EP2147210A2 - Flügel für windturbinen mit vertikaler drehachse - Google Patents

Flügel für windturbinen mit vertikaler drehachse

Info

Publication number
EP2147210A2
EP2147210A2 EP08758668A EP08758668A EP2147210A2 EP 2147210 A2 EP2147210 A2 EP 2147210A2 EP 08758668 A EP08758668 A EP 08758668A EP 08758668 A EP08758668 A EP 08758668A EP 2147210 A2 EP2147210 A2 EP 2147210A2
Authority
EP
European Patent Office
Prior art keywords
wing
vertical axis
section
blade
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08758668A
Other languages
English (en)
French (fr)
Inventor
Lucio Zancai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ropatec Srl
Original Assignee
Ropatec Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ropatec Srl filed Critical Ropatec Srl
Publication of EP2147210A2 publication Critical patent/EP2147210A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/14Geometry two-dimensional elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the wind turbines have a vertical axis of rotation, e.g. use of Darrieus type at least two spaced from the rotation axis wings; These wings can be straight, curved or in the shape of a helix. In general, these wings extend vertically straight, have rectangular more or less slender shape and have the cross-section of a wing.
  • the connection between the wings and the central hub consists of plates which are connected to the wing tips or of arms which are arranged like a spoke and in different ways, with or without the use of encompassing mounting brackets, are attached.
  • the support arms are usually two per wing, the one arm per wing systems are currently limited to wind generators of considerable dimensions.
  • the invention has as its object to provide a wing for wind turbines with vertical axis of rotation which, in relation to the weight and the
  • connection with the hub is favored by a single arm.
  • the invention proposes to provide the wing with a substantially elliptical outline with a straight or arrow-shaped arrangement, symmetrical according to a horizontal axis and possibly, in the case of a straight arrangement, also according to a vertical axis, wherein the cross section of the wing in the area is the largest of the horizontal axis of symmetry and decreases in the direction of both ends of the wing, top and bottom, such that a cross-section is formed in the region of the vertical axis elliptical shape or at least the maximum dimension in the horizontal axis and the minimum extent in the range the two ends has.
  • the elliptical outline of the wing allows the optimization of the aerodynamic and fluidodynamic efficiency and thus the Performance with a minimum of wing surface and therefore with a minimum of weight.
  • the section according to the vertical axis which has an elliptical or conical, symmetric or asymmetrical shape along the vertical axis makes it possible to achieve considerable stability of the wing shape with a sturdy mounting or connecting area for the support arm, this Area through the zone of the vertex or the apex of the curvature or conicity which substantially coincides with the area of the center of mass, possibly with the geometric center of the wing surface and the center of the aerodynamic and inertial loads acting on the wing, this area includes the intersection between the horizontal and the possible vertical axis of symmetry, or between the horizontal axis of symmetry and a substantial central line between the leading edge and the trailing edge of the wing, or between the horizontal axis of symmetry and the line which aerodynami connecting pressure centers; in the case of an elliptical wing
  • the section through the wing according to a vertical substantially central line or according to the possible vertical axis of symmetry, or in the case of an arrow-shaped wing according to a vertical axis which passes through the intersection of the lines through the printing centers, has an elliptical shape resulting from the curvature of the back and the abdominal surfaces, resulting in the creation of a resilient self-supporting and possibly reinforced wing structure in this area, which is provided for the efficient and stable permanent attachment of the support arm.
  • the oppositely arched back and abdominal surfaces of the wing in the case of a shell structure, impart a remarkable dimensional stability to the wing, due to the fact that the domes act as a self-supporting arch or cone structure which in particular acts on the loads which are perpendicular to the vertexes of the domes . resist.
  • Said features give the wing more shape-related structural properties which further material savings and thus a weight saving is possible.
  • materials which have lower structural properties and are thus less costly.
  • the aerodynamic and mechanical loads are spontaneously directed to the center of the wing of elliptical contour corresponding to the area of the vertex of the sash of the sash where attachment or attachment of the end of the single girder arm is provided which has a cross-section and rigidity which are suitable to achieve the necessary stability and resistance to generally avoid induced resonances and vibrations.
  • the wings of a wind rotor are arranged with the vertical axis parallel to the vertical axis of rotation, but the constructive features proposed by the invention do not rule out that the wings are arranged with the axis of the wing extension to the vertical angled, in which case all the above aerodynamic and mechanical advantages are maintained.
  • Fig. 1 is a schematic perspective view of a vertical axis of rotation wind turbine with three blades according to the invention, each carried by a single arm which projects radially from a hub; it is the wind direction and the direction of rotation marked.
