EP2147145A1 - Water-, oil-, and dirt-repellent finishes on fibers and textile fabrics - Google Patents

Water-, oil-, and dirt-repellent finishes on fibers and textile fabrics

Info

Publication number
EP2147145A1
EP2147145A1 EP08733793A EP08733793A EP2147145A1 EP 2147145 A1 EP2147145 A1 EP 2147145A1 EP 08733793 A EP08733793 A EP 08733793A EP 08733793 A EP08733793 A EP 08733793A EP 2147145 A1 EP2147145 A1 EP 2147145A1
Authority
EP
European Patent Office
Prior art keywords
particle
particle composite
particles
layer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08733793A
Other languages
German (de)
French (fr)
Inventor
Oliver Marte
Martin Meyer
Stefan Angehrn
Anita Bienz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HeiQ mATERIALS AG
Original Assignee
HeiQ mATERIALS AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39672931&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2147145(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by HeiQ mATERIALS AG filed Critical HeiQ mATERIALS AG
Priority to EP12151766.8A priority Critical patent/EP2444545B1/en
Publication of EP2147145A1 publication Critical patent/EP2147145A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/05Lotus effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Definitions

  • the invention relates to a particle composite for finishing fibers and textile fabrics according to claim 1, to a process for the production thereof, and to processes using the particle composite according to patent claims 11 to 25.
  • the contact angle determination is carried out according to a measuring method developed for the characterization of lotus structures: O. Marte, M. Hochstrasser, Characterization of "Lotus-Structured Fiber and Fabric Surfaces, Melliand Textilberichte 10/2005, S. 746-750.
  • Another object is to provide a formulation technique that allows the use of different particle composites with different functions. For example, mention may be made of the hydrophobic and bactericidal function combined in the same finishing layer.
  • a further object of the invention is to make available to the textile finisher a microparticle composite which allows it to combine a hydrophobizing agent of its own free choice, in particular a fluorocarbon resin, with the particulate composite and the formulation by default to the fabric to apply, dry and fix.
  • a hydrophobizing agent of its own free choice in particular a fluorocarbon resin
  • the particulate composite and the formulation by default to the fabric to apply, dry and fix.
  • the object is achieved by the production of a Partikei composite, which both similar (in terms of shape and chemical composition) and non-homogeneous (in terms of shape and chemical composition) and predominantly hydrophobic impregnated and / or coated, different sized micro and at most nanoparticles (0.01 - 10 microns) contains.
  • a Partikei composite which both similar (in terms of shape and chemical composition) and non-homogeneous (in terms of shape and chemical composition) and predominantly hydrophobic impregnated and / or coated, different sized micro and at most nanoparticles (0.01 - 10 microns) contains.
  • the different sizes are produced, for example, by differently guided grinding processes and generally lead to a bimodal or multimodal particle size distribution in the particle composite in the mixture. This provides the basis for the formation of the phenotype of similar structures on textile surfaces.
  • non-nanotechnological' finishing layer is of importance because the production of this layer or of the particulate composite used for layering is a top-down technology and not a bottom-up technology ( The Brockhaus Natural Science and Technology, Vol. 2, pp. 1376-1377, Spektrum Akademischer Verlag GmbH Heidelberg (2003)).
  • hydroophobizing agent is representative of oleophobic and dirt repellent chemicals.
  • a second inventive approach consists in the particle impregnation, particle coating or in the coating technique of the particles.
  • the use of reactive polymers as impregnating and / or coating compositions makes it possible to give the particle surfaces the same physical and chemical properties as are prevalent in the host matrix of the finishing layer (for example, one and the same fluorocarbon resin). This avoids premature phase separations in the equipment fleet but also on the textile substrate. These are the reason for an anisotropic layer structure, which in turn leads to massive effects losses (O. Marte, U. Meyer, New test methods for the evaluation of hydrophobic and superhydrophobic finishes, Melliand Textilberichte 10/2006, p. 732-735).
  • Such a particle coating preferably consists of several, superimposed layers of different polymers with different functionalities.
  • the layer structure should be selected such that the layer filling the particle pores has the greatest affinity for the inner particle surface, and the uppermost layer enveloping the particles shows the properties that are most similar to the host matrix.
  • the uppermost layer is typically formed by the hydrophobing polymer, which also constitutes the host matrix in the finish layer. All of the polymers present in the impregnating or coating mass are compounds carrying reactive groups, which are crosslinked in a wash-fast manner during the finishing process.
  • Another approach for generating hyperstructures on the surface of the microparticles, or the finishing layer is the incorporation of substances that form gaseous products as a result of a phase change and / or a thermal decomposition.
  • substances that form gaseous products as a result of a phase change and / or a thermal decomposition.
  • an above 100 0 C boiling, predominantly apolar, aprotic solvent in the particle coating which leaves on exit from the microparticles during drying nanoscale structures.
  • An analogous effect is achieved by the use of nitrogen, CO 2 or ammonia-releasing compounds (eg, radical starter, hydrogencarbonates or ammonium salts), which are used in place of the solvent.
  • Another approach of the invention is, starting from cost-effective, not chemically modified polysilicic acids (1 - 50 microns) to coat this emulsifier free S ⁇ .
  • these emulsifier free S ⁇ can be easily processed by textile suppliers and, on the other hand, chemically crosslinked with the hydrophobic host matrix.
  • Disregarded here are any surfactants contained in fluorocarbon resins.
  • a particular feature of the invention is the production of an emulsifier-free particulate composite as an essential factor for improving the effects thereof.
  • Dispersants and emulsifiers as amphiphilic substances are deposited in the hydrophobically formed boundary layer and sorb or transport so, from Equipment sense estranged, the principle rejecting substances in the textile.
  • emulsifier free formulation Another advantage of the emulsifier free formulation is the low LAD effect ('Laundry / Air Dry', M.Rasch, et al., Melliand Textile Reports 6/2005, pp. 456-459), which is a consequence of water sorption through the hydrophobing layer is. Due to the presence of amphiphilic substances in the finish layer, the water is physically / chemically bound because of its dipole character and the formation of hydrogen bonds. This requires elevated temperatures in order to desorb the water again and thus to regenerate the hydrophobing effect again.
  • the simple lotus structures known today are given a structure which is more similar to the phenotype (generation of a hyperstructure, W. Barthlott et al., The Lotus Effect: Self-Cleaning Surfaces Modeled on Nature, ITB International Textile Bulletin 1/2001, p. 8-12) to further increase the effect of oil and soil repellency in comparison with known achievable Lotus structured coatings.
  • the production of the particle composite can be carried out both as a single-stage and as a multi-stage coating process.
  • the single-stage coating process involves the adsorption of a polymer, or polymers of a predominantly aqueous phase.
  • the polymers should chemically bond with the particle surface to achieve high wash permanence. This requires that the particles are modified in the same process step with hydroxyl or amino-terminated silyl compounds. Any addition of crosslinking chemicals, e.g. Isocyanates or ⁇ -aminoalkylation products, depends on the reaction possibilities of the polymers used.
  • the particles are impregnated in a first step with a solution of an amino- and / or hydroxyl-containing, preferably branched, water-insoluble polymer in dissolved form on the particle surface.
  • the polymer is usually in a polar, protic and / or soluble in a non-polar, non-protic solvent.
  • any hyperstructure-forming ingredients may be included such as special solvents and / or N 2 , CO 2 or NH 3 releasing substances.
  • This polymer solution is additionally added a crosslinker system. Only at temperatures above 80 ° C. does this result in crosslinking of the polymer or crosslinking of the polymer sorbed in and on the particle surface with the hydrophobizing agent forming the host matrix.
  • the second step is used to produce a second coating layer. It consists in the adsorption of the hydrophobing agent, preferably a fluorocarbon resin, from aqueous emulsion. According to the invention, any hyperstructure-forming ingredients can also be added here.
  • the hydrophobing agent preferably a fluorocarbon resin
  • the three-stage coating process consists in the first stage of a chemical particle modification with amino and / or hydroxyl or glycidyl-terminated silyl compounds, which serve the subsequent crosslinking with the second coating layer.
  • the second and third coating layers have an analog structure as described above.
  • the particle wetting with the ingredients of the first coating layer is advantageously carried out with stirring units, while the further steps are carried out in grinding units.
  • the microparticles are reduced from an original size of 1 - 50 microns to the desired size. This is in the range from 0.01 to 2 ⁇ m, preferably in the range from 0.3 to 0.9 ⁇ m, wherein preferably a bimodal particle size distribution is set, e.g. 0.4 and 0.8 ⁇ m.
  • the particle composite prepared in this way has a particle concentration of 5 to 20%, preferably 10 to 12%, and shows virtually no sedimentation tendency due to the particle coating and the increased viscosity. This despite the absence of dispersants, with which the otherwise usual, the hydrophobing effect disturbing influence is eliminated.
  • the particles used for the production of the particle composite are preferably polymeric silicic acids which are used in special process steps, for example by sequential performed grinding processes are reduced to the desired size.
  • the milled product may have a multimodal particle size distribution.
  • metal oxides such as Al 2 O 3 or zirconium oxides or mixed oxides are also used.
  • the silicon dioxide particles can be loaded with elemental silver or copper and / or their oxides or contain the corresponding complexed metal ions.
  • Another possibility for achieving a multimodal particle size distribution is the mixing of nanoparticles produced, for example, by the flame process (high-temperature hydrolysis of chlorosilanes) with a primary particle size of 10 to 30 nm. This in combination with particles which are in the top-down process, for example by means of a milling process be set to the size of 500 - 700 nm.
  • silyl compounds carrying amino, hydroxyl, thiol or glycidyl groups are used.
  • Preferred compounds used are: N-2-aminoethyl-3-aminopropyltrimethoxysilane, 3-aminopropylmethyltriethoxysilane, bis (3-trimethoxysilylpropyl) amine, triamino functional propyltrimethoxysilane, polyetherpropyltrimethoxysilanes, 3-mercaptopropyltrimethoxysilane and 3-glycidyloxypropyltrimethoxysilane.
  • the amounts used of the mentioned silyl compounds are 0.2-10%, preferably 0.8-5%, based on the particle mass.
  • hydroxyl or amino-containing polymers are e.g. derivatized polyacrylates, polyesters and polyurethanes whose solubility in water is less than 10%, preferably less than 1%. Such products are still rarely used in the textile industry.
  • the amounts used for the mentioned polymers are 1 to 40%, preferably 10 to 30%, based on the particle mass.
