EP2147479A1 - Antenne a éléments rayonnants inclines - Google Patents

Antenne a éléments rayonnants inclines

Info

Publication number
EP2147479A1
EP2147479A1 EP08736205A EP08736205A EP2147479A1 EP 2147479 A1 EP2147479 A1 EP 2147479A1 EP 08736205 A EP08736205 A EP 08736205A EP 08736205 A EP08736205 A EP 08736205A EP 2147479 A1 EP2147479 A1 EP 2147479A1
Authority
EP
European Patent Office
Prior art keywords
ground plane
antenna
antenna according
metal elements
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08736205A
Other languages
German (de)
English (en)
Other versions
EP2147479B1 (fr
Inventor
Nelson Fonseca
Lionel Ries
Sami Hebib
Hervé AUBERT
Olivier Pascal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP2147479A1 publication Critical patent/EP2147479A1/fr
Application granted granted Critical
Publication of EP2147479B1 publication Critical patent/EP2147479B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/44Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • the present invention relates to multiband antennas with circular or linear polarization and having a frequency flexibility.
  • the invention finds particular application in satellite positioning systems such as GPS and Galileo, as well as in satellite broadcasting systems for multimedia content.
  • Multiband antennas are, for example, used in satellite positioning or broadcasting systems to reduce the number of antennas on board or positioned on the ground.
  • Such antennas can combine several frequency bands in one and the same antenna. They also allow the combination of several applications.
  • Multiband antennas comprising four inverted L-shaped radiating elements arranged on a low dielectric constant support. Such an antenna is for example described in the document WO
  • the structure of the current antennas is limited by the shape of the radiating elements and their arrangement relative to each other which limits the reduction of the bulk, especially when one seeks to increase their flexibility in terms of operating frequencies .
  • the invention proposes an antenna comprising a plurality of metallic elements, said metallic elements being in point contact with a ground plane and equidistributed around a central axis of symmetry of the antenna, perpendicular to the ground plane.
  • each metal element extends from the point contact at a non-zero angle of inclination with respect to said ground plane and in that the ground plane comprises at least one recess. so that in operation, the adaptation of the antenna is better in a specified frequency band than when the ground plane is full.
  • the antenna of the invention is advantageously integrated in satellite positioning systems and / or in satellite broadcasting systems for multimedia content.
  • FIG. 1 illustrates the antenna of the invention wherein the metal elements are metal strands
  • FIGS. 3a and 3b illustrate the side views of two possible non-rectilinear geometries for the metal elements of the antenna of the invention
  • FIGS. 4a and 4b illustrate possible patterns for the metal elements of the antenna of the invention
  • FIG. 5 illustrates the antenna of FIG. 2 with the plane of mass extended by a cylinder and filters and switches. arranged on metal elements
  • FIGS. 6a and 6b respectively show the reflection coefficient (dB) as a function of the frequency (GHz) of the antenna of FIG. 5 simulated when the switches placed on each metal element are respectively open and closed
  • FIGS. 7a, 7b and 7c illustrate the radiation pattern of the antenna of FIG. 5 simulated in the frequencies 1, 189 GHz, 1, 280 GHz and 1, 575 GHz respectively;
  • FIGS. 8a, 8b and 8c respectively show a solid ground plane, a ground plane with four recesses of rectangular shape and a ground plane with four recesses circular shape;
  • FIGS. 9a and 9b respectively show the reflection coefficient (dB) as a function of frequency for the antenna of FIG. 5, an antenna with a solid ground plane (FIG. 8a) and an antenna with a ground plane comprising four recesses of circular shape (Figure 8c).
  • FIG. 1 illustrates an antenna comprising metal elements which, in operation, are able to radiate, thus forming radiating elements.
  • the antenna structure generally comprises a plurality of metal elements, 10, 20, 30, 40.
  • the antenna typically comprises four metal elements.
  • the metal elements 10, 20, 30, 40 are distributed around a central axis of symmetry D of the antenna, perpendicular to the ground plane M (it is understood here that the axis of symmetry passes through the center O of the plane mass M).
  • the metallic elements are in point contact 11, 21, 31, 41 with the ground plane M. They also extend from the ground plane M at a non-zero inclination angle ⁇ relative to the ground plane M.
  • the angle of inclination ⁇ of the metal elements with the ground plane M is dependent on the application. It can therefore be right, acute (less than 90 °) or obtuse (greater than 90 °).
  • the metal elements are equidistributed around a circle of center, the center O of the ground plane M.
  • the antenna comprises four metal elements and 90 ° separate the portion 11, 21, 31, 41 of each metal element in point contact with the ground plane M.
  • the metal elements, 10, 20, 30, 40 are identical and their angle of inclination ⁇ with respect to the ground plane M is equal to 45 °.
  • the angle of inclination ⁇ initiated at each metal element is such that the metal elements are oriented in the same direction, they can be oriented towards the axis of symmetry D of the antenna or in one direction opposite.
  • the metal elements are oriented towards the axis of symmetry D of the antenna perpendicular to the ground plane M.
  • the metal elements 10, 20, 30, 40 are printed on a dielectric substrate, this substrate being further supported by a pyramidal structure S having no radiofrequency properties.
  • the pyramidal structure may further comprise a number of sides greater than four.
  • Such a structure ensures the mechanical strength of the antenna and can be made of polystyrene material.
  • FIG. 2 illustrates an antenna comprising a pyramidal structure S on which are placed the printed metal elements on a dielectric substrate.
  • the structure is of a shape adapted to the inclination of the metal elements 10, 20, 30, 40.
  • the structure S has a pyramidal shape.
  • a structure S of this form is preferably used for producing the antenna.
  • the metal elements are arranged on each of the faces of the structure S.
  • Metal elements can take different forms.
  • Figures 3a, 3b respectively illustrate a metal element in the form of a circular arc strand and a metal element in the form of broken strand.
  • Figures 4a and 4b illustrate fractal geometry patterns obtained after several iterations of a triangular shape.
  • the shape, pattern, length, and inclination of the metal elements are parameters that affect the bandwidth and antenna radiation pattern.
  • ground plane M has dimensions that will condition the performance of the antenna in terms of radiation.
  • the ground plane M is typically circular.
  • the thickness and the radius of the ground plane M are dimensioned so as to limit the reflections on its edges.
  • the ground plane M may comprise a recess 50 formed at its center to improve the adaptation of the antenna, this is illustrated in Figure 1.
  • the recess is circular, square or octagonal.
  • FIG. 5 illustrates an antenna comprising a cylinder 60 or straight waveguide, extending the ground plane.
  • the dimensions of the cylinder are adapted to the recess 50.
  • Such a cylinder acts as a waveguide operating under its cutoff frequency which limits the rear radiation of the antenna.
  • the ground plane M can be extended by a pyramid (pyramidal waveguide) or a cone (conical waveguide), this shape being truncated as necessary depending on the congestion constraints and the performance characteristics. back radiation.
  • the extension of the ground plane M by a cone, a pyramid or a cylinder contributes to improving the performance of the antenna and also constitutes an additional means of adjustment of the antenna.
  • the shape of the guide section (straight, pyramidal or conical) is identical to the recess in the ground plane M. Depending on the targeted application, it is possible not to use a shape extending the ground plane M to reduce the size of the antenna.
  • the ground plane M may comprise several recesses. Such a configuration makes it possible to control the rear radiation while having a better adaptation than in the case where the ground plane M is full (in FIG. 8a is shown an antenna with a solid ground plane M).
  • the ground plane M must include a number of recesses equal to the number of metal elements, that is to say four recesses.
  • FIGS. 8b and 8c show a ground plane M comprising four recesses 80-83, 84-87.
  • the recesses 80-83 are rectangular in shape. The rectangular shape is such that the point contact of each metal element with the ground plane M defines the middle of one of the sides of each upper part of the rectangular shape.
  • the recesses 84-87 are circular in shape, each adjacent to a point contact.
  • the tangent T at the upper part of the recess of circular shape passes through the corresponding point contact.
  • the latter are equidistributed in the same way as the metallic elements (the radiating elements of the antenna).
  • the rectangular shaped recesses are inscribed inside a square of center O, the center of the ground plane M, the distance from the center O to the point contacts defining the mediators of the square.
  • the recesses of circular shape are themselves inscribed inside the circle squared mentioned above.
  • the recesses may further be rectangular in shape, octagonal.