  • Fig. 2 shows the plan view of the substantially elliptical wing according to the invention with an indication of the area of attachment of the single support arm by hatching and hinting of the different wing cross-section in two spaced-apart positions.
  • Fig. 3 shows the longitudinal section of the wing shown in Fig. 2 according to a vertical sectional area which includes the vertical axis of the wing.
  • Fig. 4 shows the elliptical outline of an arrow-shaped wing according to the invention with an indication of the area of attachment of the single support arm by hatching and with an indication of the wing profile in two spaced-apart positions.
  • FIG. 5 shows the section according to a vertical sectional area which passes through the intersection of the lines which connect the aerodynamic pressure points on the wings shown in FIG.
  • FIG. 6 shows the section according to a sectional area containing the line connecting the aerodynamic printing centers on the wing shown in FIG.
  • the wind turbine with a vertical axis of rotation is essentially composed of a central hub 1 mounted to rotate about a vertical axis of rotation A, consisting of support arms 2 which project radially from said hub 1 and wings 3 secured to the outer ends of these arms 2.
  • the wing 3 according to the invention has a substantially elliptical outline in the sense that, be it the leading edge 3b and the trailing edge 3c arcuate, substantially elliptical arc-shaped with stronger or weaker expression, are.
  • the connecting or transition lines 3g between the leading edge 3b and the trailing edge 3c may be substantially rectilinear 3g or arcuate 13g.
  • the wing 3 has a horizontal axis of symmetry H and possibly a vertical axis of symmetry V, for example when the leading edge has a curved course 13b which is identical to the course of the trailing edge 3c. If, however, said two edges of the wing 3 have different course, the axis V will be a substantially central line which vertically, geometrically at half the distance between the two edges through the center of gravity of the wing 3, which is slightly closer to the leading edge 3b extends or passes through the aerodynamic pressure centers of the wing.
  • the wing in the region of the horizontal axis of symmetry H has the largest width (chord) and also the wing profile here corresponds to the largest cross-section.
  • the wing profile changes by becoming progressively narrower and having a minimal cross-section at both ends.
  • the wing profile may be of the type "naca 0021", for example, while the wing profile may be of the "naca 0012" type in the direction of the two ends.
  • the curvature may also be "conical", in which case the lines 3i, 3e and 13e will essentially be rectilinear oblique and form a vertex (a curve tip) in the region of the horizontal axis of symmetry H.
  • the invention does not exclude that one of the lines of the longitudinal section of the wing is arc-shaped, for example elliptical, runs while the corresponding line on the opposite side is rectilinear, wherein, in the region of the horizontal axis H, the vertex of an obtuse angle is formed.
  • the substantially elliptical longitudinal section of the wing 3 gives the wing, due to the curved or conical, a remarkable stability and creates in the area of the horizontal axis of symmetry H a zone 3f which, regarding the structure and the dimensions, for the effective and resistant attachment of the outer end of the support arm 2 is suitable.
  • the shape of the blade 3 according to the invention lends itself to a one-piece or a composite shell construction, with or without internal filling material, to the advantages of, caused by the curved "dome-shaped" shape of the shell, stability as well as a construction with internal supporting structure which is covered by said shell, used, in which case said shell exclusively aero- and fluidodynamic functions fulfilled or, together with said internal structure, has a supporting function.
  • the thickness of the one-piece or composite shell forming the shape of the wing 3 may be constant or different in relation to the loads acting thereon.
  • this invention always has a horizontal axis of symmetry H and the area of attachment or attachment 3Of of the single beam 2 lies substantially in the region of the horizontal axis of symmetry H and the point of intersection the lines G connecting the aerodynamic pressure centers.
  • this area 30f corresponds to the circle tip or the vertex of the curvature of the back-side surface 30e and the belly-side surface 30i of the vane 30.
  • the curvature of said surfaces may be symmetrical, according to a vertical axis S, or, for example, if the back surface 3Oe is more curved than the curvature 3Oi of the abdominal surface, is asymmetrical.
  • the transition lines between the leading edge 30b and the trailing edge 30c at the two ends of the wing 30 arcuately 130g or pointed 30g run.
  • the progressive reduction of the wing profile from the region of the horizontal axis of symmetry H to the two ends of the wing 30 causes substantially in the region of the lines G which connect the aerodynamic pressure centers, the back surface and the abdominal surface curved or straight angled 30h, 30k run.
  • the curved course 3Oi 1 3Oe 1 13Oe of the back and the abdominal surface in the region of the horizontal axis of symmetry H causes that in the area 3Of the vertex of the said bulges, the ideal, most resistant point, with the largest cross-section, for the attachment or connection of the single support arm 2 is.
  • the bulges which are represented by the lines 3h and 30k bring about the necessary stability and rigidity in the region of the lines G for those parts of the wing 30 which extend "backwards" beyond the attachment region 3Of to the rear less pronounced, with the lines G forming an angle between an obtuse angle near 180 ° and an acute angle smaller than 90 °.

