FR3027913A1 - METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A VISCOREDUCTION STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS - Google Patents

METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A VISCOREDUCTION STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS Download PDF

Info

Publication number
FR3027913A1
FR3027913A1 FR1460630A FR1460630A FR3027913A1 FR 3027913 A1 FR3027913 A1 FR 3027913A1 FR 1460630 A FR1460630 A FR 1460630A FR 1460630 A FR1460630 A FR 1460630A FR 3027913 A1 FR3027913 A1 FR 3027913A1
Authority
FR
France
Prior art keywords
fraction
heavy
oil
heavy fraction
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1460630A
Other languages
French (fr)
Inventor
Wilfried Weiss
Ann Forret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to FR1460630A priority Critical patent/FR3027913A1/en
Priority to EP15306718.6A priority patent/EP3018189B1/en
Priority to US14/932,562 priority patent/US20160122662A1/en
Publication of FR3027913A1 publication Critical patent/FR3027913A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/06Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/007Visbreaking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/208Sediments, e.g. bottom sediment and water or BSW
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un procédé de conversion d'une charge hydrocarbonée contenant au moins une fraction d'hydrocarbures ayant une teneur en soufre d'au moins 0,1 % poids, une température initiale d'ébullition d'au moins 340°C et une température finale d'ébullition d'au moins 440°C permettant d'obtenir une fraction lourde ayant une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids, ledit procédé comprenant les étapes suivantes :a) une étape de viscoréduction de la charge dans au moins une chambre de maturation, b) une étape de séparation de l'effluent obtenu à l'issue de l'étape a), c) une étape de maturation de la fraction lourde issue de l'étape b), d) une étape de séparation des sédiments de la fraction lourde issue de l'étape c) de maturation pour obtenir ladite fraction .lourde.The invention relates to a process for converting a hydrocarbon feedstock containing at least one hydrocarbon fraction having a sulfur content of at least 0.1% by weight, an initial boiling point of at least 340.degree. a final boiling temperature of at least 440 ° C to obtain a heavy fraction having a sediment content after aging less than or equal to 0.1% by weight, said process comprising the following steps: a) a step of visbreaking of the feedstock in at least one maturation chamber, b) a step of separating the effluent obtained at the end of step a), c) a step of maturation of the heavy fraction resulting from step b d) a step of separating the sediments from the heavy fraction resulting from the curing step c) to obtain said crude fraction.

Description

La présente invention concerne le raffinage et la conversion des fractions lourdes d'hydrocarbures contenant entre autre des impuretés soufrées. Elle concerne plus particulièrement un procédé de conversion de charges lourdes pétrolières de type résidu atmosphérique et/ou résidu sous vide pour la production de fractions lourdes utilisables comme bases de fiouls, notamment de bases de fiouls de soute, à basse teneur en sédiments. Le procédé selon l'invention permet également de produire des distillats atmosphériques (naphta, kérosène et diesel), des distillats sous vide et des gaz légers (Cl à C4).The present invention relates to the refining and the conversion of heavy hydrocarbon fractions containing, inter alia, sulfur-containing impurities. It relates more particularly to a process for converting heavy petroleum feeds of the atmospheric residue type and / or vacuum residue for the production of heavy fractions that can be used as fuel bases, in particular bunker oil bases, with a low sediment content. The process according to the invention also makes it possible to produce atmospheric distillates (naphtha, kerosene and diesel), vacuum distillates and light gases (Cl to C4).

Les exigences de qualité des combustibles marins sont décrites dans la norme ISO 8217. La spécification concernant le soufre s'attache désormais aux émissions de SOx (Annexe VI de la convention MARPOL de l'Organisation Maritime Internationale) et se traduit par une recommandation en teneur en soufre inférieure ou égale à 0,5% poids en dehors des Zones de Contrôle des Emissions de Soufre (ZCES ou Emissions Control Areas / ECA en anglais) à l'horizon 2020-2025, et inférieure ou égale à 0,1% poids dans les ZCES. Une autre recommandation très contraignante est la teneur en sédiments après vieillissement selon ISO 10307-2 (également connue sous le nom d'IP390) qui doit être inférieure ou égale à 0,1%.The quality requirements for marine fuels are described in ISO 8217. The sulfur specification now focuses on SOx emissions (Annex VI of the MARPOL Convention of the International Maritime Organization) and results in a recommendation in terms of quality. Sulfur less than or equal to 0.5% by weight outside the Sulfur Emission Control Areas (ZCES or Emissions Control Areas / ECA) by 2020-2025 and less than or equal to 0.1% by weight in the ZCESCs. Another very restrictive recommendation is the sediment content after aging according to ISO 10307-2 (also known as IP390) which must be less than or equal to 0.1%.

La teneur en sédiments selon ISO 10307-1 (également connue sous le nom d'IP375) est différente de la teneur en sédiments après vieillissement selon ISO 10307-2 (également connue sous le nom d'IP390). La teneur en sédiments après vieillissement selon ISO 10307-2 est une spécification beaucoup plus contraignante et correspond à la spécification s'appliquant aux fiouls de soute.The sediment content according to ISO 10307-1 (also known as IP375) is different from the sediment content after aging according to ISO 10307-2 (also known as IP390). The sediment content after aging according to ISO 10307-2 is a much more stringent specification and corresponds to the specification for bunker fuels.

Selon l'Annexe VI de la convention MARPOL, un navire pourra donc utiliser un fioul soufré dès lors que le navire est équipé d'un système de traitement des fumées permettant de réduire des émissions d'oxydes de soufre.According to Annex VI of the MARPOL Convention, a ship may therefore use a sulfur-containing fuel oil if the ship is equipped with a flue gas treatment system that reduces emissions of sulfur oxides.

Les procédés de viscoréduction de résidus permettent de convertir des résidus à faible valeur en des distillats à plus forte valeur ajoutée. La viscoréduction consiste à réaliser un craquage partiel du résidu, la conversion est donc toujours nettement inférieure (d'au moins 10 à 20%) à celle obtenue dans un procédé d'hydrocraquage de résidu en lit bouillonnant par exemple. Cependant, la fraction lourde qui en résulte correspondant à la coupe résiduelle non convertie est généralement instable. Elle contient des sédiments qui sont principalement des asphaltènes précipités. Cette coupe résiduelle instable ne peut donc pas être valorisée comme fioul, notamment en fioul de soute sans un traitement spécifique dès lors que la viscoréduction est opérée dans des conditions sévères conduisant à un taux de conversion élevé pour ce type de traitement. Toutefois la mise en oeuvre d'un procédé de viscoréduction est beaucoup moins onéreuse qu'un procédé d'hydrocraquage de résidus. De plus, un grand nombre d'unité est déjà installé, il y a donc un intérêt à utiliser ces unités tout en leur permettant d'améliorer la qualité des effluents et ainsi leur permettre d'opérer à plus forte sévérité. Le procédé de viscoréduction permet de convertir partiellement les charges lourdes afin de produire des distillats atmosphériques et/ou de distillats sous vide. Les charges de type résidus contiennent généralement des asphaltènes qui peuvent précipiter lors de la viscoréduction. Initialement dans la charge, les conditions de viscoréduction et notamment la température font que les asphaltènes subissent des réactions (déalkylation, polymérisation...) conduisant à leur précipitation dès lors que les conditions sont sévères et que le taux de conversion est élevé pour ce type de procédé. Par rapport à un procédé d'hydrocraquage de résidu, la mise en oeuvre d'un procédé de viscoréduction en absence d'hydrogène et de catalyseur fait que les réactions sont uniquement thermiques. Ainsi le taux de conversion à partir duquel les sédiments apparaissent en viscoréduction est plus faible qu'en hydrocraquage de résidus. Les sédiments formés doivent être enlevés pour satisfaire une qualité de produit tel que le fioul de soute. Une telle séparation des sédiments évite notamment les risques d'encrassement des moteurs de bateaux et dans le cas d'éventuelles étapes de traitement mises en oeuvre en aval de l'étape de viscoréduction, d'éviter un bouchage du ou des lit(s) catalytique(s) mis en oeuvre. La demanderesse dans ses recherches a mis au point un nouveau procédé intégrant une étape de maturation et de séparation des sédiments en aval d'une étape de 302 79 13 3 viscoréduction. Il a été trouvé qu'un tel procédé permettait d'obtenir des fractions lourdes présentant une basse teneur en sédiments après vieillissement, lesdites fractions lourdes pouvant avantageusement être utilisées totalement ou en partie comme fioul ou comme base de fioul répondant aux futures spécifications, à savoir 5 une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids Plus particulièrement, l'invention concerne un procédé de conversion d'une charge hydrocarbonée contenant au moins une fraction d'hydrocarbures ayant une teneur en soufre d'au moins 0,1 % poids, une température initiale d'ébullition d'au moins 340°C et une température finale d'ébullition d'au moins 440°C permettant d'obtenir une 10 fraction lourde ayant une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids, ledit procédé comprenant les étapes suivantes : a) une étape de viscoréduction de la charge dans au moins une chambre de maturation, b) une étape de séparation de l'effluent obtenu à l'issue de l'étape a) en au moins 15 une fraction légère d'hydrocarbures contenant des bases carburants et une fraction lourde contenant des composés bouillant à au moins 350°C, c) une étape de maturation de la fraction lourde issue de l'étape b) de séparation permettant la transformation d'une partie des sédiments potentiels en sédiments existants, réalisée pendant une durée comprise entre 1 et 1500 minutes, à une 20 température comprise entre 50 et 350°C, et une pression inférieure à 20 MPa, d) une étape de séparation des sédiments de la fraction lourde issue de l'étape c) de maturation pour obtenir ladite fraction lourde. Afin de constituer le fioul répondant aux recommandations de la viscosité, les 25 fractions lourdes obtenues par le présent procédé peuvent être mélangées avec des bases fluxantes de manière à atteindre la viscosité cible du grade de fioul désiré. Un autre point d'intérêt du procédé est la conversion partielle de la charge permettant de produire, notamment par viscoréduction, des distillats atmosphériques ou des distillats sous vide (naphta, kérosène, diesel, distillat sous vide), valorisables comme bases dans les pools carburants directement ou après passage dans un autre procédé de raffinage tel que l'hydrotraitement, le reformage, l'isomérisation-hydrocraquage ou le craquage catalytique.Residue visbreaking processes are used to convert low value residues to higher value added distillates. The visbreaking consists in partially cracking the residue, the conversion is therefore always significantly lower (by at least 10 to 20%) than that obtained in a hydrocracking process of residue in a bubbling bed, for example. However, the resulting heavy fraction corresponding to the unconverted residual cut is generally unstable. It contains sediments that are mainly precipitated asphaltenes. This unstable residual cut can not therefore be used as fuel, especially in bunker oil without a specific treatment since the visbreaking is operated under severe conditions leading to a high conversion rate for this type of treatment. However, the implementation of a visbreaking process is much less expensive than a process for hydrocracking residues. In addition, a large number of units is already installed, so there is interest in using these units while allowing them to improve the quality of the effluents and thus allow them to operate with greater severity. The visbreaking process partially converts heavy feeds to produce atmospheric distillates and / or vacuum distillates. Residual type feeds generally contain asphaltenes which can precipitate during visbreaking. Initially in the feedstock, the visbreaking conditions and in particular the temperature cause the asphaltenes to undergo reactions (dealkylation, polymerization, etc.) leading to their precipitation when the conditions are severe and the conversion rate is high for this type. process. In comparison with a residue hydrocracking process, the use of a visbreaking process in the absence of hydrogen and of catalyst makes the reactions only thermal. Thus the conversion rate at which sediments appear visbreduction is lower than in hydrocracking of residues. The sediments formed must be removed to satisfy a product quality such as bunker oil. Such separation of the sediments avoids in particular the risk of clogging of the boat engines and in the case of any processing steps implemented downstream of the visbreaking step, to avoid clogging of the bed (s) catalytic (s) implemented. The applicant in his research has developed a new process incorporating a step of maturation and separation of sediments downstream of a visbreaking step. It has been found that such a process makes it possible to obtain heavy fractions having a low sediment content after aging, said heavy fractions being advantageously able to be used wholly or partly as fuel oil or as a fuel base meeting the future specifications, namely In particular, the invention relates to a process for the conversion of a hydrocarbon feedstock containing at least one hydrocarbon fraction having a sulfur content of at least 0.1% by weight. 0.1% wt., An initial boiling temperature of at least 340 ° C and a final boiling temperature of at least 440 ° C to obtain a heavy fraction having a sediment content after lower aging or equal to 0.1% by weight, said process comprising the following steps: a) a visbreaking step of the charge in at least one maturati chamber b) a step of separating the effluent obtained at the end of step a) into at least a light fraction of hydrocarbons containing fuels bases and a heavy fraction containing compounds boiling at least 350 ° C, c) a step of maturation of the heavy fraction resulting from the separation stage b) allowing the transformation of part of the potential sediments into existing sediments, carried out for a period of between 1 and 1500 minutes, at a temperature between 50 and 350 ° C, and a pressure of less than 20 MPa; d) a step of separating the sediments from the heavy fraction resulting from the curing step c) to obtain said heavy fraction. In order to form the fuel oil in accordance with the viscosity recommendations, the heavy fractions obtained by the present process can be mixed with fluxing bases so as to achieve the target viscosity of the desired fuel grade. Another point of interest of the process is the partial conversion of the feedstock to produce, especially by visbreaking, atmospheric distillates or vacuum distillates (naphtha, kerosene, diesel, vacuum distillate), recoverable as bases in the fuel pools. directly or after passing through another refining process such as hydrotreating, reforming, isomerization-hydrocracking or catalytic cracking.