  • the four recesses of the ground plane M may be extended by straight waveguides, pyramidal or conical, possibly truncated. These waveguides are arranged at the recesses and are such that the shape of their sections at the contact with the ground plane M is identical to the recesses formed therein.
  • the antenna is powered by means of excitations 12, 22, 32, 42 located at the contact 11, 21, 31, 41 of each metal element 10, 20, 30, 40 with the ground plane M.
  • transmission lines 13, 23, 33, 43 are used in the extension of each metal element.
  • the excitation points are connected to the ends of these transmission lines below the ground plane M which will be pierced accordingly.
  • the transmission lines are for example microstrip lines of characteristic impedance equal to 50 ⁇ formed in the same material as the substrate S on which the metal elements are printed.
  • the antenna shown is circular or linear polarization.
  • the linear polarization is obtained when two metallic elements are fed, in this case they are fed with voltages of identical amplitudes in phase opposition.
  • the circular polarization is obtained when four metal elements are powered, in this case they are supplied with identical amplitude voltages in phase quadrature.
  • the antenna further has a flexible character and / or multiband.
  • F1, F2, F3, F4 typically consist of a circuit comprising an inductor L and a capacitor C connected in parallel. These filters are placed on each of the metal elements.
  • the switches make it possible to adjust the length and / or the geometry of the metal elements. More specifically, in terms of performance, they make it possible to move the operating frequencies of the antenna to lower frequencies, especially when they are switched to the closed position. It should be noted that on each of the metal elements the filters and the switches are positioned identically on each of the metal elements in order to maintain the symmetry of the radiating structure.
  • the prototypes made include four radiating elements.
  • the prototype produced is in particular that illustrated in FIG.
  • the antenna comprises four radiating metal strands of width equal to 1 mm printed on a dielectric substrate disposed on a support in polystyrene material pyramid-shaped.
  • the dielectric substrate has a dielectric permittivity equal to 2.08 and a thickness typically equal to 0.762 mm.
  • the metal elements are extended by microstrip lines of width equal to 2.39 mm on which we will connect the excitations associated with each metal element.
  • the antenna allows according to the power supply to have a linear or circular polarization.
  • Linear polarization is obtained by feeding two opposite metallic elements.
  • the circular polarization is obtained by feeding the four metal elements.
  • the frequency flexibility is obtained by means of switches arranged along the metal elements.
  • the multiband appearance is achieved by means of band-cut filters arranged along the metal elements.
  • the prototype made here is bi-band and targets the following three bands
  • band 1 E5a / L5 and E5b
  • band 2 E6
  • band 3 L1 extended.
  • the band 3 is always present and according to the open or closed position of the switches, we will be able to have the band 1 and the band 3 or the band 2 and the band 3.
  • the frequencies of the bands targeted by the antenna are, by way of illustration and without limitation, those of the GPS system (in English, “Global Positioning System”) and the Galileo system.
  • L1 band 1, 563-1, 587 GHZ (civilian applications)
  • L2 band 1, 215-
  • band L5 1, 164-1, 197 GHz (for modernization of the current GPS system).
  • the frequencies of the Galileo system are as follows.
  • Band E5a 1, 164-1, 197 GHz
  • band E5b 1, 197-1, 214 GHz
  • band E5 extended 1, 142-1, 252 GHz (for applications requiring high accuracy)
  • band E6 1 , 260-1, 300 GHz
  • extended band L1 see GPS system: 1, 559-1, 591 GHz.
  • Figures 6a and 6b illustrate the reflection coefficient (dB) as a function of the operating frequency (GHz) when the switches are in the open position (see Figure 6a) and in the closed position (see Figure 6b).
  • dB reflection coefficient
  • the curve 60 is obtained by simulations performed on the prototype, the curve 61 is the desired target curve and the curve 62 corresponds to the nominal specifications of adaptation in the target bands.
  • the antenna is bi-band by the use of filters.
  • the band 3 extended L1
  • the bands 1 and 2 are respectively reached according to the open or closed position of the switches. Still with reference to FIGS. 6a and 6b, it can be seen that the adaptation for each of the bands concerned meets the nominal specifications required.
  • the selected bands allow the same antenna to be used for civil safety applications (aviation, etc.) or commercial satellite navigation services.
  • the choice between flexibility and multiband is guided by the application and especially the proximity of the frequency bands to be covered.
  • the nature of the filters employed imposes a minimum separation between two successive frequency bands.
  • FIGS. 7a, 7b and 7c illustrate the radiation pattern of the antenna of FIG. 5 simulated in the frequencies 1, 189 GHz, 1, 280 GHz and 1, 575 GHz respectively.
  • the antenna presented has a circular polarization, the radiating elements are powered in quadrature phase.
  • the curve 70 is the left circular polarization radiation pattern
  • the curve 71 is the right circular polarization radiation pattern
  • the curve 72 is a template representing the minimum required values in main polarization.
  • the radiation patterns obtained are of a quasi-hemispherical nature, allowing the reception of a maximum of satellite signals in visibility.
  • This type of radiation pattern is characteristic of receiving antennas for satellite navigation applications.
  • the cross polarization obtained in simulation is less than -10 dB in the half-space of interest, thus ensuring a purity of polarization necessary for the proper functioning of the antenna.
  • FIGS. 9a and 9b illustrate the comparative performance of an antenna with a ground plane comprising a recess provided at its center extended by a cylinder, an antenna with a solid ground plane, an antenna with a ground plane comprising four recesses.
  • Figure 9a shows the reflection coefficient (dB) as a function of the operating frequency (GHz).
  • the curves 60, 90 and 91 illustrate the reflection coefficient for respectively the antenna with a ground plane comprising a recess provided in its center extended by a cylinder, for the antenna with a ground plane comprising four recesses. , for the antenna with a solid ground plane and the curve 62 represents the expected specifications.
  • curve 91 is an intermediate solution between a solution with a solid ground plane, curve 90 and the best solution namely an antenna with a ground plane comprising a recess in its center.
  • the different embodiments of the ground plane offer different resonant frequencies.
  • the radiating elements have been optimized in adaptation for the ground plane comprising a recess formed in its center and extended by a cylinder, curve 60.
  • the same radiating elements arranged on a solid ground plane have a frequency shift upwards about 14%, curve 90, which implies that the correction of this shift in Frequency requires an elongation of the radiating elements of the same order.
  • the same radiating elements arranged on a ground plane comprising four recesses have an upward frequency shift of 8%, curve 91, which implies a radiating element elongation of less than half compared to the solution with a solid ground plane.
  • Figure 9b illustrates the radiation pattern (dBi) as a function of theta angle (degrees).
  • the curves 93, 94 and 71 represent the left circular polarization for respectively the antenna with a ground plane comprising a recess provided at its center extended by a cylinder, for the antenna with a ground plane comprising four recesses.
  • the curves 97, 96 and 70 represent the crossed polarization for respectively the antenna with a ground plane comprising a recess provided at its center extended by a cylinder, for the antenna with a ground plane comprising four recesses.
  • the curve 72 represents the expected specifications for the main polarization.
  • antenna performance is equivalent.
  • the performance of the antenna with a ground plane comprising a recess in the center extended by a cylinder is best in the half-space of interest (theta angle between -90 ° and + 90 °).
  • this solution has a greater rear radiation (theta angle close to ⁇ 180 °) than solutions with a solid ground plane or four recesses.
  • the performance of the antenna with a solid ground plane is similar to the performances with a ground plane comprising four recesses, both in the half-space of interest and in the backward radiation.
  • the antenna with a ground plane comprising four recesses makes it possible to dispense with the use of a cylinder in order to improve the level of the rear radiation. This also allows a gain on the total height of the antenna while maintaining acceptable performance in terms of adaptation and cross polarization.
  • the antenna thus described allows its structure to have many possibilities as to the different possible settings (inclination, geometry of the metal elements and the ground plane, filters and / or switches on the metal elements) of the antenna contributing to a multiplicity of targeted applications.
  • the different degrees of freedom as to the inclination and the geometry of the metallic elements make it possible to optimize the bulk of such an antenna and to adapt the radiation pattern of the antenna to the intended applications.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