Abstract

Flügel für Windturbinen mit senkrechter Drehachse welcher von einem einzigen Arm (2) welcher radial von einer, gemäß vertikaler Achse (A) rotierend (R) gelagerten Nabe (1) abragen getragen wird, wobei der Flügel wesentlich elliptischen geraden (3) oder pfeilförmigen (30), gemäß einer horizontalen Achse (H) symmetrischen Umriss aufweist, der Schnitt gemäß einer vertikalen Schnittfläche welche die Scheitel der rückenseitigen und der bauchseitigen Fläche des Flügels (3, 30) beinhaltet, wesentlich elliptische Form hat welche vom gewölbten Verlauf (3i, 3e, 13e; 30i, 30e, 130e) dieser Flächen definiert wird und wobei die Scheitel der besagten Wölbungen in den Bereich der größten Breite (Profilsehne) des Flügels (3, 30) fallen und den Bereich für die Anbringung oder Befestigung (3f, 30f) des einzigen Trägerarms (2) bilden.

Description

FLÜGEL FÜR WINDTURBINEN MIT VERTIKALER DREHACHSE
Beschreibung
Es ist bekannt, dass die Windturbinen mit vertikaler Drehachse, z.B. vom Typ Darrieus mindestens zwei von der Drehachse beabstandete Flügel nutzen; diese Flügel können gerade, gebogene oder die Form einer Schraubenlinie haben. Allgemein erstrecken sich diese Flügel vertikal gerade, haben rechteckige mehr oder weniger schlanke Form und weisen den Querschnitt eines Flügels auf. Die Verbindung zwischen den Flügeln und der zentralen Nabe besteht aus Platten welche mit den Flügelenden verbunden sind oder aus Armen welche speichenartig angeordnet sind und auf unterschiedlicher Art, mit oder ohne Einsatz von umgreifenden Befestigungsbügeln, befestigt sind.
Die Trägerarme sind meistens zwei pro Flügel, die Systeme mit einem Arm pro Flügel sind zur Zeit auf Windgeneratoren mit beachtlichen Dimensionen beschränkt.
Es ist bekannt, dass die rechteckige Form des Flügels einen nicht zu unterschätzenden Prozentsatz der aerodynamischen Schubfläche dadurch verliert, dass die Fläche der fluidodynamischen Druck- und Unterdruckverteilung sich auf einer elliptischen Fläche der rechteckigen Flügelfläche verteilt. Dies hat zur Folge, dass die rechteckigen Flügel von einem Ballast beschwert sind was verschiedene Nachteile bewirkt:
- Verlust am aerodynamischen Wirkungsgrad in allen Drehzahlbereichen wegen der an rechteckigen oder sich verjüngenden Flügeln typischen Erhöhung des Widerstandes, - Probleme beim statischen und dynamischen Auswuchten,
- Belastungen welche durch erhöhtes Gewicht und Fliehkraft entstehen,
- Überdimensionierung der Träger- und Befestigungsstrukturen, - Verlust am Wirkungsgrad wegen des aerodynamischen Widerstandes insgesamt, hervorgerufen durch die obgenannten Nachteile,
- größeres Massenträgheitsmoment.
Die strukturellen Elemente der besagten bekannten vertikalen Generatoren sind weiters von erhöhten Spesen belastet welche sich aus der Projekterstellung zwecks korrekter Formgebung ergeben. Insbesondere haben die Versuche die Anzahl der Arme eventuell auf einen einzigen Arm zu reduzieren, bis heute keine zufriedenstellenden Ergebnisse erbracht weil die vorgeschlagenen Lösungen wenig Steifheit ergeben, mechanische Resonanzen erzeugen und wenig Sicherheit und Dauerhaftigkeit bieten weil sie, um den aerodynamischen
Wirkungsgrad nicht übertrieben zu gefährden, nicht entsprechend dimensioniert sind.
Die Erfindung stellt sich die Aufgabe einen Flügel für Windturbinen mit vertikaler Drehachse zu schaffen welcher, im Verhältnis zum Gewicht und zu den
Ausmaßen, einen beachtungswerten aerodynamischen Wirkungsgrad und eine derartige Stabilität bietet, dass die Verbindung mit der Nabe mittels einem einzigen Arm begünstigt wird.
Als Lösung dieser Aufgabe schlägt die Erfindung vor den Flügel mit einem wesentlich elliptischen Umriss mit gerader oder pfeilförmiger Anordnung, symmetrisch gemäß einer horizontalen Achse und eventuell, im Falle gerader Anordnung, auch gemäß einer vertikalen Achse, zu versehen, wobei der Querschnitt des Flügels im Bereich der horizontalen Symmetrieachse am größten ist und in Richtung beider Enden des Flügels, oben und unten, derart sich vermindert, dass ein Querschnitt entsteht welcher im Bereich der vertikalen Achse elliptische Form oder immerhin die maximale Abmessung im Bereich der horizontalen Achse und die minimale Ausdehnung im Bereich der beiden Enden hat.