Description détaillée La charge Les charges traitées dans le procédé selon l'invention sont avantageusement choisies parmi les résidus atmosphériques, les résidus sous vide issus de distillation directe, des pétroles bruts, des pétroles bruts étêtés, les huiles désasphaltées, des résines de désasphaltage, les asphaltes ou brais de désasphaltage, les résidus issus des procédés de conversion, des extraits aromatiques issus des chaînes de production de bases pour lubrifiants, des sables bitumineux ou leurs dérivés, des schistes bitumineux ou leurs dérivés, pris seuls ou en mélange.The feedstock treated in the process according to the invention are advantageously chosen from atmospheric residues, vacuum residues from straight-run distillation, crude oils, crude head oils, deasphalted oils, deasphalting resins, asphalts or deasphalting pitches, residues resulting from conversion processes, aromatic extracts from lubricant base production lines, oil sands or their derivatives, oil shales or their derivatives, whether taken alone or as a mixture.

Ces charges peuvent avantageusement être utilisées telles quelles ou encore diluées par une fraction hydrocarbonée ou un mélange de fractions hydrocarbonées pouvant être choisies parmi les produits issus d'un procédé de craquage catalytique en lit fluide (FCC selon les initiales de la dénomination anglo-saxonne de « Fluid Catalytic Cracking »), une huile de coupe légère (LCO), une huile de coupe lourde (HCO), une huile décantée (DO selon les initiales de la dénomination anglo-saxonne de « Decanted Oil »), un résidu de FCC, ou pouvant venir de la distillation, les fractions gazoles notamment celles obtenues par distillation atmosphérique ou sous vide, comme par exemple le gazole sous vide. Les charges lourdes peuvent aussi avantageusement comprendre des coupes issues du procédé de liquéfaction du charbon ou de la biomasse, des extraits aromatiques, ou toutes autres coupes hydrocarbonées ou encore des charges non pétrolières comme de l'huile de pyrolyse. Les charges selon l'invention ont généralement une teneur en soufre d'au moins 0,1 % poids, une température initiale d'ébullition d'au moins 340°C et une température finale d'ébullition d'au moins 440°C, de manière préférée une température finale d'ébullition d'au moins 540°C. Avantageusment, la charge peut contenir au moins 1% d'asphaltènes C7 et au moins 5 ppm de métaux, de préférence au moins 2% d'asphaltènes C7 et au moins 25 ppm de métaux.These fillers can advantageously be used as they are or else diluted by a hydrocarbon fraction or a mixture of hydrocarbon fractions which may be chosen from products resulting from a fluid catalytic cracking process (FCC according to the initials of the English name of "Fluid Catalytic Cracking"), a light cutting oil (LCO), a heavy cutting oil (HCO), a decanted oil (OD according to the initials of the English name "Decanted Oil"), a residue of FCC , or which may come from the distillation, gas oil fractions including those obtained by atmospheric or vacuum distillation, such as vacuum gas oil. The heavy charges can also advantageously comprise cuts from the liquefaction process of coal or biomass, aromatic extracts, or any other hydrocarbon cuts or non-petroleum fillers such as pyrolysis oil. The fillers according to the invention generally have a sulfur content of at least 0.1% by weight, an initial boiling point of at least 340 ° C. and a final boiling point of at least 440 ° C. preferably a final boiling temperature of at least 540 ° C. Advantageously, the feedstock may contain at least 1% C7 asphaltenes and at least 5 ppm metals, preferably at least 2% C7 asphaltenes and at least 25 ppm metals.

Les charges selon l'invention sont de préférence des résidus atmosphériques ou des résidus sous vide, ou des mélanges de ces résidus. Etape a) : Viscoréduction La charge selon l'invention est soumise à une étape de viscoréduction dans au moins une chambre de maturation. Cette étape consiste à réaliser un craquage partiel de la charge afin de réduire sa viscosité.The fillers according to the invention are preferably atmospheric residues or residues under vacuum, or mixtures of these residues. Step a): Viscoreduction The feedstock according to the invention is subjected to a visbreaking step in at least one ripening chamber. This step consists in partially cracking the filler in order to reduce its viscosity.

L'étape de viscoréduction (visbreaking selon la terminologie anglo-saxonne) est un procédé de craquage doux dans lequel des hydrocarbures lourds sont chauffés dans une chambre de maturation (soaker selon la terminologie anglo-saxonne). L'étape de viscoréduction est réalisée à une température généralement comprise entre 370°C et 500°C, de préférence entre 420 et 480°C, pendant une durée généralement comprise entre 1 et 60 minutes, de préférence entre 10 et 45 minutes, une pression totale généralement inférieure à 10 MPa, de préférence inférieure à 5 MPa et de manière plus préférée inférieure à 2 MPa. Le taux de craquage est contrôlé en réglant le temps de résidence des hydrocarbures dans la chambre de maturation. Une trempe (quench selon la terminologie anglo-saxonne) de l'effluent est ensuite généralement réalisée et les produits craqués sont séparés par une distillation rapide (flash distillation selon la terminologie anglo-saxonne) et éventuellement par un stripage à la vapeur. Un tel procédé est par exemple décrit dans les brevets US 7,220,887 B2 et US 7,193,123 B2 ou dans la revue "Le raffinage du Pétrole" volume 3, chapitre 11, Éditions Technip. Un tel procédé de viscoréduction de résidus est par exemple le procédé TERVAHL commercialisé par la société Axens.The visbreaking step (visbreaking according to the English terminology) is a mild cracking process in which heavy hydrocarbons are heated in a maturation chamber (soaker according to the English terminology). The visbreaking step is carried out at a temperature generally of between 370 ° C. and 500 ° C., preferably between 420 ° C. and 480 ° C., for a period generally of between 1 and 60 minutes, preferably between 10 and 45 minutes, total pressure generally less than 10 MPa, preferably less than 5 MPa and more preferably less than 2 MPa. The cracking rate is controlled by adjusting the residence time of the hydrocarbons in the ripening chamber. A quench (quench according to the English terminology) of the effluent is then generally performed and the cracked products are separated by a rapid distillation (flash distillation according to the English terminology) and possibly by steam stripping. Such a process is for example described in US Pat. No. 7,220,887 B2 and US Pat. No. 7,193,123 B2 or in the journal "Petroleum Refining", Volume 3, Chapter 11, Technip Publishing. Such a visbreaking residue process is for example the TERVAHL process marketed by the company Axens.

Il est possible de réaliser l'hydrotraitement de la charge en amont de l'étape de viscoréduction afin d'obtenir des produits de meilleur qualité, notamment à basse teneur en soufre. Il est donc préférable d'ajouter une étape d'hydrotraitement (par exemple une étape de d'hydrodesulfuration et/ou d'hydrodéazotation) juste avant l'étape a) de viscoréduction afin d'augmenter le taux de saturation des hydrocarbures, tout en éliminant en partie les composés soufrés ou azotés. Un tel procédé d'hydrotraitement de résidus est par exemple le procédé HYVAHL commercialisé par la société Axens.It is possible to hydrotreat the feedstock upstream of the visbreaking stage in order to obtain better quality products, in particular with a low sulfur content. It is therefore preferable to add a hydrotreatment step (for example a hydrodesulphurization and / or hydrodenitization step) just before the visbreaking step a) in order to increase the saturation rate of the hydrocarbons, while partially eliminating sulfur or nitrogen compounds. Such a process for the hydrotreatment of residues is, for example, the HYVAHL process marketed by the company Axens.

Dans une variante du procédé selon l'invention, l'étape de viscoréduction est opérée en présence d'hydrogène (hydrovisbreaking selon la terminologie anglo-saxonne), ce qui permet simultanément une saturation et un craquage des hydrocarbures. En effet, la viscoréduction d'une charge hydroprocessée (c'est-à-dire dans laquelle la teneur en hydrocarbures saturés est plus importante), permet d'obtenir des taux de conversion plus élevés lors de l'étape de viscoréduction. De telles technologies de viscoréduction en présence d'hydrogène sont donc préférées dans le cadre du présent procédé, dans la mesure où elles évitent l'addition d'une étape d'hydrotraitement supplémentaire, tout en permettant d'obtenir une qualité des effluents de cette étape très satisfaisante. Il est également possible d'opérer un procédé de viscoréduction en présence d'hydrogène à l'aide d'un solvant donneur d'hydrogène, comme cela est par exemple décrit dans le brevet US 4,592,830. Les conditions opératoires utilisables dans des procédés de viscoréduction en présence d'hydrogène sont par exemple cités dans le brevet de la société Philips Petroleum US 4,708,784 et dans les brevets US 4,533,462, EP 0 113 284 B et EP 0 649 896 B. Le taux de conversion des composés bouillant au-delà de 540°C dans la charge lors de l'étape de a) de viscoréduction est généralement inférieur à 60%, de préférence inférieur à 50% et de manière plus préférée inférieur à 45%.In a variant of the process according to the invention, the visbreaking stage is operated in the presence of hydrogen (hydrovisbreaking according to the English terminology), which simultaneously allows saturation and cracking of hydrocarbons. In fact, the visbreaking of a hydroprocessed feedstock (that is to say in which the content of saturated hydrocarbons is greater) makes it possible to obtain higher conversion rates during the visbreaking step. Such visbreaking technologies in the presence of hydrogen are therefore preferred in the context of the present process, insofar as they avoid the addition of an additional hydrotreatment stage, while making it possible to obtain a quality of the effluents of this process. very satisfactory stage. It is also possible to operate a visbreaking process in the presence of hydrogen using a hydrogen donor solvent, as described for example in US Pat. No. 4,592,830. The operating conditions that can be used in visbreaking processes in the presence of hydrogen are, for example, cited in the patent of Philips Petroleum US 4,708,784 and in US Pat. Nos. 4,533,462, EP 0 113 284 B and EP 0 649 896 B. The Conversion of the compounds boiling above 540 ° C into the feedstock during the visbreaking step a) is generally less than 60%, preferably less than 50% and more preferably less than 45%.