  • the hydrophobicizing chemicals are both fat-modified melamine derivatives, polyacrylates and polyurethanes having a fatty hydrocarbon chain of C 3 -C 24 , preferably C 16 -C 20 , and perfluorinated fatty hydrocarbon resins having a perfluorinated fatty hydrocarbon chain of C 2 -C 12 , preferably C 4 - C 8 , and silicone resins.
  • the quantities of these product emulsions Formation of a coating layer around the particles depends on their dry matter content, which is in the range of 10 to 30%.
  • the dry matter-related amounts of such products are 10 to 100%, preferably 20 to 50%, based on the particle mass.
  • Softgard M3 soft chemicals, Italy
  • Oleophobol 7752 Oleophobol 7752
  • Ruco-Gard AIR Ruco-Dry DHY (Rudolf Chemie, Germany).
  • crosslinkers for chemical fixation the polymers used for the particle coating, predominantly polyisocyanates and ⁇ -aminoalkylation products are used.
  • multifunctional aziridines are used as crosslinkers.
  • typical crosslinkers are: 1,6-diisocyanatohexane (Bayer MaterialScience, Germany), 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate (Hüls, Germany) or uretdione of 2,4-diisocyanatotoluene (Bayer MaterialScience, Germany).
  • the aziridines are divided into aliphatic and aromatic, both of which are used.
  • Typical representatives of aliphatic propylenimine derivatives are: 1, 1'-azelaoyl-bis- (2-methylaziridine) and N, N ', N ", N'" - tetrapropylene-1,2,3,4-butanetetracarboxamide.
  • Typical representatives of aromatic propylenimine derivatives are: toluene-2,6-dipropyleneurea (TPH) or diphenylmethane-bis-4,4'-N, N'-dipropyleneurea.
  • the particle composite or repellent composite produced in this way is dispersed in the textile composite in the host composite used by it (for example a fluorocarbon resin with further ingredients) and applied in this form to the tissue.
  • the detailed reaction and process conditions are determined by the Presaturated hydrophobing agent and the used Vemetzersystem. Due to the nature of the composite preparation and the ingredients used for this purpose, the particle composite can be combined with a wide variety of host matrices, resulting in addition to the repellent function additional functions, so-called 'layer intrinsic functions'. These are, for example, very high oil rejections with slightly reduced hydrophobing effects as they are needed for protective clothing for army and police.
  • Another combination is the use of the particle composite in combination with a hydrophilically dominated host matrix, such formulations being used in soil release equipment. Similar combinations can be formulated for antistatic, bactericidal, abrasion-resistant and flame-retardant finishes, whereby a hydrophobic, dirt-repellent boundary layer always forms on the textile material.
  • fluorination resin containing finish layers result in sprinkling scores of 5 (according to the federal man test) and contact angle with heptane of more than 100 °. This is surprising, because today known Lotus structures bearing equipment have contact angle with heptane of 70 - 90 °. In fluorocarbon resin-free finishing layers contact angles with water of over 100 ° are achieved.
  • Example 1 Hydrophobing of polyester fabrics for outdoor use.
  • a polyester fabric with a grammage of 190 g is hydrophilized by a partial saponification process (degree of saponification approx. 0.1%) with 30 g / l sodium hydroxide 100%.
  • the pretreated fabric is impregnated with a hydrophobizing liquor, resulting in a 54% liquor application.
  • the fabric is dried at 110-120 ° C, followed by condensation process at 150-160 0 C for 2 minutes is performed.
  • the ingredients of the hydrophobizing liquor are: Particle composite formulation produced in one stage: 100 g / kg Sident 10 (Degussa, Germany)
  • the particle formulation shows a monomodal, mean particle size distribution of 870 nm.
  • Example 2 Hydrophobizing Polyester Cotton Fabrics for Army Protective Suits.
  • the coating application is 43% based on the tissue dry weight.
  • the drying of the fabric is carried out at 110-130 0 C, followed by the fixing process at 150-160 ° C for 2 minutes.
  • Particle composite formulation prepared according to a "two-layer process" or in a two-stage coating process :
  • Oleophobol 7752 (ERBA, Switzerland) 336 g / kg water, grind for 20 minutes.
  • the particle formulation shows a bimodal particle size distribution with average particle sizes of 470 and 820 nm.
  • Water repellent finishing liquor 80 g / l particle composite produced in the two-stage coating process
  • the fabric coated in this way exhibits excellent water and oil repellency properties, as indicated by the values in Table 2.
  • Example 3 Hydrophobic and bactericidal finish of cotton fabrics.
  • an impregnating liquor is applied which contains both a particle composite that repels the fabric surface and a bactericidal one.
  • the layer structure enveloping the particles is achieved by a two-stage coating process (see Example 2).
  • the hydrophobing composite they are pure silica particles that co-react with a crosslinkable polymer (polyurethane, Dicrylan PGS, ERBA, Switzerland) and a fat-modified melamine resin (C 16 - C 18 , Phobotex FTC, ERBA, Switzerland), while for the bactericidal function silver-loaded silicon dioxide particles (elemental or complexed silver) in an analogous manner be layered coating.
  • the coated primary particle composites are subjected to different grinding conditions. This results in a multimodal particle size distribution.
  • the mean primary particle sizes are 7 ⁇ m (pure silicon dioxide particles, before the milling process) and 20 ⁇ m (silver-loaded silicon dioxide particles).
  • Knittex FEL 15 g / l Knittex FEL (ERBA, Switzerland)
  • Tissue impregnation was carried out with a load of 76% on dry tissue weight. The drying and condensation process took place on a tenter at 120 or 160 ° C. Tab. 3 Test results of the hydrophobicized, bactericidal tissue

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Abstract

A particle composite for incorporation in a finish coating comprises particles having various sizes from 0.01 - 10 µm and encased by at least one layer containing a coating mass. The particles are chemically fixable and have substantially the same function on the surface as that in the host matrix of the finish layer. Methods for producing the particle composite are disclosed, wherein hyperstructures leading to an enhancement of the oil- and dirt-repellent effect are formed by the combination of smaller and larger particles.

Description

Wasser, Öl und Schmutz abweisende Ausrüstungen auf Fasern und textilen Flächengebilden Water, oil and dirt repellent finishes on fibers and fabrics
Die Erfindung betrifft ein Partikel-Komposit zur Ausrüstung von Fasern und textilen Flächengebilden gemäss Patentanspruch 1 , Verfahren zur Herstellung desselben, sowie Verfahren unter Verwendung des Partikel-Komposits gemäss den Patentansprüchen 11 bis 25.The invention relates to a particle composite for finishing fibers and textile fabrics according to claim 1, to a process for the production thereof, and to processes using the particle composite according to patent claims 11 to 25.
Wasser, Öl und Schmutz abweisende Ausrüstungen auf Textilien werden bereits seit vielen Jahren hergestellt, wobei die Ansprüche an die Effektniveaus mit der Einführung der Begriffe Nanotechnologie und Lotus-Effekt (W. Barthlott et al., Der Lotus-Effekt: Selbstreinigende Oberflächen nach dem Vorbild Natur, ITB International Textile Bulletin 1/2001 , S. 8-12; E. Gärtner, Nano-Finish ersetzt herkömmliche Imprägnierung, Chemische Rundschau 8 (2001), 12. April) sprunghaft angestiegen sind. Der von W. Barthlott erstmals publizierte Lotus-Effekt entspricht einem bei Blüten und Blättern anzutreffenden Selbstreinigungseffekt durch eine aus Wachskristallen gebildete Mikro- rauhigkeit auf Blüten- bzw. Blattoberflächen.Water, oil and dirt-repellent textiles finishings have been produced for many years, with the claims of effect levels being introduced with the introduction of the terms nanotechnology and lotus effect (W. Barthlott et al., The Lotus Effect: Self-cleaning Surfaces Modeled Nature, ITB International Textile Bulletin 1/2001, pp. 8-12, E. Gärtner, Nano-Finish replaces conventional impregnation, Chemische Rundschau 8 (2001), 12th April) have skyrocketed. The Lotus effect, first published by W. Barthlott, corresponds to a self-cleaning effect of blossoms and leaves due to microcracking on flower or leaf surfaces formed from wax crystals.
So ist der Stellenwert der chemisch nicht fixierbaren Hydrophobierungschemikalien auf das Niveau der Bedeutungslosigkeit abgesunken und das der chemisch fixierbaren, insbesondere der Fluorkarbonharze, enorm angestiegen. Aufgrund der hohen, vom Markt geforderten Effektansprüche sind es ausnahmslos Fluorkarbonharze, die diesen Ansprüchen genügen. Zu diesen zählen hohe Beregnungsnoten (Beregnungsprüfung nach Bundesmann, DIN 53888), hohe Ölnoten und eine sehr gute Schmutzabweisung, wobei sämtliche Kriterien selbst nach vielfach durchgeführten Wäschen oder chemischen Reinigungsoperationen erfüllt sein sollten. Allen heute auf dem Markt befindlichen Hydrophobierungsmitteln gemeinsam ist, dass sie ausnahmslos als wässrige Emulsionen in den Handel gelangen, und nach deren Applikation auf das Textilgut, diesem einen mehr oder weniger ausgeprägten hydrophoben oder Schmutz abweisen- den Charakter verleihen. Die Bedingungen der chemischen Reinigungsbeständigkeit und Ölabweisung werden nur von den Fluorkarbonharzen erfüllt.Thus, the importance of chemically not fixable hydrophobing chemicals has fallen to the level of insignificance and that of the chemically fixable, in particular the fluorocarbon resins, increased enormously. Due to the high, demanded by the market effect claims, it is without exception fluorocarbon resins that meet these requirements. These include high rainfall grades (irrigation test according to Bundesmann, DIN 53888), high oil grades and a very good soil repellence, whereby all criteria should be fulfilled even after many washes or chemical cleaning operations. It is common to all water repellents on the market today that they are marketed without exception as aqueous emulsions, and after their application to the textile material, to the latter a more or less pronounced hydrophobic or dirt repellent effect. give the character. The conditions of chemical cleaning resistance and oil repellency are met only by the fluorocarbon resins.