Der elliptische Umriss des Flügels ermöglicht die Optimierung des aerodynamischen und fluidodynamischen Wirkungsgrades und somit der Leistungsfähigkeit mit einem Minimum an Flügeloberfläche und daher mit einem Minimum an Gewicht. Der Schnitt gemäß der vertikalen Achse welcher eine elliptische oder immerhin gewölbte, bzw. konische, symmetrische oder auch asymmetrische Form gemäß der vertikalen Achse hat, ermöglicht es eine beachtliche Stabilität der Flügelform mit einem robusten Befestigungs- oder Verbindungsbereich für den Trägerarm zu erreichen, wobei dieser Bereich durch die Zone des Scheitels oder der Kurvenspitze der besagten Wölbung oder Konizität welche wesentlich sich mit dem Bereich des Massenzentrums, eventuell mit dem geometrischen Zentrum der Flügeloberfläche und dem Zentrum der auf den Flügel wirkenden aerodynamischen und inertialen Belastungen, dieser Bereich beinhaltet den Schnittpunkt zwischen der horizontalen und der eventuellen vertikalen Symmetrieachse, bzw. zwischen der horizontalen Symmetrieachse und einer wesentlichen mittigen Linie zwischen der Eintrittskante und der Abströmkante des Flügels, oder zwischen der horizontalen Symmetrieachse und der Linie welche die aerodynamischen Druckzentren verbindet; im Falle eines elliptischen Flügels mit Pfeilform wird dieser Bereich vom Schnittpunkt der beiden Linien welche die Druckzentren verbinden bestimmt, wobei sich dieser Schnittpunkt auf der horizontalen Symmetrieachse befindet.
Der Schnitt durch den Flügel gemäß einer vertikalen wesentlich mittigen Linie oder gemäß der eventuellen vertikalen Symmetrieachse, bzw. im Falle eines pfeilförmigen Flügels gemäß einer vertikalen Achse welche durch den Schnittpunkt der Linien durch die Druckzentren verläuft, hat elliptische Form welche sich aus der Wölbung der rückenseitigen und der bauchseitigen Flächen ergibt, was die Schaffung einer widerstandsfähigen selbsttragenden und eventuell verstärkten Struktur des Flügels in diesem, für die effiziente und stabile dauerhafte Befestigung des Trägerarms vorgesehenen Bereich, ermöglicht. Insbesondere die entgegengesetzt gewölbten rückenseitigen und bauchseitigen Flächen des Flügels verleihen, im Falle einer Schalenstruktur, dem Flügel eine beachtenswerte Formstabilität was darauf zurückzuführen ist, dass die Wölbungen als selbsttragende Bogen- oder Konusstruktur wirken welche insbesondere den Belastungen, welche senkrecht zu den Scheiteln der Wölbungen wirken, widerstehen. Die besagten Merkmale verleihen dem Flügel mehr formgebundene Struktureigenschaften wodurch eine weitere Werkstoffeinsparung und somit eine Gewichteinsparung möglich wird. Alternativ bietet sich weiters die Möglichkeit Werkstoffe einzusetzen welche niedrigere Struktureigenschaften aufweisen und somit weniger kostenaufwändig sind. Am erfindungsgemäßen Flügel werden also die aerodynamischen und mechanischen Belastungen spontan zum Zentrum des Flügels mit elliptischen Umriss, welches dem Bereich des Scheitels der Ausbuchtung des Flügels entspricht, geleitet wo die Befestigung oder die Anbringung des Endes des einzigen Trägerarms vorgesehen ist welcher einen Querschnitt und eine Steifheit aufweist welche geeignet sind die nötige Stabilität und Widerstandsfähigkeit zu erreichen um induzierte Resonanzen und Vibrationen allgemein zu vermeiden.
Generell sind die Flügel eines Windrotors mit der vertikalen Achse parallel zur vertikalen Drehachse angeordnet, die von der Erfindung vorgeschlagenen konstruktiven Merkmale schließen jedoch nicht aus, dass die Flügel mit der Achse der Flügellängserstreckung zur Vertikalen angewinkelt angeordnet sind, wobei auch in diesem Fall alle obgenannten aerodynamischen und mechanischen Vorteile beibehalten werden.