Etape b) : Séparation de l'effluent de viscoréduction L'effluent obtenu à l'issue de l'étape a) de viscoréduction peut subir au moins une étape de séparation, éventuellement complétée par d'autres étapes de séparation supplémentaires, permettant de séparer au moins une fraction légère d'hydrocarbures contenant des bases carburants et une fraction lourde contenant des composés bouillants à au moins 350°C. L'étape de séparation peut avantageusement être mise en oeuvre par toute méthode connue de l'homme du métier telle que par exemple la combinaison d'un ou plusieurs séparateurs haute et/ou basse pression, et/ou d'étapes de distillation et/ou de stripage haute et/ou basse pression, et/ou d'étapes d'extraction liquide/liquide. De préférence, l'étape de séparation b) permet d'obtenir une phase gazeuse, au moins une fraction légère d'hydrocarbures de type naphta, kérosène et/ou diesel, une fraction distillat sous vide et une fraction résidu sous vide et/ou une fraction résidu atmosphérique. La complexité de l'étape de séparation dépend de la complexité de l'étape a) de viscoréduction, notamment si cette étape de viscoréduction opère en pression et/ou en présence d'hydrogène.Step b): Separation of the Visbreduction Effluent The effluent obtained at the end of the visbreaking step a) may undergo at least one separation step, possibly supplemented by further separation steps, which make it possible to separate at least one light hydrocarbon fraction containing fuel bases and a heavy fraction containing boiling compounds at least 350 ° C. The separation step may advantageously be carried out by any method known to those skilled in the art such as, for example, the combination of one or more high and / or low pressure separators, and / or distillation stages and / or or high and / or low pressure stripping, and / or liquid / liquid extraction steps. Preferably, the separation step b) makes it possible to obtain a gaseous phase, at least a light fraction of hydrocarbons of the naphtha, kerosene and / or diesel type, a vacuum distillate fraction and a vacuum residue fraction and / or a fraction of atmospheric residue. The complexity of the separation step depends on the complexity of the visbreaking step a), especially if this visbreaking step operates under pressure and / or in the presence of hydrogen.

Dans le cas d'une mise en oeuvre de l'étape de viscoréduction en absence d'hydrogène et à basse pression (inférieure à 2 MPa), l'effluent de l'étape a) de viscoréduction est introduit dans une colonne de distillation permettant de récupérer au moins une fraction gazeuse et une fraction liquide de type résidu atmosphérique. Le plus souvent cette colonne permet également de soutirer une coupe de type naphta non stabilisé (qui sera éventuellement traité ultérieurement dans une colonne de stabilisation) en tant que distillat liquide au niveau du ballon de reflux. Le plus souvent cette colonne permet aussi de soutirer latéralement une fraction de type gazole, éventuellement à l'aide d'un stripper latéral. La fraction liquide de type résidu atmosphérique peut éventuellement être traitée dans une colonne sous vide pour récupérer un distillat sous vide et un résidu sous vide.In the case of an implementation of the visbreaking step in the absence of hydrogen and at low pressure (less than 2 MPa), the effluent of the visbreaking step a) is introduced into a distillation column allowing recovering at least one gaseous fraction and a liquid fraction of atmospheric residue type. Most often this column also makes it possible to withdraw an unstabilized naphtha-type cut (which will optionally be subsequently treated in a stabilization column) as a liquid distillate at the reflux flask. Most often this column also allows laterally withdrawing a fraction of the diesel type, possibly with a lateral stripper. The liquid fraction of the atmospheric residue type can optionally be treated in a vacuum column to recover a vacuum distillate and a vacuum residue.

Dans le cas d'une mise en oeuvre de l'étape de viscoréduction en présence d'hydrogène, l'effluent issu de l'étape de viscoréduction est à haute pression et contient au moins une phase gaz et une phase liquide. Ainsi, la séparation peut être effectuée dans une section de fractionnement qui peut d'abord comprendre un 5 séparateur haute pression haute température (HPHT), et éventuellement un séparateur haute pression basse température (HPBT), et/ou une distillation atmosphérique et/ou une distillation sous vide. Lors de l'étape b), l'effluent obtenu à l'issue de l'étape a) est avantageusement séparé dans un séparateur haute pression haute température HPHT en une fraction légère et une fraction lourde contenant 10 majoritairement des composés bouillants à au moins 350°C. Le point de coupe de la séparation se situe avantageusement entre 200 et 400°C. Dans une variante du procédé de l'invention mettant en oeuvre de l'hydrogène lors de l'étape de viscoréduction, l'effluent issu de l'étape a) de viscoréduction peut, lors de l'étape b), également subir une succession de séparation instantanée ( ou flash 15 selon la terminologie anglo-saxonne) comprenant au moins un ballon haute pression haute température (HPHT) et un ballon basse pression haute température (BPHT) pour séparer une fraction lourde qui est envoyée dans une étape de stripage à la vapeur permettant d'éliminer de ladite fraction lourde au moins une fraction légère riche en hydrogène sulfuré. La fraction lourde récupérée en fond de colonne de 20 stripage contient des composés bouillants à au moins 350°C mais aussi des distillats atmosphériques. Selon le procédé de l'invention, ladite fraction lourde séparée de la fraction légère riche en hydrogène sulfuré est ensuite envoyée dans l'étape de maturation c) puis dans l'étape de séparation de sédiments d). Dans une variante, au moins une partie de la fraction dite lourde issue de l'étape b) 25 est fractionnée par distillation atmosphérique en au moins une fraction distillat atmosphérique contenant au moins une fraction légère d'hydrocarbures de type naphta, kérosène et/ou diesel et une fraction résidu atmosphérique. Au moins une partie de la fraction résidu atmosphérique peut être envoyée dans l'étape de maturation c) puis dans l'étape de séparation de sédiments d).In the case of an implementation of the visbreaking step in the presence of hydrogen, the effluent from the visbreaking step is at high pressure and contains at least one gas phase and a liquid phase. Thus, the separation can be carried out in a fractionation section which can firstly comprise a high temperature high pressure (HPHT) separator, and optionally a low temperature high pressure separator (HPBT), and / or atmospheric distillation and / or vacuum distillation. In step b), the effluent obtained at the end of step a) is advantageously separated in a HPHT high temperature high pressure separator into a light fraction and a heavy fraction containing mainly at least one boiling compound. 350 ° C. The cutting point of the separation is advantageously between 200 and 400 ° C. In a variant of the process of the invention employing hydrogen during the visbreaking stage, the effluent resulting from the visbreaking step a) may, during step b), also undergo a succession instantaneous separation device (or flash 15 according to the English terminology) comprising at least one high temperature high pressure balloon (HPHT) and a high temperature low pressure balloon (BPHT) for separating a heavy fraction which is sent in a stripping step to the steam for removing from said heavy fraction at least a light fraction rich in hydrogen sulfide. The heavy fraction recovered at the bottom of the stripping column contains compounds boiling at least 350 ° C. but also atmospheric distillates. According to the process of the invention, said heavy fraction separated from the light fraction rich in hydrogen sulphide is then sent to the maturation step c) and then to the sediment separation step d). In a variant, at least a portion of the so-called heavy fraction from step b) is fractionated by atmospheric distillation into at least one atmospheric distillate fraction containing at least one light fraction of naphtha, kerosene and / or diesel and a fraction of atmospheric residue. At least a part of the atmospheric residue fraction can be sent in the maturation step c) and then in the sediment separation step d).

Le résidu atmosphérique peut également au moins en partie être fractionné par distillation sous vide en une fraction distillat sous vide contenant du gazole sous vide et une fraction résidu sous vide. Ladite fraction résidu sous vide est avantageusement envoyée au moins en partie dans l'étape de maturation c) puis dans l'étape de séparation de sédiments d). Au moins une partie du distillat sous vide et/ou du résidu sous vide peut également être recyclée dans l'étape de viscoréduction a). Quelle que soit la méthode de séparation mise en oeuvre, la ou les fraction(s) légère(s) obtenue(s) peut(peuvent) subir d'autres étapes de séparation. Avantageusement, elle(s) est(sont) soumise(s) à une distillation atmosphérique permettant d'obtenir une fraction gazeuse, au moins une fraction légère d'hydrocarbures de type naphta, kérosène et/ou diesel et une fraction distillat sous vide.The atmospheric residue may also be at least partially fractionated by vacuum distillation into a vacuum distillate fraction containing vacuum gas oil and a vacuum residue fraction. Said fraction vacuum residue is advantageously sent at least partly in the maturation step c) and then in the sediment separation step d). At least a portion of the vacuum distillate and / or vacuum residue may also be recycled to the visbreaking step a). Whatever the method of separation used, the light fraction (s) obtained may (may) undergo further separation steps. Advantageously, it (s) is (are) subject (s) to atmospheric distillation to obtain a gaseous fraction, at least a light fraction of naphtha, kerosene and / or diesel type hydrocarbons and a vacuum distillate fraction.

Une partie du distillat atmosphérique et/ou du distillat sous vide peut constituer une partie d'un fioul comme fluxant. Ces coupes peuvent également constituer des combustibles marins à faible viscosité (MGO ou MGO, Marine Diesel Oil ou Marine Gas Oil selon les terminologies anglo-saxonnes). Une autre partie du distillat sous vide peut encore être valorisée par hydrocraquage et/ou par craquage catalytique en lit fluidisé. Les fractions gazeuses issues de l'étape de séparation subissent de préférence un traitement de purification pour récupérer l'hydrogène éventuellement l'hydrogène et le recycler. La valorisation des différentes coupes de bases carburants (GPL, naphta, kérosène, diesel et/ou gazole sous vide) obtenues de la présente invention est bien connue de l'Homme du métier. Les produits obtenus peuvent être intégrés à des réservoirs carburants (aussi appelé "pools" carburants selon la terminologie anglo-saxonne) ou subir des étapes de raffinage supplémentaires. Le(s) fraction(s) naphta, kérosène, gazole et le gazole sous vide peuvent être soumises à un ou plusieurs traitements (hydrotraitement, hydrocraquage, alkylation, isomérisation, reformage catalytique, craquage catalytique ou thermique ou autres) pour les amener aux spécifications requises (teneur en soufre, point de fumée, octane, cétane, etc...) de façon séparée ou en mélange. Avantageusement, le distillat sous vide sortant de la viscoréduction après séparation peut subir un hydrotraitement. Ce distillat sous vide hydrotraité peut être utilisé comme fluxant au pool fioul ayant une teneur en soufre inférieure ou égale à 0,5 % poids ou être valorisé directement comme fioul ayant une teneur en soufre inférieure ou égale à 0,1 % pds. Une partie du résidu atmosphérique, du distillat sous vide et/ou du résidu sous vide peut subir d'autres étapes de raffinage supplémentaire, telles qu'un hydrotraitement, un hydrocraquage, ou un craquage catalytique en lit fluidisé.Part of the atmospheric distillate and / or vacuum distillate may be part of a fuel oil as a fluxing agent. These cuts can also be marine fuels with low viscosity (MGO or MGO, Marine Diesel Oil or Marine Gas Oil according to English terminology). Another part of the vacuum distillate can still be upgraded by hydrocracking and / or catalytic cracking in a fluidized bed. The gaseous fractions resulting from the separation step preferably undergo a purification treatment to recover the hydrogen or hydrogen and recycle it. The recovery of different fuel base cuts (LPG, naphtha, kerosene, diesel and / or vacuum gas oil) obtained from the present invention is well known to those skilled in the art. The products obtained can be integrated in fuel tanks (also called "pools" fuels according to the English terminology) or undergo additional refining steps. The fraction (s) naphtha, kerosene, gas oil and vacuum gas oil may be subjected to one or more treatments (hydrotreatment, hydrocracking, alkylation, isomerization, catalytic reforming, catalytic cracking or thermal or other) to bring them to the specifications. required (sulfur content, smoke point, octane, cetane, etc ...) separately or in mixture. Advantageously, the vacuum distillate leaving the visbreaking after separation can be hydrotreated. This hydrotreated vacuum distillate may be used as a fluxing agent for the fuel oil pool having a sulfur content of less than or equal to 0.5% by weight or may be used directly as oil with a sulfur content of less than or equal to 0.1% by weight. Part of the atmospheric residue, vacuum distillate and / or vacuum residue may undergo further refining steps, such as hydrotreatment, hydrocracking, or fluidized catalytic cracking.