L'invention concerne une antenne comprenant une pluralité d'éléments métalliques (10, 20, 30, 40), lesdits éléments métalliques (10, 20, 30, 40) étant en contact ponctuel (11, 21, 31, 41 ) avec un plan de masse (M) et équirépartis autour d'un axe de symétrie central (D) de l'antenne, perpendiculaire au plan de masse (M). L'antenne de l'invention est caractérisée en ce que chaque élément métallique s'étend à partir du contact ponctuel selon un angle d'inclinaison non nul (?) par rapport audit plan de masse (M) et en ce que le plan de masse (M) comprend au moins un évidement (80-83, 84- 87) de manière à ce qu'en fonctionnement, l'adaptation de l'antenne soit meilleure dans une bande de fréquence spécifiée que lorsque le plan de masse (M) est plein.

Description

ANTENNE A ELEMENTS RAYONNANTS INCLINES
DOMAINE TECHNIQUE GENERAL
La présente invention est relative aux antennes multibandes à polarisation circulaire ou linéaire et présentant une flexibilité en fréquence.
L'invention trouve notamment application dans les systèmes de positionnement par satellites tels que le GPS et Galiléo, ainsi que dans les systèmes de diffusion par satellite de contenu multimédia.
ETAT DE LA TECHNIQUE
Les antennes multibandes sont, par exemple, utilisées dans des systèmes de positionnement ou de diffusion par satellites pour réduire le nombre d'antennes embarquées ou positionnées au sol.
En effet, de telles antennes permettent de combiner plusieurs bandes de fréquence dans une seule et même antenne. Elles permettent également la combinaison de plusieurs applications.
On connaît des antennes multibandes, comprenant quatre éléments rayonnants en forme de L inversé, disposés sur un support à faible constante diélectrique. Une telle antenne est par exemple décrite dans le document WO
2005/004283.
Toutefois, la structure des antennes actuelles est limitée par la forme des éléments rayonnants et leur agencement les uns par rapport aux autres ce qui limite la réduction de l'encombrement, notamment lorsque l'on cherche à accroître leur flexibilité en terme de fréquences de fonctionnement.
Or, la multiplicité des applications et des bandes associées fait apparaître le besoin d'antennes multibandes ayant une structure présentant un caractère flexible, de faible coût et offrant d'excellentes performances ou au moins équivalentes aux antennes dédiées à une application ou à une bande de fréquence donnée, tout en conservant un encombrement similaire voire moindre. PRESENTATION DE L'INVENTION
Afin de pallier aux problèmes susmentionnés, l'invention propose une antenne comprenant une pluralité d'éléments métalliques, lesdits éléments métalliques étant en contact ponctuel avec un plan de masse et équirépartis autour d'un axe de symétrie central de l'antenne, perpendiculaire au plan de masse.
L'antenne de l'invention est caractérisée en ce que chaque élément métallique s'étend à partir du contact ponctuel selon un angle d'inclinaison non nul par rapport audit plan de masse et en ce que le plan de masse comprend au moins un évidement de manière à ce qu'en fonctionnement, l'adaptation de l'antenne soit meilleure dans une bande de fréquence spécifiée que lorsque le plan de masse est plein.
L'antenne de l'invention s'intègre avantageusement dans des systèmes de positionnement par satellites et/ou dans des systèmes de diffusion par satellite de contenu multimédia.
PRESENTATION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 illustre l'antenne de l'invention où les éléments métalliques sont des brins métalliques ;
- la figure 2, illustre l'antenne de l'invention où les brins métalliques sont disposés sur les faces d'un substrat ; - les figures 3a et 3b illustrent les vues de côtés de deux géométries possibles autres que rectilignes pour les éléments métalliques de l'antenne de l'invention ;
- les figures 4a et 4b illustrent des motifs possibles pour les éléments métalliques de l'antenne de l'invention, - la figure 5 illustre l'antenne de la figure 2 avec le plan de masse prolongé par un cylindre et des filtres et des interrupteurs disposés sur les éléments métalliques ; - les figures 6a et 6b illustrent respectivement le coefficient de réflexion (dB) en fonction de la fréquence (GHz) de l'antenne de la figure 5 simulé lorsque les interrupteurs placés sur chaque élément métallique sont respectivement ouverts et fermés ; - les figures 7a, 7b et 7c illustrent le diagramme de rayonnement de l'antenne de la figure 5 simulé dans les fréquences 1 ,189 GHz, 1 ,280 GHz et 1 ,575 GHz respectivement ;
- les figures 8a, 8b et 8c illustrent respectivement un plan de masse plein, un plan de masse avec quatre évidements de forme rectangulaire et un plan de masse avec quatre évidements de forme circulaire ;
- les figures 9a et 9b illustrent respectivement le coefficient de réflexion (dB) en fonction de la fréquence pour l'antenne de la figure 5, une antenne avec un plan de masse plein (figure 8a) et une antenne avec un plan de masse comprenant quatre évidements de forme circulaire (figure 8c).
DESCRIPTION D'UN OU PLUSIEURS MODES DE REALISATION ET DE MISE EN ŒUVRE Structure de l'antenne
La figure 1 illustre une antenne comprenant des éléments métalliques qui, en fonctionnement, sont aptes à rayonner formant par conséquent éléments rayonnants.
La structure de l'antenne comprend de manière générale une pluralité d'éléments métalliques, 10, 20, 30, 40.
L'antenne comprend typiquement quatre éléments métalliques. Les éléments métalliques 10, 20, 30, 40 sont répartis autour d'un axe de symétrie D central de l'antenne, perpendiculaire au plan de masse M (il est entendu ici que l'axe de symétrie passe par le centre O du plan de masse M).
Les éléments métalliques sont en contact ponctuel 11 , 21 , 31 , 41 avec le plan de masse M. Ils s'étendent en outre du plan de masse M selon un angle d'inclinaison θ non nul par rapport au plan de masse M.
L'angle d'inclinaison θ des éléments métalliques avec le plan de masse M, est fonction de l'application. Il peut être par conséquent droit, aigu (inférieur à 90°) ou obtus (supérieur à 90°).
De manière avantageuse, les éléments métalliques sont équirépartis autour d'un cercle de centre, le centre O du plan de masse M.
Un tel cas est illustré sur la figure 1. Sur cette figure l'antenne comprend, quatre éléments métalliques et 90° séparent la partie 11 , 21 , 31 , 41 de chaque élément métallique en contact ponctuel avec le plan de masse M.