Die Erfindung wird anschließend anhand zweier, in den beigelegten Zeichnungen schematisch dargestellter, vorzuziehender Ausführungsbeispiele eines erfindungsgemäßen Flügels für Windturbinen mit vertikaler Drehachse näher erklärt, dabei erfüllen die Zeichnungen rein erklärenden und nicht begrenzenden Zweck.
Die Fig. 1 ist eine schematische perspektivische Darstellung einer Windturbine mit vertikaler Drehachse mit drei erfindungsgemäßen Flügeln, von denen jede von einem einzigen Arm getragen wird welcher radial von einer Nabe absteht; es ist die Windrichtung und die Drehrichtung eingezeichnet. Die Fig. 2 zeigt die Draufsicht des wesentlich elliptischen erfindungsgemäßen Flügels mit Andeutung des Bereiches der Befestigung des einzigen Trägerarms durch Schraffierung und Andeutung des unterschiedlichen Flügelquerschnittes in zwei unter sich beabstandeten Positionen.
Die Fig. 3 zeigt den Längsschnitt des in Fig. 2 gezeigten Flügels gemäß einer vertikalen Schnittfläche welche die vertikale Achse des Flügels beinhaltet.
Die Fig. 4 zeigt den elliptischen Umriss eines erfindungsgemäßen pfeilförmigen Flügels mit Andeutung des Bereiches der Befestigung des einzigen Trägerarms durch Schraffierung und mit Andeutung des Flügelprofils in zwei unter sich beabstandeten Positionen.
Die Fig. 5 zeigt den Schnitt gemäß einer vertikalen Schnittfläche welche durch den Schnittpunkt der Linien verläuft welche die aerodynamischen Druckpunkte am, in Fig. 4 dargestellten, Flügel verbinden.
Die Fig. 6 zeigt den Schnitt gemäß einer Schnittfläche welche die Linie beinhaltet welche die aerodynamischen Druckzentren am, in Fig. 4 dargestellten, Flügel verbindet.
Die Windturbine mit vertikaler Drehachse ist wesentlich aus einer zentralen, um eine vertikale Drehachse A rotierend R gelagerte Nabe 1 , aus Trägerarmen 2 welche radial von der besagten Nabe 1 abstehen und aus, an den äußeren Enden dieser Arme 2 befestigten, Flügel 3 zusammengesetzt. Der Flügel 3 hat erfindungsgemäß einen wesentlich elliptischen Umriss im Sinne dass, sei es die Eintrittskante 3b als auch die Abströmkante 3c bogenförmig, wesentlich ellipsenbogenförmig mit stärkerer oder schwächerer Ausprägung, sind. An den beiden Enden des Flügels 3 können die Verbindungs- oder Übergangslinien 3g zwischen der Eintrittskante 3b und der Abströmkante 3c wesentlich geradlinig 3g oder bogenförmig 13g sein. Der Flügel 3 weist eine horizontale Symmetrieachse H und eventuell eine vertikale Symmetrieachse V auf, z.B. wenn die Eintrittskante einen bogenförmigen Verlauf 13b aufweist welcher identisch mit dem Verlauf der Abströmkante 3c ist. Wenn hingegen die besagten beiden Kanten des Flügels 3 unterschiedlichen Verlauf haben, wird die Achse V eine wesentlich mittige Linie sein welche vertikal, geometrisch auf halbem Abstand zwischen den beiden Kanten durch den Schwerpunkt des Flügels 3 hindurch, welcher leicht näher der Eintrittskante 3b liegt, verläuft oder durch die aerodynamischen Druckzentren des Flügels verläuft.
Erfindungsgemäß weist der Flügel im Bereich der horizontalen Symmetrieachse H die größte Breite (Profilsehne) auf und auch das Flügelprofil entspricht hier dem größten Querschnitt. Mit zunehmendem Abstand von der besagten horizontalen Symmetrieachse H1 in Richtung des oberen und unteren Flügelendes, verändert sich das Flügelprofil indem es progressiv schmäler wird und an den beiden Enden einen minimalen Querschnitt aufweist. Nahe der horizontalen Achse H kann das Flügelprofil z.B. vom Typ „naca 0021" sein während in Richtung der beiden Enden das Flügelprofil vom Typ „naca 0012" sein kann. Diese progressive Veränderungen des Querschnittes des Flügels 3 bewirken, dass beide Flächen des Flügels, jene rückenseitige und jene bauchseitige, eine nach außen gewölbte Form aufweisen mit den Scheiteln der Wölbung wesentlich in jenem Bereich angeordnet wo der Schnittpunkt zwischen der horizontalen Symmetrieachse H und der vertikalen Symmetrieachse V, bzw. die vertikale Mittellinie liegt, oder wo der Flügel 3 die maximale Breite (Profilsehne) aufweist. Die Form des vertikalen Schnittes (Fig. 3) des Flügels wird also erfindungsgemäß elliptisch symmetrisch sein oder auch unsymmetrisch sein wenn z.B. an einer Seite des Flügels die Wölbung, wie durch die strichlierte Linie 13e dargestellt, stärker ausgeprägt ist. Betreffend das Ausmaß der progressiven Veränderung des Querschnittes des Flügels kann die Wölbung auch „konisch" verlaufen, in diesem Fall werden die Linien 3i, 3e und 13e wesendlich geradlinig schräge verlaufen und einen Scheitel (eine Kurvenspitze) im Bereich der horizontalen Symmetrieachse H bilden.
