EP2147478B1 - Microstrip technology hyperfrequency signal coupler - Google Patents

Microstrip technology hyperfrequency signal coupler Download PDF

Info

Publication number
EP2147478B1
EP2147478B1 EP08749916.6A EP08749916A EP2147478B1 EP 2147478 B1 EP2147478 B1 EP 2147478B1 EP 08749916 A EP08749916 A EP 08749916A EP 2147478 B1 EP2147478 B1 EP 2147478B1
Authority
EP
European Patent Office
Prior art keywords
coupler
main line
line
protuberance
resistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08749916.6A
Other languages
German (de)
French (fr)
Other versions
EP2147478A1 (en
Inventor
Pierre Bertram
Hugues Augereau
Georges Peyresoubes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2147478A1 publication Critical patent/EP2147478A1/en
Application granted granted Critical
Publication of EP2147478B1 publication Critical patent/EP2147478B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips

Definitions

  • the present invention relates to a microwave signal coupler in microstrip technology. It applies in particular to the measurement of the power of a signal passing through a transmission line.
  • couplers are for example integrated in amplifiers for measuring the power of a signal delivered to an antenna.
  • a proximity coupler hereinafter referred to simply as a "coupler”
  • a proximity coupler comprises a main transmission line for conveying a microwave signal, and a secondary line whose section is placed near the main line. By electromagnetic radiation, the secondary line is thus coupled to the main line.
  • Signal couplers in microstrip technology are widely used because they are inexpensive to produce and easy to integrate. However, this technology limits their performance. In particular, a satisfactory coupling directivity, ie a good separation of the incoming and outgoing power measurements in the coupler, is difficult to obtain. This difficulty is mainly due to the asymmetries of the odd and even transmission modes appearing with the use of this technology. Finally, in general, the insertion losses as well as the signal reflections - which result in a non-zero stationary wave ratio - are parameters to be taken into account when designing a coupler.
  • couplers in coaxial technology or triplate technology provide high performance through the shielding surrounding the propagation lines.
  • these technologies increase the size and especially the cost of manufacturing a coupler.
  • the European patent application published under the reference EP1215749 discloses a coupler operating a filtering function on unwanted harmonics.
  • the geometry of the coupler does not allow to achieve optimal performance in terms of directivity.
  • the publication US2003 / 0011442 discloses a microstrip line coupler without obtaining satisfactory directivity performance.
  • An object of the invention is to increase the coupling directivity without affecting the reproducibility of manufacture of the coupler, while maintaining insertion losses at low levels, for a low manufacturing cost.
  • the subject of the invention is an asymmetrical coupler as claimed in claim 1.
  • a resistive balancing element may be connected between one end of the coupling section and the electrical earth. This resistive element makes it possible to optimize the directivity characteristic of the coupler and, as such, may comprise capacitive or resistive characteristics making it possible to improve the performances. This resistive element does not replace the terminal loads traditionally connected to each of the access ports of the coupler.
  • the coupler according to the invention comprises at least one first resistive balancing element connected to the first protrusion, at least one second resistive element being connected to the second protrusion, the first and second resistive elements having different impedance values.
  • the dimensions of the first protrusion on the one hand, and the dimensions of the second protrusion on the other hand are different.
  • the invention also relates to a power amplifier comprising a coupler as described above.
  • the figure 1 shows a top view of a first embodiment of the coupler according to the invention.
  • a coupler 1 comprises a metal plate 2, placed on the underside of the coupler and taking the role of electrical ground. On the metal plate 2 is applied a layer of dielectric substrate 3, above which microstrips of conductive material are deposited.
  • a first conductive microstrip forms a line of main transmission 10 conveying a signal S from which it is desired to take a fraction of the power.
  • the main line 10 has at each of its ends an access port 11, 12.
  • the first access port 11 receives the signal S, of power P, entering the coupler 1 while the second access port 12 is connected to a load, not shown in the figure, for example an antenna. According to the impedance of the load, a more or less significant power P ref of the signal S is reflected in the main line 10.
  • the coupler 1 also comprises a secondary line 20 comprising at each of its ends a third and a fourth port of access 21, 22.
  • the secondary line 20 comprises a relatively thin central conductive line portion 23, conductive protrusions 24, 25, and conductive conductive microstrips 26, 27 to the access ports 21, 22.
  • the assembly consisting of the protrusions 24, 25 and the central portion 23 forms a coupling section with the main line 10.