Die Verwendung von Fluorkarbonharzen als Ausrüstungschemikalien für Textilien gehört heute zum Stand der Technik. Die damit standardmässig erzielten Effekte sind im Vergleich mit nicht fluorierten Hydrophobierungschemikalien sehr gut, jedoch sind die in jüngster Zeit geforderten Effektniveaus durch die alleinige Verwendung von Fluorkarbonharzen nicht zu erfüllen. Mit dem bekannt werden des Lotus-Effektes (H. G. Edelmann et al., Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens: a puzzling architecture among plants, Planta 206 (1998) S. 315-321 ; W. Barthlott, Self-cleaning surfaces of objects and process for producing same, WO/1996/004123) wurden Entwicklungen eingeleitet, die zu einem sprunghaften Anstieg der Effektniveaus führten. Es sind dies nanotechnologische Lösungsansätze, die zu Lotus strukturierten Oberflächen führen, welche vornehmlich die Öl- und Schmutzabweisung erheblich steigern (W. Barthlott, C. Neinhuis, Nur was rau ist, wird von selber sauber, Technische Rundschau Nr. 10 (1999), S. 56-57). Eine diesbezügliche "Schlüsseltechnologie" für die Textilindustrie stellt das in der Patentschrift EP 1 ,268,919 beschriebene Verfahren dar, welches auf der Selbstorganisation von methy- lierten oder fluorierten Nanopartikeln aufbaut, durch die während der Trocknungsphase, der auf das Textilgut applizierten Schicht, Lotus-Strukturen entstehen. Die nach diesem Verfahren hergestellten Hydrophobierungsschichten zeigen mit Heptan gemessene Kontaktwinkel von 70 - 90 ° im Vergleich mit nur aus Fluorkarbonharz bestehenden Schichten, die einen Kontaktwinkel von 40 - 60 ° aufweisen. Die Kontaktwinkelbestimmung erfolgt nach einem zur Charakterisierung von Lotus-Strukturen entwickelten Messverfahren: O. Marte, M. Hochstrasser, Charakterisierung von "Lotusstrukturierten Faser- und Gewebeoberflächen, Melliand Textilberichte 10/2005, S. 746-750.The use of fluorocarbon resins as finishing chemicals for textiles is now state of the art. The effects thus achieved by default are very good in comparison with non-fluorinated hydrophobing chemicals, but the effect levels required lately can not be satisfied by the sole use of fluorocarbon resins. With the knowledge of the lotus effect (HG Edelmann et al., Ultrastructure and chemistry of the cell wall of the Rhacocarpus purpurascens: a puzzling architecture among plants, Planta 206 (1998) pp. 315-321; W. Barthlott, Self -cleaning surfaces of objects and process for producing same, WO / 1996/004123), developments were initiated which led to a sharp increase in the effect levels. These are nanotechnological solutions that lead to Lotus structured surfaces, which primarily increase the oil and dirt repellency (W. Barthlott, C. Neinhuis, Only what is rough, is self-clean, Technical Review No. 10 (1999), Pp. 56-57). A relevant "key technology" for the textile industry is the process described in the patent EP 1, 268,919, which builds on the self-organization of methylated or fluorinated nanoparticles, by the during the drying phase, applied to the fabric layer, lotus structures arise. The hydrophobization layers produced by this process show heptane-measured contact angles of 70-90 ° in comparison with only consisting of fluorocarbon resin layers having a contact angle of 40-60 °. The contact angle determination is carried out according to a measuring method developed for the characterization of lotus structures: O. Marte, M. Hochstrasser, Characterization of "Lotus-Structured Fiber and Fabric Surfaces, Melliand Textilberichte 10/2005, S. 746-750.
Der Nachteil der ausschliesslich mit Fluorkarbon harz ausgerüsteten Gewebe liegt im Vergleich mit Lotus-Strukturen aufweisenden Schichten in deren niedrigeren Öl- und Schmutzabweisung.The disadvantage of exclusively equipped with fluorocarbon resin fabric is compared with lotus structures having layers in their lower oil and soil repellency.
Der Nachteil heutiger Lotus-Strukturen tragender Ausrüstungen liegt in deren Formulierungen, die zur Einarbeitung methylierter und/oder fluorierter Partikel erhebliche Mengen geeigneter Dispergatoren erfordern (Patentschrift EP 1 ,268,919), die ausnahmslos das Effektniveau der Funktionsschichten absenken. Ein weiterer Nachteil besteht in der nicht einfach zu realisierenden Einhaltung der verfahrenstechnischen Bedingungen, die zur Selbstorganisation (gezielte Agglomeration) der Nanopartikel bzw. zu den erwünschten Lotus-Strukturen führen (O. Marte, U. Meyer, Neue Testverfahren zur Bewertung hydrophober und superhydrophober Ausrüstungen, Melliand Texti I berichte 10/2006, S. 732-735). Dies ist auch der Grund weshalb hydrophobe Multifunktionsschichten bis heute keinen industriellen Eingang gefunden haben. Besonders erwähnenswert sind die antistatische und bakterizide Funktion. Ein weiterer sehr wesentlicher Nachteil sind die hohen Kosten, entsprechend modifizierter Nanopartikel und die bei deren Verarbeitung notwendigen Sicherheitsvorkehrungen, die eine Minimierung des Nanopartikelanteils in den Formulierungen erforderlich machen.The disadvantage of today's lotus structures-bearing equipment lies in their formulations, which for the incorporation of methylated and / or fluorinated particles considerable Require amounts of suitable dispersants (patent EP 1, 268.919), which invariably lower the level of effect of the functional layers. A further disadvantage is the non-compliance with the procedural conditions which lead to self-organization (targeted agglomeration) of the nanoparticles or to the desired lotus structures (O. Marte, U. Meyer, New Test Methods for Evaluating Hydrophobic and Superhydrophobic Finishes , Melliand Texti I reports 10/2006, p. 732-735). This is also the reason why hydrophobic multifunctional layers have not yet found an industrial input. Particularly noteworthy are the antistatic and bactericidal function. Another very significant disadvantage is the high cost, correspondingly modified nanoparticles and the necessary safety precautions during their processing, which necessitate a minimization of the nanoparticle content in the formulations.
Eine weitere Aufgabe besteht in der zur Verfügungstellung einer Formulierungstechnik, die den Einsatz verschiedener Partikelkomposite mit unterschiedlichen Funktionen zulässt. Beispielsweise sei die hydrophobe und bakterizide Funktion erwähnt, vereinigt in der gleichen Ausrüstungsschicht.Another object is to provide a formulation technique that allows the use of different particle composites with different functions. For example, mention may be made of the hydrophobic and bactericidal function combined in the same finishing layer.
Es ist die Aufgabe der Erfindung eine nicht-nanotechnologisch, lotus-strukturierte Ausrüstungsschicht insbesondere zur Hydro- und Oleophobierung und zur Schmutzabweisung anzugeben und herzustellen, die mindestens so gute bzw. bessere Ausrüstungseffekte im Vergleich mit einem nanotechnologischen Lösungsansatz ergibt.It is the object of the invention to specify and produce a non-nanotechnological, lotus-structured finishing layer, in particular for hydro- and oleophobization and soil repellence, which yields at least as good or better finishing effects in comparison with a nanotechnological approach.
Eine weitere Aufgabe der Erfindung ist es, dem Textilveredler ein Mikropartikel- Komposit zur Verfügung zu stellen, welches es ihm erlaubt, ein von ihm frei vorgegebenes Hydrophobierungsmittel, insbesondere ein Fluorkarbonharz mit dem Parti- kel-Komposit zu kombinieren und die Formulierung standardmässig auf das Gewebe zu applizieren, trocknen und zu fixieren. Für die Trocknungs- und Fixierbedingungen sind nur und ausschliesslich die Einhaltung der vom Reaktionssystem vorgegebenen Bedingungen gefordert. Dies unterscheidet sich zu bestehenden, nach nanotechnologischen Prinzipien arbeitenden Verfahren, die zur Ausbildung von Lotusstrukturen spezielle Formulierungs- und Verfahrensbedingungen benötigen. Die Lösung der Aufgabe wird durch die Herstellung eines Partikei-Komposits erreicht, welches sowohl gleichartige (bezüglich Form und chemischer Zusammensetzung) als auch nicht-gleichartige (bezüglich Form und chemischer Zusammensetzung) und vorwiegend hydrophob getränkte und/oder beschichtete, unterschiedlich grosse Mikro- und allenfalls Nanopartikel (0.01 - 10 μm) enthält. Durch diese Kombination von getränkten und/oder beschichteten, unterschiedlich grossen Mikro- und allenfalls Nanopartikeln resultieren Hyperstrukturen, die zu einer Verbesserung des Öl und Schmutz abweisenden Effektes führen. Die unterschiedlichen Grossen werden beispielsweise durch unterschiedlich geführte Mahlprozesse hergestellt und führen in der Mischung in der Regel zu einer bi- oder multimodalen Partikelgrössenverteilung im Partikel-Komposit. Dadurch wird die Basis zur Ausbildung dem Phänotypus ähnlicher Strukturen auf Textiloberflächen vorgegeben. Durch unterschiedlich geführte Dispergier- und/oder Mahlprozesse resultieren Partikelgrössen, die sich bis zu zwei Zehnerpotenzen unterscheiden. Überdies resultiert durch die Anwesenheit beschichteter, nicht gezielt agglomerierter Mikropartikel eine Verbesserung der Scheuerfestigkeit, in deren Folge auch die Waschbeständigkeit des Repellent-Effektes (Abstossungseffektes) erhöht wird.A further object of the invention is to make available to the textile finisher a microparticle composite which allows it to combine a hydrophobizing agent of its own free choice, in particular a fluorocarbon resin, with the particulate composite and the formulation by default to the fabric to apply, dry and fix. For the drying and fixing conditions, only and exclusively compliance with the conditions prescribed by the reaction system is required. This differs from existing nanotechnology-based processes which require special formulation and process conditions to form lotus structures. The object is achieved by the production of a Partikei composite, which both similar (in terms of shape and chemical composition) and non-homogeneous (in terms of shape and chemical composition) and predominantly hydrophobic impregnated and / or coated, different sized micro and at most nanoparticles (0.01 - 10 microns) contains. Through this combination of impregnated and / or coated, different sized micro- and at most nanoparticles resulting in hyperstructures, which lead to an improvement of the oil and dirt repellent effect. The different sizes are produced, for example, by differently guided grinding processes and generally lead to a bimodal or multimodal particle size distribution in the particle composite in the mixture. This provides the basis for the formation of the phenotype of similar structures on textile surfaces. Differently guided dispersing and / or grinding processes result in particle sizes that differ by up to two orders of magnitude. Moreover, the presence of coated, non-specifically agglomerated microparticles results in an improvement in the abrasion resistance, as a result of which the washing resistance of the repellent effect (repellent effect) is also increased.