De manière avantageuse, les éléments métalliques, 10, 20, 30, 40, sont identiques et leur angle d'inclinaison θ par rapport au plan de masse M est égal à 45°. En outre, l'angle d'inclinaison θ initié à chaque élément métallique est tel que les éléments métalliques sont orientés dans la même direction, ils peuvent être orientés en direction de l'axe de symétrie D de l'antenne ou bien dans une direction opposée.
Sur l'antenne de la figure 1 , les éléments métalliques sont orientés en direction de l'axe de symétrie D de l'antenne perpendiculaire au plan de masse M.
Il est à noter que les éléments métalliques 10, 20, 30, 40 sont imprimés sur un substrat diélectrique, ce substrat étant en outre supporté par une structure S pyramidale n'ayant pas de propriétés radiofréquences. La structure pyramidale peut en outre comprendre un nombre de côtés supérieur à quatre.
Une telle structure assure la tenue mécanique de l'antenne et peut être en matériau polystyrène.
La figure 2 illustre une antenne comprenant une structure S pyramidale sur laquelle sont disposés les éléments métalliques imprimés sur un substrat diélectrique. La structure est de forme adaptée à l'inclinaison des éléments métalliques 10, 20, 30, 40.
Sur la figure 2, la structure S a une forme pyramidale. On utilisera de préférence une structure S de cette forme pour la réalisation de l'antenne. Sur chacune des faces de la structure S, les éléments métalliques sont disposés.
Eléments métalliques
Les éléments métalliques peuvent prendre différentes formes.
Les figures 3a, 3b illustrent respectivement un élément métallique en forme de brin en arc de cercle et un élément métallique en forme de brin brisé.
Outre l'utilisation de brins, on peut envisager des motifs géométriques plus complexes.
Les figures 4a et 4b illustrent des motifs à géométrie fractale obtenus après plusieurs itérations d'une forme triangulaire.
La forme, le motif, la longueur et l'inclinaison des éléments métalliques sont des paramètres qui ont une influence sur la largeur de bande et sur le diagramme de rayonnement de l'antenne.
Plan de masse Le plan de masse M présente des dimensions qui vont conditionner les performances de l'antenne en termes de rayonnement.
Le plan de masse M est typiquement circulaire. L'épaisseur et le rayon du plan de masse M sont dimensionnés de manière à limiter les réflexions sur ses bords. En outre, le plan de masse M peut comprendre un évidement 50 ménagé en son centre pour améliorer l'adaptation de l'antenne, ceci est illustré sur la figure 1. L'évidement est de forme circulaire, carrée ou octogonale.
De plus, dans cette configuration, afin de limiter le rayonnement arrière engendré par l'évidement ménagé dans le plan de masse, on peut le prolonger par un cylindre, une pyramide ou un cône, ces deux dernières formes pouvant au besoin être tronquées. La figure 5 illustre une antenne comprenant un cylindre 60 ou guide d'onde droit, prolongeant le plan de masse. Les dimensions du cylindre sont adaptées à l'évidement 50.
Un tel cylindre agit comme un guide d'onde fonctionnant sous sa fréquence de coupure ce qui permet de limiter le rayonnement arrière de l'antenne.
Comme déjà mentionné, le plan de masse M peut être prolongé par une pyramide (guide d'onde pyramidal) ou un cône (guide d'onde conique), cette forme étant au besoin tronquée en fonction des contraintes d'encombrement et des performances en rayonnement arrière.
L'emploi de ces formes permet de fermer le plan de masse M, et donc de réduire le rayonnement arrière tout en conservant l'amélioration de l'adaptation de l'antenne liée à l'évidement.
Le prolongement du plan de masse M par un cône, une pyramide ou un cylindre contribue à l'amélioration des performances de l'antenne et constitue également un moyen de réglage supplémentaire de l'antenne.
Afin d'être correctement positionné au niveau du plan de masse M, la forme de la section du guide (droit, pyramidal ou conique) est identique à l'évidement ménagé dans le plan de masse M. En fonction de l'application ciblée, il est possible de ne pas utiliser de forme prolongeant le plan de masse M afin de réduire l'encombrement de l'antenne.
Dans ce cas, le plan de masse M peut comprendre plusieurs évidements. Une telle configuration permet de contrôler le rayonnement arrière tout en ayant une adaptation meilleure que dans le cas où le plan de masse M est plein (sur la figure 8a est représentée une antenne avec un plan de masse M plein).
Le plan de masse M doit comprendre un nombre d'évidements égal au nombre d'éléments métalliques, c'est-à-dire quatre évidements.
On a représenté sur les figures 8b et 8c un plan de masse M comprenant quatre évidements 80-83, 84-87. Sur la figure 8b les évidements 80-83 sont de forme rectangulaire. La forme rectangulaire est telle que le contact ponctuel de chaque élément métallique avec le plan de masse M définit le milieu d'un des côtés de chaque partie supérieure de la forme rectangulaire. Sur la figure 8c les évidements 84-87 sont de forme circulaire, chacune adjacente à un contact ponctuel. De plus, pour chaque évidement, la tangente T à la partie supérieure de l'évidement de forme circulaire passe par le contact ponctuel correspondant.
Dans la configuration avec plusieurs évidements, ces derniers sont équirépartis de la même manière que les éléments métalliques (les éléments rayonnants de l'antenne).
De manière générale pour passer d'un évidement à un autre une rotation de 90° est nécessaire.
Les évidements de forme rectangulaires sont inscrits à l'intérieur d'un carré de centre O, le centre du plan de masse M, la distance du centre O aux contacts ponctuels définissant les médiatrices du carré.
Les évidements de forme circulaire sont quant eux inscrits à l'intérieur du cercle inscrit au carré évoqué ci-dessus.
Les évidements peuvent en outre être de forme rectangulaire, octogonale.
En outre, les quatre évidements du plan de masse M peuvent être prolongés par des guides d'ondes droits, pyramidaux ou coniques, éventuellement tronqués. Ces guides d'ondes sont agencés au niveau des évidements et sont tels que la forme de leurs sections au niveau du contact avec le plan de masse M est identique aux évidements ménagés dans celui-ci.
Alimentation de l'antenne
L'antenne est alimentée au moyen d'excitations 12, 22, 32, 42 situées au niveau du contact 11 , 21 , 31 , 41 de chaque élément métallique 10, 20, 30, 40 avec le plan de masse M.
