight paraffinic hydrocarbons is preferably separated from the hydrocarbon compounds having a low molecular weight and in particular the C4- fraction before the second hydroconversion stage. At least part of the remaining C5 + fraction is then subjected to a hydrocracking / hydroisomerization step with a conversion of products boiling above 370 0 C into products with a boiling point of at least 40% by weight. Neither the presence of impurities in the feed nor the presence of removal steps of these impurities are mentioned in this application.
  • the Shell patent application (EP-583,836) therefore does not deal with the problem of eliminating impurities present in the feedstock from the Fischer Tropsch process.
  • the present invention relates to a method for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis and divided into two fractions, a light fraction, called cold condensate, and a heavy fraction, called waxes, comprising the steps of: a) fractioning said light fraction, referred to as cold condensate into two fractions, a C4-gas fraction boiling at a temperature below 15 ° C and an intermediate fraction having an initial boiling point of between 15 and 40 0 C and a final boiling point between 300 and 450 0 C, b) passing on at least one ion exchange resin of said intermediate fraction, at a temperature between 50 0 C and 150 0 C, at a total pressure between 0.7 and 2.5 MPa, at an hourly space velocity of between 0.2 and 2.5 h-1; and c) removal of at least a portion of the water from the effluent from the Etap eb), d) decontaminating by passing on a first guard bed containing at least a guard bed catalyst
  • the effluent from the Fischer-Tropsch synthesis unit is, at the output of the Fischer-Tropsch synthesis unit divided into two fractions, a light fraction, called cold condensate (1), and a heavy fraction, called waxes. (11).
  • the two fractions thus defined comprise water, carbon dioxide (CO 2 ), carbon monoxide (CO) and unreacted hydrogen (H 2 ).
  • the light fraction, cold condensate contains light hydrocarbon compounds C1 to C4, called C4- fraction, in the form of gas.
  • the light fraction is fractionated into two fractions, a gaseous fraction C4- boiling at a temperature below 15 ° C and an intermediate fraction having a point d initial boiling between 15 and 40 0 C and a final boiling point between 300 and 450 0 C.
  • the light fraction enters a fractionation means (2).
  • the fractionation means (2) may for example consist of methods well known to those skilled in the art such as a flash or flash tank, distillation or stripping.
  • the fractionation means is a distillation column allowing the elimination, at the top of the column, of light and gaseous hydrocarbon compounds C1 to C4, called gas fraction C4- (3), corresponding to the products boiling at a temperature below 15. 0 C, preferably less than 1O 0 C and very preferably below 0 0 C and to retrieve an intermediate fraction (5) corresponding to the C5-C30 hydrocarbons, having an initial boiling point ranging between 15 and 40 0 C and preferably between 15 and 25 ° C and a final boiling point between 300 and 450 0 C and preferably between 380 and 400 0 C.
  • Said intermediate fraction (5) and the heavy fraction called waxes are then separately treated before being recombined so as to obtain a purified C5 + liquid fraction in line (15), corresponding to products boiling at an initial boiling point between 15 and 40 0 C and preferably having a boiling point greater than or equal to 20 0 C.
  • the intermediate fraction (5) having an initial boiling point of between 15 and 40 ° C and a final boiling point between 300 and 450 0 C undergoes an optional decontamination step in a reactor (34), shown in Figure 2, by passage over an optional guard bed containing at least a guard bed catalyst.
  • a reactor shown in Figure 2
  • the embodiments of said optional decontamination step as well as the guard bed catalysts used are the same as those used in step d) of decontamination of the process according to the invention and are described below, in step d ).
  • said intermediate fraction (5) having an initial boiling point of between 15 and 40 c C and a final boiling point between 300 and 45O 0 C, optionally previously decontaminated by passage over a guard bed, passes over at least one ion exchange resin for the esterification of alcohols and carboxylic acids to ester and / or the capture of dissolved metals in the feed, at a temperature between 50 ° C. C and 150 ° C. and preferably between 80 ° C. and 150 ° C., at a total pressure of between 0.7 and 2.5 MPa, at an hourly space velocity of between 0.2 and 2.5 h -1,
  • Step b) according to the invention can advantageously be implemented according to two distinct embodiments, namely, either in a single reactor (6) on a single ion exchange resin advantageously used to simultaneously perform the esterification of the alcohols and carboxylic acids to ester and the uptake of dissolved metals in the feed, either in two different reactors (not shown in the figures) on two different ion exchange resins, one whose specific function is the esterification of alcohols and carboxylic acids and the other the uptake of dissolved metals in the feed.
  • step b) advantageously consists in the passage of said intermediate fraction (5) on a single ion exchange resin in a single reactor (6) making it possible simultaneously to carry out the esterification of the alcohols and acids carboxylic esters and the uptake of dissolved metals into the feedstock.
  • said resin is used at a temperature of between 80 ° C. and 150 ° C. and preferably between 80 ° and 130 ° C., at a pressure of between 1 and 2 MPa and preferably between 1 and 1.5 ° C. MPa and at an hourly volume velocity of between 0.5 and 2 h -1 and preferably between 0.5 and 1.5 h -1.
  • the oxygenated compounds, carboxylic acids and alcohols are adsorbed on the active sites of said resin and are esterified and the cationic and metallic compounds present in said C5 + liquid paraffinic fraction are removed by adsorption or by ion exchange.
  • said resin which makes it possible simultaneously to carry out the esterification of the alcohols and carboxylic acids to the ester and to capture the dissolved metals in the feedstock, advantageously comprises acidic sulphonic groups and is prepared by polymerization or co-polymerisation of vinyl aromatic groups followed by sulphonation said aromatic vinyl groups being selected from styrene, vinyl toluene, vinyl naphthalene, vinyl ethyl benzene, methyl styrene, vinyl chlorobenzene and vinyl xylene, said resin having a degree of crosslinking of between 20 and 35%, preferably between 25 and 35% and preferably equal to 30% and an acidic strength determined by potentiometry during neutralization with a KOH 1 solution of 0.2 to 6 mmol H + equivalent / g and preferably between 0, 2 and 2.5 mmol H + equivalent / g.
  • Said acid ion exchange resin advantageously contains between 1 and 2 terminal sulphonic groups per aromatic group.
  • said resin has a size between 0.15 and 1.5 mm.
  • the size of the resin is the diameter of the sphere encompassing the resin particle. Resin size classes are measured by sieving on sieves adapted according to a technique known to those skilled in the art.
  • a preferred resin is a resin consisting of aromatic vinyl mono vinyl aromatic poly vinyl copolymers, and very preferably, copolymer of vinylbenzene and polystyrene having a degree of crosslinking of between 20 and 35% and preferably between 25 and 35% and preferably equal to 30% and an acidic force, representing the number of active sites of said resin, assayed by potentiometry during neutralization with a KOH solution, of between 0.2 and 6 mmol. H + equivalent / g and preferably between 0.2 and 2.5 mmol H + equivalent / g.
  • Another preferred resin which simultaneously allows the esterification of alcohols and carboxylic acids and the uptake of metals is a resin consisting of a polysiloxane grafted with alkylsulphonic acid groups (of the type -CH 2 -CH 2 -CH 2 -SO 3 H), which is of considerable size. between 0.5 and 1.2 mm and acid strength representing the number of active sites of said resin and assayed by potentiometry during neutralization with a KOH solution, is 0.4 to 1.5 mmol H + equivalent / boy Wut.
  • This resin may advantageously be used in a fixed bed between grids placed in an upward or downward tubular reactor.
  • said resin is used in an upflow reactor, the liquid being injected down the reactor at a surface speed sufficient to cause expansion of the resin bed without transporting or fluidizing it.
  • This embodiment with respect to the fixed bed, makes it possible to attenuate the effects of the clogging materials and to substantially increase the life cycle of the resin.
  • step b) advantageously consists in the passage of said intermediate fraction (5), in two different reactors, on two different ion exchange resins, of a different nature, one having the specific function the esterification of alcohols and carboxylic acids and the other the uptake of dissolved metals in the feedstock.
  • the reactor containing the ion exchange resin for capturing the metals is used upstream of the reactor containing the ion exchange resin for the esterification of alcohols and carboxylic acids.
  • the cationic and metallic compounds present in said fraction said intermediate fraction (5) are removed by adsorption or by ion exchange on a first ion exchange resin.
  • This first resin specific for the capture of metals advantageously comprises acidic sulphonic groups and is advantageously prepared by polymerization or co-polymerization of vinyl aromatic groups followed by a sulphonation, said aromatic vinyl groups being advantageously chosen from styrene, vinyl toluene, naphthalene vinyl, vinyl ethyl benzene, methyl styrene, vinyl chlorobenzene, and vinyl xylene, said resin having a degree of crosslinking of between 1 and 20% and preferably between 2 and 8% and an acidic strength, representing the number of active sites of said resin, assayed by potentiometry during neutralization with a KOH solution, of between 1 and 15 mmol H + equivalent / g and preferably between 2.5 and 10 mmol H + equivalent / g.
  • Said first acidic ion exchange resin advantageously contains between 1 and 2 terminal sulphonic groups per aromatic group.
  • said resin has a size between 0.15 and 1.5 mm.
  • the size of the resin is the diameter of the sphere encompassing the resin particle. Resin size classes are measured by sieving on sieves adapted according to a technique known to those skilled in the art.
  • the first resin is a resin consisting of aromatic vinyl mono vinyl aromatic polymers and, very preferably, di-vinylbenzene copolymer and polystyrene having a degree of crosslinking of between 1 and 20% and an acidic force representing the number of active sites of said resin and assayed by potentiometry during the neutralization with a KOH solution, and 1 and 15 mmol H + equivalent / g and preferably between 2.5 and 10 mmol H + equivalent / boy Wut.
  • said first resin is used at a temperature of between 5O 0 C and 110 0 C and preferably between 80 and 110 0 C, at a pressure of between 1 and 2 MPa and preferably between 1 and 1 , 5 MPa and at an hourly space velocity of between 0.2 and 1.5 h -1 and preferably between 0.5 and 1.5 h -1.
  • the effluent from the reactor containing said first resin specific for the capture of metals is then advantageously introduced into a second reactor located downstream of the first reactor and containing a second resin of different nature and specific to the esterification of the alcohols and carboxylic acids contained in said effluent.
  • the oxygenated compounds, carboxylic acids and alcohols adsorb to the active sites of said second resin and are esterified and the cationic and metal compounds present in said intermediate fraction (5) are removed by adsorption or ion exchange.
  • Said second resin which makes it possible to carry out the esterification of the alcohols and carboxylic acids to the ester, advantageously comprises acidic sulphonic groups and is advantageously prepared by polymerization or co-polymerization of vinyl aromatic groups followed by sulphonation.
  • the vinyl aromatic groups are advantageously chosen from styrene, vinyl toluene, vinyl naphthalene, vinyl ethyl benzene, methyl styrene, vinyl chlorobenzene and vinyl xylene, said second resin having a degree of crosslinking, ie a copolymer mass / polymer mass ratio advantageously between 20 and 35% and preferably between 25 and 35% and preferably equal to 30% and an acidic force, representing the number of active sites of said resin, assayed by potentiometry during the neutralization by a KOH solution, between 0.2 to 6 mmol H + equivalent / g and preferably between 0.2 and 6 mmol H + equivalent / g.
  • Said second acid ion exchange resin advantageously contains between 1 and 2 terminal sulphonic groups per aromatic group.
  • said second resin has a size of between 0.15 and 1.5 mm.
  • a second preferred resin is a resin consisting of aromatic vinyl mono vinyl and aromatic poly vinyl co-polymers, and very preferably, copolymer of di-vinyl benzene and polystyrene having a degree of crosslinking of between 20 and 35% and preferably between 25 and 35% and preferably equal to 30% and an acidic force, representing the number of active sites of said resin, assayed by potentiometry during the neutralization with a KOH solution, of between 0.2 to 6%. mmol H + equivalent / g and preferably between 0.2 and 6 mmol H + equivalent / g.
  • Another second preferred resin which simultaneously allows the esterification of alcohols and carboxylic acids and the uptake of metals is a resin consisting of a polysiloxane grafted with alkylsulphonic acid groups (of the -CH2-CH2-CH2-SO3H type), size between 0.5 and 1, 2 mm and acid strength representing the number of active sites of said resin and assayed by potentiometry during the neutralization with a KOH solution, is 0.4 to 1.5 mmol H + equivalent / boy Wut.
  • said second resin is used at a temperature of between 80 ° C. and 150 ° C. and preferably between 80 ° and 130 ° C., at a pressure of between 1 and 2 MPa and preferably between 1 and 1, 5 MPa and at an hourly space velocity of between 0.5 and 2 h -1 and preferably between 0.5 and 1.5 h -1.
  • These resins may advantageously be used in a fixed bed between grids placed in a tubular reactor ascending or descending.
  • said resins are used in an upflow reactor, the liquid being injected reactor bottom at a surface speed sufficient to cause expansion of the resin bed without transporting or fluidizing it.
  • This embodiment with respect to the fixed bed, makes it possible to attenuate the effects of the comatant materials and to increase substantially the life cycle duration of the resin.
  • said intermediate fraction (5) passes in two different reactors, on two different ion exchange resins, of different nature, one mainly producing the metal uptake, the other mainly performing the esterification, it is used preferably intermediate heating between the two steps.
  • the water formed during the esterification step of the acids and alcohols is removed from the first resin essentially making the uptake of metals to push the esterification reaction onto the second resin.
  • the simultaneous addition of the intermediate reheating and the separation of the water generally favors the conversion of the carboxylic acids present in the charge.
  • the esterification reaction of the organic acids with the alcohols present in said intermediate fraction (5) produces water which is an inhibitor compound for hydrotreatment and hydrocracking catalysts requiring an increase in the severity of the operating conditions.
  • step b) then undergoes according to the invention a step of removing at least a portion of the water formed during said step b) and preferably all of the water formed, in a separator (8).
  • This water is acidic in nature because it advantageously contains the protons exchanged during the uptake of metals by the specific cation exchange resin placed upstream or by the single resin simultaneously allowing the esterification and the uptake of the metals.
  • This water may also contain CO and dissolved CO2 from the synthesis
  • step c nitrogen (N2) or hydrogen (H2) type gas to remove more CO and CO2 dissolved by stripping.
  • This step also makes it possible to eliminate light ether-type products formed during the reaction of the alcohols on themselves.
  • the removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ....
  • step c) of removing the water is then recombined, according to step e) of the process according to the invention, with the effluent from step d) described below.
  • the heavy fraction called wax undergoes a decontamination step in a reactor (12) by passing on a guard bed containing at least a guard bed catalyst.
  • the treated heavy fraction may optionally contain solid particles such as inorganic solids. It may optionally contain metals contained in hydrocarbon structures such as organometallic compounds that are more or less soluble.
  • fines fines resulting from a physical or chemical attrition of the catalyst. They can be micron or sub-micron. These mineral particles then contain the active components of these catalysts without the following list being limiting: alumina, silica, titanium, zirconia, cobalt oxide, iron oxide, tungsten, rhuthenium oxide, etc.
  • These solid minerals may be present under the calcined mixed oxide form: for example, alumina-cobalt, alumina-iron, alumina-silica, alumina-zirconia, alumina-titanium, alumina-silica-cobalt, alumina-zirconia-cobalt
  • Said heavy fraction may also contain metals within hydrocarbon structures, which may optionally contain oxygen or more or less soluble organometallic compounds. More particularly, these compounds may be based on silicon. It may be for example anti-foaming agents used in the synthesis process. For example, the solutions of a silicon compound of silicon type or silicone oil emulsion are more particularly contained in the heavy fraction.
  • the catalyst fines described above may have a higher silica content than the catalyst formulation resulting from the intimate interaction between the catalyst fines and anti-foaming agents described above.
  • the problem that is then posed is to reduce the content of solid mineral particles and possibly reduce the content of harmful metal compounds for the hydroisomerization-hydrocracking catalyst.
  • the guard beds advantageously contain at least one catalyst.
  • guard bed catalysts used in steps c) of the process according to the invention and in the optional step of decontaminating said intermediate fraction may be different and preferably identical.
  • the said guard bed catalysts are described below.
  • the guard bed catalysts used in steps c) of the process according to the invention and in the optional step of decontaminating said intermediate fraction may advantageously be in the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes are cylindrical (which can be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings.
  • the cylindrical shape is preferably used, but any other shape may be used.
  • the guard catalysts may, in another preferred embodiment, have more particular geometric shapes in order to increase their void fraction.
  • the vacuum fraction of these catalysts is advantageously between 0.2 and 0.75.
  • Their outer diameter may advantageously vary between 1 and 35 mm.
  • the said guard bed catalysts used in steps c) of the process according to the invention and in the optional step of decontaminating said intermediate fraction may advantageously have been impregnated with an active phase or not.
  • the catalysts are impregnated with a hydro-dehydrogenation phase.
  • the CoMo or NiMo phase is used.
  • the NiMo phase is used.
  • the supports of said guard bed catalysts are porous refractory oxides, preferably chosen from alumina and silica-alumina.
  • the said guard bed catalysts may advantageously have macroporosity.
  • Said catalysts advantageously comprise a macroporous mercury volume for a mean diameter at 50 nm which is greater than 0.1 cm 3 / g, preferably of between 0.125 and 0.175 cm 3 / g and a total volume of greater than 0.60 cm 3 / g, of preferably between 0.625 and 0.8 cm3 / g, and is advantageously impregnated with an active phase, preferably based on nickel and molybdenum such as for example I ⁇ CT961.
  • the Ni content by weight of oxide is generally between 1 and
  • the surfaces expressed in SBET of the supports of said catalysts vary between 30 m 2 / g and 220 m 2 / g.
  • the guard bed advantageously also comprises at least one other catalyst having a mercury volume for a pore diameter greater than 1 micron greater than 0.2 cm 3 / g and preferably greater than 0.5 cm 3 / and a mercury volume for a pore diameter greater than 10 microns greater than 0.25 cm 3 / g and preferably less than 0.4 cm 3 / g, said catalyst being advantageously placed upstream of the first guard bed catalyst described herein. above.
  • the guard bed advantageously also comprises at least one other catalyst having a mercury volume for a pore diameter greater than 50 nm, greater than 0.25 cm3 / g, the mercury volume for a pore diameter. greater than 100 nm, greater than 0.15 cm3 / g and a total pore volume greater than 0.80 cm3 / g.
  • Said guard bed catalyst and the catalyst according to the first embodiment can advantageously be combined in a mixed bed or a combined bed.
  • the impregnated active phase catalyst constitutes the majority of the guard bed and the catalyst according to the first preferred embodiment is added in addition to 0 to 50% by volume relative to the first catalyst, preferably from 0 to 30%, even more preferably from 1 to 20%.
  • the combination of said guard bed catalyst and the catalyst according to the first embodiment does not limit the scope of the invention.
  • catalysts that can be used in the guard beds can advantageously be used alone or in mixtures and chosen in a non-exhaustive manner from the catalysts marketed by Norton- Saint-Gobain, for example the MacroTrap® guard beds or the catalysts marketed by Axens. in the ACT family: ACT077, ACT935, ACT961 or HMC841, HMC845, HMC941, HMC945 or ACT645.
  • the preferred guard beds according to the invention are HMC and I ⁇ CT961. It may be particularly advantageous to superpose these catalysts in at least two different beds of variable height.
  • the catalysts having the highest void content are preferably used in the first catalytic bed or first catalytic reactor inlet. It may also be advantageous to use at least two different reactors for these catalysts.
  • a combination of said bed bed catalyst with the catalysts according to the first and second embodiments is also possible in a mixed bed or a combined bed.
  • the catalysts are placed by decreasing rate of vacuum in the direction of flow.
  • the content of solid particles is less than 20 ppm, preferably less than 10 ppm and even more preferably less than 5 ppm.
  • the soluble silicon content is less than 5 ppm, preferably less than 2 ppm and even more preferably less than 1 ppm.
  • the effluent from step d) of decontamination by passing over a guard bed of said heavy fraction called wax passes, optionally, before the recombination step e) of the purified intermediate fraction resulting from the step c) (line 10) and said effluent from step d) over at least one ion exchange resin at a temperature between 5O 0 C and 150 0 C and preferably between 80 and 150 0 C at a total pressure between 0.7 and 2.5 MPa, at an hourly space velocity of between 0.2 and 2.5 h -1.
  • This optional decontamination step may advantageously be carried out according to two distinct embodiments, namely, either in a single reactor (35) (shown in FIG.
  • the purified intermediate fraction resulting from stage c) (line 10) and the effluent from stage d) of decontamination, optionally purified by passage over at least one ion exchange resin, (line 13) are recombined in the line (15) to obtain a purified C5 + fraction which constitutes the charge of step f) of hydrogenation of the olefinic type unsaturated compounds.
  • Stage f) of the process according to the invention is a stage of hydrogenation of the olefinic type unsaturated compounds of at least a part and preferably all of the effluent resulting from stage e) of the process according to the invention. in the presence of hydrogen and a hydrogenation catalyst.
  • step e) line 15 of the process according to the invention is allowed in the presence of hydrogen (line 14) in a hydrogenation zone (16) containing a hydrogenation catalyst which has the objective of saturating the olefinic type unsaturated compounds present in said effluent.
  • the catalyst used in step f) according to the invention is a non-cracking or slightly cracking hydrogenation catalyst comprising at least one metal of group VIII of the periodic table of the elements and comprising at least one support based on of refractory oxide.
  • said catalyst comprises at least one Group VIII metal chosen from nickel, cobalt, ruthenium, indium, palladium and platinum and comprising at least one refractory oxide-based support chosen from alumina. and silica alumina.
  • the group VIII metal is chosen from nickel, palladium and platinum and very preferably from palladium and platinum.
  • the group VIII metal is chosen from palladium and / or platinum and the content of this metal is advantageously between 0.1% and 5%. % by weight, and preferably between 0.2% and 0.6% by weight relative to the total weight of the catalyst.
  • the Group VIII metal is palladium.
  • the metal of group VIII is nickel and the content of this metal is advantageously between 5% and 25% by weight, preferably between 7%. and 20% by weight based on the total weight of the catalyst.
  • the catalyst support used in step f) of the process according to the invention is a refractory oxide-based support, preferably chosen from alumina and silica-alumina and preferably alumina.
  • the support When the support is an alumina, it has a BET specific surface to limit the polymerization reactions on the surface of the hydrogenation catalyst, said surface being between 5 and 140 m 2 / g.
  • the support When the support is a silica-alumina, the support contains a percentage of silica of between 5 and 95% by weight, preferably between 10 and 80%, more preferably between 20 and 60% and very preferably between 30 and 50%. a BET specific surface area of between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g, preferably less than 350 m 2 / g and even more preferably less than 250 m 2 / g .