Der Begriff 'nicht-nanotechnologisch' hergestellte Ausrüstungsschicht ist deshalb von Wichtigkeit, da es sich bei der Herstellung dieser Schicht, bzw. des zur Schichtbildung verwendeten Partikei-Komposits um eine Top-down-Technologie und nicht um eine Bottom-up-Technologie handelt (Der Brockhaus Naturwissenschaft und Technik, Bd. 2, S. 1376-1377, Spektrum Akademischer Verlag GmbH Heidelberg (2003)). Im Folgenden steht der Begriff Ηydrophobierungsmittel' stellvertretend für oleopho- bierende und schmutzabweisende Chemikalien.The term 'non-nanotechnological' finishing layer is of importance because the production of this layer or of the particulate composite used for layering is a top-down technology and not a bottom-up technology ( The Brockhaus Natural Science and Technology, Vol. 2, pp. 1376-1377, Spektrum Akademischer Verlag GmbH Heidelberg (2003)). In the following, the term "hydrophobizing agent" is representative of oleophobic and dirt repellent chemicals.
Ein zweiter erfindungsgemässer Lösungsansatz besteht in der Partikel-Tränkung, im Partikelcoating bzw. in der Beschichtungstechnik der Partikel. Durch den Einsatz von reaktiven Polymeren als Tränkungs- und/oder Coatingmasse ist es möglich, den Partikeloberflächen dieselben physikalischen und chemischen Eigenschaften zu geben, wie sie in der Hostmatrix der Ausrüstungsschicht vorherrschend sind (z.B. ein und dasselbe Fluorkarbonharz). Dadurch werden vorzeitige Phasenseparationen in der Ausrüstungsflotte aber auch auf dem Textilsubstrat vermieden. Diese sind der Grund für einen anisotropen Schichtaufbau, der wiederum zu massiven Effekteinbussen führt (O. Marte, U. Meyer, Neue Testverfahren zur Bewertung hydrophober und superhydrophober Ausrüstungen, Melliand Textilberichte 10/2006, S. 732-735). Ein derartiger Partikelüberzug besteht vorzugsweise aus mehreren, übereinander liegenden Schichten von unterschiedlichen Polymeren mit unterschiedlichen Funktionalitäten. Der Schichtaufbau ist so zu wählen, dass die die Partikelporen füllende Schicht die grösste Affinität zur inneren Partikeloberfläche besitzt und die oberste, die Partikel umhüllende Schicht die der Hostmatrix ähnlichsten Eigenschaften zeigt. Die oberste Schicht wird in der Regel durch das Hydrophobierungspolymer gebildet, welches auch in der Ausrüstungsschicht die Hostmatrix darstellt. Bei sämtlichen, in der Tränkungs- bzw. Coatingmasse befindlichen Polymeren handelt es sich um Reaktivgruppen tragende Verbindungen, die im Verlaufe des Ausrüstungsprozesses waschfest vernetzt werden.A second inventive approach consists in the particle impregnation, particle coating or in the coating technique of the particles. The use of reactive polymers as impregnating and / or coating compositions makes it possible to give the particle surfaces the same physical and chemical properties as are prevalent in the host matrix of the finishing layer (for example, one and the same fluorocarbon resin). This avoids premature phase separations in the equipment fleet but also on the textile substrate. These are the reason for an anisotropic layer structure, which in turn leads to massive effects losses (O. Marte, U. Meyer, New test methods for the evaluation of hydrophobic and superhydrophobic finishes, Melliand Textilberichte 10/2006, p. 732-735). Such a particle coating preferably consists of several, superimposed layers of different polymers with different functionalities. The layer structure should be selected such that the layer filling the particle pores has the greatest affinity for the inner particle surface, and the uppermost layer enveloping the particles shows the properties that are most similar to the host matrix. The uppermost layer is typically formed by the hydrophobing polymer, which also constitutes the host matrix in the finish layer. All of the polymers present in the impregnating or coating mass are compounds carrying reactive groups, which are crosslinked in a wash-fast manner during the finishing process.
Eine weiterer Lösungsansatz zur Erzeugung von Hyperstrukturen auf der Oberfläche der Mikropartikel, bzw. der Ausrüstungsschicht ist die Einlagerung von Substanzen, die in Folge eines Phasenwechsels und/oder einer thermischen Zersetzung gasförmige Produkte bilden. Beispielsweise der Einsatz eines über 1000C siedenden, vorwiegend apolaren, aprotischen Lösungsmittels in das Partikelcoating, welches beim Austritt aus den Mikropartikeln während der Trocknung nanoskalige Strukturen hinterlässt. Eine analoge Wirkung wird durch den Einsatz Stickstoff, CO2 oder Ammoniak abspaltender Verbindungen (z.B. Radikalstarter, Hydrogenkarbonate oder Ammoniumsalze) erreicht, die anstelle des Lösungsmittels eingesetzt werden.Another approach for generating hyperstructures on the surface of the microparticles, or the finishing layer is the incorporation of substances that form gaseous products as a result of a phase change and / or a thermal decomposition. For example, the use of an above 100 0 C boiling, predominantly apolar, aprotic solvent in the particle coating, which leaves on exit from the microparticles during drying nanoscale structures. An analogous effect is achieved by the use of nitrogen, CO 2 or ammonia-releasing compounds (eg, radical starter, hydrogencarbonates or ammonium salts), which are used in place of the solvent.
Eine weiterer Lösungsansatz der Erfindung ist es, ausgehend von kostengünstigen, nicht chemisch modifizierten Polykieselsäuren (1 - 50 μm), diese Emulgator frei SΘ zu beschichten. Damit sind sie einerseits vom Textilausrüster problemlos zu verarbeiten und andererseits mit der hydrophoben Hostmatrix chemisch zu vernetzen. Unberücksichtigt hierbei sind allfällige in Fluorkarbonharzen enthaltene Tenside. Ein besonderes Merkmal der Erfindung ist die Herstellung eines emulgatorfreien Partikel-Komposits als wesentlicher Faktor zur Verbesserung der diesbezüglichen Effekte. Dispergatoren und Emulgatoren als amphiphile Substanzen lagern sich in die hydrophob auszubildende Grenzschicht ein und sorbieren bzw. transportieren so, vom Ausrüstungssinn entfremdet, die prinzipgemäss abzuweisenden Substanzen, in das Textilgut. Ein weiterer Vorteil der Emulgator freien Formulierung ist der geringe LAD-Effekt ('Laundry/Air Dry', M. Rasch, et al., Melliand Textilberichte 6/2005, S. 456-459), der eine Folge der Wassersorption durch die Hydrophobierungsschicht ist. Durch die Anwesenheit von amphiphilen Substanzen in der Ausrüstungsschicht wird das Wasser aufgrund seines Dipolcharakters und der Ausbildung von Wasserstoffbrücken physikalisch/chemisch gebunden. Dadurch bedarf es erhöhten Temperaturen, um das Wasser wieder zu desorbieren und so den Hydrophobierungseffekt wieder zu regenerieren.Another approach of the invention is, starting from cost-effective, not chemically modified polysilicic acids (1 - 50 microns) to coat this emulsifier free SΘ. On the one hand, they can be easily processed by textile suppliers and, on the other hand, chemically crosslinked with the hydrophobic host matrix. Disregarded here are any surfactants contained in fluorocarbon resins. A particular feature of the invention is the production of an emulsifier-free particulate composite as an essential factor for improving the effects thereof. Dispersants and emulsifiers as amphiphilic substances are deposited in the hydrophobically formed boundary layer and sorb or transport so, from Equipment sense estranged, the principle rejecting substances in the textile. Another advantage of the emulsifier free formulation is the low LAD effect ('Laundry / Air Dry', M.Rasch, et al., Melliand Textile Reports 6/2005, pp. 456-459), which is a consequence of water sorption through the hydrophobing layer is. Due to the presence of amphiphilic substances in the finish layer, the water is physically / chemically bound because of its dipole character and the formation of hydrogen bonds. This requires elevated temperatures in order to desorb the water again and thus to regenerate the hydrophobing effect again.
Erfindungsgemäss wird den heute bekannten, einfachen Lotus-Strukturen eine dem Phänotypus ähnlichere Struktur gegeben (Erzeugung einer Hyperstruktur, W. Barthlott et al., Der Lotus-Effekt: Selbstreinigende Oberflächen nach dem Vorbild Natur, ITB International Textile Bulletin 1/2001 , S. 8-12), um damit bezüglich der Öl- und Schmutzabweisung eine weitere Effektsteigerung im Vergleich mit bekannten erzielbaren Lotus strukturierten Beschichtungen zu erzielen.According to the present invention, the simple lotus structures known today are given a structure which is more similar to the phenotype (generation of a hyperstructure, W. Barthlott et al., The Lotus Effect: Self-Cleaning Surfaces Modeled on Nature, ITB International Textile Bulletin 1/2001, p. 8-12) to further increase the effect of oil and soil repellency in comparison with known achievable Lotus structured coatings.
Die Herstellung des Partikel-Komposits kann sowohl als ein einstufiger als auch als mehrstufiger Coatingprozess durchgeführt werden.The production of the particle composite can be carried out both as a single-stage and as a multi-stage coating process.
Der einstufige Coatingprozess beinhaltet die Adsorption eines Polymers, bzw. von Polymeren aus einer vorwiegend wässrigen Phase. In diesem Fall sollten die Polymere mit der Partikeloberfläche eine chemische Bindung eingehen, um hohe Waschpermanenzen zu erzielen. Dies bedingt, dass die Partikel im selben Prozessschritt mit Hydroxyl- oder Amino-terminierten Silylverbindungen modifiziert werden. Ein allfälliger Zusatz von Vernetzungschemikalien, wie z.B. Isocyanate oder α-Aminoalkylierungs- produkte, ist abhängig von den Reaktionsmöglichkeiten der eingesetzten Polymeren.The single-stage coating process involves the adsorption of a polymer, or polymers of a predominantly aqueous phase. In this case, the polymers should chemically bond with the particle surface to achieve high wash permanence. This requires that the particles are modified in the same process step with hydroxyl or amino-terminated silyl compounds. Any addition of crosslinking chemicals, e.g. Isocyanates or α-aminoalkylation products, depends on the reaction possibilities of the polymers used.