  • the coupling section is formed in such a way that the third access port 21 receives a fraction P 'of the power P of the signal S and that the fourth access port 22 receives a fraction P ref 'of the power P ref reflected in the main line 10.
  • the main line 10 is substantially rectilinear and its width, chosen according to the desired characteristic impedance, remains almost constant over its entire length. This simplicity of design makes it possible to maintain a characteristic line impedance close to the terminal impedances at the access ports 11, 12, thus reducing the standing wave ratio present in the line 10.
  • the width, the shape and the placement of the central portion 23 connecting the two protuberances 24, 25 are chosen so that said central portion 23 does not participate or almost no coupling. between the main line 10 and the secondary line 20.
  • the width of the central portion 23 is chosen thin (in the example, said portion 23 is much thinner than the main line 10) in order to minimize the interaction between said central portion 23 and the main line 10.
  • the portion central 23 is also neither necessarily parallel to the main line 10, nor even straight, thus making its length adjustable.
  • this central portion 23 forms a U between the two protuberances 24, 25, in order to guarantee that said portion 23 is moved away from the main line 10 making it possible to minimize the interaction with said main line 10.
  • the bottom 29 of the U thus formed is at a distance chosen so that, during the transmission of a signal, in the main line 10, there is virtually no coupling between the central portion 23 and the main line 10.
  • the section of the central portion 23 can also be increased.
  • connection microstrips 26, 27 make it possible to transmit the sampled powers P 'and P ref ' to the access ports 21, 22 of the coupler 1.
  • the first connecting microstrip 26 connects the third access port 21 to the end of the central portion 23 closest to the first access port 11, and the second connection microstrip 27 connects the fourth port of access 22 to the end of the central portion 23 closest to the second access port 12.
  • These connecting microstrips 26, 27 are, in the example, connected at the ends 23a, 23b of the central portion 23. They can, in addition, form any angle with the central portion 23, thus providing increased opportunities for integration into complex circuits.
  • a resistive balancing element 30 may be connected to one of the protrusions 24, 25.
  • the resistive element 30 is connected to the protrusion 24 closest to the first access port 11.
  • Asymmetry of coupler 1 makes it possible to compensate for the asymmetries of the odd and even transmission modes appearing with the use of microstrip technology.
  • the optimization of the value of this lateral resistive element 30 makes it possible to improve the performance of the coupler in directivity.
  • the resistive element 30 is placed at a distance D3 from the main line 10 so as not to disturb the propagation of the signal S and is connected to the electrical mass, formed in the example by the metal mass 2.
  • This resistive element 30 can, for example, consist of several sub-elements placed in series and / or in parallel (not shown for reasons of simplification) and having certain inductive or capacitive properties, the operation of which improves the directivity of the coupler 1.
  • connection of this resistive element 30 to an outgrowth 24, 25 makes it possible to avoid that its precise positioning does not affect the performance of the coupler 1, thus facilitating the reproducibility of the performances during a manufacture of couplers in series.
  • the asymmetry of the coupler can, for example, be obtained by integrating into the coupler two resistive elements of different characteristics, a first resistive element being connected to the first protrusion 24, a second resistive element being connected to the second protrusion 25.
  • the resistive element 30 having an effect on the impedance of the secondary line 20, the microstrips 26 and 27 may, in order to improve adapting the third and fourth ports 21 and 22 of the coupler, comprising impedance transforming elements.
  • the figure 4 shows an example of use of a coupler according to the invention in a power amplifier.
  • An amplifier 40 receives a signal S and delivers an amplified signal S AMP . It comprises an amplification cell 41, a coupler 1 according to the invention, a measurement module 42 and a resistive load 43.
  • the measurement module 42 is connected to the third access port 21 of the coupler 1, and the resistive load 43 is connected to its fourth access port 22.
  • the amplification cell 41 receives the signal S and supplies the first access port 11 of the coupler 1 a first amplified signal S INT .
  • the coupler 1 takes a fraction of the power of the signal S INT , fraction of power that it transmits to the measurement module 42 via its third access port 21.
  • the coupler 1 also produces a signal S AMP coming from its second port 12 , then directed towards the output of the amplifier 40.
  • the association of the coupler 1 with the measurement module 42 thus makes it possible to know the power of the signal S AMP delivered at the output of the amplifier 40.
  • An advantage of the coupler according to the invention is its simplicity of implementation, allowing, at lower cost, its easy integration into equipment while enjoying good performance with excellent reproducibility.