Etape c) : Maturation des sédiments La fraction lourde obtenue à l'issue de l'étape b) de séparation contient des sédiments organiques qui résultent des conditions de viscoréduction. Une partie des sédiments est constituée d'asphaltènes précipités dans les conditions de viscoréduction et sont analysés comme des sédiments existants (IP375) et une autre partie ne se forme qu'après vieillissement (IP390), le vieillissement entrainant une précipitation supplémentaire. En fonction des conditions de viscoréduction, la teneur en sédiments dans la fraction lourde varie. D'un point de vue analytique, on distingue les sédiments existants (IP375) et les sédiments après vieillissement (IP390) qui incluent les sédiments potentiels. Or, en fonction de la nature de la charge et des conditions de viscoréduction plus ou moins sévères, c'est-à-dire lorsque le taux de conversion (des composés bouillant au-delà 540°C dans la charge) est par exemple supérieur à 40 ou 50%, il y a formation de sédiments existants et de sédiments potentiels.Step c): Maturation of the sediments The heavy fraction obtained at the end of the separation step b) contains organic sediments which result from the visbreaking conditions. Part of the sediment consists of asphaltenes precipitated under visbreaking conditions and are analyzed as existing sediments (IP375) and another part is formed after aging (IP390), aging causing additional precipitation. Depending on the visbreaking conditions, the sediment content in the heavy fraction varies. From an analytical point of view, existing sediments (IP375) and sediments after aging (IP390) are distinguished from potential sediments. However, depending on the nature of the load and visbreaking conditions more or less severe, that is to say when the conversion rate (compounds boiling above 540 ° C in the load) is for example higher at 40 or 50%, existing sediments and potential sediments are formed.

Afin d'obtenir un fioul ou une base de fioul répondant aux recommandations d'une teneur en sédiments après vieillissement (IP390) inférieure ou égale à 0,1%, le procédé selon l'invention comprend une étape de maturation permettant d'améliorer l'efficacité de séparation des sédiments et ainsi d'obtenir des fiouls ou des bases de fiouls stables, c'est à dire une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids. L'étape de maturation selon l'invention permet de former l'ensemble des sédiments existants et potentiels (en convertissant les potentiels en existants) de manière à les séparer plus efficacement et ainsi respecter la teneur en sédiments après vieillissement (IP390) de 0,1% poids maximum. L'étape de maturation selon l'invention est avantageusement mise en oeuvre pendant un temps de séjour compris entre 1 et 1500 minutes, de préférence entre 25 et 300 minutes, de manière plus préférée entre 60 et 180 minutes, à une température entre 50 et 350°C, de préférence entre 75 et 300°C et de manière plus préférée entre 100 et 250°C. La pression de l'étape de maturation est avantageusement inférieure à 20 MPa, de préférence inférieure à 10 MPa, plus préférentiellement inférieure à 3 MPa et encore plus préférentiellement inférieure à 1,5 MPa.In order to obtain a fuel oil or a fuel base that meets the recommendations for a sediment content after aging (IP390) of less than or equal to 0.1%, the process according to the invention comprises a maturation stage making it possible to improve the sediment separation efficiency and thus to obtain stable oil or fuel bases, that is to say a sediment content after aging less than or equal to 0.1% by weight. The maturation step according to the invention makes it possible to form all the existing and potential sediments (by converting the potentials into existing ones) so as to separate them more efficiently and thus respect the sediment content after aging (IP390) of 0, 1% maximum weight. The maturation step according to the invention is advantageously carried out for a residence time of between 1 and 1500 minutes, preferably between 25 and 300 minutes, more preferably between 60 and 180 minutes, at a temperature between 50 and 350 ° C, preferably between 75 and 300 ° C and more preferably between 100 and 250 ° C. The pressure of the maturation stage is advantageously less than 20 MPa, preferably less than 10 MPa, more preferably less than 3 MPa and even more preferably less than 1.5 MPa.

Les conditions de maturation sont suffisamment douces pour ne pas provoquer de conversion excessive des hydrocarbures. Lors de l'étape de maturation, le taux de conversion des composés bouillant au-delà de 540°C est inférieur à 10%, de préférence inférieur à 5% et de manière plus préférée inférieur à 2%.The ripening conditions are mild enough not to cause excessive hydrocarbon conversion. During the maturation step, the conversion rate of the compounds boiling above 540 ° C. is less than 10%, preferably less than 5% and more preferably less than 2%.

L'étape de maturation peut être réalisée à l'aide d'un échangeur ou d'un four de chauffe suivi d'une ou plusieurs capacité(s) en série ou en parallèle telle(s) qu'un ballon horizontal ou vertical, éventuellement avec une fonction de décantation pour éliminer une partie des solides les plus lourds, et/ou un réacteur piston. Une cuve agitée et chauffée peut également être utilisée, et peut être munie d'un soutirage en fond pour éliminer une partie des solides les plus lourds.The ripening step may be carried out using an exchanger or a heating furnace followed by one or more capacity (s) in series or in parallel such (s) as a horizontal or vertical balloon, optionally with a settling function to remove some of the heavier solids, and / or a piston reactor. A stirred and heated tank may also be used, and may be provided with a bottom draw to remove some of the heavier solids.

Avantageusment, l'étape c) de maturation de la fraction lourde issue de l'étape b) est réalisée en présence d'un gaz inerte et/ou d'un gaz oxydant.Advantageously, step c) of maturation of the heavy fraction resulting from step b) is carried out in the presence of an inert gas and / or an oxidizing gas.

L'étape c) de maturation peut être réalisée en présence d'un gaz inerte (azote par exemple) ou oxydant (oxygène par exemple), ou en présence d'un mélange contenant un gaz inerte et un gaz oxydant tel que l'air ou l'air appauvri par de l'azote. La mise en oeuvre d'un gaz oxydant permet d'accélérer le processus de maturation. Selon cette option, il y a donc introduction d'un gaz en mélange avec la fraction liquide issue de l'étape b) avant la maturation puis séparation de ce gaz après la maturation de manière à obtenir une fraction liquide en sortie de l'étape c) de maturation. Une telle mise en oeuvre gaz/liquide peut par exemple être réalisée dans une colonne à bulles. Selon une variante, le gaz inerte et/ou oxydant peut aussi être introduit pendant l'étape c) de maturation, par exemple au moyen d'un barbotage (injection de gaz par le bas) dans une cuve agitée ce qui permet de favoriser le contact gaz/liquide. A l'issue de l'étape c) de maturation, on obtient au moins une fraction hydrocarbonée à teneur enrichie en sédiments existants qui est envoyée dans l'étape d) de séparation des sédiments. Etape d) : Séparation des sédiments Le procédé selon l'invention comprend en outre une étape d) de séparation des sédiments.The curing step c) can be carried out in the presence of an inert gas (for example nitrogen) or an oxidizing gas (oxygen for example), or in the presence of a mixture containing an inert gas and an oxidizing gas such as air or the air depleted by nitrogen. The use of an oxidizing gas accelerates the maturation process. According to this option, there is therefore introduction of a gas mixed with the liquid fraction from step b) before the maturation and separation of this gas after maturation so as to obtain a liquid fraction at the end of the step c) ripening. Such a gas / liquid implementation can for example be carried out in a bubble column. According to one variant, the inert and / or oxidizing gas may also be introduced during the c) stage of maturation, for example by means of bubbling (injection of gas from below) into a stirred tank, which makes it possible to promote gas / liquid contact. At the end of the curing step c), at least one hydrocarbon fraction with an enriched content of existing sediments is obtained which is sent to step d) of separation of the sediments. Step d): Separation of the sediments The method according to the invention further comprises a step d) of separation of the sediments.

La fraction lourde obtenue à l'issue de l'étape c) de maturation contient des sédiments organiques de type asphaltènes précipités qui résultent des conditions de viscoréduction et de maturation.The heavy fraction obtained at the end of the curing step c) contains precipitated asphaltene-type organic sediments which result from the visbreaking and maturation conditions.

Ainsi, au moins une partie de la fraction lourde issue de l'étape c) de maturation est soumise à une séparation des sédiments, au moyen d'au moins un moyen de séparation physique choisi parmi un filtre, une membrane de séparation, un lit de solides filtrant de type organique ou inorganique, une précipitation électrostatique, un système de centrifugation, une décantation, un soutirage par vis sans fin. Une combinaison, en série et/ou en parallèle, de plusieurs moyens de séparation du même type ou de type différent peut être utilisée lors de cette étape d) de séparation des sédiments et résidus de catalyseurs. Une de ces techniques de séparation solide-liquide peut nécessiter l'utilisation périodique d'une fraction légère de rinçage, issue du procédé ou non, permettant par exemple le nettoyage d'un filtre et l'évacuation des sédiments.Thus, at least a portion of the heavy fraction resulting from the curing step c) is subjected to a separation of the sediments, by means of at least one physical separation means chosen from a filter, a separation membrane, a bed organic or inorganic type filter solids, electrostatic precipitation, centrifugation system, decantation, auger withdrawal. A combination, in series and / or in parallel, of several separation means of the same type or different type can be used during this step d) separation of sediments and catalyst residues. One of these solid-liquid separation techniques may require the periodic use of a light rinsing fraction, resulting from the process or not, allowing for example the cleaning of a filter and the evacuation of sediments.

La fraction lourde issue de l'étape d) à teneur réduite en sédiments peut avantageusement servir comme base de fioul ou comme fioul, notamment comme base de fioul de soute ou comme fioul de soute, ayant une teneur en sédiments après vieillissement inférieure à 0,1% poids. Avantageusement, ladite fraction lourde est mélangée avec une ou plusieurs bases fluxantes choisies dans le groupe constitué par les huiles de coupe légère d'un craquage catalytique, les huiles de coupe lourde d'un craquage catalytique, le résidu d'un craquage catalytique, un kérosène, un gazole, un distillat sous vide et/ou une huile décantée.The heavy fraction resulting from step d) with a reduced sediment content can advantageously be used as a base for fuel oil or as fuel oil, in particular as a bunker oil or bunker oil base, having a sediment content after aging of less than 0, 1% weight Advantageously, said heavy fraction is mixed with one or more fluxing bases selected from the group consisting of catalytic cracking light cutting oils, catalytic cracking heavy cutting oils, catalytic cracking residue, kerosene, a gas oil, a vacuum distillate and / or a decanted oil.

Etape e) optionnelle : étape optionnelle de séparation L'effluent obtenu à l'issue de l'étape d) de séparation des sédiments peut subir une étape de séparation optionnelle permettant de séparer au moins une fraction légère d'hydrocarbures contenant des bases carburants et une fraction lourde contenant majoritairement des composés bouillants à au moins 350°C. Cette étape de séparation peut avantageusement être mise en oeuvre par toute méthode connue de l'homme du métier telle que par exemple la combinaison d'un ou plusieurs séparateurs haute et/ou basse pression, et/ou d'étapes de distillation et/ou de strippage haute et/ou basse pression. Cette étape optionnelle e) de séparation est similaire à l'étape b) de séparation et ne sera pas décrite davantage.Step e) optional: optional separation step The effluent obtained at the end of the sediment separation step d) can undergo an optional separation step making it possible to separate at least one light hydrocarbon fraction containing fuel bases and a heavy fraction containing predominantly boiling compounds at least 350 ° C. This separation step can advantageously be carried out by any method known to those skilled in the art such as, for example, the combination of one or more high and / or low pressure separators, and / or distillation and / or distillation stages. high and / or low pressure stripping. This optional step e) of separation is similar to the separation step b) and will not be further described.