Im Rahmen eines zweistufigen Coatingprozesses werden die Partikel in einem ersten Schritt mit einer Lösung eines Amino- und/oder Hydroxylgruppen haltigen, vorzugsweise eines verzweigten in Wasser unlöslichen Polymers in gelöster Form auf der Partikeloberfläche getränkt. Das Polymer ist in der Regel in einem polaren, protischen und/oder in einem unpolaren, nicht protischen Lösungsmittel löslich. In dieser Beschichtungslösung können auch allfällige Hyperstrukturen ausbildende Ingredienzien enthalten sein wie z.B. spezielle Lösungsmittel und/oder N2, CO2 oder NH3 abspaltende Substanzen. Dieser Polymerlösung wird zusätzlich ein Vernetzersystem zugesetzt. Erst bei Temperaturen über 80 °C führt dies zur Vernetzung des Polymers, bzw. zur Vernetzung des im und auf der Partikeloberfläche sorbierten Polymers mit dem die Hostmatrix bildenden Hydrophobierungsmittel.In the context of a two-stage coating process, the particles are impregnated in a first step with a solution of an amino- and / or hydroxyl-containing, preferably branched, water-insoluble polymer in dissolved form on the particle surface. The polymer is usually in a polar, protic and / or soluble in a non-polar, non-protic solvent. In this coating solution also any hyperstructure-forming ingredients may be included such as special solvents and / or N 2 , CO 2 or NH 3 releasing substances. This polymer solution is additionally added a crosslinker system. Only at temperatures above 80 ° C. does this result in crosslinking of the polymer or crosslinking of the polymer sorbed in and on the particle surface with the hydrophobizing agent forming the host matrix.
Der zweite Schritt dient zur Herstellung einer zweiten Coatingschicht. Er besteht in der Adsorption des Hydrophobierungsmittels, vorzugsweise eines Fluorkarbonharzes, aus wässriger Emulsion. Erfindungsgemäss können auch hier allfällige Hyperstrukturen ausbildende Ingredienzien zugesetzt werden.The second step is used to produce a second coating layer. It consists in the adsorption of the hydrophobing agent, preferably a fluorocarbon resin, from aqueous emulsion. According to the invention, any hyperstructure-forming ingredients can also be added here.
Der dreistufige Coatingprozess besteht in der ersten Stufe aus einer chemischen Partikelmodifikation mit Amino- und/oder Hydroxyl- oder Glycidylgruppen terminierten Silylverbindungen, die der späteren Vernetzung mit der zweiten Coatingschicht dienen. Die zweite und dritte Coatingschicht zeigt einen analogen Aufbau wie er zuvor beschrieben wurde.The three-stage coating process consists in the first stage of a chemical particle modification with amino and / or hydroxyl or glycidyl-terminated silyl compounds, which serve the subsequent crosslinking with the second coating layer. The second and third coating layers have an analog structure as described above.
Die Partikelbenetzung mit den Ingredienzien der ersten Coatingschicht erfolgt vorteilhafterweise mit Rühraggregaten, während die weiteren Schritte in Mahlaggregaten durchgeführt werden. Bei den nach der Partikelbenetzung erfolgenden Mahloperationen (einstufig oder mehrstufig), werden die Mikropartikel von einer ursprünglichen Grosse von 1 - 50 μm auf die gewünschte Grosse verkleinert. Diese liegt im Bereich von 0.01 - 2 μm vorzugsweise im Bereich von 0.3 - 0.9 μm, wobei vorzugsweise eine bimodale Partikelgrössenverteilung eingestellt wird, z.B. 0.4 und 0.8 μm. Das auf diese Weise hergestellte Partikel-Komposit besitzt eine Partikelkonzentration von 5 - 20 %, vorzugsweise von 10 - 12 % und zeigt aufgrund des Partikelcoatings und der erhöhten Viskosität praktisch keine Sedimentationsneigung. Dies trotz der Abwesenheit von Dispergatoren, womit der sonst übliche, den Hydrophobierungseffekt störende Einfluss eliminiert ist.The particle wetting with the ingredients of the first coating layer is advantageously carried out with stirring units, while the further steps are carried out in grinding units. In the Mahloperationen carried out after the particle wetting (single-stage or multi-stage), the microparticles are reduced from an original size of 1 - 50 microns to the desired size. This is in the range from 0.01 to 2 μm, preferably in the range from 0.3 to 0.9 μm, wherein preferably a bimodal particle size distribution is set, e.g. 0.4 and 0.8 μm. The particle composite prepared in this way has a particle concentration of 5 to 20%, preferably 10 to 12%, and shows virtually no sedimentation tendency due to the particle coating and the increased viscosity. This despite the absence of dispersants, with which the otherwise usual, the hydrophobing effect disturbing influence is eliminated.
Die zur Herstellung des Partikel-Komposits verwendeten Partikel sind bevorzugt poly- mere Kieselsäuren, die in speziellen Verfahrensschritten, z.B. durch sequentiell durchgeführte Mahlprozesse, auf die gewünschte Grosse verkleinert werden. Dabei kann das gemahlene Produkt eine multimodale Partikelgrössenverteilung aufweisen. Neben den polymeren Kieselsäuren kommen auch Metalloxide wie z.B. AI2O3 oder Zirkoniumoxide bzw. Mischoxide zur Anwendung. Zur Erzielung einer bakteriziden oder fungiziden Funktion können beispielsweise die Siliziumdioxidpartikel mit elementarem Silber oder Kupfer und/oder deren Oxide beladen werden oder die entsprechenden Metallionen komplexiert enthalten.The particles used for the production of the particle composite are preferably polymeric silicic acids which are used in special process steps, for example by sequential performed grinding processes are reduced to the desired size. The milled product may have a multimodal particle size distribution. In addition to the polymeric silicas, metal oxides such as Al 2 O 3 or zirconium oxides or mixed oxides are also used. To achieve a bactericidal or fungicidal function, for example, the silicon dioxide particles can be loaded with elemental silver or copper and / or their oxides or contain the corresponding complexed metal ions.
Als weitere Möglichkeit eine multimodale Partikelgrössenverteilung zu erzielen, ist das Mischen von beispielsweise nach dem Flammverfahren (Hochtemperaturhydrolyse von Chlorsilanen) hergestellten Nanopartikeln mit einer Primärteilchengrösse von 10 - 30 nm. Dies in Kombination mit Partikeln, die im Top-down-Verfahren beispielsweise mittels eines Mahlprozesses auf die Grosse von 500 - 700 nm eingestellt werden.Another possibility for achieving a multimodal particle size distribution is the mixing of nanoparticles produced, for example, by the flame process (high-temperature hydrolysis of chlorosilanes) with a primary particle size of 10 to 30 nm. This in combination with particles which are in the top-down process, for example by means of a milling process be set to the size of 500 - 700 nm.
Zur Partikelmodifikation werden Amino-, Hydroxyl-, Thiol- oder Glycidylgruppen tragende Silylverbindungen eingesetzt. Bevorzugt eingesetzte Verbindungen sind: N-2-Aminoethyl-3-Aminopropyltrimethoxysilan, 3-Aminopropylmethyltriethoxysilan, Bis(3-Trimethoxysilylpropyl)amin, Triamino funktionelles Propyltrimethoxysilan, PoIy- etherpropyltrimethoxysilane, 3-Mercaptopropyltrimethoxysilan und 3-Glycidyloxypropyl- trimethoxysilan. Die Einsatzmengen der erwähnten Silylverbindungen betragen 0.2 - 10%, bevorzugt 0.8 - 5% bezogen auf die Partikel masse.For particle modification, silyl compounds carrying amino, hydroxyl, thiol or glycidyl groups are used. Preferred compounds used are: N-2-aminoethyl-3-aminopropyltrimethoxysilane, 3-aminopropylmethyltriethoxysilane, bis (3-trimethoxysilylpropyl) amine, triamino functional propyltrimethoxysilane, polyetherpropyltrimethoxysilanes, 3-mercaptopropyltrimethoxysilane and 3-glycidyloxypropyltrimethoxysilane. The amounts used of the mentioned silyl compounds are 0.2-10%, preferably 0.8-5%, based on the particle mass.
Als Hydroxyl- oder Aminogruppen haltige Polymere werden z.B. derivatisierte PoIy- acrylate, Polyester und Polyurethane eingesetzt, deren Löslichkeit in Wasser kleiner 10 % vorzugsweise kleiner 1 % ist. Solche Produkte finden bis heute in der Textilindustrie kaum eine Anwendung. Die Einsatzmengen für die erwähnten Polymere betragen 1 - 40 %, bevorzugt 10 - 30 % bezogen auf die Partikelmasse.As hydroxyl or amino-containing polymers are e.g. derivatized polyacrylates, polyesters and polyurethanes whose solubility in water is less than 10%, preferably less than 1%. Such products are still rarely used in the textile industry. The amounts used for the mentioned polymers are 1 to 40%, preferably 10 to 30%, based on the particle mass.
Bei den Hydrophobierungschemikalien handelt es sich sowohl um fettmodifizierte Melaminderivate, Polyacrylate und Polyurethane mit einer Fettkohlenwasserstoffkette von C3 - C24, bevorzugt von C16 - C20 als auch um perfluorierte Fettkohlenwasserstoffharze mit einer perfluorierten Fettkohlenwasserstoffkette von C2 - C12, bevorzugt C4 - C8, und Silikonharze. Die Einsatzmengen dieser Produktemulsionen zur Aus- bildung einer Coatingschicht um die Partikel hängen von deren Trockensubstanzgehalt ab, der im Bereich von 10 - 30 % liegt. Die Trockensubstanz bezogenen Einsatzmengen solcher Produkte liegen bei 10 - 100 %, bevorzugt 20 - 50 % bezogen auf die Partikelmasse.The hydrophobicizing chemicals are both fat-modified melamine derivatives, polyacrylates and polyurethanes having a fatty hydrocarbon chain of C 3 -C 24 , preferably C 16 -C 20 , and perfluorinated fatty hydrocarbon resins having a perfluorinated fatty hydrocarbon chain of C 2 -C 12 , preferably C 4 - C 8 , and silicone resins. The quantities of these product emulsions Formation of a coating layer around the particles depends on their dry matter content, which is in the range of 10 to 30%. The dry matter-related amounts of such products are 10 to 100%, preferably 20 to 50%, based on the particle mass.
Typische für diesen Zweck geeignete Handelsprodukte sind: Softgard M3 (soft chemicals, Italien), Oleophobol 7752 (Huntsman, Deutschland), Ruco-Gard AIR und Ruco-Dry DHY (Rudolf Chemie, Deutschland).Typical commercial products suitable for this purpose are: Softgard M3 (soft chemicals, Italy), Oleophobol 7752 (Huntsman, Germany), Ruco-Gard AIR and Ruco-Dry DHY (Rudolf Chemie, Germany).