  • the hydrogenation step f) of the process according to the invention is preferably carried out in one or more fixed bed reactor (s).
  • the feedstock is brought into contact with the hydrogenation catalyst in the presence of hydrogen and at operating temperatures and pressures allowing the hydrogenation of the olefinic unsaturated compounds present in the feedstock.
  • the operating conditions of the hydrogenation step f) of the process according to the invention are advantageously as follows: the temperature within said hydrogenation zone (16) is between 100 and 180 ° C. and preferably between 120 and 165 ° C, the total pressure is between 0.5 and 6 MPa, preferably between 1 and 5 MPa and even more preferably between 2 and 5 MPa.
  • the charge flow rate is such that the hourly volume velocity (ratio of the hourly volume flow rate at 15 ° C. of fresh liquid feedstock to the loaded catalyst volume) is between 1 and 50 h -1 , preferably between 2 and 20 h -1. and even more preferably between 4 and 20 h -1 .
  • the hydrogen that feeds the hydrotreating zone is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 5 to 300 Nl / l / h, preferably between 5 and 200, preferably between 10 and 150 Nl / l / h, and even more preferably between 10 and 50 Nl / l / / h.
  • the olefinic type unsaturated compounds are hydrogenated more than 50%, preferably more than 75% and preferably more than 85%.
  • the effluent from step f) optionally undergoes a step of removing at least a portion of the water formed during the hydrogenation step f) and preferably all of the water formed, in a separator (37), shown in Figure 2.
  • This water may also contain a fraction of dissolved CO and CO2 from the Fischer Tropsch synthesis.
  • This step takes place in the separator (37) and the water is removed by the pipe (39). It is also advantageous to add in the said step of removing at least a portion of the water nitrogen (N 2) or hydrogen (H 2) type gas in order to remove more CO and
  • This step also makes it possible to eliminate light ether-type products formed during the reaction of the alcohols on themselves.
  • the removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ....
  • step f) of the process according to the invention at least a portion and preferably all of the liquid hydrogenated effluent is sent to a hydrocracking / hydroisomerization zone (19).
  • step g) of the process according to the invention at least a portion and preferably all of the liquid hydrogenated effluent from the hydrogenation step f) of the process according to the invention is sent, in the hydroisomerization / hydrocracking zone (19) containing the hydroisomerization / hydrocracking catalyst and preferably at the same time as a hydrogen flow.
  • the operating conditions in which the hydroisomerization / hydrocracking step g) of the process according to the invention is carried out are preferably as follows:
  • the pressure is generally maintained between 0.2 and 15 MPa and preferably between 0.5 and 10 MPa and advantageously from 1 to 9 MPa, the space velocity is generally between 0.1 h -1 and 10 h -1 and preferably between 0.2 and 7 h -1 is preferably between 0.5 and 5.0 h -1.
  • the hydrogen content is generally between 100 and 2000 normal liters of hydrogen per liter of filler and per hour and preferably between 150 and 1500 liters of hydrogen per liter of filler.
  • the temperature employed in this step is generally between 200 and 450 0 C and preferably from 250 0 C to 450 0 C, advantageously 300 to 450 0 C, and even more preferably greater than 320 ° C or, for example between 320-420 0 vs.
  • Step g) of hydroisomerization and hydrocracking of the process according to the invention is advantageously carried out under conditions such that the pass conversion into products with boiling points greater than or equal to 37O 0 C into products having points.
  • boiling point below 37O 0 C is greater than 80% by weight, and even more preferably at least 85%, preferably greater than 88%, so as to obtain middle distillates (gas oil and kerosene) having sufficiently good cold (pour point, freezing point) to meet the specifications in force for this type of fuel.
  • the majority of catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function.
  • the acid function is generally provided by supports with large surface areas (150 to 800 m2.g-1 generally) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus aluminas, combinations of oxides of boron and aluminum, silica aluminas.
  • the hydrogenating function is generally provided either by one or more metals of group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by an association of at least a group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
  • the equilibrium between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst.
  • a weak acidic function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts.
  • a third possibility is to use a strong acid function and a strong hydrogenating function in order to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, by judiciously choosing each of the functions to adjust the activity / selectivity couple of the catalyst.
  • the hydroisomerization-hydrocracking catalysts are bifunctional catalysts comprising an amorphous acid support (preferably a silica-alumina) and a hydro-dehydrogenating metal function preferably provided by at least one noble metal.
  • the support is said to be amorphous, that is to say devoid of molecular sieves, and in particular of zeolite, as well as the catalyst.
  • the amorphous acidic support is advantageously a silica-alumina but other supports are usable.
  • the catalyst preferably does not contain added halogen, other than that which could be introduced for the impregnation of the noble metal, for example.
  • the catalyst does not contain added halogen, for example fluorine.
  • the support has not been impregnated with a silicon compound.
  • the hydroisomerization / hydrocracking catalyst contains at least one hydrodehydrogenating element chosen from noble metals of group VIII, preferably platinum and / or palladium and at least one amorphous refractory oxide support, preferably silica alumina.
  • a preferred hydroisomerization / hydrocracking catalyst used in step g) of the process according to the invention comprises up to 3% by weight of metal of at least one hydrodehydrogenating element chosen from noble metals of group VIII, preferably deposited on the support, and very preferably, the noble metal of group VIII being platinum and a support comprising (or preferably consisting of) at least one silica-alumina, said silica-alumina having the following characteristics: - a weight content of silica SiO 2 between 5 and 95%, preferably between 10 and 80%, more preferably between 20 and 60% and even more preferably between 30 and 50% by weight.
  • the volume of the mesopores whose diameter is between 40 A and 150 A, and whose mean diameter varies between 80 and 140 A and preferably between 80 and 120 A, represents between 20 and 80% of the total pore volume measured by porosimetry at mercury, ii /
  • the volume of macropores, whose diameter is greater than 500 A, and preferably between 1000 A and 10000 A represents between 20 and 80% of the total pore volume measured by mercury porosimetry,
  • a specific surface area of between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g, preferably less than 350 m 2 / g and even more preferably less than 250 m 2 / g .
  • a second preferred hydroisomerization / hydrocracking catalyst used in step g) of the process according to the invention comprises up to 3% by weight of metal of at least one hydro-dehydrogenating element chosen from the noble metals of group VIII of the periodic classification and preferably the noble metal of group VIII being platinum, from 0.01 to 5.5% by weight of oxide of a doping element selected from phosphorus, boron and silicon and a non-zeolitic support to silica-alumina base containing an amount greater than 15% by weight and less than or equal to 95% by weight of silica (SiO 2 ), said silica-alumina having the following characteristics: a mean porous diameter, measured by mercury porosimetry, between 20 and 140 A, a total pore volume, measured by mercury porosimetry, of between 0.1 ml / g and 0.5 ml / g, a total pore volume, measured by nitrogen porosimetry, of between 0.1 ml / g and 0.6 ml / g,
  • an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, chi, eta, gamma, kappa, theta and delta alumina. a packed packing density of the catalysts greater than 0.55 g / cm 3 .
  • the characteristics associated with the corresponding catalyst are identical to those of the silica alumina described above.
  • the two stages f) and g) of the process according to the invention, hydrogenation and hydroisomerization-hydrocracking, can advantageously be carried out on the two types of catalysts in two or more different reactors, and / or in the same reactor.
  • the hydroisomerization / hydrocracking catalyst contains at least one hydrodehydrogenating element chosen from Group VIII non-noble metals and Group VIB metals and at least one amorphous refractory oxide support, preferably silica-alumina. .
  • the group VIII metal is selected from nickel and cobalt
  • the group VIB metal is selected from molybdenum and tungsten.
  • said catalyst is in sulphide form.
  • a third preferred hydroisomerization / hydrocracking catalyst used in step g) of the process according to the invention comprises at least one hydro-dehydrogenating element chosen from the non-noble metals of group VIII and the metals of group VIB of the periodic table, preferably between 2.5 and 5% by weight of Group VIII non-noble elemental oxide and between 20 and 35% by weight of Group VIB element oxide with respect to the weight of the final catalyst and, preferably, the non-noble metal of group VIII is nickel and the metal of group VIB is tungsten, optionally from 0.01 to 5.5% by weight of oxide of a doping element chosen from phosphorus, boron and silicon and preferably, from 0.01 to 2.5% by weight of oxide of a doping element and a non-zeolitic support based on silica-alumina containing an amount greater than 15% by weight and less than or equal to 95% by weight of silica (SiO 2), preferably an amount greater than 15% by weight and less than or equal to 50% by weight of silica
  • an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, chi, eta, gamma, kappa, theta and delta alumina. a packed packing density of the catalysts greater than 0.55 g / cm 3 .
  • the characteristics associated with the corresponding catalyst are identical to those of the silica alumina described above.
  • step g) of the process according to the invention said catalyst is sulphurized.
  • a catalyst containing palladium is used in stage e) of hydrogenation and in stage g) of hydroisomerization / hydrocracking a catalyst containing platinum.
  • a palladium-containing catalyst is used in the hydrogenation step f) and in the hydroisomerization / hydrocracking step g), a sulphurized catalyst containing at least one hydro-dehydrogenating element selected from Group VIII non-noble metals and Group VIB metals.
  • a catalyst containing at least one non-noble group VIII hydroxide dehydrogenating element and in the hydroisomerization stage g) is used in the hydrogenation stage f.
  • hydrocracking a sulphurized catalyst containing at least one hydro-dehydrogenating element chosen from Group VIII non-noble metals and Group VIB metals.
  • step h) of the process according to the invention the effluent from step g) (line 20) undergoes separation of unreacted hydrogen and light gases in a gas / liquid separator (33) and then recycling in step g) hydroisomerization / hydrocracking unreacted hydrogen and said light gases (line 22).
  • Said light gases include light C1-C4 gases, carbon monoxide (CO) and carbon dioxide (CO2) and water in vapor form.
  • the separation of said gases from the liquid effluent is carried out by one or more flashes, ie one or more balloons carrying out a separation of the gases and liquids introduced via the pipe (20), at staged temperatures and pressures to increase the recovery of hydrogen.
  • This flash stage may advantageously be accompanied by a heat exchanger for recovering thermal energy and / or cooling the effluents of the separator flasks in order to minimize the losses of hydrogen.
  • the process according to the invention makes it possible, by the use of ion exchange resin upstream of the hydrotreatment and hydrocracking steps, to reduce the total oxygen content of the feedstock and thus to limit the formation of carbon monoxide (CO) from the decomposition of the oxygenates present in the feed in the hydroisomerization / hydrocracking section.
  • CO carbon monoxide
  • CO is an inhibitor of the metal compounds present on the hydroisomerization / hydrocracking catalyst, and its content must be minimized so as not to require an increase in temperature to compensate for the drop in activity and maintain the conversion
  • the gaseous effluent (22) resulting from said separation contains a high CO fraction, that is to say more than 10 ppm by volume
  • said gaseous effluent is advantageously sent to a methanation reactor (40), represented in FIG. 2, in which the conversion of CO and hydrogen into methane is advantageously carried out.
  • the principle of methanation, the catalysts used are known to those skilled in the art and their use for purifying effluents containing H2 and CO is known.
  • a purge is advantageously implemented (line 23) so as to eliminate the products formed during the methanation step (33).
  • An additional hydrogen (pipe 24) is then advantageously made to compensate for this purge.
  • step h) for separating unreacted hydrogen and light gases from the process according to the invention is sent, according to step i) of the process according to the invention, in a train of distillation (26) via the pipe (21), which incorporates a distillation and optionally vacuum distillation, which aims to separate the conversion products of boiling point below 340 0 C and preferably below 370 0 C and including including those formed in step g) in the hydroisomerization / hydrocracking reactor (19), and to separate the residual fraction whose initial boiling point is generally greater than at least 340 ° C. and preferably greater than or equal to at least 370 ° C.
  • the conversion products and hydroisomerized is separated in addition to the light gases C1-C4 (line 27) at least a gasoline fraction (or naphtha) (line 28), and at least a middle distillate fraction kerosene (line 29) and diesel (line 30).
  • the residual fraction whose initial boiling point is generally greater than at least 340 ° C. and preferably greater than or equal to at least 37 ° C., is recycled (line 17) in step g) of the process according to the invention at the head of the zone (19) of hydroisomerization and hydrocracking.
  • said residual fraction can provide excellent bases for the oils.
  • step g) zone 19
  • the gas oil and kerosene cuts are preferably recovered separately or mixed, but the cutting points are adjusted by the operator according to his needs. It has been found that it is advantageous to recycle a portion of the kerosene to improve its cold properties.
  • the gas oil (s) obtained has a pour point of at most 0 ° C., generally below -10 ° C. and often below -15 ° C.
  • the cetane number is greater than 60, generally greater than 65, often greater than 70.
  • the kerosene (s) obtained has a freezing point of not more than -35 ° C, generally less than -40 ° C.
  • the smoke point is greater than 25 mm, generally greater than 30 mm.
  • the yield of gasoline is always less than 50% by weight, preferably less than 40% by weight, advantageously less than 30% by weight, or 20% by weight or even 15% by weight.
  • the effluent from the Fischer-Tropsch synthesis unit is, at the output of the Fischer-Tropsch synthesis unit divided into two fractions, a light fraction, called cold condensate and a heavy fraction, called waxes.
  • the light fraction is fractionated into a C4- gas fraction boiling at a temperature below 15 0 C and an intermediate fraction having an initial boiling point between 15 and 40 0 C and a boiling point final temperature of between 300 and 450 ° C.
  • the characteristics of the different fractions are given in Table 1 below:
  • the intermediate fraction C5-C30 passes over a commercial ion exchange resin Amberlyst 35 sold by the company Rohm and Haas, said resin simultaneously allowing the capture of dissolved metals in the feedstock and the esterification of alcohols and carboxylic acids to ester .
  • Said resin consists of copolymers of di-vinyl benzene and polystyrene having a degree of crosslinking of 20 and an acidic strength, assayed by potentiometry during neutralization with a KOH solution, of 4.15 mmol H + equivalent / g.
  • Step b) is carried out at a temperature of 100 ° C., a pressure of 1 MPa, and a hourly volume velocity of 1 h -1 . Under these conditions, 95% of the acids are esterified, the analysis of the acid conversion being given by difference in potash titration between the feedstock and the effluent according to the ASTM D 664 method.
  • the composition of the outlet effluent is given in Table 2.
  • Table 2 composition of the effluent (7) from step b) after esterification
  • step c) then undergoes elimination of the water formed during said step b) by decantation / coalescence in suitable equipment known to those skilled in the art.
  • the effluent at the outlet contains 300 ppm of water.
  • the heavy fraction, called waxes, from the Fischer-Tropsch synthesis unit (line 11) is passed over a guard bed composed of ACT 961 sold by Axens at a temperature of 80 ° C. and a pressure of 1 MPa. , a liquid space velocity of 1 h-1.
  • the effluent (line 13) contains less than 1 ppm of fines.
  • step e The entire effluent from step e) then undergoes a hydrogenation step in the presence of hydrogen and the hydrogenation catalyst of commercial name LD265 marketed by the company Axens, said catalyst comprising 0.3% by weight of palladium deposited on a surface alumina of 69 m2 / g.
  • the hydrogenation catalyst of commercial name LD265 marketed by the company Axens, said catalyst comprising 0.3% by weight of palladium deposited on a surface alumina of 69 m2 / g.
  • the hydrogenation step f) is carried out at a reaction temperature of 130 ° C. at a pressure of 3.5 MPa, the hydrogen is introduced at a rate such that the hydrogen / hydrocarbon volume ratio is 32 Nl. / l / h and at a speed hourly volume of 10 h-1. Under these conditions, the conversion to olefins is 85% by weight.
  • the liquid effluent from the hydrogenation step f) has the composition described in Table 4:
  • the hydroisomerization / hydrocracking catalyst comprises 0.6% by weight of platinum and a support comprising 29.3% by weight of silica SiO 2 and 70.7% by weight of Al 2 O 3 alumina, an Na content of 100 ppm by weight.
  • a total pore volume of 0.69 ml / g measured by mercury porosimetry a volume of mesopores with an average diameter of 80 A and representing 78% of the total pore volume measured by mercury porosimetry, a volume of macropores, whose diameter is greater than 500 A 1 representing 22% of the total pore volume measured by mercury porosimetry, and a specific surface area of 300 m 2 / g.
  • the hydroisomerization / hydrocracking step is carried out under the conditions described in Table 5.
  • the pass conversion to products with a boiling point greater than or equal to 370 ° C. in products with a boiling point below 37 ° C. is 85%.
  • the effluent from the hydroisomerization / hydrocracking stage undergoes separation in a gas / liquid separator, unreacted hydrogen and light gases, which are recycled in the hydroisomerization / hydrocracking step, so that recover a liquid effluent.
  • the Carbon monoxide (CO) content generated by passes in the gaseous effluent is limited to 1; 1% by weight.
  • the liquid effluent resulting from the separation step h) is then sent to a distillation train so as to separate the light products formed during these steps: the gases (C1-C4), a gasoline cut, a diesel fuel cut and a kerosene cut, and also a fraction, called residual fraction, which has an initial boiling point equal to 370 0 C which is recycled in full at the inlet of the hydroisomerisation / hydrocracking reactor in order to maximize the production of diesel fuel and kerosene.
  • the yields are given in Table 6.
  • the light fraction is fractionated into a C4-gas fraction boiling at a temperature below 15 ° C. and an intermediate fraction having an initial boiling point of between 15 and 40 ° C. and a boiling point. final between 300 and 450 0 C. the characteristics of the different fractions are given in table 1 of example 1.
  • the heavy fraction, called waxes, from the Fischer-Tropsch synthesis unit (line 11) is passed over a guard bed composed of ACT 961 sold by Axens at a temperature of 80 ° C. and a pressure of 1 MPa. , a liquid space velocity of 1 h-1.
  • the effluent (line 13) contains less than 1 ppm of fines. Recombination step of the fractions
  • Hydrogenation step The recombinant C5 + paraffinic fraction undergoes a hydrogenation step in the presence of hydrogen and the LD265 commercial name hydrogenation catalyst sold by the company Axens, said catalyst comprising 0.3% by weight of palladium deposited on an alumina specific surface area 69 m2 / g.
  • the hydrogenation step is carried out at a reaction temperature of 150 0 C at a pressure of 3.5 MPa, the hydrogen is introduced at a rate such that the volume ratio hydrogen / hydrocarbon is 32 Nl / l / h and at an hourly volume velocity of 8 h-1. Under these conditions, the conversion to olefins is maintained at 85% by weight.
  • the liquid effluent resulting from the hydrogenation stage has the composition described in Table 8:
  • Hydroisomerization / Hydrocracking Step All of the effluent from the hydrogenation step undergoes a hydroisomerization / hydrocracking step, in the presence of fresh hydrogen and a hydroisomerization / hydrocracking catalyst, in which are recycled the residual fraction of initial boiling point greater than 37O 0 C and unreacted hydrogen and light gases.
  • the hydroisomerization / hydrocracking catalyst comprises 0.3% by weight of platinum and a support comprising 29.3% by weight of silica SiO 2 and 70.7% by weight of alumina Al 2 O 3 , a content in Na of 100 ppm by weight, a total pore volume of 0.69 ml / g measured by mercury porosimetry, a volume of mesopores with a mean diameter of 80 A and representing 78% of the total pore volume measured by mercury porosimetry , a volume of macropores, whose diameter is greater than 500 A, representing 22% of the total pore volume measured by mercury porosimetry, and a specific surface area of 300 m 2 / g.
  • the hydroisomerization / hydrocracking step is carried out under the conditions described in Table 9.
  • the effluent resulting from the hydroisomerization / hydrocracking step is then separated in a gas / liquid separator, unreacted hydrogen and light gases, which are recycled in the hydroisomerization / hydrocracking step, so that recovering a liquid effluent.
  • the content of carbon monoxide (CO) generated by passes into the gaseous effluent is 2% by weight.
  • the liquid effluent from the separation step is then sent to a distillation train so as to separate the light products formed during these steps: the gases (C1-C4), a gasoline cut, a diesel cut and a cut kerosene, and also a fraction, called residual fraction, which has an initial boiling point equal to 370 0 C which is recycled in all at the inlet of the hydroisomerization / hydrocracking reactor to maximize the production of diesel and kerosene.
  • the gases C1-C4
  • a gasoline cut a diesel cut and a cut kerosene
  • residual fraction which has an initial boiling point equal to 370 0 C which is recycled in all at the inlet of the hydroisomerization / hydrocracking reactor to maximize the production of diesel and kerosene.
  • Example 1 thus makes it possible, by the use of ion exchange resin upstream of the hydrotreatment and hydroisomerization / hydrocracking steps, to reduce the total oxygen content of the feedstock. and thus to limit the formation of carbon monoxide (CO) from the decomposition of the oxygenates present in the feed in the hydroisomerization / hydrocracking section.
  • carbon monoxide (CO) is an inhibitor of the metal compounds present on the hydroisomerization / hydrocracking catalyst, and its content must be minimized so as not to require an increase in temperature to compensate for the decrease in activity and maintain the conversion.
  • the process according to the invention allows a reduction in the production of carbon monoxide (CO) (1.1% by weight) by the implementation of step b) according to the invention compared to a process not according to the invention does not implement said step of passing on at least one ion exchange resin and allows a decrease in the temperatures used in the hydrogenation step and hydroisomerization / hydrocracking to obtain the same conversion of 85% to products with a boiling point greater than or equal to 370 ° C. in products with boiling points below 370 ° C.
  • CO carbon monoxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for the production of middle distillates from a paraffin feed produced by means of Fischer-Tropsch synthesis and divided into two fractions, namely a light fraction, called cold condensate, and a heavy fraction, called waxes. The method comprises the following steps: (a) the fractionation of the cold condensate fraction into a gas fraction C4- and an intermediate fraction having an initial boiling point of between 15 and 40 °C and a final boiling point of between 300 and 450 °C; (b) the passage of the intermediate fraction over at least one ion exchange resin; (c) the elimination of at least part of the water from the effluent originating from step (b); (d) the decontamination of the heavy fraction, called waxes, by means of passage over a guard bed; (e) the recombination of the purified intermediate fraction and the effluent from step (d) in order to obtain a purified fraction C5+; (f) the hydrogenation of the unsaturated compounds of the purified fraction C5+; (g) the hydroisomerisation/hydrocracking of the effluent from step (f); (h) the separation and recycling in the hydroisomerisation/hydrocracking step of the unreacted hydrogen and the light gases; and (i) the distillation of the effluent from step (h).