Pour des raisons de réalisation, de manière préférée, on utilise des lignes de transmission 13, 23, 33, 43 dans le prolongement de chaque élément métallique. Les points d'excitations sont connectés aux extrémités de ces lignes de transmission par le dessous du plan de masse M que l'on aura percé en conséquence.
L'emploi de ces lignes de transmission et leur dimensionnement est fonction de l'évidement pratiqué dans le plan de masse M.
Les lignes de transmission sont par exemple des lignes microrubans d'impédance caractéristique égale à 50 Ω formées dans le même matériau que le substrat S sur lequel sont imprimés les éléments métalliques.
L'antenne présentée est à polarisation circulaire ou linéaire. La polarisation linéaire est obtenue lorsque deux éléments métalliques sont alimentés, dans ce cas ils sont alimentés avec des tensions d'amplitudes identiques en opposition de phase.
La polarisation circulaire est quant à elle obtenue lorsque quatre éléments métalliques sont alimentés, dans ce cas là ils sont alimentés avec des tensions d'amplitudes identiques en quadrature de phase.
Caractère flexible et/ou multibande de l'antenne
L'antenne présente en outre un caractère flexible et/ou multibande.
Tel que connu en soi c'est la géométrie des éléments rayonnants qui conditionne les fréquences de fonctionnement d'une antenne. L'aspect multibande est obtenu au moyen de filtres « coupe bande »,
F1 , F2, F3, F4 (non représenté) typiquement constitués de circuit comprenant une inductance L et un condensateur C montés en parallèle. Ces filtres sont placés sur chacun des éléments métalliques.
Le caractère flexible en termes de fréquence de fonctionnement de l'antenne est obtenu au moyen d'interrupteurs, 11 , 12, 13, 14 (non représenté) montés sur chacun des éléments métalliques.
En pratique, les interrupteurs selon leur position « ouverte » ou « fermée » permettent de régler la longueur et/ou la géométrie des éléments métalliques. De manière plus précise, en termes de performances, ils permettent de déplacer les fréquences de fonctionnement de l'antenne vers de plus basses fréquences notamment lorsqu'ils sont commutés en position fermée. II est à noter que sur chacun des éléments métalliques les filtres et les interrupteurs sont positionnés de manière identique sur chacun des éléments métalliques afin de conserver la symétrie de la structure rayonnante. Prototype
Afin de valider la structure d'antenne qui vient d'être décrite, plusieurs prototypes ont été réalisés et testés afin de vérifier qu'ils satisfont aux contraintes d'adaptation et de rayonnement dans les bandes de fréquence de fonctionnement visées. Les prototypes réalisés comprennent quatre éléments rayonnants.
Le prototype réalisé est en particulier celui illustré par la figure 5.
Sur cette figure, l'antenne comprend quatre brins métalliques rayonnants de largeur égale à 1 mm imprimés sur un substrat diélectrique disposé sur un support en matériau polystyrène en forme de pyramide. Le substrat diélectrique présente dans ce cas une permittivité diélectrique égale à 2,08 et d'épaisseur typiquement égale à 0,762 mm.
Les éléments métalliques sont prolongés par des lignes microrubans de largeur égale à 2,39 mm sur lesquels on va connecter les excitations associées à chaque élément métallique. Comme déjà discuté l'antenne permet selon l'alimentation d'avoir une polarisation linéaire ou circulaire.
La polarisation linéaire est obtenue en alimentant deux éléments métalliques opposés.
La polarisation circulaire est obtenue en alimentant les quatre éléments métalliques.
La flexibilité en fréquence est obtenue au moyen d'interrupteurs disposés le long des éléments métalliques.
L'aspect multibande est obtenu au moyen de filtres coupe bande disposés le long des éléments métalliques. Le prototype réalisé ici est bi-bande et vise les trois bandes suivantes
(bi-bande à un instant donné et possibilité de commuter au moyen des interrupteurs pour atteindre la troisième bande). Les bandes sont les suivantes : bande 1 : E5a/L5 et E5b, bande 2 : E6, bande 3 : L1 étendue.
La bande 3 est toujours présente et selon la position ouverte ou fermée des interrupteurs, on va pouvoir ou avoir la bande 1 et la bande 3 ou la bande 2 et la bande 3.
Les fréquences des bandes visées par l'antenne sont, à titre illustratif et non limitatif, celles du système GPS (en anglais, « Global Positioning System ») et du système Galiléo.
Les fréquences du système GPS sont les suivantes. Bande L1 : 1 ,563-1 ,587 GHZ (applications civiles), bande L2 : 1 ,215-
1 ,237 GHz (applications militaires principalement), bande L5 : 1 ,164-1 ,197 GHz (en vue de la modernisation du système GPS actuel).
Les fréquences du système Galiléo sont les suivantes.
Bande E5a : 1 ,164-1 ,197 GHz, bande E5b : 1 ,197-1 ,214 GHz, bande E5 étendue : 1 ,142-1 ,252 GHz (pour des applications nécessitant une forte précision), bande E6 : 1 ,260-1 ,300 GHz, bande L1 étendue (cf. système GPS) : 1 ,559-1 ,591 GHz.
Les figures 6a et 6b illustrent le coefficient de réflexion (dB) en fonction de la fréquence de fonctionnement (GHz) lorsque les interrupteurs sont en position ouvert (cf. figure 6a) et en positon fermée (cf. figure 6b). Un tel paramètre permet de tester les performances de l'antenne en adaptation.
Sur ces figures, la courbe 60 est obtenue par des simulations effectuées sur le prototype, la courbe 61 est la courbe cible que l'on souhaite atteindre et la courbe 62 correspond aux spécifications nominales d'adaptation dans les bandes visées.
Il est à remarquer sur ces figures que l'antenne est bi-bande de par l'utilisation des filtres.
En effet, comme prévu la bande 3 (L1 étendue) est toujours présente. Les bandes 1 et 2 sont respectivement atteintes selon la position ouverte ou fermée des interrupteurs. Toujours en se référant aux figures 6a et 6b on constate que l'adaptation pour chacune des bandes visées satisfait aux spécifications nominales requises.
Une telle adaptation permet une émission de près de 90% de l'énergie transmise à l'antenne.
Par ailleurs, les bandes retenues permettent en fonction de l'état de l'interrupteur d'utiliser indifféremment cette même antenne pour des applications de sécurité civile (aviation, etc.) ou des services commerciaux de navigation par satellite. Le choix entre flexibilité et multibande est guidé par l'application et surtout la proximité des bandes de fréquence à couvrir. La nature des filtres employés impose une séparation minimum entre deux bandes de fréquence successives.