Die Erfindung schließt immerhin nicht aus, dass eine der Linien des Längsschnittes des Flügels bogenförmig, z.B. elliptisch, verläuft während die entsprechende Linie auf der gegenüberliegenden Seite geradlinig verläuft wobei, im Bereich der horizontalen Achse H, der Scheitel eines stumpfen Winkels gebildet wird.
Der wesentlich elliptische Längsschnitt des Flügels 3 verleiht dem Flügel, durch die gewölbte, bzw. konische, Form eine beachtenswerte Stabilität und schafft im Bereich der horizontalen Symmetrieachse H eine Zone 3f welche, betreffend die Struktur und die Abmessungen, für die wirkungsvolle und widerstandsfähige Anbringung des äußeren Endes des Trägerarms 2 geeignet ist.
Die Form des erfindungsgemäßen Flügels 3 bietet sich für eine einteilige oder eine zusammengesetzte Schalenkonstruktion, mit oder ohne innerem Füllmaterial, an dabei werden die Vorteile der, durch die gewölbte „kuppeiförmige" Form der Schale bewirkte, Stabilität als auch eine Konstruktion mit innen liegender tragender Struktur welche durch die besagte Schale abgedeckt ist, genutzt, wobei in diesem letzten Fall die besagte Schale ausschließlich aero- und fluidodynamische Funktionen erfüllt oder auch, zusammen mit der besagten inneren Struktur, eine tragende Funktion hat.
Die Stärke der einteiligen oder zusammengesetzten Schale welche die Form des Flügels 3 bildet kann konstant oder unterschiedlich, im Verhältnis zu den darauf wirkenden Belastungen, sein.
Im Falle eines pfeilförmigen Flügels mit elliptischem Umriss (Fig. 4, 5, 6) weist dieser erfindungsgemäß immer eine horizontale Symmetrieachse H auf und der Bereich der Anbringung oder Befestigung 3Of des einzigen Trägerarms 2 liegt wesentlich im Bereich der horizontalen Symmetrieachse H und des Schnittpunktes zwischen den Linien G welche die aerodynamischen Druckzentren verbinden. Dieser Bereich 3Of entspricht auch in diesem Fall der Kreisspitze oder dem Scheitel der Wölbung der rückenseitigen Fläche 3Oe und der bauchseitigen Fläche 3Oi des Flügels 30. Die Wölbung der besagten Flächen kann, gemäß einer vertikalen Achse S, symmetrisch sein oder, z.B. wenn die rückenseitige Fläche 3Oe im Verhältnis zur Wölbung 3Oi der bauchseitigen Fläche stärker gewölbt 13Oe ist, unsymmetrisch sein.
Natürlich können auch bei der pfeilförmigen Ausführung die Übergangslinien zwischen der Eintrittskante 30b und der Abströmkante 30c an den beiden Enden des Flügels 30 bogenförmig 130g oder spitz 30g verlaufen. Die progressive Verkleinerung des Flügelprofils vom Bereich der horizontalen Symmetrieachse H zu den beiden Enden des Flügels 30 bewirkt, dass wesentlich im Bereich der Linien G welche die aerodynamischen Druckzentren verbinden, die rückenseitige Fläche und die bauchseitige Fläche gewölbt oder gerade angewinkelt 30h, 30k verlaufen.
Der gewölbte Verlauf 3Oi1 3Oe1 13Oe der rückenseitigen und der bauchseitigen Fläche im Bereich der horizontalen Symmetrieachse H bewirkt, dass im Bereich 3Of der Scheitel der besagten Wölbungen, die ideale, widerstandsfähigste Stelle, mit größtem Querschnitt, für die Anbringung oder Verbindung des einzigen Trägerarms 2 ist.
Die Wölbungen welche durch die Linien 3h und 30k dargestellt sind bewirken im Bereich der Linien G für jene Teile des Flügels 30, welche sich nach hinten „freitragend" über den Befestigungsbereich 3Of hinaus erstrecken, die nötige Stabilität und Steifheit. Natürlich kann die Pfeilform mehr oder weniger ausgeprägt sein, mit den Linien G welche einen Winkel zwischen einem stumpfen Winkel nahe 180° und einem spitzen Winkel kleiner als 90° bilden.