De préférence, cette étape de séparation permet d'obtenir au moins une fraction légère d'hydrocarbures de type naphta, kérosène et/ou diesel, une fraction distillat sous vide et une fraction résidu sous vide et/ou une fraction résidu atmosphérique. Une partie du résidu atmosphérique et/ou du résidu sous vide peut également être recyclée dans l'étape d'hydrocraquage a). Etape f) : Etape optionnelle d'hydrotraitement La teneur en soufre de la fraction lourde issue de l'étape d) ou e) lorsque cette dernière est mise en oeuvre, et contenant majoritairement des composés bouillant à au moins 350°C est fonction des conditions opératoires de l'étape de viscoréduction mais aussi et surtout de la teneur en soufre de la charge d'origine. Ainsi, pour les charges à faible teneur en soufre, généralement inférieure à 1% poids, de préférence inférieure à 0,5% poids, il est possible d'obtenir directement une fraction lourde avec moins de 0,5% poids en soufre telle qu'exigée pour les navires dépourvus de traitement des fumées et opérant en dehors des ZCES à l'horizon 2020-2025. Pour les charges plus soufrées, dont la teneur en soufre est généralement supérieure à 1% poids, de préférence supérieure à 0,5% poids, la teneur en soufre de la fraction lourde peut excéder 0,5% poids. Dans un tel cas, une étape f) d'hydrotraitement en lit fixe est rendue nécessaire dans le cas où le raffineur souhaite diminuer la teneur en soufre, notamment pour une base de fioul de soute ou un fioul de soute destiné à être brulé sur un navire dépourvu de traitement de fumées. Selon l'invention, l'étape d'hydrotraitement décrite dans l'étape f) est identique l'étape d'hydrotraitement de la charge avantageusement mise en oeuvre avant l'étape de viscoréduction. Dans le cas où une étape d'hydrotraitement de la charge est mise en oeuvre préalablement à l'étape de viscoréduction, les conditions décrites dans l'étape f) sont donc transposables à cette étape d'hydrotraitement. L'étape f) d'hydrotraitement en lit fixe est mise en oeuvre sur une partie au moins de la fraction lourde issue de l'étape d) ou e) lorsque l'étape e) est mise en oeuvre. La fraction lourde issue de l'étape f) peut avantageusement servir comme base de fioul ou comme fioul, notamment comme base de fioul de soute ou comme fioul de soute, ayant une teneur en sédiments après vieillissement inférieure à 0,1% poids. Avantageusement, ladite fraction lourde est mélangée avec une ou plusieurs bases fluxantes choisies dans le groupe constitué par les huiles de coupe légère d'un craquage catalytique, les huiles de coupe lourde d'un craquage catalytique, le résidu d'un craquage catalytique, un kérosène, un gazole, un distillat sous vide et/ou une huile décantée.Preferably, this separation step makes it possible to obtain at least a light fraction of hydrocarbons of the naphtha, kerosene and / or diesel type, a vacuum distillate fraction and a vacuum residue fraction and / or an atmospheric residue fraction. Part of the atmospheric residue and / or the vacuum residue can also be recycled to the hydrocracking step a). Step f): Optional hydrotreatment step The sulfur content of the heavy fraction resulting from step d) or e) when the latter is used, and containing predominantly compounds boiling at least 350 ° C., is dependent on operating conditions of the visbreaking step but also and especially the sulfur content of the original charge. Thus, for fillers with a low sulfur content, generally less than 1% by weight, preferably less than 0.5% by weight, it is possible to directly obtain a heavy fraction with less than 0.5% by weight of sulfur, such as required for ships that do not have smoke treatment and operate outside the ZCEA by 2020-2025. For more sulfur-containing fillers, whose sulfur content is generally greater than 1% by weight, preferably greater than 0.5% by weight, the sulfur content of the heavy fraction may exceed 0.5% by weight. In such a case, a step f) of hydrotreatment in a fixed bed is made necessary in the case where the refiner wishes to reduce the sulfur content, in particular for a bunker oil base or a bunker oil intended to be burned on a ship without smoke treatment. According to the invention, the hydrotreating step described in step f) is identical to the step of hydrotreatment of the charge advantageously carried out before the visbreaking step. In the case where a step of hydrotreatment of the feedstock is carried out prior to the visbreaking step, the conditions described in step f) are therefore transferable to this hydrotreatment step. The f) fixed bed hydrotreatment step is carried out on at least a portion of the heavy fraction resulting from step d) or e) when step e) is implemented. The heavy fraction from step f) can advantageously be used as a base of fuel oil or as fuel oil, especially as a base of bunker oil or as bunker oil, having a sediment content after aging less than 0.1% by weight. Advantageously, said heavy fraction is mixed with one or more fluxing bases selected from the group consisting of catalytic cracking light cutting oils, catalytic cracking heavy cutting oils, catalytic cracking residue, kerosene, a gas oil, a vacuum distillate and / or a decanted oil.

La fraction lourde issue de l'étape de séparation des sédiments d) ou e) lorsque l'étape e) est mise en oeuvre est envoyée dans l'étape f) d'hydrotraitement comprenant une ou plusieurs zones d'hydrotraitement en lits fixes. L'envoi dans un lit fixe d'une fraction lourde dépourvue de sédiments constitue un avantage de la présente invention puisque le lit fixe sera moins sujet au bouchage et à l'augmentation de la perte de charge. On entend par hydrotraitement (HDT) notamment des réactions d'hydrodésulfuration (HDS), des réactions d'hydrodésazotation (HDN) et des réactions d'hydrodémétallation (HDM), mais aussi l'hydrogénation, l'hydrodéoxygénation, l'hydrodéaromatisation, l'hydroisomérisation, l'hydrodéalkylation, hydrocraquage, l'hydrodéasphaltage la réduction du carbone Conradson. Un tel procédé d'hydrotraitement de coupes lourdes est largement connu et peut s'apparenter au procédé connu sous le nom de HYVAHLFTM décrit dans le brevet 30 US5417846.The heavy fraction resulting from the sediment separation step d) or e) when step e) is carried out is sent to the hydrotreatment step f) comprising one or more hydrotreatment zones in fixed beds. The sending in a fixed bed of a heavy fraction devoid of sediment is an advantage of the present invention since the fixed bed will be less subject to clogging and increased pressure drop. Hydroprocessing (HDT) is understood to mean, in particular, hydrodesulphurization (HDS) reactions, hydrodenitrogenation (HDN) reactions and hydrodemetallation (HDM) reactions, but also hydrogenation, hydrodeoxygenation, hydrodearomatization, hydrodenetration, hydroisomerization, hydrodealkylation, hydrocracking, hydro-deasphalting and Conradson carbon reduction. Such a method of hydrotreating heavy cuts is widely known and can be related to the process known as HYVAHLFTM described in US5417846.

L'homme du métier comprend aisément que dans l'étape d'hydrodémétallation, on effectue majoritairement des réactions d'hydrodémétallation mais parallèlement aussi une partie des réactions d'hydrodésulfuration. De même, dans l'étape d'hydrodésulfuration, on effectue majoritairement des réactions d'hydrodésulfuration mais parallèlement aussi une partie des réactions d'hydrodémétallation. Selon une variante, une co-charge peut être introduite avec la fraction lourde dans l'étape d'hydrotraitement f). Cette co-charge peut être choisie parmi les résidus atmosphériques, les résidus sous vide issus de distillation directe, les huiles désasphaltées, des extraits aromatiques issus des chaînes de production de bases pour lubrifiants, des fractions hydrocarbonées ou un mélange de fractions hydrocarbonées pouvant être choisies parmi les produits issus d'un procédé de craquage catalytique en lit fluide : une huile de coupe légère (LCO), une huile de coupe lourde (HCO), une huile décantée, ou pouvant venir de la distillation, les fractions gazoles notamment celles obtenues par distillation atmosphérique ou sous vide, comme par exemple le gazole sous vide. L'étape d'hydrotraitement peut avantageusement être mise en oeuvre à une température comprise entre 300 et 500°C, de préférence 350°C à 420°C et sous une pression partielle d'hydrogène avantageusement comprise entre 5 MPa et 25 MPa, de préférence entre 10 et 20 MPa, une vitesse spatiale horaire globale (VVH) se situant dans une gamme allant de 0,1 h-1 à 5 h-1 et de préférence de 0.1 h-1 à 2 h1, une quantité d'hydrogène mélangée à la charge habituellement de 100 à 5000 Nm3/m3 (normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide ), le plus souvent de 200 à 2000 Nm3/m3 et de préférence de 300 à 1500 Nm3/m3 Habituellement, l'étape d'hydrotraitement est effectuée industriellement dans un ou plusieurs réacteurs à courant descendant de liquide. La température d'hydrotraitement est généralement ajustée en fonction du niveau souhaité d'hydrotraitement.The person skilled in the art easily understands that in the hydrodemetallization stage, hydrodemetallation reactions are mainly carried out but also part of the hydrodesulfurization reactions. Similarly, in the hydrodesulfurization step, hydrodesulphurization reactions are mainly carried out but also part of the hydrodemetallation reactions. According to one variant, a co-charge may be introduced with the heavy fraction in the hydrotreatment step f). This co-charge can be chosen from atmospheric residues, vacuum residues from direct distillation, deasphalted oils, aromatic extracts from lubricant base production lines, hydrocarbon fractions or a mixture of hydrocarbon fractions that can be chosen. Among the products resulting from a process of fluid catalytic cracking in a fluid bed: a light cutting oil (LCO), a heavy cutting oil (HCO), a decanted oil, or possibly derived from distillation, the gasoil fractions in particular those obtained by atmospheric or vacuum distillation, such as, for example, vacuum gas oil. The hydrotreatment step may advantageously be carried out at a temperature of between 300 and 500 ° C., preferably 350 ° C. to 420 ° C. and under a hydrogen partial pressure advantageously of between 5 MPa and 25 MPa. preferably between 10 and 20 MPa, an overall hourly space velocity (VVH) lying in a range from 0.1 hr-1 hr to 5 hr-1 and preferably from 0.1 hr -1 to 2 hr, an amount of hydrogen usually mixed with the load of 100 to 5000 Nm3 / m3 (normal cubic meters (Nm3) per cubic meter (m3) of liquid charge), most often 200 to 2000 Nm3 / m3 and preferably 300 to 1500 Nm3 / m3 Usually, the hydrotreating step is carried out industrially in one or more liquid downflow reactors. The hydrotreatment temperature is generally adjusted according to the desired level of hydrotreatment.