Landscapes

  • Microwave Amplifiers (AREA)

Description

La présente invention concerne un coupleur de signaux hyperfréquences en technologie microruban. Elle s'applique notamment à la mesure de la puissance d'un signal transitant par une ligne de transmission. Dans le domaine des télécommunications, de tels coupleurs sont par exemple intégrés dans des amplificateurs pour mesurer la puissance d'un signal délivré à une antenne.The present invention relates to a microwave signal coupler in microstrip technology. It applies in particular to the measurement of the power of a signal passing through a transmission line. In the field of telecommunications, such couplers are for example integrated in amplifiers for measuring the power of a signal delivered to an antenna.

Un coupleur de proximité, qualifié simplement par la suite de « coupleur », comporte une ligne de transmission principale permettant d'acheminer un signal hyperfréquence, et une ligne secondaire dont un tronçon est placé à proximité de la ligne principale. Par rayonnement électromagnétique, la ligne secondaire est ainsi couplée à la ligne principale. Les coupleurs de signaux en technologie microruban sont massivement utilisés car peu coûteux à réaliser et faciles à intégrer. Cependant cette technologie limite leurs performances. En particulier, une directivité de couplage satisfaisante, c'est à dire une bonne séparation des mesures de puissances entrantes et sortantes dans le coupleur, est difficile à obtenir. Cette difficulté est due essentiellement aux asymétries des modes de transmission pairs et impairs apparaissant avec l'emploi de cette technologie. Enfin, de manière générale, les pertes d'insertion ainsi que les réflexions de signaux - qui se traduisent par un taux d'onde stationnaire non nul - sont des paramètres à prendre en compte lors de la conception d'un coupleur.A proximity coupler, hereinafter referred to simply as a "coupler", comprises a main transmission line for conveying a microwave signal, and a secondary line whose section is placed near the main line. By electromagnetic radiation, the secondary line is thus coupled to the main line. Signal couplers in microstrip technology are widely used because they are inexpensive to produce and easy to integrate. However, this technology limits their performance. In particular, a satisfactory coupling directivity, ie a good separation of the incoming and outgoing power measurements in the coupler, is difficult to obtain. This difficulty is mainly due to the asymmetries of the odd and even transmission modes appearing with the use of this technology. Finally, in general, the insertion losses as well as the signal reflections - which result in a non-zero stationary wave ratio - are parameters to be taken into account when designing a coupler.

Par opposition, les coupleurs en technologie coaxiale ou en technologie triplaque permettent des performances de haut niveau grâce au blindage entourant les lignes de propagation. Cependant, ces technologies augmentent l'encombrement et surtout le coût de fabrication d'un coupleur.In contrast, couplers in coaxial technology or triplate technology provide high performance through the shielding surrounding the propagation lines. However, these technologies increase the size and especially the cost of manufacturing a coupler.

Afin de rapprocher le niveau de performances des coupleurs en technologie microruban de celui des coupleurs en technologie coaxiale ou triplaque, plusieurs adaptations ont déjà été proposées. Ainsi, il est connu d'ajouter un ou plusieurs composants capacitifs liant la ligne de transmission principale avec la ligne secondaire couplée. Toutefois, cette solution présente plusieurs inconvénients. D'une part, des composants ayant théoriquement les mêmes valeurs capacitives présentent en réalité des valeurs de capacité dispersées autour d'une valeur moyenne. Il est donc difficile de fabriquer des coupleurs en série comportant des performances reproductibles. D'autre part, l'implantation d'éléments capacitifs complexifie la réalisation du coupleur, augmentant par conséquent son coût de fabrication. Une autre solution connue est de concevoir des lignes de transmission aux formes singulières, afin d'optimiser le couplage entre la ligne de transmission principale et la ligne couplée. Cependant, des singularités introduites dans la ligne de transmission principale conduisent souvent à perturber la transmission du signal et donc à augmenter les pertes d'insertion.In order to bring the level of performance of couplers in microstrip technology closer to that of couplers in coaxial or triplate technology, several adaptations have already been proposed. Thus, it is known to add one or more capacitive components linking the main transmission line with the coupled secondary line. However, this solution has several disadvantages. On the one hand, components having theoretically the same capacitive values actually have capacitance values scattered around a mean value. It is therefore difficult to manufacture couplers in series with reproducible performance. On the other hand, the implementation of capacitive elements complicates the implementation of the coupler, thereby increasing its manufacturing cost. Another known solution is to design singularly shaped transmission lines, in order to optimize the coupling between the main transmission line and the coupled line. However, singularities introduced into the main transmission line often lead to disturbing the transmission of the signal and thus to increasing the insertion losses.

La demande de brevet américain publiée sous la référence US2004/0263281 divulgue un coupleur multi-sections comprenant au moins une section de délai entre les sections de couplage. Toutefois, ce coupleur est encombrant et ne permet pas d'obtenir des performances de directivité satisfaisantes.The US patent application published under the reference US2004 / 0263281 discloses a multi-section coupler comprising at least one delay section between the coupling sections. However, this coupler is bulky and does not provide satisfactory directivity performance.

La demande de brevet européen publiée sous la référence EP1215749 divulgue un coupleur opérant une fonction de filtrage sur des harmoniques indésirables. La géométrie du coupleur ne permet pas d'atteindre des performances optimales en termes de directivité. La publication US2003/0011442 divulgue un coupleur à lignes microrubans sans obtenir des performances de directivité satisfaisantes. Un but de l'invention est d'augmenter la directivité de couplage sans affecter la reproductibilité de fabrication du coupleur, tout en maintenant les pertes d'insertion à de faibles niveaux, pour un coût de fabrication peu élevé. A cet effet, l'invention a pour objet un coupleur asymétrique comme revendiqué à la revendication 1. Un élément résistif d'équilibrage peut être raccordé entre une extrémité du tronçon de couplage et la masse électrique. Cet élément résistif permet d'optimiser la caractéristique de directivité du coupleur et, à ce titre, peut comporter des caractéristiques capacitives ou résistives permettant d'améliorer les performances. Cet élément résistif ne remplace pas les charges terminales traditionnellement connectées sur chacun des ports d'accès du coupleur.The European patent application published under the reference EP1215749 discloses a coupler operating a filtering function on unwanted harmonics. The geometry of the coupler does not allow to achieve optimal performance in terms of directivity. The publication US2003 / 0011442 discloses a microstrip line coupler without obtaining satisfactory directivity performance. An object of the invention is to increase the coupling directivity without affecting the reproducibility of manufacture of the coupler, while maintaining insertion losses at low levels, for a low manufacturing cost. For this purpose, the subject of the invention is an asymmetrical coupler as claimed in claim 1. A resistive balancing element may be connected between one end of the coupling section and the electrical earth. This resistive element makes it possible to optimize the directivity characteristic of the coupler and, as such, may comprise capacitive or resistive characteristics making it possible to improve the performances. This resistive element does not replace the terminal loads traditionally connected to each of the access ports of the coupler.