Claims

PATENTANSPRÜCHE
1. Flügel für Windturbinen mit senkrechter Drehachse welcher von einem einzigen, radial von einer, gemäß vertikaler Achse (A) rotierend (R) gelagerten Nabe (1) abragen Arm (2) getragen wird, dadurch gekennzeichnet dass der Flügel wesentlich elliptischen geraden (3) oder pfeilförmigen (30), gemäß einer horizontalen Achse (H) symmetrischen Umriss aufweist, dass der Schnitt gemäß einer vertikalen Schnittfläche welche die Scheitel der rückenseitigen und der bauchseitigen Fläche des Flügels (3, 30) beinhaltet, wesentlich elliptische Form hat welche vom gewölbten Verlauf (3i, 3e, 13e; 3Oi, 3Oe, 13Oe) dieser Flächen definiert wird und dass die Scheitel der besagten Wölbungen in den Bereich der größten Breite ( Profilsehne) des Flügels (3, 30) fallen und den Bereich für die Anbringung oder Befestigung (3f, 3Of) des einzigen Trägerarms (2) bilden.
2. Flügel gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Verlauf der Eintrittskante (13b) des Flügels (3) und/oder die Positionierung dieser, im Verhältnis zum Verlauf der Abströmkante (3c), symmetrisch gemäß einer vertikalen Achse (V) erfolgt.
3. Flügel gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass einer der Übergangsränder oder beide Übergangsränder an den beiden Enden des Flügels wesentlich geradlinig (3g), bogenförmig (13g, 130g) oder spitz (30g) verlaufen können.
4. Flügel gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass jeder Querschnitt des Flügels ein Flügelprofil aufweist wobei der größte Querschnitt im Bereich der horizontalen Symmetrieachse (H) ist und progressiv kleinere Querschnitte in Richtung der beiden Enden des Flügels (3, 30) aufscheinen und die progressive Verkleinerung des Querschnittes einen geradlinigen oder gebogenen Verlauf der Linien (3i, 3e, 13e; 3Oi, 3Oe, 13Oe) der Wölbung der rückenseitigen und der bauchseitigen Flächen des Flügels (3, 30) bewirkt.
5. Flügel gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Wölbung (3i, 3e, 13e; 3Oi, 3Oe, 13Oe) der rückenseitigen und der bauchseitigen Flächen des Flügels (3, 30) symmetrisch gemäß einer vertikalen Achse (V, S) verläuft.
6. Flügel gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Wölbung der rückenseitigen und der bauchseitigen Flächen des Flügels (3,
30), gemäß einer vertikalen Achse (V, S) unsymmetrisch verläuft.
7. Flügel gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die tragende Struktur des Flügels (3, 30) aus einer einstückigen oder einer zusammengesetzten Schale besteht welche gleichbleibende oder, in
Abhängigkeit von den auf die Struktur mit oder ohne innerem Füllmaterial wirkenden Belastungen, unterschiedliche Wandstärken in den verschiedenen Bereichen aufweist.
8. Flügel gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die
Belastungen welche auf den Flügel (3, 30) wirken vorwiegend von einer innerhalb der Schale liegenden Struktur aufgenommen werden, wobei die Schale in diesem Fall vorwiegend aerodynamische Funktionen hat.
EP08758668A 2007-05-24 2008-05-21 Flügel für windturbinen mit vertikaler drehachse Withdrawn EP2147210A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000022A ITBZ20070022A1 (it) 2007-05-24 2007-05-24 Ala per turbine eoliche ad asse di rotazione verticale
PCT/EP2008/004062 WO2008141813A2 (de) 2007-05-24 2008-05-21 Flügel für windturbinen mit vertikaler drehachse

Publications (1)

Publication Number Publication Date
EP2147210A2 true EP2147210A2 (de) 2010-01-27

Family

ID=40032214

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08758668A Withdrawn EP2147210A2 (de) 2007-05-24 2008-05-21 Flügel für windturbinen mit vertikaler drehachse

Country Status (3)