Lorsque ces dernières sont relativement proches, il est préférable d'opter pour un interrupteur si les performances des éléments rayonnants sont telles qu'elles ne permettent pas de couvrir simultanément les deux bandes de fréquence en question. Ce dernier point peut guider le choix du motif des éléments rayonnants.
Les figures 7a, 7b et 7c illustrent le diagramme de rayonnement de l'antenne de la figure 5 simulé dans les fréquences 1 ,189 GHz, 1 ,280 GHz et 1 ,575 GHz respectivement.
L'antenne présentée a une polarisation circulaire, les éléments rayonnants sont alimentés en quadrature de phase.
Sur ces figures la courbe 70 est le diagramme de rayonnement en polarisation circulaire gauche, la courbe 71 est le diagramme de rayonnement en polarisation circulaire droite et la courbe 72 est un gabarit représentant les valeurs minimales requises en polarisation principale.
Il est à remarquer sur les figures 7a, 7b et 7c que les diagrammes de rayonnement obtenus sont de nature quasi hémisphérique, permettant la réception d'un maximum de signaux issus des satellites en visibilité.
Ce type de diagramme de rayonnement est caractéristique des antennes réceptrices pour des applications de navigation par satellites. La polarisation croisée obtenue en simulation est inférieure à -10 dB dans le demi-espace d'intérêt, assurant ainsi une pureté de polarisation nécessaire au bon fonctionnement de l'antenne.
Les figures 9a et 9b illustrent les performances comparées d'une antenne avec un plan de masse comprenant un évidement ménagé en son centre prolongé par un cylindre, d'une antenne avec un plan de masse plein, d'une antenne avec un plan de masse comprenant quatre évidements.
Ces deux dernières solutions peuvent être envisagées pour offrir un encombrement réduit en hauteur de l'antenne si l'application le nécessite.
La figure 9a illustre le coefficient de réflexion (dB) en fonction de la fréquence de fonctionnement (GHz).
Sur cette figure, les courbes 60, 90 et 91 illustrent le coefficient de réflexion pour respectivement l'antenne avec un plan de masse comprenant un évidement ménagé en son centre prolongé par un cylindre, pour l'antenne avec un plan de masse comprenant quatre évidements, pour l'antenne avec un plan de masse plein et la courbe 62 représente les spécifications attendues.
Il ressort de cette figure que l'antenne avec un plan de masse comprenant quatre évidements, courbe 91 est une solution intermédiaire entre une solution avec un plan de masse plein, courbe 90 et la solution la meilleure à savoir une antenne avec un plan de masse comprenant un évidement ménagé en son centre.
Pour une même longueur d'éléments rayonnants, les différents modes de réalisation du plan de masse offrent des fréquences de résonance différentes.
Ainsi, les éléments rayonnants ont été optimisés en adaptation pour le plan de masse comprenant un évidement ménagé en son centre et prolongé par un cylindre, courbe 60. Les mêmes éléments rayonnants disposés sur un plan de masse plein présentent un décalage en fréquence vers le haut d'environ 14 %, courbe 90, ce qui sous-entend que la correction de ce décalage en fréquence nécessite un allongement des éléments rayonnants du même ordre.
Les mêmes éléments rayonnants disposés sur un plan de masse comprenant quatre évidements présentent un décalage en fréquence vers le haut de 8 %, courbe 91 , ce qui sous-entend un allongement des éléments rayonnants moins important de près de moitié comparé à la solution avec un plan de masse plein.
De plus, la figure 9b illustre le diagramme de rayonnement (dBi) en fonction de l'angle thêta (degrés). Sur cette figure, les courbes 93, 94 et 71 représentent la polarisation circulaire gauche pour respectivement l'antenne avec un plan de masse comprenant un évidement ménagé en son centre prolongé par un cylindre, pour l'antenne avec un plan de masse comprenant quatre évidements, pour l'antenne avec un plan de masse plein. Toujours sur cette figure, les courbes 97, 96 et 70 représentent la polarisation croisée pour respectivement l'antenne avec un plan de masse comprenant un évidement ménagé en son centre prolongé par un cylindre, pour l'antenne avec un plan de masse comprenant quatre évidements, pour l'antenne avec un plan de masse plein et la courbe 72 représente les spécifications attendues pour la polarisation principale.
En termes de polarisation circulaire gauche, les performances des antennes sont équivalentes.
En termes de polarisation croisée les performances de l'antenne avec un plan de masse comprenant un évidement au centre prolongé par un cylindre sont les meilleures dans le demi-espace d'intérêt (angle thêta compris entre -90° et +90°). Par contre cette solution présente un rayonnement arrière (angle thêta proche de ±180°) plus important que les solutions à plan de masse plein ou à quatre évidements.
Ce dernier paramètre peut s'avérer important si l'application visée nécessite de réduire les interactions électromagnétiques avec la structure porteuse. Les performances de l'antenne avec un plan de masse plein sont similaires aux performances avec un plan de masse comprenant quatre évidements, à la fois dans le demi espace d'intérêt et en rayonnement arrière. Ainsi l'antenne avec un plan de masse comprenant quatre évidements permet de s'affranchir de l'utilisation d'un cylindre afin d'améliorer le niveau du rayonnement arrière. Ceci permet également un gain sur la hauteur totale de l'antenne tout en conservant des performances acceptables en termes d'adaptation et de polarisation croisée. Bien entendu, si l'application visée le permet, on préférera utiliser l'antenne avec un plan de masse comprenant un évidement en son centre prolongé par un cylindre car elle présente une meilleure adaptation.
L'antenne ainsi décrite permet par sa structure d'avoir de nombreuses possibilités quant aux différents réglages possibles (inclinaison, géométrie des éléments métalliques et du plan de masse, filtres et/ou interrupteurs sur les éléments métallique) de l'antenne contribuant à une multiplicité des applications visées.
Par ailleurs les différents degrés de liberté quant à l'inclinaison et la géométrie des éléments métalliques permettent d'optimiser l'encombrement d'une telle antenne et d'adapter le diagramme de rayonnement de l'antenne aux applications visées.