Selon un mode de réalisation, le coupleur selon l'invention, comprend au moins un premier élément résistif d'équilibrage connecté à la première excroissance, au moins un deuxième élément résistif étant connecté à la deuxième excroissance, les premier et deuxième éléments résistifs ayant des valeurs d'impédance différentes.According to one embodiment, the coupler according to the invention comprises at least one first resistive balancing element connected to the first protrusion, at least one second resistive element being connected to the second protrusion, the first and second resistive elements having different impedance values.

Selon un mode de réalisation, les dimensions de la première excroissance d'une part, et les dimensions de la deuxième excroissance d'autre part, sont différentes.According to one embodiment, the dimensions of the first protrusion on the one hand, and the dimensions of the second protrusion on the other hand, are different.

L'invention a également pour objet un amplificateur de puissance comportant un coupleur tel que décrit plus haut.The invention also relates to a power amplifier comprising a coupler as described above.

D'autres caractéristiques et avantages apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite en regard de dessins annexés qui représentent :

  • la figure 1, une vue de dessus d'un premier mode de réalisation du coupleur selon l'invention,
  • la figure 2, une vue de dessus d'un deuxième mode de réalisation du coupleur selon l'invention,
  • la figure 3, une variante de réalisation du coupleur selon l'invention,
  • la figure 4, un exemple d'utilisation d'un coupleur selon l'invention dans un amplificateur de puissance.
Other characteristics and advantages will become apparent on reading the detailed description given by way of non-limiting example, which follows, with reference to appended drawings which represent:
  • the figure 1 , a view from above of a first embodiment of the coupler according to the invention,
  • the figure 2 a view from above of a second embodiment of the coupler according to the invention,
  • the figure 3 , an alternative embodiment of the coupler according to the invention,
  • the figure 4 , an example of use of a coupler according to the invention in a power amplifier.

La figure 1 présente une vue de dessus d'un premier mode de réalisation du coupleur selon l'invention. Un coupleur 1 comporte une plaque métallique 2, placée sur le dessous du coupleur et tenant le rôle de masse électrique. Sur la plaque métallique 2, est appliquée une couche de substrat diélectrique 3, au-dessus duquel des microrubans de matériau conducteur sont déposés. Un premier microruban conducteur forme une ligne de transmission principale 10 acheminant un signal S dont on souhaite prélever une fraction de la puissance. La ligne principale 10 possède à chacune de ses extrémités un port d'accès 11, 12. Le premier port d'accès 11 reçoit le signal S, de puissance P, entrant dans le coupleur 1 tandis que le second port d'accès 12 est relié à une charge, non représentée sur la figure, par exemple une antenne. Selon l'impédance de la charge, une puissance Pref plus ou moins importante du signal S est réfléchie dans la ligne principale 10. Le coupleur 1 comporte également une ligne secondaire 20 comportant à chacune de ses extrémités un troisième et un quatrième port d'accès 21, 22.The figure 1 shows a top view of a first embodiment of the coupler according to the invention. A coupler 1 comprises a metal plate 2, placed on the underside of the coupler and taking the role of electrical ground. On the metal plate 2 is applied a layer of dielectric substrate 3, above which microstrips of conductive material are deposited. A first conductive microstrip forms a line of main transmission 10 conveying a signal S from which it is desired to take a fraction of the power. The main line 10 has at each of its ends an access port 11, 12. The first access port 11 receives the signal S, of power P, entering the coupler 1 while the second access port 12 is connected to a load, not shown in the figure, for example an antenna. According to the impedance of the load, a more or less significant power P ref of the signal S is reflected in the main line 10. The coupler 1 also comprises a secondary line 20 comprising at each of its ends a third and a fourth port of access 21, 22.

La ligne secondaire 20 comprend une portion de ligne conductrice centrale 23 relativement fine, des excroissances conductrices 24, 25, et des microrubans conducteurs de raccordement 26, 27 vers les ports d'accès 21, 22. L'ensemble composé des excroissances 24, 25 et de la portion centrale 23 forme un tronçon de couplage avec la ligne principale 10. Le tronçon de couplage est réalisé de manière à ce que le troisième port d'accès 21 reçoive une fraction P' de la puissance P du signal S et que le quatrième port d'accès 22 reçoive une fraction Pref' de la puissance Pref réfléchie dans la ligne principale 10.The secondary line 20 comprises a relatively thin central conductive line portion 23, conductive protrusions 24, 25, and conductive conductive microstrips 26, 27 to the access ports 21, 22. The assembly consisting of the protrusions 24, 25 and the central portion 23 forms a coupling section with the main line 10. The coupling section is formed in such a way that the third access port 21 receives a fraction P 'of the power P of the signal S and that the fourth access port 22 receives a fraction P ref 'of the power P ref reflected in the main line 10.