Les catalyseurs d'hydrotraitement utilisés sont de préférence des catalyseurs connus et sont généralement des catalyseurs granulaires comprenant, sur un support, au moins un métal ou composé de métal ayant une fonction hydrodéshydrogénante. Ces catalyseurs sont avantageusement des catalyseurs comprenant au moins un métal du groupe VIII, choisi généralement dans le groupe formé par le nickel et/ou le cobalt, et/ou au moins un métal du groupe VIB, de préférence du molybdène et/ou du tungstène. On emploiera par exemple un catalyseur comprenant de 0,5 à 10 % en poids de nickel et de préférence de 1 à 5 % en poids de nickel (exprimé en oxyde de nickel NiO) et de 1 à 30 % en poids de molybdène, de préférence de 5 à 20 % en poids de molybdène (exprimé en oxyde de molybdène Mo03) sur un support minéral. Ce support sera, par exemple, choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Avantageusement, ce support renferme d'autres composés dopants, notamment des oxydes choisis dans le groupe formé par l'oxyde de bore, la zircone, la cérine, l'oxyde de titane, l'anhydride phosphorique et un mélange de ces oxydes. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. La concentration en anhydride phosphorique P205 est habituellement comprise entre 0 ou 0,1 % et 10% poids. La concentration en trioxyde de bore B205 est habituellement comprise entre 0 ou 0,1 % et 10 % en poids. L'alumine utilisée est habituellement une alumine y ou TI. Ce catalyseur est le plus souvent sous forme d'extrudés. La teneur totale en oxydes de métaux des groupes VIB et VIII est souvent de 5 à 40 % en poids et en général de 7 à 30 % en poids et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VIB sur métal (ou métaux) du groupe VIII est en général de 20 à 1 et le plus souvent de 10 à 2.The hydrotreatment catalysts used are preferably known catalysts and are generally granular catalysts comprising, on a support, at least one metal or metal compound having a hydrodehydrogenating function. These catalysts are advantageously catalysts comprising at least one Group VIII metal, generally selected from the group consisting of nickel and / or cobalt, and / or at least one Group VIB metal, preferably molybdenum and / or tungsten. . For example, a catalyst comprising from 0.5 to 10% by weight of nickel and preferably from 1 to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1 to 30% by weight of molybdenum, preferably from 5 to 20% by weight of molybdenum (expressed as molybdenum oxide MoO 3) on a mineral support. This support will, for example, be selected from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals. Advantageously, this support contains other doping compounds, in particular oxides chosen from the group formed by boron oxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides. Most often an alumina support is used and very often a support of alumina doped with phosphorus and possibly boron. The concentration of phosphoric anhydride P2O5 is usually between 0 or 0.1% and 10% by weight. The concentration of boron trioxide B205 is usually between 0 or 0.1% and 10% by weight. The alumina used is usually alumina or TI. This catalyst is most often in the form of extrudates. The total content of metal oxides of groups VIB and VIII is often from 5 to 40% by weight and in general from 7 to 30% by weight and the weight ratio expressed as metal oxide between metal (or metals) of Group VIB on metal (or metals) of group VIII is usually 20 to 1 and most often 10 to 2.

Dans le cas d'une étape d'hydrotraitement incluant une étape d'hydrodémétallation (HDM), puis une étape d'hydrodésulfuration (HDS), on utilise le plus souvent des catalyseurs spécifiques adaptés à chaque étape. Des catalyseurs utilisables dans l'étape d'hydrodémétallation (HDM) sont par 30 exemple indiqués dans les brevets EP113297, EP113284, US5221656, US5827421, US7119045, US5622616 et US5089463. On utilise de préférence des catalyseurs d'hydrodémétallation (HDM) dans les réacteurs permutables. Des catalyseurs utilisables dans l'étape d'hydrodésulfuration (HDS) sont par exemple indiqués dans les brevets EP113297, EP113284, US6589908, US4818743 ou US6332976. On peut également utiliser un catalyseur mixte étant actifs en hydrodémétallation et en hydrodésulfuration à la fois pour la section hydrodémétallation (HDM) et pour la section hydrodésulfuration (HDS) tel que décrit dans le brevet FR2940143. Préalablement à l'injection de la charge, les catalyseurs utilisés dans le procédé selon la présente invention sont de préférence soumis à un traitement de sulfuration in-situ ou ex-situ.In the case of a hydrotreatment step including a hydrodemetallation step (HDM), then a hydrodesulfurization step (HDS), it is most often used specific catalysts adapted to each step. Catalysts which can be used in the hydrodemetallation (HDM) step are, for example, indicated in EP113297, EP113284, US5221656, US5827421, US7119045, US5622616 and US5089463. Hydrodemetallation (HDM) catalysts are preferably used in the reactive reactors. Catalysts that can be used in the hydrodesulfurization (HDS) stage are for example indicated in patents EP113297, EP113284, US6589908, US4818743 or US6332976. It is also possible to use a mixed catalyst that is active in hydrodemetallization and hydrodesulfurization for both the hydrodemetallation (HDM) section and the hydrodesulfurization (HDS) section as described in patent FR2940143. Prior to the injection of the feed, the catalysts used in the process according to the present invention are preferably subjected to an in-situ or ex-situ sulphurization treatment.

Etape ci) : Etape optionnelle de séparation de l'effluent d'hydrotraitement L'étape g) optionnelle de séparation peut avantageusement être mise en oeuvre par toute méthode connue de l'homme du métier telle que par exemple la combinaison d'un ou plusieurs séparateurs haute et/ou basse pression, et/ou d'étapes de distillation et/ou de strippage haute et/ou basse pression. Cette étape optionnelle g) de séparation est similaire à l'étape b) de séparation et ne sera pas décrite davantage. Dans une variante de mise en oeuvre de l'invention l'effluent obtenu à l'étape f) est au moins en partie, et souvent en totalité, envoyé dans une étape de séparation g), comprenant une distillation atmosphérique et/ou une distillation sous vide. L'effluent de l'étape d'hydrotraitement est fractionné par distillation atmosphérique en une fraction gazeuse, au moins une fraction distillat atmosphérique contenant les bases carburants (naphta, kérosène et/ou diesel) et une fraction résidu atmosphérique. Au moins une partie du résidu atmosphérique peut ensuite être fractionnée par distillation sous vide en une fraction distillat sous vide contenant du gazole sous vide et une fraction résidu sous vide. La fraction résidu sous vide et/ou la fraction distillat sous vide et/ou la fraction résidu atmosphérique peuvent constituer en partie au moins les bases de fiouls à basse teneur en soufre ayant une teneur en soufre inférieure ou égale à 0,5 % pds et une teneur en sédiments après vieillissement inférieure ou égale à 0,1%. La fraction distillat sous vide peut constituer une base de fioul ayant une teneur en soufre inférieure ou égale à 0,1 % poids.Step c1) Optional step of separation of the hydrotreatment effluent The optional separation step g) may advantageously be carried out by any method known to those skilled in the art such as, for example, the combination of one or more high and / or low pressure separators, and / or distillation and / or high and / or low pressure stripping stages. This optional separation step g) is similar to the separation step b) and will not be further described. In an alternative embodiment of the invention the effluent obtained in step f) is at least partly, and often in all, sent to a separation step g), comprising an atmospheric distillation and / or a distillation under vacuum. The effluent of the hydrotreatment stage is fractionated by atmospheric distillation into a gaseous fraction, at least one atmospheric distillate fraction containing the fuels bases (naphtha, kerosene and / or diesel) and an atmospheric residue fraction. At least a portion of the atmospheric residue can then be fractionated by vacuum distillation into a vacuum distillate fraction containing vacuum gas oil and a vacuum residue fraction. The vacuum residue fraction and / or the vacuum distillate fraction and / or the atmospheric residue fraction can in part constitute at least the bases of low sulfur fuel oils having a sulfur content of less than or equal to 0.5 wt% and a sediment content after aging less than or equal to 0.1%. The vacuum distillate fraction can constitute a fuel oil base having a sulfur content of less than or equal to 0.1% by weight.

Une partie du résidu sous vide et/ou du résidu atmosphérique peut également être recyclée dans l'étape de viscoréduction a). Fluxaqe Pour obtenir un fioul, les fractions lourdes issues des étapes d) et/ou e) et/ou f) et/ou g) peuvent être mélangées avec une ou plusieurs bases fluxantes choisies dans le groupe constitué par les huiles de coupe légère d'un craquage catalytique, les huiles de coupe lourde d'un craquage catalytique, le résidu d'un craquage catalytique, un kérosène, un gazole, un distillat sous vide et/ou une huile décantée. De préférence, on utilisera du kérosène, du gazole et/ou du distillat sous vide produit dans le procédé de l'invention. Avantageusement, on utilisera du kérosène, du gazole et/ou du distillat sous vide obtenu(s) dans les étapes de séparation b) ou g) du procédé. EXEMPLES: L'exemple suivant illustre l'invention sans toutefois en limiter la portée. La charge traitée est un résidu sous vide (RSV Oural) dont les caractéristiques sont indiquées dans le tableau 1. 30 Tableau 1: Caractéristiques de la charge Coupe RSV Oural Soufre % masse 2,7 Carbone Con radson 16 Asphaltènes C7 (°/0 masse) 4,2 NI+V ppm 220 Viscosité à 100°C (cSt) 548 350°C+ (°/0 masse de 99,0 composés bouillant au-delà de 350°C) 540°C+ (°/0 masse de 86,5 composés bouillant au-delà de 540°C) La charge est soumise à une étape de viscoréduction. Les conditions opératoires de la section viscoréduction sont données dans le tableau 2. Tableau 2 : Conditions opératoires section viscoréduction Température sortie four (°C) 457 Pression totale, MPa 0,8 Temps de séjour chambre de maturation (minutes) 35 Les effluents de viscoréduction sont ensuite soumis à une séparation comportant une distillation atmosphérique et permettant de récupérer une fraction gazeuse et une fraction lourde. La fraction lourde (fraction 350°C+) est ensuite traitée selon deux variantes : A) Pas de traitement supplémentaire (non-conforme à l'invention) B) Une étape de maturation des sédiments (4h à 150°C réalisée dans une cuve agitée chauffée en présence d'un mélange air/azote 50/50 sous une pression totale de 0,5 MPa) puis une étape de séparation physique des sédiments à l'aide d'un filtre (conforme à l'invention) Selon les deux variantes précédentes A) et B), les fractions 350°C sont distillées au laboratoire en vue de connaître les qualités et les rendements en distillat sous vide et en résidu sous vide. Les rendements ainsi que la teneur en soufre et la viscosité (pour les coupes lourdes) sont indiqués dans le tableau 3. Tableau 3 : Rendements, teneur en soufre et viscosité section viscoréduction Rendement (°/0 Teneur en soufre Viscosité à poids /charge) (°/0 poids) 100°C (cSt) Gaz 4,2 Naphta (80-180°C) 2,8 Diesel (180-350°C) 7,5 Distillats sous vide 39,4 (350-540°C) Résidu sous vide (540+ °C) 46,2 Résidu atmosphérique (350°C+, Charge de l'étape de maturation) 85,6 2,3 85 Les conditions opératoires de l'étape de viscoréduction couplées à une étape de maturation et de séparation des sédiments selon l'invention réalisée sur la fraction lourde issue de la distillation atmosphérique ont un impact sur la stabilité des effluents obtenus. Ceci est illustré par les teneurs en sédiments après vieillissement mesurées dans les résidus atmosphériques (coupe 350 °C+). Les performances sont résumées dans le tableau 4 ci-dessous. Tableau 4 : Résumé des performances avec ou sans maturation et séparation des sédiments Viscoréduction Taux Conversion des 46 composés bouillant au-delà de 540°C (°/0) Maturation Non Oui Séparation des sédiments Non Oui Teneur en sédiments après vieillissement (IP390) dans la coupe 350°C+ 0,6 <0,1 Selon l'invention, il est possible d'obtenir des effluents stables et à faible teneur en sédiments dès lors qu'une étape de maturation puis une étape de séparation des sédiments sont mises en oeuvre.Part of the vacuum residue and / or the atmospheric residue may also be recycled to the visbreaking step a). Fluxaqe To obtain a fuel oil, the heavy fractions from steps d) and / or e) and / or f) and / or g) can be mixed with one or more fluxing bases selected from the group consisting of light cutting oils. catalytic cracking, catalytically cracked heavy cutting oils, catalytic cracking residue, kerosene, gas oil, vacuum distillate and / or decanted oil. Preferably, kerosene, gas oil and / or vacuum distillate produced in the process of the invention will be used. Advantageously, use will be kerosene, gas oil and / or vacuum distillate obtained (s) in the separation steps b) or g) of the process. EXAMPLES: The following example illustrates the invention without, however, limiting its scope. The treated feedstock is a vacuum residue (Ural RSV), the characteristics of which are given in Table 1. Table 1: Load Characteristics Section RSV Ural Sulfur% Mass 2.7 Carbon Con Radson 16 Asphaltenes C7 (° / 0 mass ) 4.2 NI + V ppm 220 Viscosity at 100 ° C (cSt) 548 350 ° C + (° / 0 mass of 99.0 compounds boiling above 350 ° C) 540 ° C + (° / 0 mass of 86 Compounds boiling above 540 ° C) The feed is subjected to a visbreaking step. The operating conditions of the visbreaking section are given in Table 2. Table 2: Operational conditions visbreduction section Furnace exit temperature (° C) 457 Total pressure, MPa 0.8 residence time maturation chamber (minutes) Visor-reduction effluents are then subjected to a separation comprising an atmospheric distillation and making it possible to recover a gaseous fraction and a heavy fraction. The heavy fraction (350 ° C + fraction) is then treated according to two variants: A) No additional treatment (not in accordance with the invention) B) A sediment maturation step (4h at 150 ° C. carried out in a stirred tank heated in the presence of a 50/50 air / nitrogen mixture under a total pressure of 0.5 MPa) and then a step of physically separating the sediments using a filter (according to the invention) According to the two variants Prior A) and B), the 350 ° C fractions are distilled in the laboratory for the qualities and yields of vacuum distillate and vacuum residue. The yields as well as the sulfur content and the viscosity (for heavy cuts) are shown in Table 3. Table 3: Yields, Sulfur Content and Viscosity Visor Reduction Section Yield (° / 0 Sulfur Content Viscosity at Weight / Load) (° / 0 weight) 100 ° C (cSt) Gas 4.2 Naphtha (80-180 ° C) 2.8 Diesel (180-350 ° C) 7.5 Vacuum Distillates 39.4 (350-540 ° C) Vacuum Residue (540+ ° C) 46.2 Atmospheric Residue (350 ° C +, Maturation Step Charge) 85.6 2.3 85 Viscoreduction Stage Operational Conditions Coupled to a Maturation Stage and sediment separation according to the invention carried out on the heavy fraction resulting from atmospheric distillation have an impact on the stability of the effluents obtained. This is illustrated by the post-aging sediment contents measured in the atmospheric residues (350 ° C + cut). The performance is summarized in Table 4 below. Table 4: Summary of performances with or without sediment maturation and separation Viscoreduction Rate Conversion of 46 compounds boiling above 540 ° C (° / 0) Maturation No Yes Sediment separation No Yes Sediment content after aging (IP390) in the section 350 ° C + 0.6 <0.1 According to the invention, it is possible to obtain stable and low-sediment effluents as soon as a maturation stage and then a sediment separation stage are put into operation. artwork.