Description

PROCEDE DE PRODUCTION DE DISTILLATS MOYENS PAR HYDROISOMERISATION ET HYDROCRAQUAGE D'UNE FRACTION LOURDE ISSUE D'UN EFFLUENT FISCHER-TROPSCH PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT
METTANT EN OEUVRE UNE RESINEIMPLEMENTING A RESIN
Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H2) est transformé catalytiquement en produits oxygénés et en hydrocarbures essentiellement linéaires sous forme gazeuse, liquide ou solide, ces produits constituent la charge du procédé selon l'invention. La charge paraffinique produite par synthèse Fischer-Tropsch mise en oeuvre dans le procédé selon l'invention est produit à partir d'un gaz de synthèse dans le procédé fischer Tropsch, le gaz de synthèse (CO+H2) est avantageusement produit selon trois voies. Dans un mode de réalisation préféré, le gaz de synthèse (CO+H2) est produit à partir de gaz naturel selon la voie GTL aussi appelée selon la terminologie anglo-saxonne gas- to-liquid. Dans un autre mode de réalisation préféré, le gaz de synthèse (CO+H2) est produit à partir de charbon selon la voie CTL aussi appelée selon la terminologie anglo-saxonne coal- to- liquid.In the Fischer-Tropsch process, the synthesis gas (CO + H2) is catalytically converted into oxygenates and substantially linear hydrocarbons in gaseous, liquid or solid form, these products constitute the charge of the process according to the invention. The paraffinic feedstock produced by Fischer-Tropsch synthesis used in the process according to the invention is produced from a synthesis gas in the Fischer Tropsch process, the synthesis gas (CO + H2) is advantageously produced in three ways. . In a preferred embodiment, the synthesis gas (CO + H2) is produced from natural gas according to the GTL route, also known in the English-German gas-to-liquid terminology. In another preferred embodiment, the synthesis gas (CO + H2) is produced from coal according to the CTL route, also known in the Anglo-Saxon coal-liquid terminology.
Dans un autre mode de réalisation préféré, le gaz de synthèse (CO+H2) est produit à partir de biomasse selon la voie BTL aussi appelée selon la terminologie anglo-saxonne biomass- to-liquid.In another preferred embodiment, the synthesis gas (CO + H2) is produced from biomass according to the BTL pathway, also called according to the Anglo-Saxon biomass-to-liquid terminology.
Cependant, ces produits, principalement constitués de normales paraffines, ne peuvent être utilisés tels quels, notamment à cause de leurs propriétés de tenue à froid peu compatibles avec les utilisations habituelles des coupes pétrolières. Par exemple, le point d'écoulement d'un hydrocarbure linéaire contenant 20 atomes de carbone par molécule (température d'ébullition égale à 3400C environ c'est à dire souvent comprise dans la coupe distillât moyen) est de +37°C environ ce qui rend son utilisation impossible, la spécification étant de -15°C pour le gasoil. Ainsi, les hydrocarbures issus du procédé Fischer-Tropsch comprenant majoritairement des n-paraffines doivent être transformés en produits plus valorisables tels que par exemple le gazole, kérosène, qui sont obtenus, par exemple, après des réactions catalytiques d'hydrocraquage/hydroisomérisation. En revanche, ils peuvent présenter une teneur non négligeable en composés insaturés de type oléfiniques et produits oxygénés (tels que des alcools, acides carboxyliques, cétones, aldéhydes et esters). Ces composés oxygénés et insaturés sont davantage concentrés dans les fractions légères. Ainsi dans la fraction C5+ correspondant aux produits bouillant à une température d'ébullition initiale comprise entre 15°C et 40°C, ces composés représentent entre 10-20% en poids de composés insaturés de type oléfiniques et entre 5-10% en poids de composés oxygénés.However, these products, mainly made of normal paraffins, can not be used as such, in particular because of their cold-holding properties that are not very compatible with the usual uses of petroleum fractions. For example, the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule (boiling point equal to about 340 ° C., that is often included in the middle distillate cut) is + 37 ° C. about which makes its use impossible, the specification being -15 ° C for diesel. Thus, the hydrocarbons from the Fischer-Tropsch process comprising mainly n-paraffins must be converted into more valuable products such as, for example, gas oil, kerosene, which are obtained, for example, after catalytic hydrocracking / hydroisomerization reactions. On the other hand, they may have a significant content of unsaturated compounds of olefinic type and oxygenated products (such as alcohols, carboxylic acids, ketones, aldehydes and esters). These oxygenated and unsaturated compounds are more concentrated in the light fractions. Thus, in the C5 + fraction corresponding to the products boiling at an initial boiling point of between 15 ° C. and 40 ° C., these compounds represent between 10-20% by weight of olefinic type unsaturated compounds and between 5-10% by weight. of oxygenated compounds.
Ces produits sont généralement exempts d'impuretés hétéroatomiques telles que le soufre, l'azote mais peuvent contenir de faibles quantités de Fe, Co, Zn, Ni ou Mo provenant de la dissolution de fines de catalyseur par les acides carboxyliques. Ces métaux peuvent former des complexes avec les composés oxygénés. Lesdits produits ne contiennent pratiquement peu ou pas d'aromatiques, de naphtènes et plus généralement de cycles en particulier dans le cas de catalyseurs au cobalt.These products are generally free of heteroatomic impurities such as sulfur, nitrogen but may contain small amounts of Fe, Co, Zn, Ni or Mo from the dissolution of catalyst fines by the carboxylic acids. These metals can form complexes with oxygenates. These products practically do not contain little or no aromatics, naphthenes and more generally cycles especially in the case of cobalt catalysts.
L'hydrogénation des composés insaturés de type oléfiniques présents dans les hydrocarbures issus du procédé Fischer-Tropsch est une réaction fortement exothermique. Ainsi dans les conditions opératoires sévères d'hydrocraquage/hydroisomérisation, la transformation desdits composés insaturés peut avoir un impact négatif sur l'étape d'hydrocraquage tel un emballement thermique de la réaction, un cokage important du catalyseur ou la formation de gomme par oligomérisation. Afin de protéger l'étape d'hydrocraquage, une étape d'hydrotraitement est réalisée dans des conditions moins sévères que celles de l'hydrocraquage. Or, les impuretés de la charge, les composés oxygénés et les métaux (Fe1 Co, Zn, Ni, Mo) ont un effet néfaste non seulement sur l'activité des catalyseurs d'hydrotraitement et d'hydrocraquage mais aussi sur la stabilité du catalyseur d'hydrotraitement. En effet, dans le réacteur d'hydrotraitement, les conditions opératoires de température sont telles que les composés oxygénés ne se décomposent pas mais s'adsorbent sur le catalyseur et forme du coke. Dans la section hydrocraquage, les conditions opératoires sévères engendrent la décomposition des composés oxygénés en eau, en monoxyde de carbone (CO) et en dioxyde de carbone (C02) qui sont des inhibiteurs des fonctions acides (eau) et de la fonction hydrogénante (CO, CO2) du catalyseur d'hydrocraquage et qui en modifie alors l'activité et la sélectivité en distillât moyen. Par conséquent, la présence de composés oxygénés de type alcools ou acides présents dans les charges nécessite une augmentation de la température dans l'étape d'hydrotraitement et d'hydrocraquage pour compenser la baisse d'activité et maintenir la conversion. De plus, les acides carboxyliques peuvent extraire les particules actives des catalyseurs d'hydrotraitement et d'hydrocraquage, diminuant alors la durée de vie desdits catalyseurs. De même, les métaux complexés par les composés oxygénés se décomposent sur le site actif desdits catalyseurs d'hydrotraitement et d'hydroisomérisation/hydrocraquage en présence d'hydrogène et empoisonnent très sélectivement les sites actifs desdits catalyseurs.The hydrogenation of the olefinic unsaturated compounds present in the Fischer-Tropsch hydrocarbons is a strongly exothermic reaction. Thus, under the severe hydrocracking / hydroisomerization operating conditions, the transformation of said unsaturated compounds may have a negative impact on the hydrocracking step such as a thermal runaway of the reaction, a large coking of the catalyst or gum formation by oligomerization. In order to protect the hydrocracking step, a hydrotreatment step is performed under less severe conditions than those for hydrocracking. However, the impurities of the feedstock, the oxygenated compounds and the metals (Fe 1 Co, Zn, Ni, Mo) have a detrimental effect not only on the activity of the hydrotreatment and hydrocracking catalysts but also on the stability of the feedstock. hydrotreatment catalyst. Indeed, in the hydrotreatment reactor, the operating temperature conditions are such that the oxygenated compounds do not decompose but adsorb on the catalyst and form coke. In the hydrocracking section, the severe operating conditions cause the decomposition of the oxygenated compounds into water, carbon monoxide (CO) and carbon dioxide (CO2), which are inhibitors of the acid functions (water) and the hydrogenating function (CO). , CO 2 ) of the hydrocracking catalyst and which then modifies the activity and selectivity of middle distillate. Therefore, the presence of oxygenated alcohols or acids present in the feeds requires an increase in the temperature in the hydrotreatment and hydrocracking stage to compensate for the decrease in activity and to maintain the conversion. In addition, the carboxylic acids can extract the active particles from the hydrotreatment and hydrocracking catalysts, thereby decreasing the life of said catalysts. Similarly, the metals complexed by the oxygenated compounds are decomposed on the active site of said hydrotreatment and hydroisomerization / hydrocracking catalysts in the presence of hydrogen and very selectively poison the active sites of said catalysts.
Un des objectifs de l'invention est donc de diminuer la teneur en oxygène total de la charge et donc de limiter les effets inhibiteurs des composés oxygénés et ainsi de limiter l'augmentation de température pour compenser la baisse d'activité et maintenir la conversion sur les deux étapes d'hydrotraitement et d'hydrocraquage. La demanderesse a donc mis en oeuvre en amont de l'étape d'hydrotraitement et de façon à augmenter la durée de vie du catalyseur d'hydrotraitement et du catalyseur d'hydrocraquage une étape permettant, simultanément ou non, de transformer sur une résine échangeuse d'ions, les alcools et acides carboxyliques constituant les composés oxygénés en ester et de capter les métaux complexés par lesdits composés oxygénés.One of the objectives of the invention is therefore to reduce the total oxygen content of the feedstock and thus to limit the inhibitory effects of the oxygenated compounds and thus to limit the increase in temperature to compensate for the drop in activity and to maintain the conversion on the two stages of hydrotreatment and hydrocracking. The Applicant therefore implemented upstream of the hydrotreatment step and in order to increase the life of the hydrotreatment catalyst and the hydrocracking catalyst a step allowing, simultaneously or not, to transform on a resin exchange of ions, the alcohols and carboxylic acids constituting the oxygenated compounds in ester and of capturing the metals complexed by said oxygenated compounds.
Cette étape est suivie d'une séparation d'eau avant l'étape d'hydrotraitement qui permet de diminuer la teneur en oxygène total et donc de limiter les effets inhibiteurs des composés oxygénés et ainsi de limiter l'augmentation de température pour compenser la baisse d'activité et maintenir la conversion sur les deux étapes d'hydrotraitement et d'hydrocraquage. La séparation de l'eau permet également de laver et capter du CO et CO2 dissous dans la charge, qui sont des inhibiteurs.This step is followed by a separation of water before the hydrotreatment step which makes it possible to reduce the total oxygen content and thus limit the inhibitory effects of the oxygenated compounds and thus limit the increase in temperature to compensate for the decrease. of activity and maintain the conversion on the two hydrotreatment and hydrocracking stages. The separation of the water also makes it possible to wash and capture CO and CO2 dissolved in the charge, which are inhibitors.
État de la techniqueState of the art
La demande de brevet Shell (EP-583,836) décrit un procédé pour la production de distillats moyens à partir d'une charge obtenue par la synthèse Fischer-Tropsch. Dans ce procédé, la charge issue de la synthèse Fischer-Tropsch peut être traitée dans sa globalité, mais de préférence la fraction C4- est soutirée de la charge de manière à ce que seule la fraction C5+ bouillant à une température supérieure à 15°C soit introduite dans l'étape ultérieure. Ladite charge est soumise à un hydrotraitement pour hydrogéner les oléfines et alcools, en présence d'un fort excès d'hydrogène, de sorte que la conversion de produits bouillant au- dessus de 3700C en produits à point d'ébullition inférieur, soit inférieure à 20%. L'effluent hydrotraité constitué d'hydrocarbures paraffiniques à haut poids moléculaire est, de préférence séparé des composés hydrocarbonés ayant un poids moléculaire bas et en particulier de la fraction C4- avant la deuxième étape d'hydroconversion. Au moins une partie de la fraction restante C5+ est ensuite soumise à une étape d'hydrocraquage/hydroisomérisation avec une conversion de produits bouillant au-dessus de 3700C en produits à point d'ébullition inférieur d'au moins 40% poids. Ni la présence d'impuretés dans la charge, ni la présence d'étapes d'élimination de ces impuretés ne sont mentionnées dans cette demande. La demande de brevet Shell (EP- 583,836) ne traite donc pas du problème de l'élimination des impuretés présent dans la charge issu du procédé Fischer Tropsch.The Shell patent application (EP-583,836) describes a process for the production of middle distillates from a filler obtained by Fischer-Tropsch synthesis. In this process, the feed resulting from the Fischer-Tropsch synthesis can be treated in its entirety, but preferably the C4- fraction is withdrawn from the feedstock so that only the C5 + fraction boiling at a temperature above 15 ° C. be introduced in the subsequent step. Said feedstock is subjected to a hydrotreatment to hydrogenate the olefins and alcohols, in the presence of a large excess of hydrogen, so that the conversion of products boiling above 370 ° C. into products with a lower boiling point is less than 20%. The hydrotreated effluent consisting of high molecular weight paraffinic hydrocarbons is preferably separated from the hydrocarbon compounds having a low molecular weight and in particular the C4- fraction before the second hydroconversion stage. At least part of the remaining C5 + fraction is then subjected to a hydrocracking / hydroisomerization step with a conversion of products boiling above 370 0 C into products with a boiling point of at least 40% by weight. Neither the presence of impurities in the feed nor the presence of removal steps of these impurities are mentioned in this application. The Shell patent application (EP-583,836) therefore does not deal with the problem of eliminating impurities present in the feedstock from the Fischer Tropsch process.
Les demandes de brevet SASOL (WO06/005084) et WO06/005085 traitent de l'élimination de métaux complexés par les composés oxygénés présents dans une charge paraffinique issue du procédé Fischer Tropsch. Ces brevets décrivent la décomposition après adjonction d'eau dans une zone de conversion hydrothermale de ces composés. Cette décomposition est suivie d'un traitement physique permettant d'enlever les métaux après décomposition. Ces demandes nécessitent l'adjonction d'eau au système, la présence de trois étapes (réaction, séparation de l'eau, filtration) et ne touche pas aux oxygénés présents dans la charge. La présente invention permet de réduire le nombre d'étape requise, de supprimer l'ajout d'eau et de réaliser simultanément une transformation de composés oxygénés présents dans la charge.The patent applications SASOL (WO06 / 005084) and WO06 / 005085 deal with the removal of complexed metals by the oxygenated compounds present in a paraffinic filler resulting from the Fischer Tropsch process. These patents describe the decomposition after addition of water in a hydrothermal conversion zone of these compounds. This decomposition followed by physical treatment to remove the metals after decomposition. These requests require the addition of water to the system, the presence of three stages (reaction, separation of water, filtration) and does not affect the oxygenates present in the load. The present invention makes it possible to reduce the number of required steps, to eliminate the addition of water and to simultaneously carry out a conversion of oxygenated compounds present in the feedstock.
Plus précisément, la présente invention concerne un procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch et divisée en deux fractions, une fraction légère, appelée condensât à froid, et une fraction lourde, appelée cires, comprenant les étapes suivantes : a) fractionnement de ladite fraction légère, appelée condensât à froid en deux fractions, une fraction gazeuse C4- bouillant à une température inférieure à 15°C et une fraction intermédiaire ayant un point d'ébullition initial compris entre 15 et 400C et un point d'ébullition final compris entre 300 et 4500C, b) passage sur au moins une résine échangeuse d'ion de ladite fraction intermédiaire, à une température comprise entre 500C et 150 0C, à une pression totale comprise entre 0,7 et 2,5 MPa, à une vitesse volumique horaire comprise entre 0,2 et 2,5 h-1 , c) élimination d'au moins une partie de l'eau de l'effluent issu de l'étape b), d) décontamination par passage sur un premier lit de garde contenant au moins un catalyseur de lit de garde de ladite fraction lourde appelée cires, e) recombinaison de la fraction intermédiaire purifiée issue de l'étape c) et de l'effluent issu de l'étape d) pour obtenir une fraction C5+ purifiée, f) hydrogénation des composés insaturés de type oléfiniques d'au moins une partie de la fraction C5+ purifiée issue de l'étape e) en présence d'hydrogène et d'un catalyseur d'hydrogénation, g) hydroisomérisation/hydrocraquage en présence d'hydrogène et d'un catalyseur d'hydroisomérisation/hydrocraquage d'au moins une partie de l'effluent issu de l'étape f) h) séparation et recyclage dans l'étape g) d'hydroisomérisation/hydrocraquage de l'hydrogène non réagi et des gaz légers, i) distillation de l'effluent issu de l'étape h).More specifically, the present invention relates to a method for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis and divided into two fractions, a light fraction, called cold condensate, and a heavy fraction, called waxes, comprising the steps of: a) fractioning said light fraction, referred to as cold condensate into two fractions, a C4-gas fraction boiling at a temperature below 15 ° C and an intermediate fraction having an initial boiling point of between 15 and 40 0 C and a final boiling point between 300 and 450 0 C, b) passing on at least one ion exchange resin of said intermediate fraction, at a temperature between 50 0 C and 150 0 C, at a total pressure between 0.7 and 2.5 MPa, at an hourly space velocity of between 0.2 and 2.5 h-1; and c) removal of at least a portion of the water from the effluent from the Etap eb), d) decontaminating by passing on a first guard bed containing at least a guard bed catalyst of said heavy fraction called waxes, e) recombination of the purified intermediate fraction from step c) and the effluent from step d) to obtain a purified C5 + fraction, f) hydrogenation of the olefinic unsaturated compounds of at least a portion of the purified C5 + fraction from step e) in the presence of hydrogen and a hydrogenation catalyst, g) hydroisomerization / hydrocracking in the presence of hydrogen and a hydroisomerization / hydrocracking catalyst of at least a portion of the effluent from step f) h) separation and recycling in the step g) hydroisomerization / hydrocracking unreacted hydrogen and light gases, i) distillation of the effluent from step h).
Description détaillée de l'inventionDetailed description of the invention
Dans toute la suite de la description, nous allons détailler les différentes étapes du procédé selon l'invention en se référant aux figures 1 et 2 qui représentent des modes de réalisation préférés du procédé selon l'invention sans en limiter la portée. L'effluent issu de l'unité de synthèse Fischer-Tropsch est, en sortie de l'unité de synthèse Fischer-Tropsch divisé en deux fractions, une fraction légère, appelée condensât à froid (1), et une fraction lourde, appelée cires (11 ).Throughout the rest of the description, we will detail the various steps of the method according to the invention with reference to Figures 1 and 2 which show preferred embodiments of the method according to the invention without limiting the scope. The effluent from the Fischer-Tropsch synthesis unit is, at the output of the Fischer-Tropsch synthesis unit divided into two fractions, a light fraction, called cold condensate (1), and a heavy fraction, called waxes. (11).
Les deux fractions ainsi définies comportent de l'eau, du dioxyde de carbone (CO2), du monoxyde de carbone (CO) et de l'hydrogène (H2) non réagi. De plus, la fraction légère, condensât à froid, contient des composés hydrocarbures légers C1 à C4, appelés fraction C4-, sous forme de gaz.The two fractions thus defined comprise water, carbon dioxide (CO 2 ), carbon monoxide (CO) and unreacted hydrogen (H 2 ). In addition, the light fraction, cold condensate, contains light hydrocarbon compounds C1 to C4, called C4- fraction, in the form of gas.
Étape a)Step a)
Conformément à l'étape a) du procédé selon l'invention, la fraction légère, appelée condensât à froid est fractionnée en deux fractions, une fraction gazeuse C4- bouillant à une température inférieure à 15°C et une fraction intermédiaire ayant un point d'ébullition initial compris entre 15 et 400C et un point d'ébullition final compris entre 300 et 4500C. La fraction légère, appelée condensât à froid (1), entre dans un moyen de fractionnement (2). Le moyen de fractionnement (2) peut être par exemple constitué par des méthodes bien connues de l'homme du métier telles que un ballon de détente ou flash, une distillation ou un strippage. Avantageusement, le moyen de fractionnement est une colonne de distillation permettant l'élimination, en tête de colonne, des composés hydrocarbures légers et gazeux C1 à C4, appelés fraction gazeuse C4- (3), correspondant aux produits bouillant à une température inférieure à 150C, de préférence inférieure à 1O0C et de manière très préférée, inférieure à 00C et permet de récupérer une fraction intermédiaire (5), correspondant aux hydrocarbures C5-C30, ayant un point d'ébullition initial compris entre 15 et 400C et de préférence entre 15 et 25°C et un point d'ébullition final compris entre 300 et 4500C et de préférence entre 380 et 4000C.According to step a) of the process according to the invention, the light fraction, called cold condensate is fractionated into two fractions, a gaseous fraction C4- boiling at a temperature below 15 ° C and an intermediate fraction having a point d initial boiling between 15 and 40 0 C and a final boiling point between 300 and 450 0 C. The light fraction, called cold condensate (1), enters a fractionation means (2). The fractionation means (2) may for example consist of methods well known to those skilled in the art such as a flash or flash tank, distillation or stripping. Advantageously, the fractionation means is a distillation column allowing the elimination, at the top of the column, of light and gaseous hydrocarbon compounds C1 to C4, called gas fraction C4- (3), corresponding to the products boiling at a temperature below 15. 0 C, preferably less than 1O 0 C and very preferably below 0 0 C and to retrieve an intermediate fraction (5) corresponding to the C5-C30 hydrocarbons, having an initial boiling point ranging between 15 and 40 0 C and preferably between 15 and 25 ° C and a final boiling point between 300 and 450 0 C and preferably between 380 and 400 0 C.
Ladite fraction intermédiaire (5) et la fraction lourde appelée cires sont ensuite traitées séparément avant d'être recombinées de manière à obtenir une fraction liquide C5+ purifiée dans la conduite (15), correspondant aux produits bouillant à une température d'ébullition initiale comprise entre 15 et 400C et de préférence ayant une température d'ébullition supérieure ou égale à 20 0C.Said intermediate fraction (5) and the heavy fraction called waxes are then separately treated before being recombined so as to obtain a purified C5 + liquid fraction in line (15), corresponding to products boiling at an initial boiling point between 15 and 40 0 C and preferably having a boiling point greater than or equal to 20 0 C.
De préférence, préalablement à l'étape b) du procédé selon l'invention, la fraction intermédiaire (5) ayant un point d'ébullition initial compris entre 15 et 40°C et un point d'ébullition final compris entre 300 et 4500C subit une étape de décontamination optionnelle dans un réacteur (34), représenté sur la figure 2, par passage sur un lit de garde optionnel contenant au moins un catalyseur de lit de garde. Les modes de réalisation de ladite étape de décontamination optionnelle ainsi que les catalyseurs de lit de garde utilisés sont les mêmes que ceux utilisés dans l'étape d) de décontamination du procédé selon l'invention et sont décrits plus bas, dans l'étape d).Preferably, prior to step b) of the process according to the invention, the intermediate fraction (5) having an initial boiling point of between 15 and 40 ° C and a final boiling point between 300 and 450 0 C undergoes an optional decontamination step in a reactor (34), shown in Figure 2, by passage over an optional guard bed containing at least a guard bed catalyst. The embodiments of said optional decontamination step as well as the guard bed catalysts used are the same as those used in step d) of decontamination of the process according to the invention and are described below, in step d ).
Étape b)Step b)
Conformément à l'étape b) du procédé selon l'invention, ladite fraction intermédiaire (5) ayant un point d'ébullition initial compris entre 15 et 40cC et un point d'ébullition final compris entre 300 et 45O0C, éventuellement préalablement décontaminée par passage sur un lit de garde, passe sur au moins une résine échangeuse d'ions permettant l'estérification des alcools et acides carboxyliques en ester et/ou la captation des métaux dissous dans la charge, à une température comprise entre 500C et 1500C et de préférence entre 800C et 150 0C, à une pression totale comprise entre 0,7 et 2,5 MPa, à une vitesse volumique horaire comprise entre 0,2 et 2,5 h-1 ,According to step b) of the process according to the invention, said intermediate fraction (5) having an initial boiling point of between 15 and 40 c C and a final boiling point between 300 and 45O 0 C, optionally previously decontaminated by passage over a guard bed, passes over at least one ion exchange resin for the esterification of alcohols and carboxylic acids to ester and / or the capture of dissolved metals in the feed, at a temperature between 50 ° C. C and 150 ° C. and preferably between 80 ° C. and 150 ° C., at a total pressure of between 0.7 and 2.5 MPa, at an hourly space velocity of between 0.2 and 2.5 h -1,