La ligne principale 10 est sensiblement rectiligne et sa largeur, choisie en fonction de l'impédance caractéristique souhaitée, demeure quasiment constante sur toute sa longueur. Cette simplicité de conception permet de conserver une impédance caractéristique de ligne proche des impédances terminales au niveau des ports d'accès 11, 12, réduisant ainsi le taux d'onde stationnaire présent dans la ligne 10.The main line 10 is substantially rectilinear and its width, chosen according to the desired characteristic impedance, remains almost constant over its entire length. This simplicity of design makes it possible to maintain a characteristic line impedance close to the terminal impedances at the access ports 11, 12, thus reducing the standing wave ratio present in the line 10.

Par ailleurs, dans l'exemple, une couche métallisée, en contact avec la plaque métallique 2, est appliquée sur le dessus du coupleur 1 et autour des lignes 10, 20 pour parfaire le blindage électromagnétique du coupleur.

  • La première excroissance conductrice 24 est placée à une première extrémité 23a de la portion centrale 23 et la seconde excroissance 25 est placée à son extrémité opposée 23b. Les excroissances 24, 25 sont, dans l'exemple, de forme quasi-rectangulaire mais peuvent prendre des formes et des dimensions différentes. Les barycentres des excroissances 24, 25 sont séparées d'une distance L de l'ordre du quart de la valeur médiane des longueurs d'onde correspondant à la plage de fonctionnement du coupleur 1. La distance D1 séparant la première excroissance 24 de la ligne principale 10 peut être différente de la distance D2 séparant la seconde excroissance 25 de la ligne principale 10, mais les deux excroissances 24, 25 doivent être suffisamment proches de la ligne principale 10 pour qu'un couplage électromagnétique existe avec la ligne secondaire 20. De même, les formes (longueur et/ou largeur) de chacune des excroissances peuvent être différentes. En effet, l'essentiel du couplage entre les deux lignes 10, 20 est effectué via les excroissances conductrices 24, 25. Les distances D1 et D2 séparant les excroissances 24, 25 de la ligne principale 10 ainsi que les dimensions des excroissances 24, 25 sont choisies en fonction notamment des caractéristiques diélectriques (notamment de la permittivité) du substrat 3, de l'épaisseur de la couche de substrat et du niveau de couplage souhaité, c'est à dire du rapport de puissances P/P'.
Furthermore, in the example, a metallized layer, in contact with the metal plate 2, is applied on the top of the coupler 1 and around the lines 10, 20 to complete the electromagnetic shielding of the coupler.
  • The first conductive protrusion 24 is placed at a first end 23a of the central portion 23 and the second protrusion 25 is placed at its opposite end 23b. The protuberances 24, 25 are, in the example, of quasi-rectangular shape but can take different shapes and dimensions. The centroids of the excrescences 24, 25 are separated by a distance L of the order of a quarter of the median value of the wavelengths corresponding to the operating range of the coupler 1. The distance D1 separating the first protrusion 24 of the main line 10 may be different from the distance D2 separating the second protrusion 25 from the main line 10, but the two protuberances 24, 25 must be sufficiently close to the main line 10 for an electromagnetic coupling to exist with the secondary line 20. Similarly, the shapes (length and / or width) of each of the growths may be different. Indeed, most of the coupling between the two lines 10, 20 is performed via the conductive outgrowths 24, 25. The distances D1 and D2 separating the excrescences 24, 25 of the main line 10 as well as the dimensions of the protuberances 24, 25 are chosen in particular according to the dielectric characteristics (in particular of the permittivity) of the substrate 3, of the thickness of the substrate layer and of the desired coupling level, that is to say of the power ratio P / P '.

Afin d'optimiser les performances du coupleur selon l'invention, la largeur, la forme et le placement de la portion centrale 23 reliant les deux excroissances 24, 25 sont choisis de sorte que ladite portion centrale 23 ne participe pas ou quasiment pas au couplage entre la ligne principale 10 et la ligne secondaire 20. Ainsi, dans l'exemple de la figure 1, la largeur de la portion centrale 23 est choisie fine (dans l'exemple, ladite portion 23 est beaucoup plus fine que la ligne principale 10) en vue de minimiser l'interaction entre ladite portion centrale 23 et la ligne principale 10. La portion centrale 23 n'est d'ailleurs ni nécessairement parallèle à la ligne principale 10, ni même rectiligne, rendant ainsi sa longueur ajustable.In order to optimize the performance of the coupler according to the invention, the width, the shape and the placement of the central portion 23 connecting the two protuberances 24, 25 are chosen so that said central portion 23 does not participate or almost no coupling. between the main line 10 and the secondary line 20. Thus, in the example of the figure 1 , the width of the central portion 23 is chosen thin (in the example, said portion 23 is much thinner than the main line 10) in order to minimize the interaction between said central portion 23 and the main line 10. The portion central 23 is also neither necessarily parallel to the main line 10, nor even straight, thus making its length adjustable.