Claims

REVENDICATIONS
1. Antenne comprenant une pluralité d'éléments métalliques (10, 20, 30, 40), lesdits éléments métalliques (10, 20, 30, 40) étant en contact ponctuel (11 , 21 , 31 , 41 ) avec un plan de masse (M) et équirépartis autour d'un axe de symétrie central (D) de l'antenne, perpendiculaire au plan de masse (M), caractérisée en ce que chaque élément métallique s'étend à partir du contact ponctuel selon un angle d'inclinaison non nul (θ) par rapport audit plan de masse (M) et en ce que le plan de masse (M) comprend au moins un évidement (80-83, 84-
87) de manière à ce qu'en fonctionnement, l'adaptation de l'antenne soit meilleure dans une bande de fréquence spécifiée que lorsque le plan de masse (M) est plein.
2. Antenne selon la revendication 1 , caractérisée en ce que le plan de masse (M) comprend un évidement (50) ménagé en son centre.
3. Antenne selon la revendication précédente, caractérisée en ce que l'évidement est adjacent à chaque contact ponctuel et est de forme comprise dans la liste suivante : circulaire, carrée, octogonale.
4. Antenne selon la revendication précédente, caractérisée en ce que le plan de masse (M) est prolongé par un guide d'onde droit (60), pyramidal ou conique, éventuellement tronqué, agencé au niveau de l'évidement ménagé dans le plan de masse (M) et tel que la forme de la section du guide au niveau du contact avec le plan de masse (M) est identique à l'évidement ménagé dans celui-ci.
5. Antenne selon la revendication 1 , caractérisée en ce que le plan de masse (M) comprend quatre évidements (80-83, 84-87).
6. Antenne selon la revendication 5, caractérisée en ce que les évidements (84-87) sont chacun adjacent à un contact ponctuel et dont la forme est comprise dans la liste suivante : circulaire, carrée, rectangulaire, octogonale.
7. Antenne selon la revendication précédente, caractérisée en ce que les quatre évidements du plan de masse (M) sont prolongés par des guides d'onde droits, pyramidaux ou coniques, éventuellement tronqués, agencés au niveau des évidements ménagés dans le plan de masse (M) et tels que la forme de leurs sections au niveau du contact avec le plan de masse (M) est identique aux évidements ménagés dans celui-ci.
8. Antenne selon l'une des revendications 5 à 7, caractérisée en ce que les évidements sont équirépartis sur le plan de masse.
9. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments métalliques (10, 20, 30, 40) sont identiques.
10. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments métalliques (10, 20, 30, 40) sont des brins métalliques.
11. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments métalliques (10, 20, 30, 40) sont des brins métalliques brisés.
12. Antenne selon l'une des revendications 1 à 9, caractérisée en ce que les éléments métalliques sont de forme triangulaire.
13. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments métalliques forment une structure pyramidale.
14. Antenne selon l'une des revendications 1 à 9, caractérisée en ce que les éléments métalliques sont des arcs de cercle.
15. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments métalliques (10, 20, 30, 40) sont orientés en direction de l'axe de symétrie (D) de l'antenne autour duquel ils sont répartis.
16. Antenne selon la revendication précédente, caractérisée en ce que l'angle d'inclinaison (θ) des éléments métalliques (10, 20, 30, 40) par rapport au plan de masse (M) est égal à 45°.
17. Antenne selon l'une des revendications 1 à 14, caractérisée en ce que les éléments métalliques (10, 20, 30, 40) sont orientés en direction opposée à l'axe de symétrie (D) de l'antenne autour duquel ils sont répartis.
18. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments métalliques (10, 20, 30, 40) sont alimentés au niveau des contacts ponctuels (11 , 21 , 31 , 41 ) avec le plan de masse (M).
19. Antenne selon la revendication précédente, caractérisée en ce que les éléments métalliques sont supportés par une structure (S) pyramidale n'ayant pas de propriétés radiofréquences.
20. Antenne selon l'une des revendications précédentes, caractérisée en ce que le plan de masse (M) est de forme circulaire.
21. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend des filtres disposés sur chaque élément métallique (10, 20, 30, 40).
22. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend des interrupteurs disposés sur chaque élément métallique (10, 20, 30, 40).
23. Utilisation d'une antenne selon l'une des revendications précédentes dans un système de positionnement par satellites.
24. Utilisation d'une antenne selon l'une des revendications 1 à 22 dans un système de diffusion par satellites de contenu multimédia.
25. Utilisation d'une antenne selon l'une des revendications 1 à
22 dans un système selon les revendications 23 et 24 prises en combinaison.
EP08736205.9A 2007-04-13 2008-04-14 Antenne a éléments rayonnants inclines Not-in-force EP2147479B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754447A FR2915025B1 (fr) 2007-04-13 2007-04-13 Antenne a elements rayonnants inclines
PCT/EP2008/054507 WO2008125662A1 (fr) 2007-04-13 2008-04-14 Antenne a éléments rayonnants inclines