Il est également possible de soumettre les effluents issus des étapes de maturation et de séparation des sédiments à une étape d'hydrotraitement en lit fixe. Les conditions opératoires de l'étape d'hydrotraitement sont indiquées dans le Tableau 5.It is also possible to subject the effluents from the ripening and sediment separation stages to a fixed bed hydrotreatment stage. The operating conditions of the hydrotreating step are shown in Table 5.

Les catalyseurs CoMoNi sur Alumine utilisés sont vendus par la société Axens sous les références HF858, HM848 et HT43820 Tableau 5 : Conditions opératoires de l'étape d'hydrotraitement réalisé sur les coupes 350+ issues de l'étape de viscoréduction après leur passage à l'étape de maturation et de séparation des sédiments Catalyseurs HDM, transition et HDS CoMoNi sur alumine Température début de cycle (°C) 370 Pression partielle H2 (MPa) 15 VVH (h-1, Sm3/h charge fraîche /m3 de catalyseur lit fixe) 0,16 H2 / HC entrée section lit fixe hors consommation H2 (Nm3 / m3 de charge fraîche) 1000 Les effluents issus de l'étape d'hydrotraitement sont ensuite séparés et analysés. Les fractions distillats sous vide contiennent moins de 0,2% poids de soufre. Les fractions résidus sous vides contiennent moins de 0,5% poids de soufre. On obtient ainsi des fractions distillats sous vide et des résidus sous vide (ou des fractions résidus atmosphériques) à basse teneur en soufre et basse teneur en sédiments après vieillissement. Ces fractions constituent ainsi d'excellentes bases de fiouls et notamment d'excellentes bases de fiouls de soute.The CoMoNi on Alumina catalysts used are sold by the company Axens under the references HF858, HM848 and HT43820. Table 5: Operating conditions of the hydrotreatment stage carried out on the 350+ cuts resulting from the visbreaking stage after their passage to the sediment processing and separation stage HDM catalysts, transition and HDS CoMoNi on alumina Cycle start temperature (° C) 370 H2 partial pressure (MPa) 15 VVH (h-1, Sm3 / h fresh load / m3 catalyst bed fixed) 0,16 H2 / HC fixed bed section out of consumption H2 (Nm3 / m3 fresh load) 1000 The effluents from the hydrotreatment stage are then separated and analyzed. The vacuum distillate fractions contain less than 0.2% by weight of sulfur. The fractions under vacuum contain less than 0.5% by weight of sulfur. Thus, vacuum distillate fractions and vacuum residues (or atmospheric residue fractions) with low sulfur content and low sediment content after aging are obtained. These fractions thus constitute excellent fuel oil bases and in particular excellent fuel oil bases.

Claims (14)

REVENDICATIONS1. Procédé de conversion d'une charge hydrocarbonée contenant au moins une fraction d'hydrocarbures ayant une teneur en soufre d'au moins 0,1 % poids, une température initiale d'ébullition d'au moins 340°C et une température finale d'ébullition d'au moins 440°C permettant d'obtenir une fraction lourde ayant une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids, ledit procédé comprenant les étapes suivantes : a) une étape de viscoréduction de la charge dans au moins une chambre de maturation, b) une étape de séparation de l'effluent obtenu à l'issue de l'étape a) en au moins une fraction légère d'hydrocarbures contenant des bases carburants et une fraction lourde contenant des composés bouillant à au moins 350°C, c) une étape de maturation de la fraction lourde issue de l'étape b) de séparation permettant la transformation d'une partie des sédiments potentiels en sédiments existants, réalisée pendant une durée comprise entre 1 et 1500 minutes, à une température comprise entre 50 et 350°C, et une pression inférieure à 20 MPa, d) une étape de séparation des sédiments de la fraction lourde issue de l'étape c) de maturation pour obtenir ladite fraction lourde. 20REVENDICATIONS1. A process for converting a hydrocarbon feedstock containing at least one hydrocarbon fraction having a sulfur content of at least 0.1% by weight, an initial boiling temperature of at least 340 ° C and a final temperature of boiling at least 440 ° C to obtain a heavy fraction having a sediment content after aging less than or equal to 0.1% by weight, said process comprising the following steps: a) a visbreaking step of the load in at least one maturation chamber, b) a step of separating the effluent obtained at the end of step a) into at least a light hydrocarbon fraction containing fuel bases and a heavy fraction containing compounds boiling at at least 350 ° C, c) a step of maturation of the heavy fraction from step b) of separation allowing the transformation of a portion of the potential sediments into existing sediments, carried out for a period of time between 1 and 1500 minutes, at a temperature between 50 and 350 ° C, and a pressure of less than 20 MPa, d) a sediment separation step of the heavy fraction from the curing step c) to obtain said heavy fraction. 20 2) Procédé selon la revendication 1 dans lequel l'étape de viscoréduction est réalisée à une température comprise entre 370°C et 500°C, pendant une durée comprise entre 1 et 60 minutes, une pression totale inférieure à 10 MPa. 252) Process according to claim 1 wherein the visbreaking step is carried out at a temperature between 370 ° C and 500 ° C for a period of between 1 and 60 minutes, a total pressure of less than 10 MPa. 25 3) Procédé selon l'une ou l'autre des revendications 1 et 2 dans lequel une étape d'hydrotraitement de la charge est réalisée en amont de l'étape de viscoréduction a).3) Process according to either of claims 1 and 2 wherein a step of hydrotreating the feed is carried out upstream of the visbreaking step a). 4) Procédé selon l'une des revendications précédentes dans lequel l'étape de viscoréduction est opérée en présence d'hydrogène.4) Method according to one of the preceding claims wherein the visbreaking step is performed in the presence of hydrogen. 5) Procédé selon l'une des revendications précédentes dans lequel lors de l'étape b), l'effluent obtenu à l'issue de l'étape a) est séparé dans un séparateur haute pression haute température HPHT en une fraction légère et une fraction lourde contenant majoritairement des composés bouillants à au moins 350°C.5) Method according to one of the preceding claims wherein in step b), the effluent obtained at the end of step a) is separated in a high pressure HPHT high temperature separator in a light fraction and a heavy fraction containing predominantly boiling compounds at least 350 ° C. 6) Procédé selon l'une des revendications précédentes dans lequel au moins une partie de la fraction dite lourde issue de l'étape b) est fractionnée par distillation atmosphérique en au moins une fraction distillat atmosphérique contenant au moins une fraction légère d'hydrocarbures de type naphta, kérosène et/ou diesel et une fraction résidu atmosphérique.6) Method according to one of the preceding claims wherein at least a portion of the so-called heavy fraction from step b) is fractionated by atmospheric distillation into at least one atmospheric distillate fraction containing at least a light fraction of hydrocarbons from naphtha, kerosene and / or diesel type and an atmospheric residue fraction. 7) Procédé selon l'une des revendications précédentes dans lequel l'étape de maturation de la fraction lourde issue de l'étape b) est réalisée en présence d'un gaz inerte et/ou d'un gaz oxydant.7) Method according to one of the preceding claims wherein the step of maturation of the heavy fraction from step b) is carried out in the presence of an inert gas and / or an oxidizing gas. 8) Procédé selon l'une des revendications précédentes dans lequel l'étape d) de séparation est réalisée au moyen d'au moins un moyen de séparation choisi parmi un filtre, une membrane de séparation, un lit de solides filtrant de type organique ou inorganique, une précipitation électrostatique, un système de centrifugation, une décantation, un soutirage par vis sans fin.8) Method according to one of the preceding claims wherein the step d) of separation is carried out by means of at least one separation means selected from a filter, a separation membrane, a bed of organic-type filtering solids or inorganic, electrostatic precipitation, centrifugation system, decantation, auger withdrawal. 9) Procédé selon l'une des revendications précédentes comprenant en outre une étape f) d'hydrotraitement en lit fixe mise en oeuvre sur une partie au moins de la fraction lourde issue de l'étape d) dans laquelle on fait passer, dans des conditions d'hydrotraitement, la fraction lourde et de l'hydrogène sur un catalyseur d'hydrotraitement.9) Method according to one of the preceding claims further comprising a f) fixed bed hydrotreating step implemented on at least part of the heavy fraction from step d) in which is passed, in hydrotreatment conditions, the heavy fraction and hydrogen on a hydrotreatment catalyst. 10) Procédé selon la revendication 9 dans lequel l'étape d'hydrotraitement est effectuée à une température comprise entre 300 et 500°C, une pression absolue comprise entre 5 MPa et 25 MPa, une vitesse spatiale horaire globale (VVH) se situant dans une gamme allant de 0,1 h-1 à 5 h-1, une quantité d'hydrogène mélangée à la charge de 100 à 5000 Nm3/m3.10) The method of claim 9 wherein the hydrotreatment step is carried out at a temperature between 300 and 500 ° C, an absolute pressure of between 5 MPa and 25 MPa, a global time space velocity (VVH) being in a range of 0.1 hr-1 to 5 hr-1, a quantity of hydrogen mixed with the feed of 100 to 5000 Nm3 / m3. 11) Procédé selon la revendication 9 ou 10 dans laquelle une co-charge est introduite avec la fraction lourde dans l'étape d'hydrotraitement f).11) The method of claim 9 or 10 wherein a co-charge is introduced with the heavy fraction in the hydrotreatment step f). 12) Procédé selon la revendication 11 dans laquelle la co-charge est choisie parmi les résidus atmosphériques, les résidus sous vide issus de distillation directe, les huiles désasphaltées, des extraits aromatiques issus des chaînes de production de bases pour lubrifiants, des fractions hydrocarbonées ou un mélange de fractions hydrocarbonées pouvant être choisies parmi les produits issus d'un procédé de craquage catalytique en lit fluide : une huile de coupe légère (LCO), une huile de coupe lourde (HCO), une huile décantée, ou pouvant venir de la distillation, les fractions gazoles notamment celles obtenues par distillation atmosphérique ou sous vide, comme par exemple le gazole sous vide.12) The method of claim 11 wherein the co-charge is selected from atmospheric residues, vacuum residues from direct distillation, deasphalted oils, aromatic extracts from lubricant bases production lines, hydrocarbon fractions or a mixture of hydrocarbon fractions which may be chosen from products derived from a fluid-bed catalytic cracking process: a light cutting oil (LCO), a heavy cutting oil (HCO), a decanted oil, or which may come from the distillation, gas oil fractions including those obtained by atmospheric or vacuum distillation, such as vacuum gas oil. 13) Procédé selon l'une des revendications précédentes dans lequel la charge traitée est choisie parmi les résidus atmosphériques, les résidus sous vide issus de distillation directe, des pétroles bruts, des pétroles bruts étêtés, les huiles désasphaltées, des résines de désasphaltage, les asphaltes ou brais de désasphaltage, les résidus issus des procédés de conversion, des extraits aromatiques issus des chaînes de production de bases pour lubrifiants, des sables bitumineux ou leurs dérivés, des schistes bitumineux ou leurs dérivés, pris seuls ou en mélange.13) Method according to one of the preceding claims wherein the treated feedstock is selected from atmospheric residues, vacuum residues from direct distillation, crude oils, crude oils topped, deasphalted oils, deasphalting resins, asphalts or deasphalting pitches, residues resulting from conversion processes, aromatic extracts from lubricant base production lines, oil sands or their derivatives, oil shales or their derivatives, whether taken alone or as a mixture. 14) Procédé selon l'une des revendications précédentes dans lequel les fractions lourdes issues des étapes d) et/ou f) sont mélangées avec une ou plusieurs bases fluxantes choisies dans le groupe constitué par les huiles de coupe légère d'un. craquage catalytique, les huiles de coupe lourde d'un craquage catalytique, le résidu d'un craquage catalytique, un kérosène, un gazole, un distillat sous vide et/ou une huile décantée.14) Method according to one of the preceding claims wherein the heavy fractions from steps d) and / or f) are mixed with one or more fluxing bases selected from the group consisting of light cutting oils of one. catalytic cracking, catalytically cracked heavy cutting oils, catalytic cracking residue, kerosene, gas oil, vacuum distillate and / or decanted oil.
FR1460630A 2014-11-04 2014-11-04 METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A VISCOREDUCTION STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS Withdrawn FR3027913A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1460630A FR3027913A1 (en) 2014-11-04 2014-11-04 METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A VISCOREDUCTION STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS
EP15306718.6A EP3018189B1 (en) 2014-11-04 2015-10-27 Process for converting petroleum feedstocks comprising a visbreaking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content
US14/932,562 US20160122662A1 (en) 2014-11-04 2015-11-04 Process for converting petroleum feedstocks comprising a visbreaking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1460630A FR3027913A1 (en) 2014-11-04 2014-11-04 METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A VISCOREDUCTION STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS

Publications (1)

Publication Number Publication Date
FR3027913A1 true FR3027913A1 (en) 2016-05-06

Family

ID=52589503

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1460630A Withdrawn FR3027913A1 (en) 2014-11-04 2014-11-04 METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A VISCOREDUCTION STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS

Country Status (3)

Country Link
US (1) US20160122662A1 (en)
EP (1) EP3018189B1 (en)
FR (1) FR3027913A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US10443006B1 (en) * 2018-11-27 2019-10-15 Exxonmobil Research And Engineering Company Low sulfur marine fuel compositions
US12031676B2 (en) 2019-03-25 2024-07-09 Marathon Petroleum Company Lp Insulation securement system and associated methods
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US11124714B2 (en) 2020-02-19 2021-09-21 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
CN111826187B (en) * 2020-07-07 2021-08-24 鞍钢化学科技有限公司 Special high-performance asphalt for carbon material and preparation method thereof
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988501A (en) * 1958-08-18 1961-06-13 Union Oil Co Hydrorefining of crude oils
WO2010004127A2 (en) * 2008-07-10 2010-01-14 Ifp Conversion method comprising a viscoreduction of residue then de-asphalting and a hydroconversion
US20130026074A1 (en) * 2011-07-29 2013-01-31 Omer Refa Koseoglu Process for stabilization of heavy hydrocarbons

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334976A (en) * 1980-09-12 1982-06-15 Mobil Oil Corporation Upgrading of residual oil
FR2538814B1 (en) 1982-12-30 1986-06-27 Inst Francais Du Petrole PROCESS FOR TREATING HEAVY OIL OR HEAVY OIL FRACTION TO CONVERT THERE INTO LIGHTER FRACTIONS
FR2538813A1 (en) 1982-12-31 1984-07-06 Inst Francais Du Petrole HYDROTREATMENT PROCESS CONVERTING IN AT LEAST TWO STEPS A HEAVY FRACTION OF HYDROCARBONS CONTAINING SULFUR IMPURITIES AND METAL IMPURITIES
FR2539141A1 (en) 1983-01-07 1984-07-13 Inst Francais Du Petrole METHOD OF PROCESSING PRODUCTION FIELD OF HEAVY VISCOSITY HEAVY OILS FOR THEIR DESALATION AND TRANSPORTATION
US4818743A (en) 1983-04-07 1989-04-04 Union Oil Company Of California Desulfurization catalyst and the catalyst prepared by a method
US4592830A (en) 1985-03-22 1986-06-03 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
US4708784A (en) 1986-10-10 1987-11-24 Phillips Petroleum Company Hydrovisbreaking of oils
US4773986A (en) * 1986-12-18 1988-09-27 Lummus Crest, Inc. High severity visbreaking
US5089463A (en) 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
FR2660322B1 (en) 1990-03-29 1992-06-19 Inst Francais Du Petrole PROCESS FOR HYDROTREATING AN OIL RESIDUE OR HEAVY OIL WITH A VIEW TO REFINING THEM AND CONVERTING THEM INTO LIGHTER FRACTIONS.
US5622616A (en) 1991-05-02 1997-04-22 Texaco Development Corporation Hydroconversion process and catalyst
US5225383A (en) * 1991-05-03 1993-07-06 Amoco Corporation Distillate hydrogenation catalyst
US5221656A (en) 1992-03-25 1993-06-22 Amoco Corporation Hydroprocessing catalyst
US5827421A (en) 1992-04-20 1998-10-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution and no added silica
FR2711667B1 (en) 1993-10-25 1996-02-02 Inst Francais Du Petrole Process for the improved production of middle distillates together with the production of oils having high viscosity indices and viscosities, from heavy petroleum fractions.
US6332976B1 (en) 1996-11-13 2001-12-25 Institut Francais Du Petrole Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
FR2839902B1 (en) 2002-05-24 2007-06-29 Inst Francais Du Petrole HYDROREFINING AND / OR HYDROCONVERSION CATALYST AND USE THEREOF IN HYDROCARBON CHARGING HYDROCARBON PROCESSES
US7220887B2 (en) 2004-05-21 2007-05-22 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
US7193123B2 (en) 2004-05-21 2007-03-20 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid to improve vapor yield from vapor/liquid separation
FR2940143B1 (en) 2008-12-18 2015-12-11 Inst Francais Du Petrole HYDRODEMETALLATION AND HYDRODESULFURIZATION CATALYSTS AND IMPLEMENTATION IN A SINGLE FORMULATION CHAINING PROCESS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988501A (en) * 1958-08-18 1961-06-13 Union Oil Co Hydrorefining of crude oils
WO2010004127A2 (en) * 2008-07-10 2010-01-14 Ifp Conversion method comprising a viscoreduction of residue then de-asphalting and a hydroconversion
US20130026074A1 (en) * 2011-07-29 2013-01-31 Omer Refa Koseoglu Process for stabilization of heavy hydrocarbons

Also Published As

Publication number Publication date
EP3018189A1 (en) 2016-05-11
EP3018189B1 (en) 2017-10-25
US20160122662A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
EP3018189B1 (en) Process for converting petroleum feedstocks comprising a visbreaking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content
CA3021600C (en) Conversion process comprising permutable hydrodemetallization guard beds, a fixed-bed hydrotreatment step and a hydrocracking step in permutable reactors
CA2911122C (en) Method for conversion of petroleum streams comprising a maturation stage
CA2854429C (en) Method for the hydroconversion of petroleum feedstocks in fixed beds for the production of fuel oils having a low sulphur content
EP3303522B1 (en) Method for converting feedstocks comprising a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils
EP3018188B1 (en) Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content
EP3303523B1 (en) Method for converting feedstocks comprising a hydrotreatment step, a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils
EP3026097B1 (en) Method for producing fuels such as heavy fuel oil from a heavy hydrocarbon feedstock using a separation between the hydrotreating step and the hydrocracking step
WO2015091033A1 (en) Novel integrated process for treating petroleum feedstocks for the production of fuel oils having a low content of sulphur and of sediments
WO2018073018A1 (en) Conversion process comprising fixed-bed hydrotreating, separation of a hydrotreated residue fraction, and a step of catalytic cracking for the production of marine fuels
WO2014096704A1 (en) Process with separation for treating petroleum feedstocks for the production of fuel oils with a low sulphur content
FR2981659A1 (en) PROCESS FOR CONVERTING PETROLEUM LOADS COMPRISING A BOILING BED HYDROCONVERSION STEP AND A FIXED BED HYDROTREATMENT STEP FOR THE PRODUCTION OF LOW SULFUR CONTENT
FR3014111A1 (en) METHOD FOR REFINING A HEAVY HYDROCARBON LOAD USING SELECTIVE CASCADE DEASPHALTATION
FR3027909A1 (en) INTEGRATED PROCESS FOR THE PRODUCTION OF HEAVY FUEL TYPE FUELS FROM A HEAVY HYDROCARBONNE LOAD WITHOUT INTERMEDIATE SEPARATION BETWEEN THE HYDROTREATING STEP AND THE HYDROCRACKING STEP
FR3008711A1 (en) PROCESS FOR REFINING A VACUUM RESIDUE TYPE HYDROCARBONATE LOAD USING SELECTIVE DESASPHALTAGE, HYDROTREATMENT AND CONVERSION OF THE VACUUM RESIDUE FOR THE PRODUCTION OF GASOLINE AND LIGHT OLEFINS
FR3054453A1 (en) PROCESS FOR PRODUCING A LOW SULFUR HIGH HEAVY HYDROCARBONACEOUS FRACTION COMPRISING A DEMETTALIZATION AND HYDROCRACKING SECTION WITH EXCHANGEABLE REACTORS BETWEEN BOTH SECTIONS.
WO2012085408A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by decontamination, hydroconversion in an ebullating bed, and fractionation by atmospheric distillation
FR3084371A1 (en) PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, A DEASPHALTING AND A HYDROCRACKING IN A BOILING ASPHALT BED
WO2014096602A1 (en) Method for refining a heavy hydrocarbon feedstock implementing selective deasphalting
FR3084372A1 (en) PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, TWO DEASPHALTAGES AND A HYDROCRACKING IN A BOTTLE OF ASPHALT
FR2970478A1 (en) Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent
WO2016192893A1 (en) Method for converting feedstocks comprising a visbreaking step, a precipitation step and a sediment separation step, in order to produce fuel oils

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160506

PLFP Fee payment

Year of fee payment: 3

ST Notification of lapse

Effective date: 20180731