Par exemple, dans un autre mode de réalisation illustré en figure 2, cette portion centrale 23 forme un U entre les deux excroissances 24, 25, afin de garantir un éloignement de ladite portion 23 par rapport à la ligne principale 10 permettant de minimiser l'interaction avec ladite ligne principale 10. En effet, le bas 29 du U ainsi formé est à une distance choisie pour que, lors de la transmission d'un signal, dans la ligne principale 10, il n'y ait quasiment aucun couplage entre la portion centrale 23 et la ligne principale 10. Par ailleurs, lorsque la distance entre la portion centrale 23 et la ligne principale 10 est augmentée, la section de la portion centrale 23 peut être également augmentée.For example, in another embodiment illustrated in figure 2 this central portion 23 forms a U between the two protuberances 24, 25, in order to guarantee that said portion 23 is moved away from the main line 10 making it possible to minimize the interaction with said main line 10. In fact, the bottom 29 of the U thus formed is at a distance chosen so that, during the transmission of a signal, in the main line 10, there is virtually no coupling between the central portion 23 and the main line 10. Moreover, when the distance between the central portion 23 and the main line 10 is increased, the section of the central portion 23 can also be increased.

Les microrubans de raccordement 26, 27 permettent de transmettre les puissances prélevées P' et Pref' aux ports d'accès 21, 22 du coupleur 1. Le premier microruban de raccordement 26 relie le troisième port d'accès 21 à l'extrémité de la portion centrale 23 la plus proche du premier port d'accès 11, et le second microruban de raccordement 27 relie le quatrième port d'accès 22 à l'extrémité de la portion centrale 23 la plus proche du second port d'accès 12. Ces microrubans de raccordement 26, 27 sont, dans l'exemple, connectés au niveau des extrémités 23a, 23b de la portion centrale 23. Ils peuvent, en outre, former un angle quelconque avec la portion centrale 23, offrant ainsi des possibilités accrues d'intégration dans des circuits complexes.The connection microstrips 26, 27 make it possible to transmit the sampled powers P 'and P ref ' to the access ports 21, 22 of the coupler 1. The first connecting microstrip 26 connects the third access port 21 to the end of the central portion 23 closest to the first access port 11, and the second connection microstrip 27 connects the fourth port of access 22 to the end of the central portion 23 closest to the second access port 12. These connecting microstrips 26, 27 are, in the example, connected at the ends 23a, 23b of the central portion 23. They can, in addition, form any angle with the central portion 23, thus providing increased opportunities for integration into complex circuits.

Selon une variante de réalisation présentée en figure 3, un élément résistif d'équilibrage 30 peut être connecté à l'une des excroissances 24, 25. Dans l'exemple, l'élément résistif 30 est connecté à l'excroissance 24 la plus proche du premier port d'accès 11. Cette asymétrie du coupleur 1 permet de compenser les asymétries des modes de transmission pairs et impairs apparaissant avec l'usage de la technologie microruban. L'optimisation de la valeur de cet élément résistif latéral 30 permet d'améliorer les performances du coupleur en directivité. L'élément résistif 30 est placé à une distance D3 de la ligne principale 10 pour ne pas perturber la propagation du signal S et est relié à la masse électrique, formée dans l'exemple par la masse métallique 2. Cet élément résistif 30 peut, par exemple, être constitué de plusieurs sous-éléments placés en série et/ou en parallèle (non représentés pour des raisons de simplification) et comportant certaines propriétés selfiques ou capacitives, dont l'exploitation permet d'améliorer la directivité du coupleur 1. La connexion de cet élément résistif 30 sur une excroissance 24, 25 (c'est à dire une large plage métallisée) permet d'éviter que son positionnement précis n'affecte les performances du coupleur 1, facilitant ainsi la reproductibilité des performances lors d'une fabrication de coupleurs en série. Selon un autre mode de réalisation, l'asymétrie du coupleur peut, par exemple, être obtenue en intégrant au coupleur deux éléments résistifs de caractéristiques différentes, un premier élément résistif étant connecté sur la première excroissance 24, un deuxième élément résistif étant connecté sur la deuxième excroissance 25. Enfin, l'élément résistif 30 ayant un effet sur l'impédance de la ligne secondaire 20, les microrubans 26 et 27 peuvent, afin d'améliorer l'adaptation des troisième et quatrième ports 21 et 22 du coupleur, comprendre des éléments de transformation d'impédance.According to an alternative embodiment presented in figure 3 a resistive balancing element 30 may be connected to one of the protrusions 24, 25. In the example, the resistive element 30 is connected to the protrusion 24 closest to the first access port 11. Asymmetry of coupler 1 makes it possible to compensate for the asymmetries of the odd and even transmission modes appearing with the use of microstrip technology. The optimization of the value of this lateral resistive element 30 makes it possible to improve the performance of the coupler in directivity. The resistive element 30 is placed at a distance D3 from the main line 10 so as not to disturb the propagation of the signal S and is connected to the electrical mass, formed in the example by the metal mass 2. This resistive element 30 can, for example, consist of several sub-elements placed in series and / or in parallel (not shown for reasons of simplification) and having certain inductive or capacitive properties, the operation of which improves the directivity of the coupler 1. connection of this resistive element 30 to an outgrowth 24, 25 (ie a wide metallized range) makes it possible to avoid that its precise positioning does not affect the performance of the coupler 1, thus facilitating the reproducibility of the performances during a manufacture of couplers in series. According to another embodiment, the asymmetry of the coupler can, for example, be obtained by integrating into the coupler two resistive elements of different characteristics, a first resistive element being connected to the first protrusion 24, a second resistive element being connected to the second protrusion 25. Finally, the resistive element 30 having an effect on the impedance of the secondary line 20, the microstrips 26 and 27 may, in order to improve adapting the third and fourth ports 21 and 22 of the coupler, comprising impedance transforming elements.