L'étape b) selon l'invention peut avantageusement être mise en oeuvre selon deux modes de réalisation distincts, à savoir, soit dans un seul réacteur (6) sur une seule résine échangeuse d'ions avantageusement utilisée pour réaliser simultanément l'estérification des alcools et acides carboxyliques en ester et la captation des métaux dissous dans la charge, soit dans deux réacteurs différents (non représentés sur les figures) sur deux résines échangeuses d'ions de nature différente, l'une ayant pour fonction spécifique l'estérification des alcools et acides carboxyliques et l'autre la captation des métaux dissous dans la charge.Step b) according to the invention can advantageously be implemented according to two distinct embodiments, namely, either in a single reactor (6) on a single ion exchange resin advantageously used to simultaneously perform the esterification of the alcohols and carboxylic acids to ester and the uptake of dissolved metals in the feed, either in two different reactors (not shown in the figures) on two different ion exchange resins, one whose specific function is the esterification of alcohols and carboxylic acids and the other the uptake of dissolved metals in the feed.
Selon un premier mode de réalisation, l'étape b) consiste avantageusement en le passage de ladite fraction intermédiaire (5) sur une seule résine échangeuse d'ions dans un seul réacteur (6) permettant de réaliser simultanément l'estérification des alcools et acides carboxyliques en ester et la captation des métaux dissous dans la charge.According to a first embodiment, step b) advantageously consists in the passage of said intermediate fraction (5) on a single ion exchange resin in a single reactor (6) making it possible simultaneously to carry out the esterification of the alcohols and acids carboxylic esters and the uptake of dissolved metals into the feedstock.
De préférence, ladite résine est mise en oeuvre à une température comprise entre 800C et 150°C et manière préférée entre 80 et 1300C, à une pression comprise entre 1 et 2 MPa et de manière préférée entre 1 et 1,5 MPa et à une vitesse volumique horaire comprise entre 0,5 et 2 h-1 et de manière préférée entre 0,5 et 1,5 h-1.Preferably, said resin is used at a temperature of between 80 ° C. and 150 ° C. and preferably between 80 ° and 130 ° C., at a pressure of between 1 and 2 MPa and preferably between 1 and 1.5 ° C. MPa and at an hourly volume velocity of between 0.5 and 2 h -1 and preferably between 0.5 and 1.5 h -1.
Dans ce cas, les composés oxygénés, acides carboxyliques et alcools s'adsorbent sur les sites actifs de ladite résine et sont estérifiés et les composés cationiques et métalliques présents dans ladite fraction paraffinique liquide C5+ sont éliminés par adsorption ou par échange ionique. Ladite résine, permettant de réaliser simultanément l'estérification des alcools et acides carboxyliques en ester et la captation des métaux dissous dans la charge, comprend avantageusement des groupes sulfoniques acides et est préparée par polymérisation ou co-polymérisation de groupe vinyliques aromatiques suivie d'une sulfonation, lesdits groupes vinyliques aromatiques étant choisis parmi le styrène, le vinyle toluène, le vinyle naphtalène, le vinyle éthyle benzène, le méthyle styrène, le vinyle chlorobenzene et le vinyle xylène, ladite résine présentant un taux de réticulation compris entre 20 et 35%, de préférence entre 25 et 35% et de manière préférée, égale à 30% et une force acide dosée par potentiométrie lors de la neutralisation par une solution de KOH1 de 0,2 à 6 mmol H+ équivalent / g et de préférence entre 0,2 et 2,5 mmol H+ équivalent / g.In this case, the oxygenated compounds, carboxylic acids and alcohols are adsorbed on the active sites of said resin and are esterified and the cationic and metallic compounds present in said C5 + liquid paraffinic fraction are removed by adsorption or by ion exchange. said resin, which makes it possible simultaneously to carry out the esterification of the alcohols and carboxylic acids to the ester and to capture the dissolved metals in the feedstock, advantageously comprises acidic sulphonic groups and is prepared by polymerization or co-polymerisation of vinyl aromatic groups followed by sulphonation said aromatic vinyl groups being selected from styrene, vinyl toluene, vinyl naphthalene, vinyl ethyl benzene, methyl styrene, vinyl chlorobenzene and vinyl xylene, said resin having a degree of crosslinking of between 20 and 35%, preferably between 25 and 35% and preferably equal to 30% and an acidic strength determined by potentiometry during neutralization with a KOH 1 solution of 0.2 to 6 mmol H + equivalent / g and preferably between 0, 2 and 2.5 mmol H + equivalent / g.
Ladite résine échangeuse d'ion acide contient avantageusement entre 1 et 2 groupes sulfoniques terminaux par groupe aromatique. De préférence, ladite résine a une taille comprise entre 0,15 et 1,5 mm. La taille de la résine est le diamètre de la sphère englobant la particule de résine. On mesure les classes de taille de résine par tamisages sur des tamis adaptés selon une technique connue de l'homme du métier.Said acid ion exchange resin advantageously contains between 1 and 2 terminal sulphonic groups per aromatic group. Preferably, said resin has a size between 0.15 and 1.5 mm. The size of the resin is the diameter of the sphere encompassing the resin particle. Resin size classes are measured by sieving on sieves adapted according to a technique known to those skilled in the art.
Une résine préférée est une résine constituée par des co polymères de mono vinyle aromatiques et poly vinyle aromatiques, et de manière très préférée, de copolymère de di- vinyle benzène et de polystyrène présentant un taux de réticulation compris entre 20 et 35% et de préférence entre 25 et 35% et de manière préférée, égale à 30% et une force acide, représentant le nombre de sites actifs de ladite résine, dosée par potentiométrie lors de la neutralisation par une solution de KOH, compris entre 0,2 à 6 mmol H+ équivalent / g et de préférence compris entre 0,2 et 2, 5 mmol H+ équivalent / g.A preferred resin is a resin consisting of aromatic vinyl mono vinyl aromatic poly vinyl copolymers, and very preferably, copolymer of vinylbenzene and polystyrene having a degree of crosslinking of between 20 and 35% and preferably between 25 and 35% and preferably equal to 30% and an acidic force, representing the number of active sites of said resin, assayed by potentiometry during neutralization with a KOH solution, of between 0.2 and 6 mmol. H + equivalent / g and preferably between 0.2 and 2.5 mmol H + equivalent / g.
Une autre résine préférée permettant simultanément l'estérification des alcools et acides carboxyliques et la captation des métaux est une résine constituée d'un polysiloxane greffé par des groupements acides de type alkylsulfoniques (du type -CH2-CH2-CH2-SO3H), de taille comprise entre 0,5 et 1,2 mm et de force acide représentant le nombre de sites actifs de ladite résine et dosée par potentiométrie lors de la neutralisation par une solution de KOH, est de 0,4 à 1 ,5 mmol H+ équivalent / g.Another preferred resin which simultaneously allows the esterification of alcohols and carboxylic acids and the uptake of metals is a resin consisting of a polysiloxane grafted with alkylsulphonic acid groups (of the type -CH 2 -CH 2 -CH 2 -SO 3 H), which is of considerable size. between 0.5 and 1.2 mm and acid strength representing the number of active sites of said resin and assayed by potentiometry during neutralization with a KOH solution, is 0.4 to 1.5 mmol H + equivalent / boy Wut.
Au cours de cette étape et dans ces conditions, 95% des acides carboxyliques sont estérifiés. L'analyse de la conversion des acides est donnée par différence de titration à la potasse entre la charge et l'effluent selon une technique connue de l'homme du métier. On citera par exemple les méthodes ASTM D 664, D 3242 ou D 974 comme méthode permettant de réaliser cette analyse.During this step and under these conditions, 95% of the carboxylic acids are esterified. The analysis of the acid conversion is given by difference in potash titration between the feedstock and the effluent according to a technique known to those skilled in the art. We for example, ASTM methods D 664, D 3242 or D 974 as a method for carrying out this analysis.
Cette résine peut avantageusement être mise en oeuvre en lit fixe entre des grilles placées dans un réacteur tubulaire ascendant ou descendant. De préférence, ladite résine est mise en oeuvre dans un réacteur en lit ascendant, le liquide étant injecté en bas du réacteur à une vitesse surfacique suffisante pour provoquer une expansion du lit de résine sans toutefois la transporter ni la fluidiser. Ce mode de réalisation, par rapport au lit fixe, permet d'atténuer les effets des matières colmatantes et d'augmenter sensiblement la durée des cycles de vie de la résine.This resin may advantageously be used in a fixed bed between grids placed in an upward or downward tubular reactor. Preferably, said resin is used in an upflow reactor, the liquid being injected down the reactor at a surface speed sufficient to cause expansion of the resin bed without transporting or fluidizing it. This embodiment, with respect to the fixed bed, makes it possible to attenuate the effects of the clogging materials and to substantially increase the life cycle of the resin.
Selon un deuxième mode de réalisation, l'étape b) consiste avantageusement en le passage de ladite fraction intermédiaire (5), dans deux réacteurs différents, sur deux résines échangeuses d'ions distinctes, de nature différente, l'une ayant pour fonction spécifique l'estérification des alcools et acides carboxyliques et l'autre la captation des métaux dissous dans la charge.According to a second embodiment, step b) advantageously consists in the passage of said intermediate fraction (5), in two different reactors, on two different ion exchange resins, of a different nature, one having the specific function the esterification of alcohols and carboxylic acids and the other the uptake of dissolved metals in the feedstock.
De préférence, le réacteur contenant la résine échangeuse d'ions permettant la captation des métaux est mise en oeuvre en amont du réacteur contenant la résine échangeuse d'ions permettant l'estérification des alcools et acides carboxyliques.Preferably, the reactor containing the ion exchange resin for capturing the metals is used upstream of the reactor containing the ion exchange resin for the esterification of alcohols and carboxylic acids.
Dans ce cas, les composés cationiques et métalliques présents dans ladite fraction ladite fraction intermédiaire (5) sont éliminés par adsorption ou par échange ionique sur une première résine échangeuse d'ions. Cette première résine spécifique à la captation des métaux comprend avantageusement des groupes sulfoniques acides et est avantageusement préparée par polymérisation ou co-polymérisation de groupe vinyliques aromatiques suivi d'une sulfonation, lesdits groupes vinyliques aromatiques étant avantageusement choisis parmi le styrène, le vinyle toluène, le vinyle naphtalène, le vinyle éthyle benzène, le méthyle styrène, le vinyle chlorobenzene, et le vinyle xylène, ladite résine présentant un taux de réticulation compris entre 1 et 20% et de préférence entre 2 et 8% et une force acide, représentant le nombre de sites actifs de ladite résine, dosée par potentiométrie lors de la neutralisation par une solution de KOH, compris entre 1 et 15 mmol H+ équivalent / g et de préférence compris entre 2,5 et 10 mmol H+ équivalent / g.In this case, the cationic and metallic compounds present in said fraction said intermediate fraction (5) are removed by adsorption or by ion exchange on a first ion exchange resin. This first resin specific for the capture of metals advantageously comprises acidic sulphonic groups and is advantageously prepared by polymerization or co-polymerization of vinyl aromatic groups followed by a sulphonation, said aromatic vinyl groups being advantageously chosen from styrene, vinyl toluene, naphthalene vinyl, vinyl ethyl benzene, methyl styrene, vinyl chlorobenzene, and vinyl xylene, said resin having a degree of crosslinking of between 1 and 20% and preferably between 2 and 8% and an acidic strength, representing the number of active sites of said resin, assayed by potentiometry during neutralization with a KOH solution, of between 1 and 15 mmol H + equivalent / g and preferably between 2.5 and 10 mmol H + equivalent / g.
Ladite première résine échangeuse d'ion acide contient avantageusement entre 1 et 2 groupes sulfoniques terminaux par groupe aromatique. De préférence, ladite résine a une taille comprise entre 0,15 et 1,5 mm. La taille de la résine est le diamètre de la sphère englobant la particule de résine. On mesure les classes de taille de résine par tamisages sur des tamis adaptés selon une technique connue de l'homme du métier.Said first acidic ion exchange resin advantageously contains between 1 and 2 terminal sulphonic groups per aromatic group. Preferably, said resin has a size between 0.15 and 1.5 mm. The size of the resin is the diameter of the sphere encompassing the resin particle. Resin size classes are measured by sieving on sieves adapted according to a technique known to those skilled in the art.
De préférence, la première résine est une résine constituée par des co polymères de mono vinyle aromatiques et poly vinyle aromatiques, et de manière très préférée, de copolymère de di-vinyle benzène et de polystyrène présentant un taux de réticulation compris entre 1 et 20% et une force acide représentant le nombre de sites actifs de ladite résine et dosée par potentiométrie lors de la neutralisation par une solution de KOH, et de 1 et 15 mmol H+ équivalent / g et de préférence compris entre 2,5 et 10 mmol H+ équivalent / g.Preferably, the first resin is a resin consisting of aromatic vinyl mono vinyl aromatic polymers and, very preferably, di-vinylbenzene copolymer and polystyrene having a degree of crosslinking of between 1 and 20% and an acidic force representing the number of active sites of said resin and assayed by potentiometry during the neutralization with a KOH solution, and 1 and 15 mmol H + equivalent / g and preferably between 2.5 and 10 mmol H + equivalent / boy Wut.
De préférence, ladite première résine est mise en oeuvre à une température comprise entre 5O0C et 1100C et de préférence entre 80 et 1100C, à une pression comprise entre 1 et 2 MPa et de manière préférée comprise entre 1 et 1,5 MPa et à une vitesse volumique horaire comprise entre 0,2 et 1 ,5 h-1 et de manière préférée entre 0,5 et 1 ,5 h-1.Preferably, said first resin is used at a temperature of between 5O 0 C and 110 0 C and preferably between 80 and 110 0 C, at a pressure of between 1 and 2 MPa and preferably between 1 and 1 , 5 MPa and at an hourly space velocity of between 0.2 and 1.5 h -1 and preferably between 0.5 and 1.5 h -1.
L'effluent issu du réacteur contenant ladite première résine spécifique à la captation des métaux est ensuite avantageusement introduit dans un deuxième réacteur situé en aval du premier réacteur et contenant une deuxième résine de nature différente et spécifique à l'estérification des alcools et acides carboxyliques contenus dans ledit effluent.The effluent from the reactor containing said first resin specific for the capture of metals is then advantageously introduced into a second reactor located downstream of the first reactor and containing a second resin of different nature and specific to the esterification of the alcohols and carboxylic acids contained in said effluent.
Les composés oxygénés, acides carboxyliques et alcools s'adsorbent sur les sites actifs de ladite deuxième résine et sont estérifiés et les composés cationiques et métalliques présents dans ladite fraction intermédiaire (5) sont éliminés par adsorption ou par échange ionique. Ladite deuxième résine, permettant de réaliser l'estérificatipn des alcools et acides carboxyliques en ester comprend avantageusement des groupes sulfoniques acides et est avantageusement préparée par polymérisation ou co-polymérisation de groupe vinyliques aromatiques suivi d'une sulfonation. Les groupes vinyliques aromatiques sont avantageusement choisis parmi le styrène, le vinyle toluène, le vinyle naphtalène, le vinyle éthyle benzène, le méthyle styrène, le vinyle chlorobenzene et le vinyle xylène, ladite deuxième résine présentant un taux de réticulation, c'est à dire un rapport masse de copolymère/masse de polymère avantageusement compris entre 20 et 35% et de préférence entre 25 et 35% et de manière préférée, égal à 30% et une force acide, représentant le nombre de sites actifs de ladite résine, dosée par potentiométrie lors de la neutralisation par une solution de KOH, comprise entre 0,2 à 6 mmol H+ équivalent / g et de préférence compris entre 0,2 et 6 mmol H+ équivalent / g.The oxygenated compounds, carboxylic acids and alcohols adsorb to the active sites of said second resin and are esterified and the cationic and metal compounds present in said intermediate fraction (5) are removed by adsorption or ion exchange. Said second resin, which makes it possible to carry out the esterification of the alcohols and carboxylic acids to the ester, advantageously comprises acidic sulphonic groups and is advantageously prepared by polymerization or co-polymerization of vinyl aromatic groups followed by sulphonation. The vinyl aromatic groups are advantageously chosen from styrene, vinyl toluene, vinyl naphthalene, vinyl ethyl benzene, methyl styrene, vinyl chlorobenzene and vinyl xylene, said second resin having a degree of crosslinking, ie a copolymer mass / polymer mass ratio advantageously between 20 and 35% and preferably between 25 and 35% and preferably equal to 30% and an acidic force, representing the number of active sites of said resin, assayed by potentiometry during the neutralization by a KOH solution, between 0.2 to 6 mmol H + equivalent / g and preferably between 0.2 and 6 mmol H + equivalent / g.
Ladite deuxième résine échangeuse d'ion acide contient avantageusement entre 1 et 2 groupes sulfoniques terminaux par groupe aromatique. De préférence, ladite deuxième résine à une taille comprise entre 0, 15 et 1 ,5 mm.Said second acid ion exchange resin advantageously contains between 1 and 2 terminal sulphonic groups per aromatic group. Preferably, said second resin has a size of between 0.15 and 1.5 mm.
Une deuxième résine préférée est une résine constituée par des co polymères de mono vinyle aromatiques et poly vinyle aromatiques, et de manière très préférée, de copolymère de di-vinyle benzène et de polystyrène présentant un taux de réticulation compris entre 20 et 35% et de préférence entre 25 et 35% et de manière préférée, égale à 30% et une force acide, représentant le nombre de sites actifs de ladite résine, dosée par potentiométrie lors de la neutralisation par une solution de KOH, compris entre 0,2 à 6 mmol H+ équivalent / g et de préférence compris entre 0,2 et 6 mmol H+ équivalent / g.A second preferred resin is a resin consisting of aromatic vinyl mono vinyl and aromatic poly vinyl co-polymers, and very preferably, copolymer of di-vinyl benzene and polystyrene having a degree of crosslinking of between 20 and 35% and preferably between 25 and 35% and preferably equal to 30% and an acidic force, representing the number of active sites of said resin, assayed by potentiometry during the neutralization with a KOH solution, of between 0.2 to 6%. mmol H + equivalent / g and preferably between 0.2 and 6 mmol H + equivalent / g.
Une autre deuxième résine préférée permettant simultanément l'estérification des alcools et acides carboxyliques et la captation des métaux est une résine constituée d'un polysiloxane greffé par des groupements acides de type alkylsulfoniques (du type -CH2-CH2-CH2- SO3H), de taille comprise entre 0,5 et 1 ,2 mm et de force acide représentant le nombre de sites actifs de ladite résine et dosée par potentiométrie lors de la neutralisation par une solution de KOH, est de 0,4 à 1 ,5 mmol H+ équivalent / g.Another second preferred resin which simultaneously allows the esterification of alcohols and carboxylic acids and the uptake of metals is a resin consisting of a polysiloxane grafted with alkylsulphonic acid groups (of the -CH2-CH2-CH2-SO3H type), size between 0.5 and 1, 2 mm and acid strength representing the number of active sites of said resin and assayed by potentiometry during the neutralization with a KOH solution, is 0.4 to 1.5 mmol H + equivalent / boy Wut.
De préférence, ladite deuxième résine est mise en oeuvre à une température comprise entre 800C et 1500C et manière préférée entre 80 et 1300C, à une pression comprise entre 1 et 2 MPa et de manière préférée entre 1 et 1,5 MPa et à une vitesse volumique horaire comprise entre 0,5 et 2 h- 1 et de manière préférée entre 0,5 et 1 ,5 h-1.Preferably, said second resin is used at a temperature of between 80 ° C. and 150 ° C. and preferably between 80 ° and 130 ° C., at a pressure of between 1 and 2 MPa and preferably between 1 and 1, 5 MPa and at an hourly space velocity of between 0.5 and 2 h -1 and preferably between 0.5 and 1.5 h -1.
Au cours de cette étape et dans ces conditions, 95% des acides carboxyliques sont estérifiés. L'analyse de la conversion des acides est donnée par différence de titration à la potasse entre la charge et l'effluent. On citera par exemple les méthodes ASTM D 664, D 3242 ou D 974 comme méthode permettant de réaliser cette analyse.During this step and under these conditions, 95% of the carboxylic acids are esterified. The analysis of the acid conversion is given by difference in potash titration between the feedstock and the effluent. For example, ASTM methods D 664, D 3242 or D 974 can be used as a method for carrying out this analysis.
Ces résines peuvent avantageusement être mises en oeuvre en lit fixe entre des grilles placées dans un réacteur tubulaire ascendant ou descendant. De préférence, lesdites résines sont mises en oeuvre dans un réacteur en lit ascendant, le liquide étant injecté en bas du réacteur à une vitesse surfacique suffisante pour provoquer une expansion du lit de résine sans toutefois la transporter ni la fluidiser. Ce mode de réalisation, par rapport au lit fixe, permet d'atténuer les effets des matières comatantes et d'augmenter sensiblement la durée des cycles de vie de la résine.These resins may advantageously be used in a fixed bed between grids placed in a tubular reactor ascending or descending. Preferably, said resins are used in an upflow reactor, the liquid being injected reactor bottom at a surface speed sufficient to cause expansion of the resin bed without transporting or fluidizing it. This embodiment, with respect to the fixed bed, makes it possible to attenuate the effects of the comatant materials and to increase substantially the life cycle duration of the resin.
Dans le cas où ladite fraction intermédiaire (5) passe dans deux réacteurs différents, sur deux résines échangeuses d'ions distinctes, de nature différente, l'une réalisant principalement la captation des métaux, l'autre réalisant principalement l'estérification, on utilise de préférence un réchauffage intermédiaire entre les deux étapes. De préférence, on enlève l'eau formée lors de l'étape d'estérification des acides et des alcools sur la première résine réalisant principalement la captation des métaux pour pousser la réaction d'estérification sur la seconde résine. L'ajout simultané du réchauffage intermédiaire et de la séparation de l'eau favorise globalement la conversion des acides carboxyliques présents dans la charge.In the case where said intermediate fraction (5) passes in two different reactors, on two different ion exchange resins, of different nature, one mainly producing the metal uptake, the other mainly performing the esterification, it is used preferably intermediate heating between the two steps. Preferably, the water formed during the esterification step of the acids and alcohols is removed from the first resin essentially making the uptake of metals to push the esterification reaction onto the second resin. The simultaneous addition of the intermediate reheating and the separation of the water generally favors the conversion of the carboxylic acids present in the charge.
La réaction d'estérification des acides organiques par les alcools présents dans ladite fraction intermédiaire (5) produit de l'eau qui est un composé inhibiteur des catalyseurs d'hydrotraitement et d'hydrocraquage nécessitant une augmentation de la sévérité des conditions opératoires.The esterification reaction of the organic acids with the alcohols present in said intermediate fraction (5) produces water which is an inhibitor compound for hydrotreatment and hydrocracking catalysts requiring an increase in the severity of the operating conditions.
Étape c)Step c)
L'effluent issu de l'étape b) subit ensuite conformément à l'invention une étape d'élimination d'au moins une partie de l'eau formée durant ladite étape b) et de préférence de la totalité de l'eau formée, dans un séparateur (8).The effluent from step b) then undergoes according to the invention a step of removing at least a portion of the water formed during said step b) and preferably all of the water formed, in a separator (8).
Cette eau est de nature acide car elle contient avantageusement les protons échangés lors de la captation des métaux par la résine échangeuse de cations spécifique placée en amont ou par l'unique résine permettant simultanément l'estérification et la captation des métaux.This water is acidic in nature because it advantageously contains the protons exchanged during the uptake of metals by the specific cation exchange resin placed upstream or by the single resin simultaneously allowing the esterification and the uptake of the metals.
Cette eau peut également contenir du CO et du CO2 dissout provenant de la synthèseThis water may also contain CO and dissolved CO2 from the synthesis
Fischer Tropsch. L'eau est éliminée par la conduite (9).Fischer Tropsch. The water is removed by the pipe (9).
On peut également avantageusement ajouter dans ladite étape c) du gaz type azote (N2) ou hydrogène (H2) pour éliminer davantage de CO et CO2 dissous par strippage.It is also advantageously added in said step c) nitrogen (N2) or hydrogen (H2) type gas to remove more CO and CO2 dissolved by stripping.
Dans le cas de l'ajout d'hydrogène, celui ci sert avantageusement de gaz d'appoint pour l'étape d'hydrotraitement.In the case of the addition of hydrogen, it advantageously serves as makeup gas for the hydrotreating step.
Cette étape permet également d'éliminer des produits de type éther légers formés lors de la réaction des alcools sur eux même. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation....This step also makes it possible to eliminate light ether-type products formed during the reaction of the alcohols on themselves. The removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ....
L'effluent issu de l'étape c) d'élimination de l'eau est ensuite recombiné, selon l'étape e) du procédé selon l'invention, avec l'effluent issu de l'étape d) décrite ci-dessous.The effluent from step c) of removing the water is then recombined, according to step e) of the process according to the invention, with the effluent from step d) described below.
Étape d)Step d)
Conformément à l'invention, la fraction lourde appelée cires subit une étape de décontamination dans un réacteur (12) par passage sur un lit de garde contenant au moins un catalyseur de lit de garde.According to the invention, the heavy fraction called wax undergoes a decontamination step in a reactor (12) by passing on a guard bed containing at least a guard bed catalyst.