Als Vernetzer zur chemischen Fixierung, der für das Partikelcoating eingesetzten Polymeren, werden vorwiegend Polyisocyanate und α-Aminoalkylierungsprodukte eingesetzt. Bei Carboxylgruppen tragenden Coatingpolymeren werden als Vernetzer multifunktionelle Aziridine eingesetzt.As crosslinkers for chemical fixation, the polymers used for the particle coating, predominantly polyisocyanates and α-aminoalkylation products are used. In the case of coating polymers carrying carboxyl groups, multifunctional aziridines are used as crosslinkers.
Unter den Isocyanaten sind es vor allem die mehrfach funktionellen Isocyanate die zur Anwendung gelangen (R-(N=C=O)n; n = 2 bis 4). Beispiele typischer Vernetzer sind: 1 ,6-Diisocyanatohexan (Bayer MaterialScience, Deutschland), 3-lsocyanatomethyl- 3,5,5-trimethylcyclohexylisocyanat (Hüls, Deutschland) oder Uretdion des 2,4-Diiso- cyanatotoluols (Bayer MaterialScience, Deutschland).Among the isocyanates, it is above all the polyfunctional isocyanates which are used (R (N = C = O) n ; n = 2 to 4). Examples of typical crosslinkers are: 1,6-diisocyanatohexane (Bayer MaterialScience, Germany), 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate (Hüls, Germany) or uretdione of 2,4-diisocyanatotoluene (Bayer MaterialScience, Germany).
Der Einsatz der α-Aminoalkylierungsprodukte konzentriert sich heute vor allem auf Ethylenharnstoff- und Melaminderivate, die sowohl als Methylol als auch als veretherte Produkte im Handel sind. Beispiele sind Knittex FEL und Lyofix CHN (Huntsman, Deutschland).The use of the α-aminoalkylation products today focuses primarily on ethyleneurea and melamine derivatives, which are commercially available both as methylol and as etherified products. Examples are Knittex FEL and Lyofix CHN (Huntsman, Germany).
Die Aziridine unterteilen sich in aliphatische und aromatische, die beide Verwendung finden. Typische Vertreter aliphatischer Propyleniminderivate sind: 1 ,1 '-Azelaoyl -bis -(2-methylaziridin) und N,N',N",N'"-Tetrapropylen-1 ,2,3,4-butantetracarbonsäureamid. Typische Vertreter aromatischer Propyleniminderivate sind: Toluol-2,6-dipropylen- harnstoff (TPH) oder Diphenylmethan-bis-4,4'-N,N'-dipropylenharnstoff.The aziridines are divided into aliphatic and aromatic, both of which are used. Typical representatives of aliphatic propylenimine derivatives are: 1, 1'-azelaoyl-bis- (2-methylaziridine) and N, N ', N ", N'" - tetrapropylene-1,2,3,4-butanetetracarboxamide. Typical representatives of aromatic propylenimine derivatives are: toluene-2,6-dipropyleneurea (TPH) or diphenylmethane-bis-4,4'-N, N'-dipropyleneurea.
Das so hergestellte Partikel-Komposit, bzw. Repellent-Komposit wird beim Textilver- edler in dem von ihm verwendeten Host-Komposit (z.B. ein Fluorkarbonharz mit weiteren Ingredienzien) dispergiert und in dieser Form auf das Gewebe appliziert. Die detaillierten Reaktions- und Verfahrensbedingungen werden durch das verwendete Hydrophobierungsmittel und das eingesetzte Vemetzersystem vorgegeben. Durch die Art der Kompositherstellung und aufgrund der dazu verwendeten Ingredienzien ist das Partikel-Komposit mit unterschiedlichsten Host-Matrizen kombinierbar, womit neben der Repellentfunktion zusätzliche Funktionen, sogenannte 'Schicht intrinsische Funktionen' resultieren. Dies sind beispielsweise sehr hohe Ölabweisungen bei leicht reduzierten Hydrophobierungseffekten wie sie für Schutzbekleidungen für Armee und Polizei benötigt werden. Eine andere Kombination stellt die Verwendung des Partikel-Komposits in Kombination mit einer hydrophil dominierten Hostmatrix dar, wobei solche Formulierungen bei Soil-release Ausrüstungen zur Anwendung gelangen. Ähnliche Kombinationen können für antistatische, bakterizide, scheuerfeste und flammhemmende Ausrüstungen formuliert werden, wobei sich immer eine hydrophobe, Schmutz abweisende Grenzschicht auf dem Textilgut ausbildet.The particle composite or repellent composite produced in this way is dispersed in the textile composite in the host composite used by it (for example a fluorocarbon resin with further ingredients) and applied in this form to the tissue. The detailed reaction and process conditions are determined by the Presaturated hydrophobing agent and the used Vemetzersystem. Due to the nature of the composite preparation and the ingredients used for this purpose, the particle composite can be combined with a wide variety of host matrices, resulting in addition to the repellent function additional functions, so-called 'layer intrinsic functions'. These are, for example, very high oil rejections with slightly reduced hydrophobing effects as they are needed for protective clothing for army and police. Another combination is the use of the particle composite in combination with a hydrophilically dominated host matrix, such formulations being used in soil release equipment. Similar combinations can be formulated for antistatic, bactericidal, abrasion-resistant and flame-retardant finishes, whereby a hydrophobic, dirt-repellent boundary layer always forms on the textile material.
Bedingt durch die emulgatorfreie Formulierung und die Verwendung verschiedener Partikelpopulationen, die im Partikel-Komposit zu einer multimodalen Partikelgrössen- verteilung führen und die erwähnten Hyperstrukturen ausbilden, resultieren bei Fluorkarbonharz haltigen Ausrüstungsschichten Beregnungsnoten von 5 (gemäss Bundesmanntest) und Kontaktwinkel mit Heptan von über 100 °. Dies ist überraschend, denn heute bekannte Lotus-Strukturen tragende Ausrüstungen weisen Kontaktwinkel mit Heptan von 70 - 90 ° auf. In Fluorkarbonharz freien Ausrüstungsschichten werden Kontaktwinkel mit Wasser von über 100 ° erzielt.Due to the emulsifier-free formulation and the use of different particle populations, which lead to a multimodal particle size distribution in the particle composite and form the mentioned hyperstructures, fluorination resin containing finish layers result in sprinkling scores of 5 (according to the federal man test) and contact angle with heptane of more than 100 °. This is surprising, because today known Lotus structures bearing equipment have contact angle with heptane of 70 - 90 °. In fluorocarbon resin-free finishing layers contact angles with water of over 100 ° are achieved.
Beispiel 1 : Hydrophobieren von Polyestergeweben für den Outdoorbereich.Example 1: Hydrophobing of polyester fabrics for outdoor use.
Ein Polyestergewebe mit einem Quadratmetergewicht von 190 g wird durch einen Teilverseifungsprozess (Verseifungsgrad ca. 0.1 %) mit 30 g/l Natronlauge 100 % hydrophiliert. Das so vorbehandelte Gewebe wird mit einer Hydrophobierungsflotte imprägniert, wobei ein 54 %iger Flottenauftrag resultiert.A polyester fabric with a grammage of 190 g is hydrophilized by a partial saponification process (degree of saponification approx. 0.1%) with 30 g / l sodium hydroxide 100%. The pretreated fabric is impregnated with a hydrophobizing liquor, resulting in a 54% liquor application.
Im Anschluss an den Flottenauftrag erfolgt die Gewebetrocknung bei 110 - 120 °C, gefolgt vom Kondensationsprozess, der bei 150 - 160 0C während 2 Minuten durchgeführt wird. Die Ingredienzien der Hydrophobierungsflotte sind: Partikelkomposit-Formulierung einstufig hergesteiit: 100 g/kg Sident 10 (Degussa, Deutschland)Following the application of liquor, the fabric is dried at 110-120 ° C, followed by condensation process at 150-160 0 C for 2 minutes is performed. The ingredients of the hydrophobizing liquor are: Particle composite formulation produced in one stage: 100 g / kg Sident 10 (Degussa, Germany)
15 g/kg Desmophen 800 (Bayer MaterialScience, Deutschland)15 g / kg Desmophen 800 (Bayer MaterialScience, Germany)
70 g/kg Isopropanol70 g / kg isopropanol
20 g/kg Tubicoat Fixierer H24 (Bezema, Schweiz), intensiv vermischen, anschliessend Zugabe von: 110 g/kg Softgard M3 (soft Chemicals, Italien)20 g / kg Tubicoat fixer H24 (Bezema, Switzerland), intensive mixing, then addition of: 110 g / kg Softgard M3 (soft Chemicals, Italy)
685 g/kg Wasser, mahlen in einem Kugelmühlenaggregat während 30 Minuten.685 g / kg water, grind in a ball mill unit for 30 minutes.
Die Partikelformulierung zeigt eine monomodale, mittlere Partikelgrössenverteilung von 870 nm.The particle formulation shows a monomodal, mean particle size distribution of 870 nm.
Hydrophobierungsflotte:Water repellent finishing liquor:
60 g/l Partikel-Komposit, hergestellt im einstufigen Coatingprozess60 g / l particle composite, produced in a one-step coating process
18 g/l Lyofix CHN (ERBA, Schweiz)18 g / l Lyofix CHN (ERBA, Switzerland)
33 g/l Softgard M3 (soft chemicals, Italien)33 g / l Softgard M3 (soft chemicals, Italy)
7 g/l MgCI2 6 H2O7 g / l MgCl 2 6 H 2 O
10 g/l Isopropanol x 10 g / l isopropanol x
1 g/l Essigsäure1 g / l of acetic acid
871 g/l Wasser871 g / l of water
Die nach diesem Ausrüstungsverfahren erzielten, die Hydrophobierung und Schmutzabweisung charakterisierenden Messwerte sind in Tabelle 1 zusammengefasst.The measurements obtained by this finishing process and characterizing the hydrophobing and soil repellency are summarized in Table 1.