Country Link
EP (1) EP2147210A2 (de)
IT (1) ITBZ20070022A1 (de)
WO (1) WO2008141813A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212140B2 (en) 2003-04-02 2012-07-03 P4P, Llc Solar array support methods and systems
US9564851B2 (en) 2003-04-02 2017-02-07 P4P Holdings, LLC Solar array support methods and systems
US20100314509A1 (en) 2003-04-02 2010-12-16 Conger Steven J Solar array support methods and systems
US8278547B2 (en) 2003-04-02 2012-10-02 P4P Holdings Llc Solar array support methods and systems
US8875450B2 (en) 2003-04-02 2014-11-04 P4P Holdings, LLC Solar array system for covering a body of water
US8381464B2 (en) * 2003-04-02 2013-02-26 P4P Holdings Llc Solar array support methods and systems
US8030792B2 (en) 2009-03-12 2011-10-04 Eastern Wind Power Vertical axis wind turbine system
US8648483B2 (en) 2009-03-12 2014-02-11 Eastern Wind Power Vertical axis wind turbine system
JP2012528271A (ja) * 2009-05-26 2012-11-12 レビアサン エナジー ウインド ロータス エルティディー. 2ブレード垂直軸風力タービン
CN201486753U (zh) 2009-06-26 2010-05-26 北京希翼新兴能源科技有限公司 垂直轴复合式风轮机
CN201865840U (zh) 2009-09-18 2011-06-15 北京希翼新兴能源科技有限公司 垂直轴风力发电机风叶及其风轮
DE102010016086A1 (de) * 2010-03-23 2011-11-24 Anneliese Penn Rotorblatt für H-Rotor
US7988413B2 (en) 2010-04-23 2011-08-02 Eastern Wind Power Vertical axis wind turbine
FR2980244B1 (fr) * 2011-09-19 2014-07-04 Sabella Pale d'hydrolienne
ITMC20120074A1 (it) * 2012-09-06 2012-12-06 Ambrosio Giuseppe D Turbina multi pale con nucleo centrale a sezione poligonale.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE462409C (de) * 1928-07-10 Aero Dynamo Akt Ges Fluegel fuer Windkraftmaschinen
DE2821899C3 (de) * 1978-05-19 1981-02-05 Erich 6100 Darmstadt Herter Windturbine
DK0679805T3 (da) * 1993-10-14 1996-05-13 Raul Ernesto Verastegui Tværvindsakse-vindturbine
JP3330141B1 (ja) * 2001-11-09 2002-09-30 学校法人東海大学 一体型風水車とその製造方法
AU2002354483A1 (en) * 2001-12-14 2003-06-30 Global Energy Co., Ltd. Wind power generator, windmill, and spindle and blade of the windmill
JP4191405B2 (ja) * 2001-12-14 2008-12-03 株式会社グローバルエナジー 動力用風車の設置方法並びに風力発電機の設置方法
DK176176B1 (da) * 2004-11-24 2006-11-27 Siemens Wind Power As Fremgangsmåde og samlestykke til samling af en vinge, fortrinsvis vindmöllevinge, i sektioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008141813A3 *

Also Published As

Publication number Publication date
WO2008141813A2 (de) 2008-11-27
ITBZ20070022A1 (it) 2008-11-25
WO2008141813A3 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2147210A2 (de) Flügel für windturbinen mit vertikaler drehachse
EP2145102A2 (de) Trägerarm für die flügel von windturbinen mit senkrechter drehachse
DE10347802B3 (de) Rotorblatt für eine Windkraftanlage
DE2756071C2 (de)
WO2009036713A1 (de) Strömungsenergieanlage, insbesondere windkraftanlage
DE19931035A1 (de) Rotor mit gespaltenem Rotorblatt
DE10305543A1 (de) Verfahren zur Montage von Rotorblättern sowie ein Rotorblatt für eine Windenergieanlage
WO2007118581A1 (de) Rotorblatt einer windenergieanlage
EP0947693A2 (de) Rotorblatt für eine Windkraftanlage
EP2366891A1 (de) Windenergieanlagenrotorblatt
DE10307682A1 (de) Rotorblatt einer Windenergieanlage
DE202013101943U1 (de) Vorrichtung zur Verringerung des Antriebsleistungsbedarfs eines Wasserfahrzeuges
EP2366892B1 (de) Windenergieanlagenrotorblatt
DE2820178C2 (de) Aerodynamisches Spielzeug
DE2919684C3 (de) Schlag-, schwenk-und blattverstellgelenkloser Rotor
DE102011122140A1 (de) Delta-Wirbelstromgeneratoren
DE2814813A1 (de) Windkraftmaschine
AT503184B1 (de) Unterschlächtiges wasserrad
EP3399183B1 (de) Rotorblatt einer windenergieanlage
EP2568166B1 (de) Windenergieanlagenrotorblatt mit einer dicken Profilhinterkante
WO1986005846A1 (en) Wind energy converter
DE3018211C2 (de) Windrad
DE2056730A1 (de) Verfahren und Vorrichtungen zur Ver besserung der Langsstabihtat von Hub schraubern
WO2011117276A2 (de) Rotorblatt für h-rotor
DE3502712C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091019

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100325

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100805