En effet, la fraction lourde traitée peut éventuellement contenir des particules solides tels que des solides minéraux. Elle peut éventuellement contenir des métaux contenus dans des structures hydrocarbonés tels que des composés organo-métalliques plus ou moins solubles. Par le terme fines, on entend des fines résultant d'une attrition physique ou chimique du catalyseur. Elles peuvent être microniques ou sub-microniques. Ces particules minérales contiennent alors les composants actifs de ces catalyseurs sans que la liste suivante soit limitative : alumine, silice, titane, zircone, oxyde de cobalt, oxyde de fer, tungstène, oxyde de rhuthénium... Ces solides minéraux peuvent se présenter sous la forme d'oxyde mixte calciné : par exemple, alumine-cobalt, alumine-fer, alumine-silice, alumine- zircone, alumine-titane, alumine-silice-cobalt, alumine-zircone-cobaltIndeed, the treated heavy fraction may optionally contain solid particles such as inorganic solids. It may optionally contain metals contained in hydrocarbon structures such as organometallic compounds that are more or less soluble. By the term fines is meant fines resulting from a physical or chemical attrition of the catalyst. They can be micron or sub-micron. These mineral particles then contain the active components of these catalysts without the following list being limiting: alumina, silica, titanium, zirconia, cobalt oxide, iron oxide, tungsten, rhuthenium oxide, etc. These solid minerals may be present under the calcined mixed oxide form: for example, alumina-cobalt, alumina-iron, alumina-silica, alumina-zirconia, alumina-titanium, alumina-silica-cobalt, alumina-zirconia-cobalt
Ladite fraction lourde peut également contenir des métaux au sein de structures hydrocarbonés, pouvant éventuellement contenir de l'oxygène ou des composés organo- métalliques plus ou moins solubles. Plus particulièrement, ces composés peuvent être à base de silicium. Il peut s'agir par exemple des agents anti-moussants utilisés dans le procédé de synthèse. Par exemple, les solutions d'un composé du silicium de type silicone ou émulsion d'huile silicone sont plus particulièrement contenus dans la fraction lourde. Par ailleurs, les fines de catalyseurs décrites ci-dessus peuvent avoir une teneur en silice supérieure à la formulation du catalyseur, résultant de l'interaction intime entre les fines de catalyseurs et des agents anti-moussants décrits ci-dessus.Said heavy fraction may also contain metals within hydrocarbon structures, which may optionally contain oxygen or more or less soluble organometallic compounds. More particularly, these compounds may be based on silicon. It may be for example anti-foaming agents used in the synthesis process. For example, the solutions of a silicon compound of silicon type or silicone oil emulsion are more particularly contained in the heavy fraction. On the other hand, the catalyst fines described above may have a higher silica content than the catalyst formulation resulting from the intimate interaction between the catalyst fines and anti-foaming agents described above.
Le problème qui est alors posé est de réduire la teneur en particules minérales solides et éventuellement réduire la teneur en composés métalliques néfastes pour le catalyseur d'hydroisomérisation-hydrocraquage.The problem that is then posed is to reduce the content of solid mineral particles and possibly reduce the content of harmful metal compounds for the hydroisomerization-hydrocracking catalyst.
Caractéristiques des catalyseurs utilisés dans les lits de garde Les lits de garde contiennent avantageusement au moins un catalyseur.Characteristics of the catalysts used in the guard beds The guard beds advantageously contain at least one catalyst.
Les catalyseurs de lits de garde utilisés dans les étapes c) du procédé selon l'invention et dans l'étape optionnelle de décontamination de ladite fraction intermédiaire peuvent être différents et de préférence identiques. Lesdits catalyseurs de lits de garde sont décrits ci dessous.The guard bed catalysts used in steps c) of the process according to the invention and in the optional step of decontaminating said intermediate fraction may be different and preferably identical. The said guard bed catalysts are described below.
Forme des catalyseursForm of catalysts
Les catalyseurs de lits de garde utilisés dans les étapes c) du procédé selon l'invention et dans l'étape optionnelle de décontamination de ladite fraction intermédiaire peuvent avantageusement avoir la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est utilisée de manière préférée, mais toute autre forme peut être utilisée.The guard bed catalysts used in steps c) of the process according to the invention and in the optional step of decontaminating said intermediate fraction may advantageously be in the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm. The shapes are cylindrical (which can be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings. The cylindrical shape is preferably used, but any other shape may be used.
Afin de remédier à la présence de contaminants et ou de poisons dans la charge, les catalyseurs de garde peuvent, dans un autre de mode de réalisation préféré, avoir des formes géométriques plus particulières afin d'augmenter leur fraction de vide. La fraction de vide de ces catalyseurs est avantageusement comprise entre 0.2 et 0.75. Leur diamètre extérieur peut avantageusement varier entre 1 et 35 mm. Parmi les formes particulières possibles sans que cette liste soit limitative : les cylindres creux, les anneaux creux, les anneaux de Raschig, les cylindres creux dentelés, les cylindres creux crénelés, les roues de charrettes pentaring, les cylindres à multiples trous...In order to remedy the presence of contaminants and / or poisons in the feed, the guard catalysts may, in another preferred embodiment, have more particular geometric shapes in order to increase their void fraction. The vacuum fraction of these catalysts is advantageously between 0.2 and 0.75. Their outer diameter may advantageously vary between 1 and 35 mm. Among the particular forms possible without this list being exhaustive: hollow cylinders, hollow rings, Raschig rings, serrated hollow cylinders, crenellated hollow cylinders, pentaring carts, multi-hole cylinders ...
Phase active Lesdits catalyseurs de lits de garde utilisés dans les étapes c) du procédé selon l'invention et dans l'étape optionnelle de décontamination de ladite fraction intermédiaire peuvent avantageusement avoir été imprégnées par une phase active ou non. De manière préférée, les catalyseurs sont imprégnés par une phase hydro-déshydrogénante. De manière très préférée, la phase CoMo ou NiMo est utilisée. De manière encore plus préférée, la phase NiMo est utilisée.Active Phase The said guard bed catalysts used in steps c) of the process according to the invention and in the optional step of decontaminating said intermediate fraction may advantageously have been impregnated with an active phase or not. Preferably, the catalysts are impregnated with a hydro-dehydrogenation phase. Very preferably, the CoMo or NiMo phase is used. Even more preferably, the NiMo phase is used.
De préférence, les supports desdits catalyseurs de lit de garde sont des oxydes réfractaires poreux, de préférence choisis parmi l'alumine et la silice alumine. Lesdits catalyseurs de lits de garde peuvent avantageusement présenter de la macroporosité.Preferably, the supports of said guard bed catalysts are porous refractory oxides, preferably chosen from alumina and silica-alumina. The said guard bed catalysts may advantageously have macroporosity.
Lesdits catalyseurs comprennent avantageusement un volume mercure macroporeux pour un diamètre moyen à 50 nm qui est supérieur à 0,1 cm3/g, de préférence compris entre 0,125 et 0,175 cm3/g et un volume total supérieur à 0,60 cm3/g, de préférence compris entre 0,625 et 0,8 cm3/g, et est avantageusement imprégné par une phase active, de préférence à base de Nickel et de Molybdène tel que par exemple IΑCT961. Dans ce mode de réalisation préféré, la teneur en Ni en poids d'oxyde est généralement comprise entre 1 etSaid catalysts advantageously comprise a macroporous mercury volume for a mean diameter at 50 nm which is greater than 0.1 cm 3 / g, preferably of between 0.125 and 0.175 cm 3 / g and a total volume of greater than 0.60 cm 3 / g, of preferably between 0.625 and 0.8 cm3 / g, and is advantageously impregnated with an active phase, preferably based on nickel and molybdenum such as for example IΑCT961. In this preferred embodiment, the Ni content by weight of oxide is generally between 1 and
10% et la teneur en Mo en poids d'oxyde est comprise entre 5 et 15 %. Les surfaces exprimées en SBET des supports desdits catalyseurs varient entre 30 m2/g et 220 m2/g.10% and the Mo content by weight of oxide is between 5 and 15%. The surfaces expressed in SBET of the supports of said catalysts vary between 30 m 2 / g and 220 m 2 / g.
Dans un premier mode de réalisation, le lit de garde comprend avantageusement également au moins un autre catalyseur ayant un volume mercure pour un diamètre de pores supérieur à 1 micron supérieur à 0,2 cm3/g et de préférence supérieur à 0,5 cm3/g et un volume mercure pour un diamètre de pores supérieur à 10 microns supérieur à 0,25 cm3/g et de préférence inférieur à 0,4 cm3/g, ledit catalyseur étant avantageusement placé en amont du premier catalyseur de lit de garde décrit ci dessus.In a first embodiment, the guard bed advantageously also comprises at least one other catalyst having a mercury volume for a pore diameter greater than 1 micron greater than 0.2 cm 3 / g and preferably greater than 0.5 cm 3 / and a mercury volume for a pore diameter greater than 10 microns greater than 0.25 cm 3 / g and preferably less than 0.4 cm 3 / g, said catalyst being advantageously placed upstream of the first guard bed catalyst described herein. above.
Dans un deuxième mode de réalisation, le lit de garde comprend avantageusement également au moins un autre catalyseur ayant un volume mercure pour un diamètre de pores supérieur à 50 nm, supérieur à 0,25 cm3/g, le volume mercure pour un diamètre de pores supérieur à 100 nm, supérieur à 0,15 cm3/g et un volume poreux total supérieur à 0,80 cm3/g.In a second embodiment, the guard bed advantageously also comprises at least one other catalyst having a mercury volume for a pore diameter greater than 50 nm, greater than 0.25 cm3 / g, the mercury volume for a pore diameter. greater than 100 nm, greater than 0.15 cm3 / g and a total pore volume greater than 0.80 cm3 / g.
Ledit catalyseur de lit de garde et le catalyseur selon le premier mode de réalisation peuvent de manière avantageuse être associés dans un lit mixte ou un lit combiné. Généralement le catalyseur imprégné de phase active constitue la majorité du lit de garde et le catalyseur selon le premier mode de réalisation préféré est ajouté en complément de 0 à 50% en volume par rapport au premier catalyseur, de manière préférée de 0 à 30 %, de manière encore plus préférée de 1 à 20%. La combinaison dudit catalyseur de lit de garde et du catalyseur selon le premier mode de réalisation ne restreint pas la portée de l'invention. En effet, des catalyseurs utilisables dans les lits de garde peuvent avantageusement être utilisés seuls ou en mélanges et choisis de manière non exhaustive parmi les catalyseurs commercialisés par Norton-Saint-Gobain, par exemple les lits de garde MacroTrap® ou les catalyseurs commercialisés par Axens dans la famille ACT: ACT077, ACT935, ACT961 ou HMC841 , HMC845, HMC941 , HMC945 ou ACT645.Said guard bed catalyst and the catalyst according to the first embodiment can advantageously be combined in a mixed bed or a combined bed. Generally the impregnated active phase catalyst constitutes the majority of the guard bed and the catalyst according to the first preferred embodiment is added in addition to 0 to 50% by volume relative to the first catalyst, preferably from 0 to 30%, even more preferably from 1 to 20%. The combination of said guard bed catalyst and the catalyst according to the first embodiment does not limit the scope of the invention. In fact, catalysts that can be used in the guard beds can advantageously be used alone or in mixtures and chosen in a non-exhaustive manner from the catalysts marketed by Norton-Saint-Gobain, for example the MacroTrap® guard beds or the catalysts marketed by Axens. in the ACT family: ACT077, ACT935, ACT961 or HMC841, HMC845, HMC941, HMC945 or ACT645.
Les lits de garde préférés selon l'invention sont les HMC et IΑCT961. Il peut être particulièrement avantageux de superposer ces catalyseurs dans au moins deux lits différents de hauteur variable. Les catalyseurs ayant le plus fort taux de vide sont de préférence utilisés dans le ou les premiers lits catalytiques en entrée de réacteur catalytique. Il peut également être avantageux d'utiliser au moins deux réacteurs différents pour ces catalyseurs.The preferred guard beds according to the invention are HMC and IΑCT961. It may be particularly advantageous to superpose these catalysts in at least two different beds of variable height. The catalysts having the highest void content are preferably used in the first catalytic bed or first catalytic reactor inlet. It may also be advantageous to use at least two different reactors for these catalysts.
Avantageusement, une association dudit catalyseur de lit de garde avec les catalyseurs selon le premier et le deuxième mode de réalisation est également possible dans un lit mixte ou un lit combiné. Dans ce cas, les catalyseurs sont placés par taux de vide décroissant dans le sens de l'écoulement.Advantageously, a combination of said bed bed catalyst with the catalysts according to the first and second embodiments is also possible in a mixed bed or a combined bed. In this case, the catalysts are placed by decreasing rate of vacuum in the direction of flow.
Après passage sur ledit lit de garde, la teneur en particules solides est inférieure à 20 ppm, de manière préférée inférieure à 10 ppm et de manière encore plus préférée inférieure à 5 ppm. La teneur en Silicium soluble est inférieure à 5 ppm, de manière préférée inférieure à 2 ppm et de manière encore plus préférée, inférieure à 1 ppm.After passing over said guard bed, the content of solid particles is less than 20 ppm, preferably less than 10 ppm and even more preferably less than 5 ppm. The soluble silicon content is less than 5 ppm, preferably less than 2 ppm and even more preferably less than 1 ppm.
De préférence, l'effluent issu de l'étape d) de décontamination par passage sur un lit de garde de ladite fraction lourde appelée cires passe, éventuellement, avant l'étape de recombinaison e) de la fraction intermédiaire purifiée issue de l'étape c) (conduite 10) et dudit effluent issu de l'étape d), sur au moins une résine échangeuse d'ion à une température comprise entre 5O0C et 150 0C et de préférence entre 80 et 150 0C, à une pression totale comprise entre 0,7 et 2,5 MPa, à une vitesse volumique horaire comprise entre 0,2 et 2,5 h-1. Cette étape optionnelle de décontamination peut avantageusement être mise en oeuvre selon deux modes de réalisation distincts, à savoir, soit dans un seul réacteur (35) (représenté sur la figure 2) sur une seule résine échangeuse d'ions avantageusement utilisée pour réaliser simultanément l'estérification des alcools et acides carboxyliques en ester et la captation des métaux dissous dans la charge, soit dans deux réacteurs différents (non représenté sur les figures) sur deux résines échangeuses d'ions de nature différente, l'une ayant pour fonction spécifique l'estérification des alcools et acides carboxyliques et l'autre la captation des métaux dissous dans la charge.Preferably, the effluent from step d) of decontamination by passing over a guard bed of said heavy fraction called wax passes, optionally, before the recombination step e) of the purified intermediate fraction resulting from the step c) (line 10) and said effluent from step d) over at least one ion exchange resin at a temperature between 5O 0 C and 150 0 C and preferably between 80 and 150 0 C at a total pressure between 0.7 and 2.5 MPa, at an hourly space velocity of between 0.2 and 2.5 h -1. This optional decontamination step may advantageously be carried out according to two distinct embodiments, namely, either in a single reactor (35) (shown in FIG. 2) on a single ion exchange resin advantageously used to simultaneously produce the esterification of the alcohols and carboxylic acids to the ester and the uptake of the dissolved metals in the feedstock, either in two different reactors (not shown in the figures) on two ion exchange resins of different nature, one having the specific function l esterification of alcohols and carboxylic acids and the other the uptake of dissolved metals in the feedstock.
Les modes de réalisation ci dessus ainsi que les résines utilisées sont les mêmes que celles utilisées dans l'étape b) du procédé selon l'invention et sont décrites plus haut. Étape e)The embodiments above and the resins used are the same as those used in step b) of the process according to the invention and are described above. Step e)
Conformément à l'invention, la fraction intermédiaire purifiée issue de l'étape c) (conduite 10) et de l'effluent issu de l'étape d) de décontamination, éventuellement purifié par passage sur au moins une résine échangeuse d'ion, (conduite 13) sont recombinés dans la conduite (15) pour obtenir une fraction C5+ purifiée qui constitue la charge de l'étape f) d'hydrogénation des composés insaturés de type oléfiniques.According to the invention, the purified intermediate fraction resulting from stage c) (line 10) and the effluent from stage d) of decontamination, optionally purified by passage over at least one ion exchange resin, (line 13) are recombined in the line (15) to obtain a purified C5 + fraction which constitutes the charge of step f) of hydrogenation of the olefinic type unsaturated compounds.
Étape f)Step f)
L'étape f) du procédé selon l'invention est une étape d'hydrogénation des composés insaturés de type oléfiniques d'au moins une partie et de préférence de la totalité de l'effluent issu de l'étape e) du procédé selon l'invention, en présence d'hydrogène et d'un catalyseur d'hydrogénation.Stage f) of the process according to the invention is a stage of hydrogenation of the olefinic type unsaturated compounds of at least a part and preferably all of the effluent resulting from stage e) of the process according to the invention. in the presence of hydrogen and a hydrogenation catalyst.
L'effluent issu de l'étape e) (conduite 15) du procédé selon l'invention est admis en présence d'hydrogène (conduite 14) dans une zone d'hydrogénation (16) contenant un catalyseur d'hydrogénation qui a pour objectif de saturer les composés insaturés de type oléfiniques présents dans ledit effluent.The effluent from step e) (line 15) of the process according to the invention is allowed in the presence of hydrogen (line 14) in a hydrogenation zone (16) containing a hydrogenation catalyst which has the objective of saturating the olefinic type unsaturated compounds present in said effluent.
De manière préférée, le catalyseur utilisé dans l'étape f) selon l'invention est un catalyseur d'hydrogénation non craquant ou peu craquant comportant au moins un métal du groupe VIII de la classification périodique des éléments et comportant au moins un support à base d'oxyde réfractaire.Preferably, the catalyst used in step f) according to the invention is a non-cracking or slightly cracking hydrogenation catalyst comprising at least one metal of group VIII of the periodic table of the elements and comprising at least one support based on of refractory oxide.
De préférence, ledit catalyseur comprend au moins un métal du groupe VIII choisi parmi le nickel, le cobalt, le ruthénium, l'indium, le palladium et le platine et comportant au moins un support à base d'oxyde réfractaire choisi parmi l'alumine et la silice alumine.Preferably, said catalyst comprises at least one Group VIII metal chosen from nickel, cobalt, ruthenium, indium, palladium and platinum and comprising at least one refractory oxide-based support chosen from alumina. and silica alumina.
De manière préférée, le métal du groupe VIII est choisi parmi le nickel, le palladium et le platine et de manière très préférée parmi le palladium et le platine.Preferably, the group VIII metal is chosen from nickel, palladium and platinum and very preferably from palladium and platinum.
Selon un mode de réalisation préféré de l'étape f) du procédé selon l'invention, le métal du groupe VIII est choisi parmi le palladium et/ou le platine et la teneur en ce métal est avantageusement comprise entre 0,1% et 5 % poids, et de préférence entre 0,2% et 0,6 % poids par rapport au poids total du catalyseur.According to a preferred embodiment of step f) of the process according to the invention, the group VIII metal is chosen from palladium and / or platinum and the content of this metal is advantageously between 0.1% and 5%. % by weight, and preferably between 0.2% and 0.6% by weight relative to the total weight of the catalyst.
Selon un mode de réalisation très préféré de l'étape f) du procédé selon l'invention, le métal du groupe VIII est le palladium. Selon un autre mode de réalisation préféré de l'étape f) du procédé selon l'invention, le métal du groupe VIII est le nickel et la teneur en ce métal est avantageusement comprise entre 5% et 25 % poids, de préférence entre 7% et 20 % poids par rapport au poids total du catalyseur.According to a very preferred embodiment of step f) of the process according to the invention, the Group VIII metal is palladium. According to another preferred embodiment of step f) of the process according to the invention, the metal of group VIII is nickel and the content of this metal is advantageously between 5% and 25% by weight, preferably between 7%. and 20% by weight based on the total weight of the catalyst.
Le support du catalyseur utilisé dans l'étape f) du procédé selon l'invention est un support à base d'oxyde réfractaire, de préférence choisi parmi l'alumine et la silice alumine et de préférence l'alumine.The catalyst support used in step f) of the process according to the invention is a refractory oxide-based support, preferably chosen from alumina and silica-alumina and preferably alumina.
Lorsque le support est une alumine, il présente une surface spécifique BET permettant de limiter les réactions de polymérisation à la surface du catalyseur d'hydrogénation, ladite surface étant comprise entre 5 et 140 m2/g.When the support is an alumina, it has a BET specific surface to limit the polymerization reactions on the surface of the hydrogenation catalyst, said surface being between 5 and 140 m 2 / g.
Lorsque le support est une silice alumine, le support contient un pourcentage de silice compris entre 5 et 95 % poids, de préférence entre 10 et 80%, de manière plus préférée entre 20 et 60 % et de manière très préférée entre 30 et 50%, une surface spécifique BET comprise entre 100 et 550 m2/g, de préférence comprise entre 150 et 500 m2/g, de manière préférée inférieure à 350 m2/g et de manière encore plus préférée inférieure à 250 m2/g.When the support is a silica-alumina, the support contains a percentage of silica of between 5 and 95% by weight, preferably between 10 and 80%, more preferably between 20 and 60% and very preferably between 30 and 50%. a BET specific surface area of between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g, preferably less than 350 m 2 / g and even more preferably less than 250 m 2 / g .
L'étape f) d'hydrogénation du procédé selon l'invention est de préférence conduite dans un ou plusieurs réacteur(s) à lit fixe.The hydrogenation step f) of the process according to the invention is preferably carried out in one or more fixed bed reactor (s).
Dans la zone d'hydrogénation (16), la charge est mise en contact du catalyseur d'hydrogénation en présence d'hydrogène et à des températures et des pressions opératoires permettant l'hydrogénation des composés insaturés de type oléfiniques présents dans la charge.In the hydrogenation zone (16), the feedstock is brought into contact with the hydrogenation catalyst in the presence of hydrogen and at operating temperatures and pressures allowing the hydrogenation of the olefinic unsaturated compounds present in the feedstock.
Les conditions opératoires de l'étape f) d'hydrogénation du procédé selon l'invention sont avantageusement les suivantes : la température au sein de ladite zone d'hydrogénation (16) est comprise entre 100 et 180 0C et de manière préférée, entre 120 et 165°C, la pression totale est comprise entre 0,5 et 6 MPa, de préférence entre 1 et 5 MPa et de manière encore plus préférée entre 2 et 5 MPa. Le débit de charge est tel que la vitesse volumique horaire (rapport du débit volumique horaire à 15°C de charge fraîche liquide sur le volume de catalyseur chargé) est comprise entre 1 et 5Oh'1, de préférence entre 2 et 20 h"1 et de manière encore plus préférée entre 4 et 20 h"1. L'hydrogène qui alimente la zone d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 5 à 300 Nl/l/h, de préférence entre 5 et 200, de manière préférée, entre 10 et 150 Nl/l/h, et de manière encore plus préférée entre 10 et 50 Nl/l/h.The operating conditions of the hydrogenation step f) of the process according to the invention are advantageously as follows: the temperature within said hydrogenation zone (16) is between 100 and 180 ° C. and preferably between 120 and 165 ° C, the total pressure is between 0.5 and 6 MPa, preferably between 1 and 5 MPa and even more preferably between 2 and 5 MPa. The charge flow rate is such that the hourly volume velocity (ratio of the hourly volume flow rate at 15 ° C. of fresh liquid feedstock to the loaded catalyst volume) is between 1 and 50 h -1 , preferably between 2 and 20 h -1. and even more preferably between 4 and 20 h -1 . The hydrogen that feeds the hydrotreating zone is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 5 to 300 Nl / l / h, preferably between 5 and 200, preferably between 10 and 150 Nl / l / h, and even more preferably between 10 and 50 Nl / l / / h.
Dans ces conditions, les composés insaturés de type oléfinique sont hydrogénés à plus de 50%, de préférence à plus de 75% et de manière préférée, à plus de 85%.Under these conditions, the olefinic type unsaturated compounds are hydrogenated more than 50%, preferably more than 75% and preferably more than 85%.
L'effluent issu de l'étape f) subit éventuellement une étape d'élimination d'au moins une partie de l'eau formée durant l'étape f) d'hydrogénation et de préférence de la totalité de l'eau formée, dans un séparateur (37), représenté sur la figure 2.The effluent from step f) optionally undergoes a step of removing at least a portion of the water formed during the hydrogenation step f) and preferably all of the water formed, in a separator (37), shown in Figure 2.
Cette eau peut également contenir une fraction du CO et CO2 dissout provenant de la synthèse Fischer Tropsch. Cette étape a lieu dans le séparateur (37) et l'eau est éliminée par la conduite (39). On peut également avantageusement ajouter dans ladite étape d'élimination d'au moins une partie de l'eau, du gaz type azote (N2) ou hydrogène (H2) pour éliminer davantage de CO etThis water may also contain a fraction of dissolved CO and CO2 from the Fischer Tropsch synthesis. This step takes place in the separator (37) and the water is removed by the pipe (39). It is also advantageous to add in the said step of removing at least a portion of the water nitrogen (N 2) or hydrogen (H 2) type gas in order to remove more CO and
CO2 dissous par strippage.CO2 dissolved by stripping.
Cette étape permet également d'éliminer des produits de type éther légers formés lors de la réaction des alcools sur eux même. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation....This step also makes it possible to eliminate light ether-type products formed during the reaction of the alcohols on themselves. The removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ....
A l'issu de l'étape f) du procédé selon l'invention, au moins une partie et de préférence la totalité de l'effluent hydrogéné liquide est envoyée dans une zone d'hydrocraquage/hydroisomérisation (19).At the end of step f) of the process according to the invention, at least a portion and preferably all of the liquid hydrogenated effluent is sent to a hydrocracking / hydroisomerization zone (19).
Étape g)Step g)