Tab. 1 Testwerte der Wasser abstossenden und Schmutz abweisenden AusrüstungTab. 1 Test values of water repellent and dirt repellent equipment
Testgrösse ungewaschen nach 10 Wäschen bei 60 0CTest Size unwashed after 10 washes at 60 0 C
Spraywerte (1) 100 % 100 %Spray values (1) 100% 100%
Beregnungsnoten (2) 5 5Springs notes (2) 5 5
Kontaktwinkel mit Heptan (3) 127 ° 113 Abrollwinkel mit Wasser 21 26Contact angle with heptane (3) 127 ° 113 Rolling angle with water 21 26
(1 ) Spraytest; AATCC 22 - 1996(1) spray test; AATCC 22 - 1996
(2) Bundesmann; DIN 53 888(2) Federal man; DIN 53 888
(3) Kontaktwinkel, O. Marte et al., Charakterisierung von "Lotus"-strukturierten Faserund Gewebeoberflächen(3) Contact angle, O. Marte et al., Characterization of "lotus" -structured fiber and tissue surfaces
Beispiel 2: Hydrophobieren von Polyester-Baumwollgeweben für Armee-Schutzanzüge.Example 2: Hydrophobizing Polyester Cotton Fabrics for Army Protective Suits.
Ein bedrucktes einseitig mit einer Membranfolie kaschiertes Polyester-Baumwollgewebe (Laminat), mit einem Quadratmetergewicht von 180 g, wird mittels eines Be- schichtungsprozesses hydrophobiert. Der Beschichtungsauftrag beträgt 43 % bezogen auf das Gewebetrockengewicht.A printed polyester-cotton fabric (laminate) laminated on one side with a membrane film, having a grammage of 180 g, is rendered hydrophobic by means of a coating process. The coating application is 43% based on the tissue dry weight.
Nach der Beschichtung erfolgt die Trocknung des Gewebes bei 110 - 130 0C, gefolgt vom Fixierprozess bei 150 - 160 °C während 2 Minuten.After coating, the drying of the fabric is carried out at 110-130 0 C, followed by the fixing process at 150-160 ° C for 2 minutes.
Partikelkomposit-Formulierung, hergestellt nach einem "Zweischichf'-Verfahren, bzw. in einem zweistufigen Coatingprozess:Particle composite formulation prepared according to a "two-layer process" or in a two-stage coating process:
1 ) 100 g/kg Sipemat D10 (Degussa, Deutschland) 10 g/kg Aerosil R972 (Degussa, Deutschland) 380 g/kg Isopropanol 24 g/kg Desmophen NH 1521 (Bayer MaterialScience, Deutschland) 20 g/kg Tubicoat Fixierer H24 (Bezema, Schweiz), intensiv mischen, mahlen während 30 Minuten,1) 100 g / kg Sipemat D10 (Degussa, Germany) 10 g / kg Aerosil R972 (Degussa, Germany) 380 g / kg isopropanol 24 g / kg Desmophen NH 1521 (Bayer MaterialScience, Germany) 20 g / kg Tubicoat fixer H24 ( Bezema, Switzerland), mix thoroughly, grind for 30 minutes,
2) anschliessende Zugabe von (in das Mahlaggregat):2) subsequent addition of (to the milling unit):
150 g/kg Oleophobol 7752 (ERBA, Schweiz) 336 g/kg Wasser, mahlen während 20 Minuten.150 g / kg Oleophobol 7752 (ERBA, Switzerland) 336 g / kg water, grind for 20 minutes.
Die Partikelformulierung zeigt eine bimodale Partikelgrössenverteilung mit mittleren Partikelgrössen von 470 und 820 nm.The particle formulation shows a bimodal particle size distribution with average particle sizes of 470 and 820 nm.
Hydrophobierungsflotte: 80 g/l Partikel-Komposit hergestellt im zweistufigen CoatingprozessWater repellent finishing liquor: 80 g / l particle composite produced in the two-stage coating process
65 g/l Oleophobol 7752 (ERBA, Schweiz)65 g / l Oleophobol 7752 (ERBA, Switzerland)
20 g/l Lyofix CHN (ERBA, Schweiz)20 g / l Lyofix CHN (ERBA, Switzerland)
5 g/l MgCI2 6 H2O5 g / l MgCl 2 6H 2 O
1.5 g/l Citronensäure1.5 g / l citric acid
10 g/l Isopropanol10 g / l isopropanol
1 g/l Essigsäure1 g / l of acetic acid
817.5 g/l Wasser817.5 g / l of water
Das auf diese Weise beschichtete Gewebe zeigt hervorragende Wasser und Öl abweisende Eigenschaften wie dies die Werte in der Tabelle 2 ausweisen.The fabric coated in this way exhibits excellent water and oil repellency properties, as indicated by the values in Table 2.
Tab. 2 Testergebnisse des hydro- und oleophob beschichteten GewebesTab. 2 Test results of the hydro- and oleophobic coated fabric
Testgrösse ungewaschen nach 10 Wäschen bei 60 0CTest Size unwashed after 10 washes at 60 0 C
Spraywerte (1) 100 % 100 %Spray values (1) 100% 100%
Beregnungsnoten (2) 5 5Springs notes (2) 5 5
Kontaktwinkel mit Heptan (3) > 160 ° 132 °Contact angle with heptane (3) > 160 ° 132 °
Abrollwinkel mit Wasser 16 ° 21 °Rolling angle with water 16 ° 21 °
(1 ) Spraytest; AATCC 22 - 1996(1) spray test; AATCC 22 - 1996
(2) Bundesmann; DIN 53 888(2) Federal man; DIN 53 888
(3) Kontaktwinkel, O. Marte et al., Charakterisierung von "Lotus"-strukturierten Faserund Gewebeoberflächen(3) Contact angle, O. Marte et al., Characterization of "lotus" -structured fiber and tissue surfaces
Beispiel 3: Hydrophobe und bakterizide Ausrüstung von Baumwollflächengebilden.Example 3: Hydrophobic and bactericidal finish of cotton fabrics.
Auf ein Baumwollgewirk mit einem Quadratmetergewicht von 130 g wird eine Imprägnierflotte appliziert, die sowohl ein die Gewebeoberfläche hydrophobierendes Partikelkomposit als auch ein bakterizides enthält. Der die Partikel umhüllende Schichtaufbau wird durch einen zweistufigen Coatingprozess erzielt (siehe Beispiel 2). Im Fall des Hydrophobierungskomposits sind es reine Siliziumdioxidpartikel, die mit einem vernetzbaren Polymer (Polyurethan, Dicrylan PGS, ERBA, Schweiz) und einem fettmodifizierten Melaminharz (C16 - C18, Phobotex FTC, ERBA, Schweiz) gecoatet werden, während für die bakterizide Funktion silberbeladene Siliziumdioxidpartikel (elementares oder komplexgebundenes Silber) in analoger Weise schichtaufbauend gecoatet werden. Die gecoateten Primärpartikelkomposite werden unterschiedlichen Mahlbedingungen unterzogen. Dadurch entsteht eine multimodale Partikelgrössenver- teilung. Die mittleren Primärpartikelgrössen betragen 7 μm (reine Siliziumdioxidpartikel, vor dem Mahlprozess) und 20 μm (silberbeladene Siliziumdioxidpartikel). Durch unterschiedliche Durchsatzraten der Partikelkomposite auf einer kontinuierlich betriebenen Kugelmühle wurden Verweilzeiten von fünf und acht Minuten erzielt, die in Kombination mit zwei unterschiedlichen Mahlkugelradien (1 mm und 0.6 mm) zu Partikelgrössenverteilungen führten, die zwischen 0.6 - 2 μm liegen.On a cotton fabric with a weight per square meter of 130 g, an impregnating liquor is applied which contains both a particle composite that repels the fabric surface and a bactericidal one. The layer structure enveloping the particles is achieved by a two-stage coating process (see Example 2). In the case of the hydrophobing composite, they are pure silica particles that co-react with a crosslinkable polymer (polyurethane, Dicrylan PGS, ERBA, Switzerland) and a fat-modified melamine resin (C 16 - C 18 , Phobotex FTC, ERBA, Switzerland), while for the bactericidal function silver-loaded silicon dioxide particles (elemental or complexed silver) in an analogous manner be layered coating. The coated primary particle composites are subjected to different grinding conditions. This results in a multimodal particle size distribution. The mean primary particle sizes are 7 μm (pure silicon dioxide particles, before the milling process) and 20 μm (silver-loaded silicon dioxide particles). Through different throughput rates of the particle composites on a continuously operated ball mill residence times of five and eight minutes were achieved, which led in combination with two different Mahlkugelradien (1 mm and 0.6 mm) to particle size distributions, which are between 0.6 - 2 microns.
Hydrophobierungsflotte:Water repellent finishing liquor:
80 g/l Siliziumdioxidpartikelkomposit hergestellt in einem ersten zweistufigen Coatingprozess80 g / l silica particle composite produced in a first two-stage coating process
75 g/l Phobotex FTC (ERBA, Schweiz)75 g / l Phobotex FTC (ERBA, Switzerland)
20 g/l Silber/Siliziumdioxidpartikelkomposit hergestellt in einem zweiten zweistufigen Coatingprozess20 g / l silver / silica particle composite produced in a second two-stage coating process
15 g/l Knittex FEL (ERBA, Schweiz)15 g / l Knittex FEL (ERBA, Switzerland)
8 g/l MgCI2 6H2O8 g / l MgCl 2 6H 2 O
2 g/l Weinsäure2 g / l tartaric acid
10 g/l Isopropanol10 g / l isopropanol
790 g/l Wasser790 g / l of water
Die Gewebeimprägnierung wurde mit einer Flottenbeladung von 76 % bezogen auf das Gewebetrockengewicht durchgeführt. Der Trocknungs- und Kondensationsprozess erfolgte auf einem Spannrahmen bei 120 bzw. 160 °C. Tab. 3 Testergebnisse des hydrophobierten, bakteriziden GewebesTissue impregnation was carried out with a load of 76% on dry tissue weight. The drying and condensation process took place on a tenter at 120 or 160 ° C. Tab. 3 Test results of the hydrophobicized, bactericidal tissue
Testg rosse ungewaschen nach 1Testg unwashed after 1
Spraywerte (1) 100 % 100 %Spray values (1) 100% 100%
Beregnungsnoten (2) 5 5Springs notes (2) 5 5
Kontaktwinkel mit Wasser (3) 126 ° 118 °Contact angle with water (3) 126 ° 118 °
Abrollwinkel mit Wasser 23 ° 27 ° spez. bakterizide Aktivität (4> 4.82 3.32Roll angle with water 23 ° 27 ° spec. bactericidal activity (4> 4.82 3.32
(1 ) Spraytest; AATCC 22 - 1996(1) spray test; AATCC 22 - 1996
(2) Bundesmann; DIN 53 888(2) Federal man; DIN 53 888
(3) Kontaktwinkel, O. Marte et al., Charakterisierung von "Lotus"-strukturierten Faserund Gewebeoberflächen(3) Contact angle, O. Marte et al., Characterization of "lotus" -structured fiber and tissue surfaces
(4) Japanese Industrial Standard JIS 1902 (Klebsiella pneumoniae, Strain DSM 789)(4) Japanese Industrial Standard JIS 1902 (Klebsiella pneumoniae, Strain DSM 789)
Erfindungswesentlich ist, dass auf einer nicht-nanotechnologischen Basis eine lotusstrukturierte Ausrüstungsschicht erzeugt wird, die kostengünstig herstellbar ist und die hervorragende Ausrüstungseffekte zeigt. It is essential to the invention that on a non-nanotechnological basis a lotus-structured finishing layer is produced, which can be produced cost-effectively and which exhibits outstanding equipment effects.