Publications (2)

Publication Number Publication Date
EP2147479A1 true EP2147479A1 (fr) 2010-01-27
EP2147479B1 EP2147479B1 (fr) 2015-10-14

Family

ID=38721745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08736205.9A Not-in-force EP2147479B1 (fr) 2007-04-13 2008-04-14 Antenne a éléments rayonnants inclines

Country Status (5)

Country Link
US (1) US8289223B2 (fr)
EP (1) EP2147479B1 (fr)
CA (1) CA2683048C (fr)
FR (1) FR2915025B1 (fr)
WO (1) WO2008125662A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8786509B2 (en) * 2010-03-16 2014-07-22 Raytheon Company Multi polarization conformal channel monopole antenna
CN201655979U (zh) * 2010-04-02 2010-11-24 旭丽电子(广州)有限公司 复合式多输入多输出天线模块及其系统
US10608348B2 (en) * 2012-03-31 2020-03-31 SeeScan, Inc. Dual antenna systems with variable polarization
CN102760976B (zh) * 2012-05-23 2014-08-20 深圳市华一通信技术有限公司 双极化天线辐射单元及双极化天线
US10490908B2 (en) * 2013-03-15 2019-11-26 SeeScan, Inc. Dual antenna systems with variable polarization

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878062A (en) * 1988-07-28 1989-10-31 Dayton-Granger, Inc. Global position satellite antenna
US5065166A (en) * 1989-04-14 1991-11-12 Sinclair Radio Laboratories Limited Anti cancellation antenna
US5173715A (en) * 1989-12-04 1992-12-22 Trimble Navigation Antenna with curved dipole elements
US5521610A (en) * 1993-09-17 1996-05-28 Trimble Navigation Limited Curved dipole antenna with center-post amplifier
ATE292329T1 (de) * 1999-09-20 2005-04-15 Fractus Sa Mehrebenenantenne
US6856287B2 (en) 2003-04-17 2005-02-15 The Mitre Corporation Triple band GPS trap-loaded inverted L antenna array
US6819291B1 (en) * 2003-06-02 2004-11-16 Raymond J. Lackey Reduced-size GPS antennas for anti-jam adaptive processing
US7248223B2 (en) * 2005-12-05 2007-07-24 Elta Systems Ltd Fractal monopole antenna
US7298333B2 (en) * 2005-12-08 2007-11-20 Elta Systems Ltd. Patch antenna element and application thereof in a phased array antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008125662A1 *

Also Published As

Publication number Publication date
US20100060543A1 (en) 2010-03-11
FR2915025A1 (fr) 2008-10-17
EP2147479B1 (fr) 2015-10-14
WO2008125662A1 (fr) 2008-10-23
US8289223B2 (en) 2012-10-16
CA2683048A1 (fr) 2008-10-23
CA2683048C (fr) 2016-06-07
FR2915025B1 (fr) 2014-02-14

Similar Documents

Publication Publication Date Title
EP2622685B1 (fr) Reflecteur d'antenne large bande pour une antenne filaire plane a polarisation circulaire et procede de realisation du reflecteur d'antenne
EP3469657B1 (fr) Antenne filaire large bande a motifs resistifs avec resistance variable
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
EP2147479B1 (fr) Antenne a éléments rayonnants inclines
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
FR2911725A1 (fr) Antenne ou element d'antenne ultra-large bande.
EP1979987B1 (fr) Antenne a polarisation circulaire ou lineaire
EP1751820A1 (fr) Antenne planaire à plots conducteurs à partir du plan de masse et/ou d'au moins un élément rayonnant, et procédé de fabrication correspondant
FR2627330A1 (fr) Antenne multifrequence, utilisable notamment dans le domaine des telecommunications spatiales
EP2643886B1 (fr) Antenne planaire a bande passante elargie
EP4012839A1 (fr) Réseau antennaire à rayonnement directif
EP3235058A1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP1540768B1 (fr) Antenne helicoidale a large bande
EP0860894B1 (fr) Antenne miniature résonnante de type microruban de forme annulaire
WO2010106073A1 (fr) Antenne a double ailettes
EP3692598B1 (fr) Antenne à substrat ferromagnétique dispersif partiellement saturé
EP2637254A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
FR2980647A1 (fr) Antenne ultra-large bande
EP3902059B1 (fr) Antenne directive large bande à émission longitudinale
EP2158637A1 (fr) Antenne de type hélice
FR2981514A1 (fr) Systeme antennaire a une ou plusieurs spirale(s) et reconfigurable
EP3537540A1 (fr) Découplage électromagnétique
EP3537541A1 (fr) Découplage électromagnétique
FR2814593A1 (fr) Antenne de telecommunication, notamment entre avions
FR3031396A1 (fr) Antenne pour radar, structure d'antenne et radar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008040645

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 755720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008040645

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160414

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190415

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190429

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190424

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190424

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008040645

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414