Conformément à l'étape g) du procédé selon l'invention, au moins une partie et de préférence la totalité de l'effluent hydrogéné liquide issu de l'étape f) d'hydrogénation du procédé selon l'invention est envoyée, dans la zone d'hydroisomérisation / hydrocraquage (19) contenant le catalyseur d'hydroisomérisation / hydrocraquage et de préférence en même temps qu'un flux d'hydrogène.According to step g) of the process according to the invention, at least a portion and preferably all of the liquid hydrogenated effluent from the hydrogenation step f) of the process according to the invention is sent, in the hydroisomerization / hydrocracking zone (19) containing the hydroisomerization / hydrocracking catalyst and preferably at the same time as a hydrogen flow.
Les conditions opératoires dans lesquelles est effectuée l'étape g) d'hydroisomérisation / hydrocraquage du procédé selon l'invention sont de préférence les suivantes : La pression est généralement maintenue entre 0,2 et 15 MPa et de préférence entre 0,5 et 10 MPa et avantageusement de 1 à 9 MPa, la vitesse spatiale est généralement comprise entre 0,1 h-1 et 10 h-1 et de préférence entre 0,2 et 7 h-1 est avantageusement entre 0,5 et 5,0 h-1. Le taux d'hydrogène est généralement compris entre 100 et 2000 Normaux litres d'hydrogène par litre de charge et par heure et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.The operating conditions in which the hydroisomerization / hydrocracking step g) of the process according to the invention is carried out are preferably as follows: The pressure is generally maintained between 0.2 and 15 MPa and preferably between 0.5 and 10 MPa and advantageously from 1 to 9 MPa, the space velocity is generally between 0.1 h -1 and 10 h -1 and preferably between 0.2 and 7 h -1 is preferably between 0.5 and 5.0 h -1. The hydrogen content is generally between 100 and 2000 normal liters of hydrogen per liter of filler and per hour and preferably between 150 and 1500 liters of hydrogen per liter of filler.
La température utilisée dans cette étape est généralement comprise entre 200 et 4500C et préférentiellement de 2500C à 4500C avantageusement de 300 à 4500C, et encore plus avantageusement supérieure à 320°C ou par exemple entre 320-4200C.The temperature employed in this step is generally between 200 and 450 0 C and preferably from 250 0 C to 450 0 C, advantageously 300 to 450 0 C, and even more preferably greater than 320 ° C or, for example between 320-420 0 vs.
L'étape g) d'hydroisomérisation et d'hydrocraquage du procédé selon l'invention est avantageusement conduite dans des conditions telles que la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 37O0C en des produits ayant des points d'ébullition inférieurs à 37O0C est supérieure à 80% poids, et de façon encore plus préférée d'au moins 85% de préférence supérieure à 88%, de manière à obtenir des distillats moyens (gazole et kérosène) ayant des propriétés à froid suffisamment bonnes (point d'écoulement, point de congélation) pour satisfaire aux spécifications en vigueur pour ce type de carburant.Step g) of hydroisomerization and hydrocracking of the process according to the invention is advantageously carried out under conditions such that the pass conversion into products with boiling points greater than or equal to 37O 0 C into products having points. boiling point below 37O 0 C is greater than 80% by weight, and even more preferably at least 85%, preferably greater than 88%, so as to obtain middle distillates (gas oil and kerosene) having sufficiently good cold (pour point, freezing point) to meet the specifications in force for this type of fuel.
Les catalyseurs d'hvdroisomérisation / hvdrocraαuaqeThe catalysts of hydroxisomerization / hydrocracking
La majorité des catalyseurs utilisés actuellement en hydroisomérisation / hydrocraquage sont du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est généralement apportée par des supports de grandes surfaces (150 à 800 m2.g-1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silices alumines. La fonction hydrogénante est généralement apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe Vl tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.The majority of catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function. The acid function is generally provided by supports with large surface areas (150 to 800 m2.g-1 generally) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus aluminas, combinations of oxides of boron and aluminum, silica aluminas. The hydrogenating function is generally provided either by one or more metals of group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by an association of at least a group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
Dans le cas des catalyseurs bi-fonctionnels, l'équilibre entre les deux fonctions acide et hydrogénante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomërisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.In the case of bi-functional catalysts, the equilibrium between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst. A weak acidic function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts. A third possibility is to use a strong acid function and a strong hydrogenating function in order to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, by judiciously choosing each of the functions to adjust the activity / selectivity couple of the catalyst.
Avantageusement, les catalyseurs d'hydroisomérisation-hydrocraquage sont des catalyseurs bifonctionnels comportant un support acide amorphe (de préférence une silice-alumine) et une fonction métallique hydro-déshydrogénante assurée de préférence par au moins un métal noble. Le support est dit amorphe, c'est-à-dire dépourvu de tamis moléculaire, et en particulier de zéolithe, ainsi que le catalyseur. Le support acide amorphe est avantageusement une silice-alumine mais d'autres supports sont utilisables. Lorsque il s'agit d'une silice-alumine, le catalyseur, de préférence, ne contient pas d'halogène ajouté, autre que celui qui pourrait être introduit pour l'imprégnation du métal noble par exemple.Advantageously, the hydroisomerization-hydrocracking catalysts are bifunctional catalysts comprising an amorphous acid support (preferably a silica-alumina) and a hydro-dehydrogenating metal function preferably provided by at least one noble metal. The support is said to be amorphous, that is to say devoid of molecular sieves, and in particular of zeolite, as well as the catalyst. The amorphous acidic support is advantageously a silica-alumina but other supports are usable. When it is a silica-alumina, the catalyst preferably does not contain added halogen, other than that which could be introduced for the impregnation of the noble metal, for example.
De façon plus générale et de préférence, le catalyseur ne contient pas d'halogène ajouté, par exemple fluor. De façon générale et de préférence le support n'a pas subi d'imprégnation par un composé de silicium.More generally, and preferably, the catalyst does not contain added halogen, for example fluorine. In general, and preferably, the support has not been impregnated with a silicon compound.
Selon un premier mode de réalisation préféré, le catalyseur d'hydroisomérisation / hydrocraquage contient au moins un élément hydrodéshydrogénant choisi parmi les métaux nobles du groupe VIII, de préférence le platine et/ou le palladium et au moins un support oxyde réfractaire amorphe, de préférence la silice alumine.According to a first preferred embodiment, the hydroisomerization / hydrocracking catalyst contains at least one hydrodehydrogenating element chosen from noble metals of group VIII, preferably platinum and / or palladium and at least one amorphous refractory oxide support, preferably silica alumina.
Un catalyseur d'hydroisomérisation / hydrocraquage préféré utilisé dans l'étape g) du procédé selon l'invention comporte jusqu'à 3 % poids de métal d'au moins un élément hydrodéshydrogénant choisi parmi les métaux nobles du groupe VIII, de préférence déposé sur le support, et de manière très préférée, le métal noble du groupe VIII étant le platine et un support comprenant (ou de préférence constitué par) au moins une silice-alumine, ladite silice-alumine possédant les caractéristiques suivantes : - une teneur pondérale en silice SiO2 comprise entre 5 et 95% de préférence entre 10 et 80%, de manière plus préférée, entre 20 et 60% et de manière encore plus préférée entre 30 et 50% poids. une teneur en Na inférieure à 300 ppm poids et de préférence inférieure à 200 ppm poids, - un volume poreux total compris entre 0,45 et 1,2 ml/g mesuré par porosimétrie au mercure, la porosité de ladite silice-alumine étant la suivante :A preferred hydroisomerization / hydrocracking catalyst used in step g) of the process according to the invention comprises up to 3% by weight of metal of at least one hydrodehydrogenating element chosen from noble metals of group VIII, preferably deposited on the support, and very preferably, the noble metal of group VIII being platinum and a support comprising (or preferably consisting of) at least one silica-alumina, said silica-alumina having the following characteristics: - a weight content of silica SiO 2 between 5 and 95%, preferably between 10 and 80%, more preferably between 20 and 60% and even more preferably between 30 and 50% by weight. an Na content of less than 300 ppm by weight and preferably less than 200 ppm by weight; a total pore volume of between 0.45 and 1.2 ml / g, measured by mercury porosimetry, the porosity of said silica-alumina being as follows:
i/ Le volume des mésopores dont le diamètre est compris entre 40A et 150A, et dont le diamètre moyen varie entre 80 et 140 A et de préférence entre 80 et 120 A, représente entre 20 et 80% du volume poreux total mesuré par porosimétrie au mercure, ii/ Le volume des macropores, dont le diamètre est supérieur à 500 A, et de préférence compris entre 1000 A et 10000 A représente entre 20 et 80% du volume poreux total mesuré par porosimétrie au mercure,The volume of the mesopores whose diameter is between 40 A and 150 A, and whose mean diameter varies between 80 and 140 A and preferably between 80 and 120 A, represents between 20 and 80% of the total pore volume measured by porosimetry at mercury, ii / The volume of macropores, whose diameter is greater than 500 A, and preferably between 1000 A and 10000 A represents between 20 and 80% of the total pore volume measured by mercury porosimetry,
- une surface spécifique comprise entre 100 et 550 m2/g, de préférence comprise entre 150 et 500 m2/g, de manière préférée inférieure à 350 m2/g et de manière encore plus préférée, inférieure à 250 m2/g.a specific surface area of between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g, preferably less than 350 m 2 / g and even more preferably less than 250 m 2 / g .
Un deuxième catalyseur d'hydroisomérisation / hydrocraquage préféré utilisé dans l'étape g) du procédé selon l'invention comporte jusqu'à 3% en poids de métal d'au moins un élément hydro-déshydrogénant choisi parmi les métaux nobles du groupe VIII de la classification périodique et de préférence le métal noble du groupe VIII étant le platine, de 0,01 à 5,5% poids d'oxyde d'un élément dopant choisi parmi le phosphore, le bore et le silicium et un support non zéolitique à base de silice - alumine contenant une quantité supérieure à 15% poids et inférieure ou égale à 95% poids de silice (SiO2), ladite silice - alumine présentant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g, un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g, une surface spécifique BET comprise entre 100 et 550 m2/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A inférieur à 0,1 ml/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A, inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0,1 ml/g. un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta. une densité de remplissage tassée des catalyseurs supérieure à 0,55 g/cm3. Avantageusement, les caractéristiques associées au catalyseur correspondant sont identiques à celles de la silice alumine décrite ci-dessus.A second preferred hydroisomerization / hydrocracking catalyst used in step g) of the process according to the invention comprises up to 3% by weight of metal of at least one hydro-dehydrogenating element chosen from the noble metals of group VIII of the periodic classification and preferably the noble metal of group VIII being platinum, from 0.01 to 5.5% by weight of oxide of a doping element selected from phosphorus, boron and silicon and a non-zeolitic support to silica-alumina base containing an amount greater than 15% by weight and less than or equal to 95% by weight of silica (SiO 2 ), said silica-alumina having the following characteristics: a mean porous diameter, measured by mercury porosimetry, between 20 and 140 A, a total pore volume, measured by mercury porosimetry, of between 0.1 ml / g and 0.5 ml / g, a total pore volume, measured by nitrogen porosimetry, of between 0.1 ml / g and 0.6 ml / g, a sp surface BET plastic between 100 and 550 m 2 / g, a pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 140 A less than 0.1 ml / g, a pore volume, measured by mercury porosimetry , contained in pores with a diameter of greater than 160 A less than 0.1 ml / g, a pore volume, measured by mercury porosimetry, contained in pores with a diameter greater than 200 A, less than 0.1 ml / g, a porous volume, measured by mercury porosimetry, included in pores with diameters greater than 500 A less than 0.1 ml / g. an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, chi, eta, gamma, kappa, theta and delta alumina. a packed packing density of the catalysts greater than 0.55 g / cm 3 . Advantageously, the characteristics associated with the corresponding catalyst are identical to those of the silica alumina described above.
Les deux étapes f) et g) du procédé selon l'invention, hydrogénation et hydroisomérisation- hydrocraquage, peuvent avantageusement être réalisées sur les deux types de catalyseurs dans deux ou plusieurs réacteurs différents, ou/et dans un même réacteur.The two stages f) and g) of the process according to the invention, hydrogenation and hydroisomerization-hydrocracking, can advantageously be carried out on the two types of catalysts in two or more different reactors, and / or in the same reactor.
Selon un deuxième mode de réalisation préféré, le catalyseur d'hydroisomérisation / hydrocraquage contient au moins un élément hydrodéshydrogénant choisi parmi les métaux non nobles du groupe VIII et les métaux du groupe VIB et au moins un support oxyde réfractaire amorphe, de préférence la silice alumine.According to a second preferred embodiment, the hydroisomerization / hydrocracking catalyst contains at least one hydrodehydrogenating element chosen from Group VIII non-noble metals and Group VIB metals and at least one amorphous refractory oxide support, preferably silica-alumina. .
De préférence, le métal du groupe VIII est choisi parmi le nickel et le cobalt, et le métal du groupe VIB est choisi parmi le molybdène et le tungstène. De préférence, ledit catalyseur est sous forme sulfure.Preferably, the group VIII metal is selected from nickel and cobalt, and the group VIB metal is selected from molybdenum and tungsten. Preferably, said catalyst is in sulphide form.
Un troisième catalyseur d'hydroisomérisation / hydrocraquage préféré utilisé dans l'étape g) du procédé selon l'invention comporte au moins un élément hydro-déshydrogénant choisi parmi les métaux non nobles du groupe VIII et les métaux du groupe VIB de la classification périodique, de préférence entre 2,5 et 5% poids d'oxyde d'élément non nobles du groupe VIII et entre 20 et 35% en poids d'oxyde d'élément du groupe VIB par rapport au poids du catalyseur final et de manière préférée, le métal non noble du groupe VIII est le nickel et le métal du groupe VIB est le tungstène, éventuellement de 0,01 à 5,5% poids d'oxyde d'un élément dopant choisi parmi le phosphore, le bore et le silicium et de manière préférée, de 0,01 à 2,5% poids d'oxyde d'un élément dopant et un support non zéolitique à base de silice - alumine contenant une quantité supérieure à 15% poids et inférieure ou égale à 95% poids de silice (SiO2), de préférence une quantité supérieure à 15% poids et inférieure ou égale à 50% poids de silice, ladite silice - alumine présentant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g, un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g, une surface spécifique BET comprise entre 100 et 550 m2/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A inférieur à 0,1 ml/g , - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Λ inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A, inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0,1 ml/g. un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta. une densité de remplissage tassée des catalyseurs supérieure à 0,55 g/cm3.A third preferred hydroisomerization / hydrocracking catalyst used in step g) of the process according to the invention comprises at least one hydro-dehydrogenating element chosen from the non-noble metals of group VIII and the metals of group VIB of the periodic table, preferably between 2.5 and 5% by weight of Group VIII non-noble elemental oxide and between 20 and 35% by weight of Group VIB element oxide with respect to the weight of the final catalyst and, preferably, the non-noble metal of group VIII is nickel and the metal of group VIB is tungsten, optionally from 0.01 to 5.5% by weight of oxide of a doping element chosen from phosphorus, boron and silicon and preferably, from 0.01 to 2.5% by weight of oxide of a doping element and a non-zeolitic support based on silica-alumina containing an amount greater than 15% by weight and less than or equal to 95% by weight of silica (SiO 2), preferably an amount greater than 15% by weight and less than or equal to 50% by weight of silica, said silica-alumina having the following characteristics: a mean pore diameter, measured by mercury porosimetry, of between 20 and 140 A, a total pore volume, measured by mercury porosimetry, between 0.1 ml / g and 0.5 ml / g, a total pore volume, measured by nitrogen porosimetry, between 0.1 ml / g and 0.6 ml / g, a BET surface area of between 100 and 550 m 2 / g, a pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 140 A less than 0.1 ml / g, a volume Porous, measured by mercury porosimetry, included in pores with a diameter greater than 160 Λ less than 0.1 ml / g, a pore volume, measured by mercury porosimetry, included in pores with diameters greater than 200 Å, less than 0.1 ml / g, a pore volume, measured by mercury porosimetry, included in pores with diameters greater than 500 A less than 0.1 ml / g. an X-ray diffraction pattern which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group consisting of alpha, rho, chi, eta, gamma, kappa, theta and delta alumina. a packed packing density of the catalysts greater than 0.55 g / cm 3 .
Avantageusement, les caractéristiques associées au catalyseur correspondant sont identiques à celles de la silice alumine décrite ci-dessus.Advantageously, the characteristics associated with the corresponding catalyst are identical to those of the silica alumina described above.
Lorsque le troisième catalyseur d'hydroisomérisation / hydrocraquage préféré est utilisé dans l'étape g) du procédé selon l'invention, ledit catalyseur est sulfuré.When the third preferred hydroisomerization / hydrocracking catalyst is used in step g) of the process according to the invention, said catalyst is sulphurized.
Selon un premier mode de réalisation préféré du procédé selon l'invention, on utilise dans l'étape e) d'hydrogénation un catalyseur contenant du palladium et dans l'étape g) d'hydroisomérisation / hydrocraquage, un catalyseur contenant du platine.According to a first preferred embodiment of the process according to the invention, a catalyst containing palladium is used in stage e) of hydrogenation and in stage g) of hydroisomerization / hydrocracking a catalyst containing platinum.
Selon un deuxième mode de réalisation préféré du procédé selon l'invention, on utilise dans l'étape f) d'hydrogénation un catalyseur contenant du palladium et dans l'étape g) d'hydroisomérisation / hydrocraquage, un catalyseur sulfuré contenant au moins un élément hydro-déshydrogénant choisi parmi les métaux non nobles du groupe VIII et les métaux du groupe VIB.According to a second preferred embodiment of the process according to the invention, a palladium-containing catalyst is used in the hydrogenation step f) and in the hydroisomerization / hydrocracking step g), a sulphurized catalyst containing at least one hydro-dehydrogenating element selected from Group VIII non-noble metals and Group VIB metals.
Selon un troisième mode de réalisation préféré du procédé selon l'invention, on utilise dans l'étape f) d'hydrogénation un catalyseur contenant au moins un élément hydro- déshydrogénant non noble du groupe VIII et dans l'étape g) d'hydroisomérisation / hydrocraquage, un catalyseur sulfuré contenant au moins un élément hydro-déshydrogénant choisi parmi les métaux non nobles du groupe VIII et les métaux du groupe VIB. Étape h)According to a third preferred embodiment of the process according to the invention, in the hydrogenation stage f), a catalyst containing at least one non-noble group VIII hydroxide dehydrogenating element and in the hydroisomerization stage g) is used. hydrocracking, a sulphurized catalyst containing at least one hydro-dehydrogenating element chosen from Group VIII non-noble metals and Group VIB metals. Step h)
Conformément à l'étape h) du procédé selon l'invention, l'effluent issu de l'étape g) (conduite 20) subit une séparation de l'hydrogène non réagi et des gaz légers dans un séparateur gaz/liquide (33) puis un recyclage dans l'étape g) d'hydroisomérisation/hydrocraquage de l'hydrogène non réagi et desdits gaz légers (conduite 22).According to step h) of the process according to the invention, the effluent from step g) (line 20) undergoes separation of unreacted hydrogen and light gases in a gas / liquid separator (33) and then recycling in step g) hydroisomerization / hydrocracking unreacted hydrogen and said light gases (line 22).
Lesdits gaz légers comprennent les gaz légers C1-C4, le monoxyde de carbone (CO) et le dioxyde de carbone (C02) et de l'eau sous forme vapeur.Said light gases include light C1-C4 gases, carbon monoxide (CO) and carbon dioxide (CO2) and water in vapor form.
La séparation desdits gaz de l'effluent liquide est réalisée par un ou plusieurs flash, c'est à dire un ou plusieurs ballons réalisant une séparation des gaz et des liquides introduits via la conduite (20), à des température et pression étagées pour augmenter la récupération d'hydrogène. Cet étagement de flash peut avantageusement être accompagné d'échangeur de chaleur visant à récupérer de l'énergie thermique et/ou à refroidir les effluents des ballons séparateurs afin de minimiser les pertes en hydrogène. Le procédé selon l'invention permet, par la mise en oeuvre de résine échangeuse d'ions en amont des étapes d'hydrotraitement et d'hydrocraquage, la diminution de la teneur en oxygène totale de la charge et ainsi la limitation de la formation de monoxyde de carbone (CO) provenant de la décomposition des composés oxygénés présents dans la charge dans la section d'hydroisomérisation/hydrocraquage. En effet, le monoxyde de carbone (CO) est un inhibiteur des composés métalliques présent sur le catalyseur d'hydroisomérisation/hydrocraquage, et sa teneur doit être minimisée pour ne pas requérir une augmentation de température pour compenser la baisse d'activité et maintenir la conversion.The separation of said gases from the liquid effluent is carried out by one or more flashes, ie one or more balloons carrying out a separation of the gases and liquids introduced via the pipe (20), at staged temperatures and pressures to increase the recovery of hydrogen. This flash stage may advantageously be accompanied by a heat exchanger for recovering thermal energy and / or cooling the effluents of the separator flasks in order to minimize the losses of hydrogen. The process according to the invention makes it possible, by the use of ion exchange resin upstream of the hydrotreatment and hydrocracking steps, to reduce the total oxygen content of the feedstock and thus to limit the formation of carbon monoxide (CO) from the decomposition of the oxygenates present in the feed in the hydroisomerization / hydrocracking section. In fact, carbon monoxide (CO) is an inhibitor of the metal compounds present on the hydroisomerization / hydrocracking catalyst, and its content must be minimized so as not to require an increase in temperature to compensate for the drop in activity and maintain the conversion.
Cependant, dans le cas où l'effluent gazeux (22) issu de ladite séparation contient une fraction en CO élevée c'est à dire plus de 10 ppm volumique, ledit effluent gazeux est avantageusement envoyé dans un réacteur de méthanation (40), représenté sur la figure 2, dans lequel la conversion du CO et de l'hydrogène en méthane est avantageusement réalisée. Le principe de la méthanation, les catalyseurs utilisés sont connus de l'homme du métier et leur utilisation pour épurer les effluents contenant H2 et CO est connue. Une purge est avantageusement mise en oeuvre (conduite 23) de façon à éliminer les produits formés lors de l'étape de méthanation (33). Un appoint d'hydrogène (conduite 24) est alors avantageusement réalisé pour compenser cette purge.However, in the case where the gaseous effluent (22) resulting from said separation contains a high CO fraction, that is to say more than 10 ppm by volume, said gaseous effluent is advantageously sent to a methanation reactor (40), represented in FIG. 2, in which the conversion of CO and hydrogen into methane is advantageously carried out. The principle of methanation, the catalysts used are known to those skilled in the art and their use for purifying effluents containing H2 and CO is known. A purge is advantageously implemented (line 23) so as to eliminate the products formed during the methanation step (33). An additional hydrogen (pipe 24) is then advantageously made to compensate for this purge.
Étape i)Step i)
L'effluent issu de l'étape h) de séparation de l'hydrogène non réagi et des gaz légers du procédé selon l'invention, est envoyé, conformément à l'étape i) du procédé selon l'invention, dans un train de distillation (26) via la conduite (21), qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, qui a pour but de séparer les produits de conversion de point d'ébullition inférieur à 3400C et de préférence inférieur à 3700C et incluant notamment ceux formés lors de l'étape g) dans le réacteur d'hydroisomérisation / hydrocraquage (19), et de séparer la fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 3400C et de préférence supérieur ou égal à au moins 3700C. Parmi les produits de conversion et hydroisomérisés, il est séparé outre les gaz légers C1-C4 (conduite 27) au moins une fraction essence (ou naphta) (conduite 28), et au moins une fraction distillât moyen kérosène (conduite 29) et gazole (conduite 30). De préférence, la fraction résiduelle, dont le point initial d'ébullition est généralement supérieur à au moins 34O0C et de préférence supérieur ou égal à au moins 37O0C est recyclée (conduite 17) dans l'étape g) du procédé selon l'invention en tête de la zone (19) d'hydroisomérisation et d'hydrocraquage. Selon un autre mode de réalisation de l'étape i) du procédé selon l'invention, ladite fraction résiduelle peut fournir d'excellentes bases pour les huiles.The effluent from step h) for separating unreacted hydrogen and light gases from the process according to the invention is sent, according to step i) of the process according to the invention, in a train of distillation (26) via the pipe (21), which incorporates a distillation and optionally vacuum distillation, which aims to separate the conversion products of boiling point below 340 0 C and preferably below 370 0 C and including including those formed in step g) in the hydroisomerization / hydrocracking reactor (19), and to separate the residual fraction whose initial boiling point is generally greater than at least 340 ° C. and preferably greater than or equal to at least 370 ° C. Among the conversion products and hydroisomerized, it is separated in addition to the light gases C1-C4 (line 27) at least a gasoline fraction (or naphtha) (line 28), and at least a middle distillate fraction kerosene (line 29) and diesel (line 30). Preferably, the residual fraction, whose initial boiling point is generally greater than at least 340 ° C. and preferably greater than or equal to at least 37 ° C., is recycled (line 17) in step g) of the process according to the invention at the head of the zone (19) of hydroisomerization and hydrocracking. According to another embodiment of step i) of the process according to the invention, said residual fraction can provide excellent bases for the oils.