La figure 4 présente un exemple d'utilisation d'un coupleur selon l'invention dans un amplificateur de puissance. Un amplificateur 40 reçoit un signal S et délivre un signal amplifié SAMP. Il comprend une cellule d'amplification 41, un coupleur 1 selon l'invention, un module de mesure 42 et une charge résistive 43. Le module de mesure 42 est relié au troisième port d'accès 21 du coupleur 1, et la charge résistive 43 est reliée à son quatrième port d'accès 22. La cellule d'amplification 41 reçoit le signal S et fournit au premier port d'accès 11 du coupleur 1 un premier signal SINT amplifié. Le coupleur 1 prélève une fraction de la puissance du signal SINT, fraction de puissance qu'il transmet au module de mesure 42 via son troisième port d'accès 21. Le coupleur 1 produit également un signal SAMP issu de son deuxième port 12, puis dirigé vers la sortie de l'amplificateur 40. L'association du coupleur 1 avec le module de mesure 42 permet donc de connaître la puissance du signal SAMP délivré en sortie de l'amplificateur 40.The figure 4 shows an example of use of a coupler according to the invention in a power amplifier. An amplifier 40 receives a signal S and delivers an amplified signal S AMP . It comprises an amplification cell 41, a coupler 1 according to the invention, a measurement module 42 and a resistive load 43. The measurement module 42 is connected to the third access port 21 of the coupler 1, and the resistive load 43 is connected to its fourth access port 22. The amplification cell 41 receives the signal S and supplies the first access port 11 of the coupler 1 a first amplified signal S INT . The coupler 1 takes a fraction of the power of the signal S INT , fraction of power that it transmits to the measurement module 42 via its third access port 21. The coupler 1 also produces a signal S AMP coming from its second port 12 , then directed towards the output of the amplifier 40. The association of the coupler 1 with the measurement module 42 thus makes it possible to know the power of the signal S AMP delivered at the output of the amplifier 40.

Un avantage du coupleur selon l'invention est sa simplicité de réalisation, permettant, à moindre coût, son intégration aisée dans des équipements tout en bénéficiant de bonnes performances avec une excellente reproductibilité.An advantage of the coupler according to the invention is its simplicity of implementation, allowing, at lower cost, its easy integration into equipment while enjoying good performance with excellent reproducibility.

Claims (5)

  1. An asymmetrical coupler (1) with microstrip lines comprising a dielectric substrate (3), a main line (10) and a secondary line (20) comprising a single coupling section (23, 24, 25), the lines being deposited on the substrate (3), the main line (10) being substantially rectilinear and uniform over its entire length, characterised in that the coupling section (23, 24, 25) comprises a portion of conductive line (23) with two ends (23a, 23b) and a protrusion (24, 25) connected at each of the ends (23a, 23b), of which the section, the shape and the disposition of the portion of conductive line (23) are adapted to minimise the coupling between said portion (23) and the main line (10) relative to the coupling made between the protuberances (24, 25) and the main line (10), the distance D1 between the first protuberance (24) and the main line (10), on the one hand, and the distance D2 between the second protuberance (25) and the main line (10), on the other hand, being unequal.
  2. The asymmetrical coupler according to claim 1, characterised in that a resistive balancing element (30) is connected between one end (23a, 23b) of the coupling section (23, 24, 25) and the electrical ground in order to optimise the directivity of the coupler.
  3. The asymmetrical coupler according to claim 2, characterised in that at least one first resistive balancing element is connected to the first protuberance (24), at least one second resistive element being connected to the second protuberance (25), the first and second resistive elements having different impedance values in order to optimise the directivity of the coupler.
  4. The asymmetrical coupler according to any of the preceding claims, characterised in that the dimensions of the first protuberance (24), on the one hand, and the dimensions of the second protuberance (25), on the other hand, are different.
  5. A power amplifier (40) comprising at least one coupler according to any of the preceding claims.
EP08749916.6A 2007-05-11 2008-04-30 Microstrip technology hyperfrequency signal coupler Active EP2147478B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0703381A FR2916086B1 (en) 2007-05-11 2007-05-11 HYPERFREQUENCY SIGNAL COUPLER IN MICRORUBAN TECHNOLOGY.
PCT/EP2008/055327 WO2008141902A1 (en) 2007-05-11 2008-04-30 Microstrip technology hyperfrequency signal coupler

Publications (2)

Publication Number Publication Date
EP2147478A1 EP2147478A1 (en) 2010-01-27
EP2147478B1 true EP2147478B1 (en) 2017-07-19