II peut être également avantageux de recycler (conduite 32) au moins en partie et de préférence en totalité, dans l'étape g) (zone 19) l'une au moins des coupes kérosène et gazole ainsi obtenus. Les coupes gazoles et kérosènes sont de préférence récupérées séparément ou mélangées, mais les points de coupe sont ajustés par l'exploitant en fonction de ses besoins. On a pu constater qu'il est avantageux de recycler une partie du kérosène pour améliorer ses propriétés à froid.It may also be advantageous to recycle (line 32) at least partly and preferably entirely, in step g) (zone 19) at least one of the kerosene and diesel fuel cuts thus obtained. The gas oil and kerosene cuts are preferably recovered separately or mixed, but the cutting points are adjusted by the operator according to his needs. It has been found that it is advantageous to recycle a portion of the kerosene to improve its cold properties.
Les produits obtenusThe products obtained
Le(s) gazole(s) obtenu présente un point d'écoulement d'au plus 00C, généralement inférieur à -100C et souvent inférieur à -150C. L'indice de cétane est supérieur à 60, généralement supérieur à 65, souvent supérieur à 70.The gas oil (s) obtained has a pour point of at most 0 ° C., generally below -10 ° C. and often below -15 ° C. The cetane number is greater than 60, generally greater than 65, often greater than 70.
Le(s) kérosène(s) obtenu(s) présente un point de congélation d'au plus -35°C, généralement inférieur à -400C. Le point de fumée est supérieur à 25 mm, généralement supérieur à 30 mm. Dans ce procédé, la production d'essence (non recherchée) est la plus faible possible. Le rendement en essence est toujours inférieur à 50% poids, de préférence inférieur à 40% poids, avantageusement inférieur à 30% poids ou encore 20% pds ou même de 15% poids.The kerosene (s) obtained has a freezing point of not more than -35 ° C, generally less than -40 ° C. The smoke point is greater than 25 mm, generally greater than 30 mm. In this process, the production of gasoline (not sought) is as low as possible. The yield of gasoline is always less than 50% by weight, preferably less than 40% by weight, advantageously less than 30% by weight, or 20% by weight or even 15% by weight.
EXEMPLEEXAMPLE
Exemple 1 : mise en oeuvre du procédé selon l'invention Étape a)Example 1: Implementation of the Process According to the Invention Step a)
L'effluent issu de l'unité de synthèse Fischer-Tropsch est, en sortie de l'unité de synthèse Fischer-Tropsch divisé en deux fractions, une fraction légère, appelée condensât à froid et une fraction lourde, appelée cires.The effluent from the Fischer-Tropsch synthesis unit is, at the output of the Fischer-Tropsch synthesis unit divided into two fractions, a light fraction, called cold condensate and a heavy fraction, called waxes.
La fraction légère, appelée condensât à froid, est fractionnée en une fraction gazeuse C4- bouillant à une température inférieure à 150C et une fraction intermédiaire ayant un point d'ébullition initial compris entre 15 et 400C et un point d'ébullition final compris entre 300 et 450°C. Les caractéristiques des différentes fractions sont données dans le tableau 1 ci dessous:The light fraction, called cold condensate, is fractionated into a C4- gas fraction boiling at a temperature below 15 0 C and an intermediate fraction having an initial boiling point between 15 and 40 0 C and a boiling point final temperature of between 300 and 450 ° C. The characteristics of the different fractions are given in Table 1 below:
Tableau 1 : composition des différentes fractionsTable 1: Composition of the different fractions
Figure imgf000028_0001
Étape b)
Figure imgf000028_0001
Step b)
La fraction intermédiaire C5-C30 passe sur une résine échangeuse d'ion de nom commercial Amberlyst 35 commercialisée par la Société Rohm and Haas, ladite résine permettant simultanément la captation des métaux dissous dans la charge et l'estérification des alcools et acides carboxyliques en ester. Ladite résine est constituée de copolymères de di-vinyle benzène et de polystyrène présentant un taux de réticulation de 20 et une force acide, dosée par potentiométrie lors de la neutralisation par une solution de KOH, de 4,15 mmol H+ équivalent / g.The intermediate fraction C5-C30 passes over a commercial ion exchange resin Amberlyst 35 sold by the company Rohm and Haas, said resin simultaneously allowing the capture of dissolved metals in the feedstock and the esterification of alcohols and carboxylic acids to ester . Said resin consists of copolymers of di-vinyl benzene and polystyrene having a degree of crosslinking of 20 and an acidic strength, assayed by potentiometry during neutralization with a KOH solution, of 4.15 mmol H + equivalent / g.
L'étape b) est mise en oeuvre à une température de 1000C, une pression de 1 MPa, et une vitesse volumique horaire de 1h'1. Dans ces conditions, 95% des acides sont estérifiés, l'analyse de la conversion des acides étant donnée par différence de titration à la potasse entre la charge et l'effluent selon la méthode ASTM D 664. La composition de l'effluent de sortie est donnée dans le tableau 2.Step b) is carried out at a temperature of 100 ° C., a pressure of 1 MPa, and a hourly volume velocity of 1 h -1 . Under these conditions, 95% of the acids are esterified, the analysis of the acid conversion being given by difference in potash titration between the feedstock and the effluent according to the ASTM D 664 method. The composition of the outlet effluent is given in Table 2.
Tableau 2: composition de l'effluent (7) issu de l'étape b) après estérificationTable 2: composition of the effluent (7) from step b) after esterification
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000029_0001
Figure imgf000030_0001
Étape clStep cl
L'effluent issu de l'étape c) subit ensuite une élimination de l'eau formée lors de ladite étape b), par décantation/coalescence dans un équipement adapté connu de l'homme du métier. L'effluent en sortie contient 300 ppm d'eau.The effluent from step c) then undergoes elimination of the water formed during said step b) by decantation / coalescence in suitable equipment known to those skilled in the art. The effluent at the outlet contains 300 ppm of water.
Étape d)Step d)
La fraction lourde, appelée cires, issue de l'unité de synthèse Fischer-Tropsch (conduite 11) passe sur un lit de garde composé de ACT 961 commercialisé par la société Axens, à une température de 800C, une pression de 1 MPa, une vitesse liquide spatiale de 1 h-1. A la sortie, l'effluent (conduite 13) contient moins de 1 ppm de fines.The heavy fraction, called waxes, from the Fischer-Tropsch synthesis unit (line 11) is passed over a guard bed composed of ACT 961 sold by Axens at a temperature of 80 ° C. and a pressure of 1 MPa. , a liquid space velocity of 1 h-1. At the outlet, the effluent (line 13) contains less than 1 ppm of fines.
Étape e)Step e)
La fraction intermédiaire purifiée (conduite 10) et la fraction cire issue de l'étape d) (conduite 13) sont mélangées en totalité. La composition du mélange ainsi réalisé est donnée dans le tableau 3 ci dessous :The purified intermediate fraction (line 10) and the wax fraction from step d) (line 13) are mixed in totality. The composition of the mixture thus produced is given in Table 3 below:
Tableau 3: com osition de la fraction recombinéeTable 3: Composition of the recombined fraction
Figure imgf000030_0002
Figure imgf000031_0001
Figure imgf000030_0002
Figure imgf000031_0001
Étape fiFi step
La totalité de l'effluent issu de l'étape e) subit ensuite une étape d'hydrogénation en présence d'hydrogène et du catalyseur d'hydrogénation de nom commercial LD265 commercialisé par la société Axens, ledit catalyseur comprenant 0,3% poids de palladium déposé sur une alumine de surface spécifique 69 m2/g.The entire effluent from step e) then undergoes a hydrogenation step in the presence of hydrogen and the hydrogenation catalyst of commercial name LD265 marketed by the company Axens, said catalyst comprising 0.3% by weight of palladium deposited on a surface alumina of 69 m2 / g.
L'étape f) d'hydrogénation est mise en oeuvre à une température réactionnelle de 1300C, à une pression de 3,5 MPa, l'hydrogène est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbure est de 32 Nl/l/h et à une vitesse volumique horaire de 10 h-1. Dans ces conditions, la conversion en oléfines est de 85% poids.The hydrogenation step f) is carried out at a reaction temperature of 130 ° C. at a pressure of 3.5 MPa, the hydrogen is introduced at a rate such that the hydrogen / hydrocarbon volume ratio is 32 Nl. / l / h and at a speed hourly volume of 10 h-1. Under these conditions, the conversion to olefins is 85% by weight.
L'effluent liquide issu de l'étape f) d'hydrogénation présente la composition décrite dans le tableau 4:The liquid effluent from the hydrogenation step f) has the composition described in Table 4:
Tableau 4 : Composition de l'effluent issu de l'étape f)Table 4: Composition of the effluent from step f)
Figure imgf000031_0002
Figure imgf000032_0001
Figure imgf000031_0002
Figure imgf000032_0001
Étape g)Step g)
La totalité de l'effluent issu de l'étape f) d'hydrogénation subit une étape d'hydroisomérisation/hydrocraquage, en présence d'hydrogène frais et d'un catalyseur d'hydroisoméhsation/hydrocraquage, dans laquelle sont recylclés la fraction résiduelle de point initial d'ébullition supérieur à 3700C et de l'hydrogène non réagi et des gaz légers. Le catalyseur d'hydroisomérisation / hydrocraquage comporte 0,6% poids de platine et un support comprenant 29,3% poids de silice SiO2 et 70,7 % poids d'alumine AI2O3, une teneur en Na de 100 ppm poids, un volume poreux total compris de 0,69 ml/g mesuré par porosimétrie au mercure, un volume des mésopores dont le diamètre moyen est de 80 A et représentant 78% du volume poreux total mesuré par porosimétrie au mercure, un volume des macropores, dont le diamètre est supérieur à 500 A1 représentant 22% du volume poreux total mesuré par porosimétrie au mercure, et une surface spécifique de 300 m2/g.All of the effluent from the hydrogenation step f) undergoes a hydroisomerization / hydrocracking step, in the presence of fresh hydrogen and a hydroisoméhation / hydrocracking catalyst, in which the residual fraction of initial boiling point above 370 0 C and unreacted hydrogen and light gases. The hydroisomerization / hydrocracking catalyst comprises 0.6% by weight of platinum and a support comprising 29.3% by weight of silica SiO 2 and 70.7% by weight of Al 2 O 3 alumina, an Na content of 100 ppm by weight. a total pore volume of 0.69 ml / g measured by mercury porosimetry, a volume of mesopores with an average diameter of 80 A and representing 78% of the total pore volume measured by mercury porosimetry, a volume of macropores, whose diameter is greater than 500 A 1 representing 22% of the total pore volume measured by mercury porosimetry, and a specific surface area of 300 m 2 / g.
L'étape d'hydroisomérisation / hydrocraquage est réalisée dans les conditions décrites dans le tableau 5.The hydroisomerization / hydrocracking step is carried out under the conditions described in Table 5.
La conversion par passe en produits à point d'ébullition supérieur ou égaux à 370°C en produits à points d'ébullition inférieur à 37O0C est de 85%.The pass conversion to products with a boiling point greater than or equal to 370 ° C. in products with a boiling point below 37 ° C. is 85%.
Tableau 5 : conditions opératoires de l'étape d'hydroisomérisation/hydrocraquageTable 5: Operating Conditions of the Hydroisomerization / Hydrocracking Step
Figure imgf000032_0002
Figure imgf000032_0002
Étape h)Step h)
L'effluent issu de l'étape d'hydroisomérisation/hydrocraquage subit une séparation dans un séparateur gaz/liquide, de l'hydrogène non réagi et des gaz légers, qui sont recyclés dans l'étape d'hydroisomérisation/hydrocraquage, de manière à récupérer un effluent liquide. La teneur en monoxyde de carbone (CO) générée par passe dans l'effluent gazeux est limitée à 1 ;1% poids.The effluent from the hydroisomerization / hydrocracking stage undergoes separation in a gas / liquid separator, unreacted hydrogen and light gases, which are recycled in the hydroisomerization / hydrocracking step, so that recover a liquid effluent. The Carbon monoxide (CO) content generated by passes in the gaseous effluent is limited to 1; 1% by weight.
Étape i)Step i)
L'effluent liquide issu de l'étape de séparation h) est ensuite envoyé dans un train de distillation de manière à séparer les produits légers formés lors de ces étapes: les gaz (C1- C4), une coupe essence, une coupe gazole et une coupe kérosène, et également une fraction, dite fraction résiduelle, qui présente un point d'ébullition initial égal à 3700C qui est recyclée en totalité à l'entrée du réacteur d'hydroisomérisation/hydrocraquage afin de maximiser la production de gazole et de kérosène. Les rendements sont donnés dans le tableau 6.The liquid effluent resulting from the separation step h) is then sent to a distillation train so as to separate the light products formed during these steps: the gases (C1-C4), a gasoline cut, a diesel fuel cut and a kerosene cut, and also a fraction, called residual fraction, which has an initial boiling point equal to 370 0 C which is recycled in full at the inlet of the hydroisomerisation / hydrocracking reactor in order to maximize the production of diesel fuel and kerosene. The yields are given in Table 6.
Figure imgf000033_0001
Figure imgf000033_0002
Figure imgf000033_0001
Figure imgf000033_0002
Exemple 2: comparatifExample 2: Comparative
Un procédé de production de distillats moyens à partir du même effluent paraffinique issu de l'unité Fischer tropsch et divisé en deux fractions, une fraction lourde appelée cires et une fraction légère appelée condensât à froid, que celle utilisée dans l'exemple 1 et comprenant une étape d'hydrogénation suivie d'une étape d'hydroisomérisation/hydrocraquage, sans étape préalable de passage sur au moins une résine échangeuse d'ion est mis en oeuvre à titre comparatif.A process for producing middle distillates from the same paraffinic effluent from the Fischer tropsch unit and divided into two fractions, a heavy fraction called waxes and a light fraction called cold condensate, as used in Example 1 and comprising a hydrogenation step followed by a hydroisomerization / hydrocracking step, without prior step of passing on at least one ion exchange resin is carried out for comparison.
La fraction légère, appelée condensât à froid, est fractionnée en une fraction gazeuse C4- bouillant à une température inférieure à 150C et une fraction intermédiaire ayant un point d'ébullition initial compris entre 15 et 4O0C et un point d'ébullition final compris entre 300 et 4500C. Les caractéristiques des différentes fractions sont données dans le tableau 1 de l'exemple 1.The light fraction, called cold condensate, is fractionated into a C4-gas fraction boiling at a temperature below 15 ° C. and an intermediate fraction having an initial boiling point of between 15 and 40 ° C. and a boiling point. final between 300 and 450 0 C. the characteristics of the different fractions are given in table 1 of example 1.
Étape de décontamination de la fraction lourde appelée cireDecontamination step of the heavy fraction called wax
La fraction lourde, appelée cires, issue de l'unité de synthèse Fischer-Tropsch (conduite 11) passe sur un lit de garde composé de ACT 961 commercialisé par la société Axens, à une température de 800C, une pression de 1 MPa, une vitesse liquide spatiale de 1 h-1. A la sortie, l'effluent (conduite 13) contient moins de 1 ppm de fines. Étape de recombinaison des fractionsThe heavy fraction, called waxes, from the Fischer-Tropsch synthesis unit (line 11) is passed over a guard bed composed of ACT 961 sold by Axens at a temperature of 80 ° C. and a pressure of 1 MPa. , a liquid space velocity of 1 h-1. At the outlet, the effluent (line 13) contains less than 1 ppm of fines. Recombination step of the fractions
Ladite fraction intermédiaire, non préalablement purifiée par passage sur au moins une résine échangeuse d'ion et la fraction cire issue de l'étape de décontamination ci dessus sont mélangées en totalité. La composition du mélange ainsi réalisé est donnée dans le tableau 7 :Said intermediate fraction, not previously purified by passing on at least one ion exchange resin and the wax fraction from the above decontamination step are mixed in all. The composition of the mixture thus produced is given in Table 7:
Figure imgf000034_0001
Figure imgf000034_0001
Étape d'hydrogénation La fraction paraffinique C5+ recombinée subit une étape d'hydrogénation en présence d'hydrogène et du catalyseur d'hydrogénation de nom commercial LD265 commercialisé par la société Axens, ledit catalyseur comprenant 0,3% poids de palladium déposé sur une alumine de surface spécifique 69 m2/g.Hydrogenation step The recombinant C5 + paraffinic fraction undergoes a hydrogenation step in the presence of hydrogen and the LD265 commercial name hydrogenation catalyst sold by the company Axens, said catalyst comprising 0.3% by weight of palladium deposited on an alumina specific surface area 69 m2 / g.
Afin de maintenir une conversion en oléfines de 85% poids, comme dans l'exemple 1 , l'étape d'hydrogénation est mise en oeuvre à une température réactionnelle de 1500C, à une pression de 3,5 MPa, l'hydrogène est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbure est de 32 Nl/l/h et à une vitesse volumique horaire de 8 h-1. Dans ces conditions, la conversion en oléfines est maintenue à 85% poids.To keep a conversion to olefin of 85 weight%, as in Example 1, the hydrogenation step is carried out at a reaction temperature of 150 0 C at a pressure of 3.5 MPa, the hydrogen is introduced at a rate such that the volume ratio hydrogen / hydrocarbon is 32 Nl / l / h and at an hourly volume velocity of 8 h-1. Under these conditions, the conversion to olefins is maintained at 85% by weight.
L'effluent liquide issu de l'étape d'hydrogénation présente la composition décrite dans le tableau 8:The liquid effluent resulting from the hydrogenation stage has the composition described in Table 8:
Tableau 8 : Com osition de l'effluent issu de l'éta e d'h dro énationTable 8: Com osition of the effluent from the hydration stage
Figure imgf000035_0001
Figure imgf000035_0001
Étape d'hydroisomérisation/hydrocraquage La totalité de l'effluent issu de l'étape d'hydrogénation subit une étape d'hydroisomérisation/hydrocraquage, en présence d'hydrogène frais et d'un catalyseur d'hydroisomérisation/hydrocraquage, dans laquelle sont recyclés la fraction résiduelle de point initial d'ébullition supérieur à 37O0C et de l'hydrogène non réagi et des gaz légers. Le catalyseur d'hydroisomérisation / hydrocraquage comporte 0,3 % poids de platine et un support comprenant 29,3% poids de silice SiO2 et 70,7 % poids d'alumine AI2O3, une teneur en Na de 100 ppm poids, un volume poreux total compris de 0,69 ml/g mesuré par porosimétrie au mercure, un volume des mésopores dont le diamètre moyen est de 80 A et représentant 78% du volume poreux total mesuré par porosimétrie au mercure, un volume des macropores, dont le diamètre est supérieur à 500 A, représentant 22% du volume poreux total mesuré par porosimétrie au mercure, et une surface spécifique de 300 m2/g.Hydroisomerization / Hydrocracking Step All of the effluent from the hydrogenation step undergoes a hydroisomerization / hydrocracking step, in the presence of fresh hydrogen and a hydroisomerization / hydrocracking catalyst, in which are recycled the residual fraction of initial boiling point greater than 37O 0 C and unreacted hydrogen and light gases. The hydroisomerization / hydrocracking catalyst comprises 0.3% by weight of platinum and a support comprising 29.3% by weight of silica SiO 2 and 70.7% by weight of alumina Al 2 O 3 , a content in Na of 100 ppm by weight, a total pore volume of 0.69 ml / g measured by mercury porosimetry, a volume of mesopores with a mean diameter of 80 A and representing 78% of the total pore volume measured by mercury porosimetry , a volume of macropores, whose diameter is greater than 500 A, representing 22% of the total pore volume measured by mercury porosimetry, and a specific surface area of 300 m 2 / g.
L'étape d'hydroisomérisation / hydrocraquage est réalisée dans les conditions décrites dans le tableau 9.The hydroisomerization / hydrocracking step is carried out under the conditions described in Table 9.
Pour maintenir la conversion par passe en produits à point d'ébullition supérieur ou égaux à 3700C en produits à points d'ébullition inférieur à 370cC de 85%, la température est augmentée et ajustée à 37O0C.To maintain the conversion per pass of products boiling point higher than or equal to 370 0 C in products with boiling points less than 370 C c 85%, the temperature is raised and adjusted to 37o C. 0
Tableau 9 : conditions o ératoires de l'éta e d'h droisomérisation/h drocra ua eTable 9: Operating conditions of the isomerization / hydrocreation stage
Figure imgf000036_0001
Figure imgf000036_0001
Étape de séparationSeparation step
L'effluent issu de l'étape d'hydroisomérisation/hydrocraquage subit ensuite une séparation dans un séparateur gaz/liquide, de l'hydrogène non réagi et des gaz légers, qui sont recyclés dans l'étape d'hydroisomérisation/hydrocraquage, de manière à récupérer un effluent liquide. La teneur en monoxyde de carbone (CO) générée par passe dans l'effluent gazeux est de 2% poids.The effluent resulting from the hydroisomerization / hydrocracking step is then separated in a gas / liquid separator, unreacted hydrogen and light gases, which are recycled in the hydroisomerization / hydrocracking step, so that recovering a liquid effluent. The content of carbon monoxide (CO) generated by passes into the gaseous effluent is 2% by weight.
La présence de monoxyde de carbone (CO) issu de la décomposition des composés oxygénés dans la section hydrocraquage, non éliminés par passage sur au moins une résine échangeuse d'ions préalablement à l'hydrogénation et à l'hydroisomérisation/hydrocraquage et étant un inhibiteur de l'activité du catalyseur d'hydroisomérisation/hydrocraquage nécessite pour maintenir la conversion une augmentation de la température de réaction.The presence of carbon monoxide (CO) resulting from the decomposition of the oxygenated compounds in the hydrocracking section, not removed by passage on at least one ion exchange resin prior to hydrogenation and hydroisomerization / hydrocracking and being an inhibitor The activity of the hydroisomerization / hydrocracking catalyst requires to maintain the conversion an increase in the reaction temperature.
Étape de distillation finaleFinal distillation stage
L'effluent liquide issu de l'étape de séparation est ensuite envoyé dans un train de distillation de manière à séparer les produits légers formés lors de ces étapes: les gaz (C1-C4), une coupe essence, une coupe gazole et une coupe kérosène, et également une fraction, dite fraction résiduelle, qui présente un point d'ébullition initial égal à 3700C qui est recyclée en totalité à l'entrée du réacteur d'hydroisomérisation/hydrocraquage afin de maximiser la production de gazole et de kérosène.The liquid effluent from the separation step is then sent to a distillation train so as to separate the light products formed during these steps: the gases (C1-C4), a gasoline cut, a diesel cut and a cut kerosene, and also a fraction, called residual fraction, which has an initial boiling point equal to 370 0 C which is recycled in all at the inlet of the hydroisomerization / hydrocracking reactor to maximize the production of diesel and kerosene.
Les rendements sont donnés dans le tableau 10.The yields are given in Table 10.
Tableau 10 : rendement des différentes cou es a rès sé arationTable 10: Yields of Different Seeds at Multiple Separation
Figure imgf000037_0001
Figure imgf000037_0001
La présence de monoxyde de carbone (CO) dans l'effluent gazeux inhibiteur de la fonction hydrogénante du catalyseur d'hydrocraquage modifie non seulement l'activité mais aussi la sélectivité dudit catalyseur en distillats moyens. On constate que l'absence d'étape préalable de passage sur au moins une résine échangeuse d'ions nécessitant une augmentation de température pour maintenir la conversion entraîne une augmentation de la production de fraction gaz léger et naphta indésirable par sur-craquage.The presence of carbon monoxide (CO) in the gaseous effluent inhibiting the hydrogenating function of the hydrocracking catalyst modifies not only the activity but also the selectivity of said catalyst in middle distillates. It is found that the absence of a prior step of passing on at least one ion exchange resin requiring an increase in temperature to maintain the conversion causes an increase in the production of undesirable light gas and naphtha fraction by over cracking.
Le procédé selon l'invention exemplifié dans l'exemple 1 permet donc, par la mise en oeuvre de résine échangeuse d'ions en amont des étapes d'hydrotraitement et d'hydroisomérisation/hydrocraquage, de diminuer la teneur en oxygène totale de la charge et ainsi de limiter de la formation de monoxyde de carbone (CO) provenant de la décomposition des composés oxygénés présents dans la charge dans la section d'hydroisomérisation/hydrocraquage. En effet, le monoxyde de carbone (CO) est un inhibiteur des composés métalliques présents sur le catalyseur d'hydroisomérisation/hydrocraquage, et sa teneur doit être minimisée pour ne pas requérir une augmentation de température pour compenser la baisse d'activité et maintenir la conversion. On constate donc que le procédé selon l'invention permet une diminution de la production de monoxyde de carbone (CO) (1 ,1% poids) par la mise en oeuvre de l'étape b) selon l'invention par rapport à un procédé non conforme à l'invention ne mettant pas en oeuvre ladite étape de passage sur au moins une résine échangeuse d'ion et permet une diminution des températures mises en oeuvre dans les étape d'hydrogénation et d'hydroisomérisation/hydrocraquage pour l'obtention d'une même conversion de 85% en produits à point d'ébullition supérieur ou égaux à 3700C en produits à points d'ébullition inférieur à 370°C . The process according to the invention exemplified in Example 1 thus makes it possible, by the use of ion exchange resin upstream of the hydrotreatment and hydroisomerization / hydrocracking steps, to reduce the total oxygen content of the feedstock. and thus to limit the formation of carbon monoxide (CO) from the decomposition of the oxygenates present in the feed in the hydroisomerization / hydrocracking section. In fact, carbon monoxide (CO) is an inhibitor of the metal compounds present on the hydroisomerization / hydrocracking catalyst, and its content must be minimized so as not to require an increase in temperature to compensate for the decrease in activity and maintain the conversion. It is therefore found that the process according to the invention allows a reduction in the production of carbon monoxide (CO) (1.1% by weight) by the implementation of step b) according to the invention compared to a process not according to the invention does not implement said step of passing on at least one ion exchange resin and allows a decrease in the temperatures used in the hydrogenation step and hydroisomerization / hydrocracking to obtain the same conversion of 85% to products with a boiling point greater than or equal to 370 ° C. in products with boiling points below 370 ° C.

Claims

REVENDICATIONS
1. Procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch et divisée en deux fractions, une fraction légère, appelée1. Process for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis and divided into two fractions, a light fraction, called
S condensât à froid, et une fraction lourde, appelée cires, comprenant les étapes suivantes : a) fractionnement de ladite fraction légère, appelée condensât à froid en deux fractions, une fraction gazeuse C4- bouillant à une température inférieure à 15°C et une fraction intermédiaire ayant un point d'ébullition initial compris entre 15 et 4O0C et un point d'ébullition final compris entre 300 et 4500C, 0 b) passage sur au moins une résine échangeuse d'ion de ladite fraction intermédiaire, à une température comprise entre 500C et 150 "C1 à une pression totale comprise entre 0,7 et 2,5 MPa, à une vitesse volumique horaire comprise entre 0,2 et 2,5 h-1 , c) élimination d'au moins une partie de l'eau de l'effluent issu de l'étape b), d) décontamination par passage sur un premier lit de garde contenant au moins un5 catalyseur de lit de garde de ladite fraction lourde appelée cires, e) recombinaison de la fraction intermédiaire purifiée issue de l'étape c) et de l'effluent issu de l'étape d) pour obtenir une fraction C5+ purifiée, f) hydrogénation des composés insaturés de type oléfiniques d'au moins une partie de la fraction C5+ purifiée issue de l'étape e) en présence d'hydrogène et d'un catalyseur d'hydrogénation, g) hydroisomérisation/hydrocraquage en présence d'hydrogène et d'un catalyseur d'hydroisomérisation/hydrocraquage d'au moins une partie de l'effluent issu de l'étape f) h) séparation et recyclage dans l'étape g) d'hydroisomérisation/hydrocraquage de l'hydrogène non réagi et des gaz légers, i) distillation de l'effluent issu de l'étape h).S cold condensate, and a heavy fraction, called waxes, comprising the following steps: a) fractionation of said light fraction, called cold condensate into two fractions, a gaseous fraction C4- boiling at a temperature below 15 ° C and a intermediate fraction having an initial boiling point between 15 and 40 ° C. and a final boiling point of between 300 and 450 ° C., b) passing on at least one ion exchange resin of said intermediate fraction, at a temperature between 50 0 C and 150 "C 1 at a total pressure between 0.7 and 2.5 MPa, at an hourly space velocity between 0.2 and 2.5 h-1, c) removal of at least a portion of the water of the effluent from step b), d) decontamination by passing over a first guard bed containing at least one guard bed catalyst of said heavy fraction called waxes, e) recombination of the purified intermediate fraction resulting from step c ) and the effluent from step d) to obtain a purified C5 + fraction, f) hydrogenation of the olefinic unsaturated compounds of at least a portion of the purified C5 + fraction from step e) in the presence of hydrogen and a hydrogenation catalyst, g) hydroisomerization / hydrocracking in the presence of hydrogen and a hydroisomerization / hydrocracking catalyst of at least a portion of the effluent from step f) h) separation and recycling in step g) hydroisomerization / hydrocracking unreacted hydrogen and light gases, i) distillation of the effluent from step h).
2. Procédé selon la revendication 1 dans lequel préalablement à l'étape b) ladite fraction intermédiaire subit une étape de décontamination par passage sur un lit de garde contenant au moins un catalyseur de lit de garde.2. The method of claim 1 wherein prior to step b) said intermediate fraction undergoes a step of decontamination by passing on a guard bed containing at least a guard bed catalyst.
3. Procédé selon l'une des revendications 1 ou 2 dans lequel ladite fraction paraffinique liquide C5+ issue de l'étape b) passe sur une seule résine échangeuse d'ions permettant de réaliser simultanément l'estérification des alcools et acides carboxyliques en ester et la captation des métaux dissous dans la charge. 3. Method according to one of claims 1 or 2 wherein said C5 + liquid paraffinic fraction from step b) passes over a single ion exchange resin for simultaneously performing the esterification of alcohols and carboxylic acids into ester and the capture of dissolved metals in the charge.
4. Procédé selon la revendication 3 dans lequel ladite résine est mise en oeuvre à une température comprise entre 8O0C et 15O0C, à une pression comprise entre 1 et 2 MPa et à une vitesse volumique horaire comprise entre 0,5 et 1 ,5 h-1.4. Process according to claim 3, in which said resin is used at a temperature of between 80 ° C. and 150 ° C., at a pressure of between 1 and 2 MPa and at an hourly space velocity of between 0.5 and 1. , 5 h-1.
5. Procédé selon l'une des revendications 3 ou 4 dans lequel ladite résine est constituée par des co polymères de di-vinyle benzène et de polystyrène présentant un taux de réticulation compris entre 20 et 35% et une force acide, dosée par potentiométrie lors de la neutralisation par une solution de KOH, compris entre 0,2 à 6 mmol H+ équivalent / g.5. Method according to one of claims 3 or 4 wherein said resin is constituted by copolymers of di-vinyl benzene and polystyrene having a degree of crosslinking of between 20 and 35% and an acidic strength, determined by potentiometry during neutralization with a KOH solution of 0.2 to 6 mmol H + equivalent / g.
6. Procédé selon l'une des revendications 3 ou 4 dans lequel ladite résine est un polysiloxanes greffé par des groupements acides de type alkylsulfoniques (du type -CH2- CH2-CH2-SO3H), de taille comprise entre 0,5 et 1 ,2 mm et de force acide dosée par potentiométrie lors de la neutralisation par une solution de KOH, de 0,4 à 1,5 mmol H+ équivalent / g.6. Method according to one of claims 3 or 4 wherein said resin is a polysiloxane grafted with alkylsulfonic acid groups (type -CH2-CH2-CH2-SO3H), size between 0.5 and 1, 2 mm and potentiometric strength assayed by potentiometry during neutralization with a KOH solution, 0.4 to 1.5 mmol H + equivalent / g.
7. Procédé selon l'une des revendications 1 ou 2 dans lequel ladite fraction paraffinique liquide C5+ issue de l'étape b) passe sur deux résines distinctes échangeuses d'ions de nature différente, dans deux réacteurs différents.7. Method according to one of claims 1 or 2 wherein said C5 + liquid paraffinic fraction from step b) passes on two different ion exchange resins different in two different reactors.
8. Procédé selon la revendication 7 dans lequel le réacteur contenant la résine échangeuse d'ions permettant la captation des métaux est mise en oeuvre en amont du réacteur contenant la résine échangeuse d'ions permettant l'estérification des alcools et acides carboxyliques.8. The method of claim 7 wherein the reactor containing the ion exchange resin for the capture of metals is carried out upstream of the reactor containing the ion exchange resin for the esterification of alcohols and carboxylic acids.
9. Procédé selon l'une des revendications 7 ou 8 dans lequel ladite première résine est une résine constituée par des co polymères de di-vinyle benzène et de polystyrène présentant un taux de réticulation compris entre 1 et 20% et une force acide dosée par potentiométrie lors de la neutralisation par une solution de KOH, comprise entre 1 et 15 mmol H+ équivalent / g.9. Method according to one of claims 7 or 8 wherein said first resin is a resin consisting of copolymers of di-vinyl benzene and polystyrene having a degree of crosslinking of between 1 and 20% and an acid strength dosed by potentiometry during neutralization with a KOH solution, between 1 and 15 mmol H + equivalent / g.
10. Procédé selon l'une des revendications 7 à 9 dans lequel ladite première résine est mise en oeuvre à une température comprise entre 500C et 1100C, à une pression comprise entre10. Method according to one of claims 7 to 9 wherein said first resin is carried out at a temperature between 50 0 C and 110 0 C at a pressure between
1 et 2 MPa et à une vitesse volumique horaire comprise entre 0,2 et 1 ,5 h-1.1 and 2 MPa and at an hourly space velocity of between 0.2 and 1.5 h -1.
11. Procédé selon l'une des revendications 1 à 10 dans lequel ledit catalyseur de lit de garde utilisé sans l'étape d) et dans l'étape de décontamination optionnelle préalable à l'étape b) comprend un volume mercure macroporeux pour un diamètre moyen à 50 nm supérieur à 0,1 cm3/g, et un volume total supérieur à 0,60 cm3/g.11. Method according to one of claims 1 to 10 wherein said guard bed catalyst used without step d) and in the optional decontamination step prior to step b) comprises a macroporous mercury volume for a mean diameter at 50 nm greater than 0.1 cm3 / g, and a total volume greater than 0.60 cm3 / g.
12. Procédé selon l'une des revendications 1 à 11 dans lequel l'effluent issu de l'étape d) passe, avant l'étape de recombinaison e), sur au moins une résine échangeuse d'ion à une température comprise entre 8O0C et 150 0C, à une pression totale comprise entre 0,7 et 2,5 MPa, à une vitesse volumique horaire comprise entre 0,2 et 2,5 h-1.12. Method according to one of claims 1 to 11 wherein the effluent from step d) passes, before the recombination step e), on at least one ion exchange resin at a temperature between 80 ° 0 C and 150 0 C, at a total pressure of between 0.7 and 2.5 MPa, at an hourly space velocity of between 0.2 and 2.5 h -1.
13. Procédé selon l'une des revendications 1 à 11 dans lequel la charge paraffinique produite par synthèse Fischer-Tropsch est produit à partir d'un gaz de synthèse produit à partir de gaz naturel selon la voie GTL aussi appelée selon la terminologie anglo-saxonne gas- to-liquid.13. Method according to one of claims 1 to 11 wherein the paraffinic filler produced by Fischer-Tropsch synthesis is produced from a synthesis gas produced from natural gas according to the GTL route also called in the English terminology. Saxon gas-to-liquid.
14. Procédé selon l'une des revendications 1 à 11 dans lequel la charge paraffinique produite par synthèse Fischer-Tropsch est produit à partir d'un gaz de synthèse produit à partir de charbon selon la voie CTL aussi appelée selon la terminologie anglo-saxonne coal- to-liquid.14. Method according to one of claims 1 to 11 wherein the paraffinic filler produced by Fischer-Tropsch synthesis is produced from a synthesis gas produced from coal according to the CTL route also called in the English terminology. coal-to-liquid.
15. Procédé selon l'une des revendications 1 à 11 dans lequel la charge paraffinique produite par synthèse Fischer-Tropsch est produit à partir d'un gaz de synthèse produit à partir de biomasse selon la voie BTL aussi appelée selon la terminologie anglo-saxonne biomass- to-liquid. 15. Method according to one of claims 1 to 11 wherein the paraffinic feedstock produced by Fischer-Tropsch synthesis is produced from a synthesis gas produced from biomass according to the BTL pathway also called in the English terminology. biomass-to-liquid.
PCT/FR2010/000252 2009-04-03 2010-03-24 Method for the production of middle distillates, comprising the hydroisomerisation and hydrocracking of a heavy fraction originating from a fischer-tropsch effluent using a resin WO2010112691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/262,681 US20120048775A1 (en) 2009-04-03 2010-03-24 Process for producing middle distillates by hydroisomerization and hydrocracking of a heavy fraction derived from a fischer-tropsch effluent employing a resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0901652 2009-04-03
FR0901652A FR2944028B1 (en) 2009-04-03 2009-04-03 PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT USING A RESIN

Publications (1)

Publication Number Publication Date
WO2010112691A1 true WO2010112691A1 (en) 2010-10-07

Family

ID=41278457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/000252 WO2010112691A1 (en) 2009-04-03 2010-03-24 Method for the production of middle distillates, comprising the hydroisomerisation and hydrocracking of a heavy fraction originating from a fischer-tropsch effluent using a resin

Country Status (3)

Country Link
US (1) US20120048775A1 (en)
FR (1) FR2944028B1 (en)
WO (1) WO2010112691A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083143A1 (en) * 2016-11-07 2018-05-11 Shell Internationale Research Maatschappij B.V. Process to prepare normal paraffins
WO2018083149A1 (en) * 2016-11-07 2018-05-11 Shell Internationale Research Maatschappij B.V. Process to prepare normal paraffins

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013106439A1 (en) * 2013-06-20 2014-12-24 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for removing metals from high boiling hydrocarbon fractions
KR20170010374A (en) * 2014-05-19 2017-01-31 쉘 인터내셔날 리써취 마트샤피지 비.브이. Process for preparing purified fischer-tropsch gasoil fraction
EP3146022A1 (en) * 2014-05-19 2017-03-29 Shell Internationale Research Maatschappij B.V. Process for preparing a high purity fischer-tropsch gasoil fraction
WO2015177070A1 (en) 2014-05-19 2015-11-26 Shell Internationale Research Maatschappij B.V. Process for preparing a high purity fischer-tropsch gasoil fraction
CN109423337B (en) * 2017-08-22 2020-08-04 中国石化工程建设有限公司 Wax oil hydrogenation-catalytic cracking heat combined process system and wax oil treatment method
WO2019183444A1 (en) * 2018-03-23 2019-09-26 Southern Research Institute Hydrogenation and oligomerization process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583836A1 (en) 1992-08-18 1994-02-23 Shell Internationale Researchmaatschappij B.V. Process for the preparation of hydrocarbon fuels
FR2849051A1 (en) * 2002-12-23 2004-06-25 Inst Francais Du Petrole Transformation of hydrocarbon charge to give fraction with improved octane index and one with improved cetane index, comprises selective etherification and oligomerization
US20050004415A1 (en) * 2003-07-02 2005-01-06 Chevron U.S.A. Inc. Ion exchange methods of treating a Fischer-Tropsch derived hydrocarbon stream
WO2006005084A1 (en) 2004-07-06 2006-01-12 Sasol Technology (Pty) Ltd Treatment of hydrocarbons
WO2006005085A2 (en) 2004-07-06 2006-01-12 Sasol Technology (Pty) Ltd Method of treatment of fischer-tropsch derived hydrocarbons
FR2888584A1 (en) * 2005-07-18 2007-01-19 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESSES USING A MULTIFUNCTIONAL GUARD BED
WO2007141293A1 (en) * 2006-06-09 2007-12-13 Albemarle Netherlands B.V. Catalytic hydrodeoxygenation of an oxygenate feedstock
US20080161615A1 (en) * 2006-12-21 2008-07-03 Thierry Chapus Method of converting feedstocks coming from renewable sources into high-quality gas-oil fuel bases
FR2917419A1 (en) * 2007-06-12 2008-12-19 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLTATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT
US20090018374A1 (en) * 2006-01-23 2009-01-15 Focco Cornelis Bijlsma Hydrogenation catalyst and use thereof for hydrogenating fischer-tropsch endproducts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395981A (en) * 1992-06-22 1995-03-07 Uop Hydrocarbon conversion by catalytic distillation
US6211408B1 (en) * 1999-03-24 2001-04-03 Celanese International Corporation Method of removing iodides from non-aqueous organic media utilizing silver or mercury exchanged macroporous organofunctional polysiloxane resins
GB0126648D0 (en) * 2001-11-06 2002-01-02 Bp Exploration Operating Composition and process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583836A1 (en) 1992-08-18 1994-02-23 Shell Internationale Researchmaatschappij B.V. Process for the preparation of hydrocarbon fuels
FR2849051A1 (en) * 2002-12-23 2004-06-25 Inst Francais Du Petrole Transformation of hydrocarbon charge to give fraction with improved octane index and one with improved cetane index, comprises selective etherification and oligomerization
US20050004415A1 (en) * 2003-07-02 2005-01-06 Chevron U.S.A. Inc. Ion exchange methods of treating a Fischer-Tropsch derived hydrocarbon stream
WO2006005084A1 (en) 2004-07-06 2006-01-12 Sasol Technology (Pty) Ltd Treatment of hydrocarbons
WO2006005085A2 (en) 2004-07-06 2006-01-12 Sasol Technology (Pty) Ltd Method of treatment of fischer-tropsch derived hydrocarbons
FR2888584A1 (en) * 2005-07-18 2007-01-19 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESSES USING A MULTIFUNCTIONAL GUARD BED
US20090018374A1 (en) * 2006-01-23 2009-01-15 Focco Cornelis Bijlsma Hydrogenation catalyst and use thereof for hydrogenating fischer-tropsch endproducts
WO2007141293A1 (en) * 2006-06-09 2007-12-13 Albemarle Netherlands B.V. Catalytic hydrodeoxygenation of an oxygenate feedstock
US20080161615A1 (en) * 2006-12-21 2008-07-03 Thierry Chapus Method of converting feedstocks coming from renewable sources into high-quality gas-oil fuel bases
FR2917419A1 (en) * 2007-06-12 2008-12-19 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLTATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HELMINEN J ET AL: "Inorganic solid supported polymer acid catalyst - Sulfonated polystyrene grafted silica gel in liquid phase esterification", REACTIVE & FUNCTIONAL POLYMERS, ELSEVIER SCIENCE PUBLISHERS BV, NL, vol. 66, no. 10, 1 October 2006 (2006-10-01), pages 1021 - 1032, XP025164696, ISSN: 1381-5148, [retrieved on 20061001] *
OZBAY N ET AL: "Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins", FUEL, IPC SCIENCE AND TECHNOLOGY PRESS, GUILDFORD, GB, vol. 87, no. 10-11, 1 August 2008 (2008-08-01), pages 1789 - 1798, XP022611170, ISSN: 0016-2361, [retrieved on 20080115] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083143A1 (en) * 2016-11-07 2018-05-11 Shell Internationale Research Maatschappij B.V. Process to prepare normal paraffins
WO2018083149A1 (en) * 2016-11-07 2018-05-11 Shell Internationale Research Maatschappij B.V. Process to prepare normal paraffins
US10934492B2 (en) 2016-11-07 2021-03-02 Shell Oil Company Process to prepare normal paraffins

Also Published As

Publication number Publication date
FR2944028B1 (en) 2011-05-06
FR2944028A1 (en) 2010-10-08
US20120048775A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
WO2010112691A1 (en) Method for the production of middle distillates, comprising the hydroisomerisation and hydrocracking of a heavy fraction originating from a fischer-tropsch effluent using a resin
CA2239827C (en) Procedure for the conversion of heavy petroleum fractions and consisting of an ebullating-bed conversion stage and a hydroprocessing stage
EP3018188B1 (en) Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content
EP3448967A1 (en) Conversion process comprising permutable hydrodemetallization guard beds, a fixed-bed hydrotreatment step and a hydrocracking step in permutable reactors
CA2854429A1 (en) Method for the hydroconversion of petroleum feedstocks in fixed beds for the production of fuel oils having a low sulphur content
EP2321385A1 (en) Method of converting a heavy charge into petrol and propylene, having a variable-yield structure
EP2636661B1 (en) Method for converting a heavy load using a catalytic cracking unit and a step for selective hydrogenation of gasoline from catalytic cracking
FR3004722A1 (en) PROCESS FOR THE CONVERSION OF FUEL BASED RENEWABLE ORIGINAL LOADS COMPRISING A BOILING BED HYDROTREATMENT STEP AND A FIXED BED HYDROISOMERIZATION STEP
FR2984916A1 (en) IMPROVED METHOD OF CONVERTING A HEAVY LOAD TO MEDIUM DISTILLATE USING UP-TO-THE-END PRETREATMENT OF THE CATALYTIC CRACKING UNIT
FR2900157A1 (en) PROCESS FOR THE DESULFURATION OF OLEFINIC ESSENCES COMPRISING AT LEAST TWO DISTINCT HYDRODESULFURATION STAGES
FR3027913A1 (en) METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A VISCOREDUCTION STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS
EP2158303B1 (en) Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluent
FR2913692A1 (en) PROCESS FOR DESULFURIZING HYDROCARBONIC FRACTIONS RESULTING FROM VAPOCRACKING EFFLUENTS
FR2991335A1 (en) OPTIMIZED PROCESS FOR THE VALORISATION OF BIO-OILS IN AROMATIC BASES
FR2926086A1 (en) PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING SEQUENCES OF AN EFFLUENT PRODUCED BY THE FISCHER-TROPSCH PROCESS
WO2010112690A1 (en) Method for the production of middle distillates, comprising the hydroisomerisation and hydrocracking of a heavy fraction originating from a fischer-tropsch effluent
CN108350365B (en) Conversion of biomass to liquid hydrocarbon materials
FR2989381A1 (en) PRODUCTION OF MEDIUM DISTILLATES FROM AN EFFLUENT FROM THE FISCHER-TROPSCH SYNTHESIS COMPRISING A STEP FOR REDUCING OXYGEN COMPOUND CONTENT
CA2815618A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and liquid/liquid extraction of the heavy fraction
EP3476917B1 (en) Starting method of a method for producing kerosene and diesel oil from hydrocarbon compounds produced by fischer-tropsch synthesis
WO2012085408A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by decontamination, hydroconversion in an ebullating bed, and fractionation by atmospheric distillation
FR2981944A1 (en) PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES IN WHICH THE FISCHER-TROPSCH LOAD AND THE HYDROGEN FLOW CONTAIN A LIMITED OXYGEN CONTENT
FR2970478A1 (en) Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent
FR2983864A1 (en) Method for converting coal into e.g. kerosene, involves converting major fraction of feedstock by direct liquefaction, converting minor fraction of feedstock by indirect liquefaction, and mixing liquid fractions
FR2989380A1 (en) OPTIMIZED PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES FROM A FISCHER-TROPSCH LOAD COMPRISING A LIMITED QUANTITY OF OXYGEN COMPOUNDS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10713488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13262681

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10713488

Country of ref document: EP

Kind code of ref document: A1