Family

ID=38654751

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08749916.6A Active EP2147478B1 (en) 2007-05-11 2008-04-30 Microstrip technology hyperfrequency signal coupler

Country Status (4)

Country Link
US (1) US8314664B2 (en)
EP (1) EP2147478B1 (en)
FR (1) FR2916086B1 (en)
WO (1) WO2008141902A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008051914A1 (en) * 2008-10-16 2010-04-22 Rohde & Schwarz Gmbh & Co. Kg Directional coupler with compensation of the directivity by targeted mismatch
KR20110107803A (en) * 2009-01-19 2011-10-04 스미토모덴키고교가부시키가이샤 Directional coupler and wireless communication apparatus comprising thereof
US10522896B2 (en) * 2016-09-20 2019-12-31 Semiconductor Components Industries, Llc Embedded directional couplers and related methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581256B1 (en) * 1985-04-26 1988-04-08 France Etat BROADBAND DIRECTIVE COUPLER FOR MICRO-TAPE LINE
JPS6345901A (en) * 1986-08-12 1988-02-26 Fujitsu Ltd Directiional coupler
US5111165A (en) * 1989-07-11 1992-05-05 Wiltron Company Microwave coupler and method of operating same utilizing forward coupling
US4999593A (en) * 1989-06-02 1991-03-12 Motorola, Inc. Capacitively compensated microstrip directional coupler
JPH08162812A (en) * 1994-12-07 1996-06-21 Fujitsu Ltd High frequency coupler
DE69730389T2 (en) * 1996-03-22 2005-01-13 Matsushita Electric Industrial Co., Ltd., Kadoma LOW PASS FILTER WITH DIRECTED COUPLER AND PORTABLE TELEPHONE THEREOF
CN1383590A (en) * 2000-06-09 2002-12-04 三菱电机株式会社 Directional coupler
WO2002003494A1 (en) 2000-07-04 2002-01-10 Matsushita Electric Industrial Co., Ltd. Directional coupler and directional coupling method
US6549089B2 (en) * 2001-07-13 2003-04-15 Filtronic Pty Ltd. Microstrip directional coupler loaded by a pair of inductive stubs
US7132906B2 (en) * 2003-06-25 2006-11-07 Werlatone, Inc. Coupler having an uncoupled section
US7321276B2 (en) * 2005-06-30 2008-01-22 Harris Stratex Networks, Inc. Independently adjustable combined harmonic rejection filter and power sampler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20100194490A1 (en) 2010-08-05
US8314664B2 (en) 2012-11-20
EP2147478A1 (en) 2010-01-27
WO2008141902A1 (en) 2008-11-27
FR2916086A1 (en) 2008-11-14
FR2916086B1 (en) 2010-09-03

Similar Documents

Publication Publication Date Title
EP1863116B1 (en) Broadband directional coupler
EP2184803B1 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
EP0201409B1 (en) Broad-band directional coupler for a microstrip line
EP2345104B1 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
EP2223377B1 (en) Radial power amplification device with phase dispersion compensation of the amplification paths
EP3602689B1 (en) Electromagnetic antenna
EP3136499B1 (en) Divider/combiner system for a hyperfrequency wave
EP2147478B1 (en) Microstrip technology hyperfrequency signal coupler
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
FR3003405A3 (en) VERTICAL MOUNT COAXIAL CONNECTOR FOR PRINTED CIRCUIT BOARD
EP0015610B1 (en) Microwave image-frequency reflecting filter and microwave receiver comprising such a filter
WO2018220196A1 (en) Microwave component having an asymmetric propagation chamber
EP3047535B1 (en) Junction device between a printed transmission line and a dielectric waveguide
FR2861502A1 (en) Electronic component for use in high frequency integrated circuit, has line termination with two resistive units linking central conductor at its one end to outer conductors, and end connection provided between outer conductors
EP2507865B1 (en) Compact planar vhf/uhf power impedance
EP1568098B1 (en) Wide band microwave band separating device
FR3009431A1 (en) RECTANGULAR WAVE GUIDE WITH SLOW WAVES
FR3113196A1 (en) Circuit performing a circulator function in SIW technology (waveguide integrated into the substrate); transmission / reception channel and associated radar
WO2014096431A1 (en) Microwave signal switching device, particularly of nanometric size, and electronic component incorporating such a device
FR2652211A1 (en) Active UHF resonator and active filter using this resonator
FR3078832A1 (en) ELECTROMAGNETIC DECOUPLING
WO2007099063A1 (en) Microwave band-pass filter
FR3078830A1 (en) "ELECTROMAGNETIC DECOUPLING"
FR2496997A1 (en) Tuned coupling for microwave transmission line - has non-magnetic adjusting screws varying characteristic impedance of sections of line by movement within cylindrical sleeve
FR2971651A1 (en) Variable frequency band-pass filter, has coupled conducting lines connected to terminal of variable capacitance element and resistor, respectively, where lines are provided on surface of insulator or sandwiched in layer of insulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 911206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008051195

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170719

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 911206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171020

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008051195

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

26N No opposition filed

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008051195

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230328

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517