Claims

Patentansprüche claims
1. Partikel-Komposit zur Einbringung in eine Ausrüstungsschicht, dadurch gekennzeichnet, dass es Partikel umfasst, die unterschiedliche Grössen von 0.01 - 10 μm aufweisen, dass die Partikel von mindestens einer Schicht umgeben sind, die eine Coatingmasse enthält und dass die Partikel chemisch fixierbar sind und an der Oberfläche im Wesentlichen die gleiche Funktion aufweisen wie sie in der Hostmatrix der Ausrüstungsschicht vorliegen.1. Particle composite for incorporation into a finishing layer, characterized in that it comprises particles having different sizes of 0.01 - 10 microns, that the particles are surrounded by at least one layer containing a coating composition and that the particles are chemically fixable and have on the surface substantially the same function as present in the host matrix of the finish layer.
2. Partikel-Komposit nach Anspruch 1 , dadurch gekennzeichnet, dass die Partikel polymere Kieselsäuren sind.2. Particle composite according to claim 1, characterized in that the particles are polymeric silicas.
3. Partikel-Komposit nach Anspruch 1 , dadurch gekennzeichnet, dass die Partikel elementare Metalle, vorzugsweise Silber und Kupfer, Metalloxide und deren Gemische, vorzugsweise AI2O3 oder Zirkoniumoxide und Mischoxide sind.3. Particle composite according to claim 1, characterized in that the particles are elemental metals, preferably silver and copper, metal oxides and mixtures thereof, preferably Al 2 O 3 or zirconium oxides and mixed oxides.
4. Partikel-Komposit nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Coatingmasse reaktive Polymere sind, deren Reaktivgruppen waschfest vernetzbar sind.4. Particle composite according to one of claims 1 - 3, characterized in that the coating composition are reactive polymers whose reactive groups are wash-resistant crosslinkable.
5. Partikel-Komposit nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Coatingmasse reaktive Silylverbindungen zur Modifikation der Partikeloberflächen enthält, vorzugsweise N-2-Aminoethyl-3-Aminopropyltrimethoxysilan, 3-Aminopropyl- methyltriethoxysilan, Bis(3-Trimethoxysilylpropyl)amin, Triamino funktionelles Propyl- trimethoxysilan, Polyetherpropyltrimethoxysilane, 3-Mercaptopropyltrimethoxysilan oder 3-Glycidyloxypropyltrimethoxysilan.5. Particle composite according to one of claims 1 - 3, characterized in that the coating composition contains reactive silyl compounds for modifying the particle surfaces, preferably N-2-aminoethyl-3-aminopropyltrimethoxysilane, 3-aminopropyl-methyltriethoxysilane, bis (3-trimethoxysilylpropyl) amine, triamino functional propyltrimethoxysilane, polyetherpropyltrimethoxysilanes, 3-mercaptopropyltrimethoxysilane or 3-glycidyloxypropyltrimethoxysilane.
6. Partikel-Komposit nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Coatingmasse eingelagerte Lösungsmittel oder N2, CO2 und NH3 abspaltende Korn- ponenten aufweist und dass die Coatingmasse während der Trocknung nanoskalige Strukturen ausbildet.6. Particle composite according to one of claims 1 - 3, characterized in that the coating compound embedded solvent or N 2 , CO 2 and NH 3 releasing grain has components and that the coating composition forms nanoscale structures during drying.
7. Partikel-Komposit nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass die Coatingmasse Polymer vernetzende Verbindungen enthält.7. Particle composite according to any one of claims 1-6, characterized in that the coating composition contains polymer crosslinking compounds.
8. Partikel-Komposit nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass das Partikel-Komposit eine monomodale oder eine multimodale Teilchengrössenver- teilung aufweist.8. Particle composite according to one of claims 1-7, characterized in that the particle composite has a monomodal or a multimodal Teilchengrössenver- distribution.
9. Partikel-Komposit nach Anspruch 8, dadurch gekennzeichnet, dass beim Vorliegen einer multimodalen Teilchengrössenverteilung an der Oberfläche Hyperstrukturen vorliegen.9. Particle composite according to claim 8, characterized in that there are hyperstructures in the presence of a multimodal particle size distribution at the surface.
10. Partikel-Komposit nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, dass es Tensid frei ist.10. Particle composite according to any one of claims 1-9, characterized in that it is free of surfactant.
11. Verfahren zur Herstellung eines Partikel-Komposits nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass die Partikel und die Partikel modifizierenden Komponenten zusammen gegeben und vermischt werden und durch sequentiell durchgeführte Nassmahlprozesse verkleinert werden und dass durch die Kombination von kleineren und grosseren Partikeln Hyperstrukturen gebildet werden, die zu einer Steigerung des Öl und Schmutz abweisenden Effektes führen.11. A method for producing a particle composite according to any one of claims 1-10, characterized in that the particles and the particle modifying components are added together and mixed and reduced by sequentially carried out wet grinding processes and that by the combination of smaller and larger particles Hyperstructures are formed, which lead to an increase of the oil and dirt repellent effect.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass als Partikel modifizierende Komponente ein Polymer, vorzugsweise ein verzweigtes in Wasser unlösliches Polymer verwendet wird.12. The method according to claim 11, characterized in that the particle-modifying component is a polymer, preferably a branched water-insoluble polymer is used.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass als Partikel modifizierende Komponente ein Vernetzersystem zugesetzt wird, welches erst bei Temperaturen über 80 0C zur Vernetzung des Polymers führt. 13. The method according to claim 11 or 12, characterized in that a crosslinking system is added as the particle-modifying component, which leads to crosslinking of the polymer only at temperatures above 80 0 C.
14. Verfahren nach einem der Ansprüche 11 - 13, dadurch gekennzeichnet, dass als Partikel modifizierende Komponente ein Amino- und/oder Hydroxylgruppen haltiges Polymer in gelöster Form oder Silylverbindungen zugesetzt werden.14. The method according to any one of claims 11-13, characterized in that a particle-modifying component, an amino and / or hydroxyl-containing polymer in dissolved form or silyl compounds are added.
15. Verfahren nach einem der Ansprüche 11 - 14, dadurch gekennzeichnet, dass als Partikel modifizierende Komponente ein hydrophobes Polymer, vorzugsweise ein Fluorkarbonharz zugesetzt wird.15. The method according to any one of claims 11-14, characterized in that a hydrophobic polymer, preferably a fluorocarbon resin is added as the particle modifying component.
16. Verfahren nach einem der Ansprüche 11 - 15, dadurch gekennzeichnet, dass als Hyperstrukturen ausbildende Ingredienzien Lösungsmittel und/oder N2, CO2 oder NH3 abspaltende Komponenten verwendet werden.16. The method according to any one of claims 11 - 15, characterized in that forming hyperstructures ingredients solvents and / or N 2 , CO 2 or NH 3 releasing components are used.
17. Verfahren nach einem der Ansprüche 11 - 16, dadurch gekennzeichnet, dass die Herstellung des Partikel-Komposits Emulgator frei erfolgt.17. The method according to any one of claims 11-16, characterized in that the production of the particle composite emulsifier is free.
18. Verfahren nach einem der Ansprüche 11 - 17, dadurch gekennzeichnet, dass beim Vorliegen einer multimodalen Teilchengrössenverteilung in der Ausrüstungsschicht Hyperstrukturen erzeugt werden.18. The method according to any one of claims 11-17, characterized in that are generated in the presence of a multimodal particle size distribution in the finish layer hyperstructures.
19. Verfahren nach einem der Ansprüche 11 - 18, dadurch gekennzeichnet, dass durch die beim Trocknen der Ausrüstungsschicht gebildeten gasförmigen Produkte in der Ausrüstungsschicht Hyperstrukturen erzeugt werden.19. The method according to any one of claims 11-18, characterized in that are generated by the gaseous products formed in the finishing layer during drying of the finishing layer in the finish layer hyperstructures.
20. Verfahren nach einem der Ansprüche 11 - 19, dadurch gekennzeichnet, dass das Partikel-Komposit mit unterschiedlichen Host-Matrizen kombiniert wird, wodurch neben der Repellentfunktion zusätzliche Funktionen, sogenannte 'Schicht intrinsische Funktionen' erzeugt werden.20. The method according to any one of claims 11 - 19, characterized in that the particle composite is combined with different host matrices, which in addition to the repellent function additional functions, so-called 'layer intrinsic functions' are generated.
21. Verfahren nach einem der Ansprüche 11 - 20, dadurch gekennzeichnet, dass die Partikel mit reaktiven Polymeren getränkt oder beschichtet werden, was einstufig oder mehrstufig erfolgt. 21. The method according to any one of claims 11-20, characterized in that the particles are impregnated or coated with reactive polymers, which takes place in one or more stages.
22. Verfahren nach einem der Ansprüche 11 - 21 , dadurch gekennzeichnet, dass die Herstellung des Partikel-Komposits nicht-nanotechnologisch und nach einem Top-down Verfahren erfolgt, indem die Partikel bis zur gewünschten Grosse zerkleinert werden.22. The method according to any one of claims 11 - 21, characterized in that the production of the particle composite is carried out non-nanotechnologically and after a top-down method by the particles are comminuted to the desired size.
23. Verfahren unter Verwendung des Partikel-Komposits nach einem der Ansprüche 1 - 22, dadurch gekennzeichnet, dass das Partikel-Komposit in einem Host-Komposit dispergiert wird und in dieser Form auf Fasern und textilen Flächengebilden appliziert wird, wobei immer eine hydrophobe, Schmutz abweisende Grenzschicht auf dem Textilgut ausgebildet wird.23. A method using the particle composite according to any one of claims 1 - 22, characterized in that the particle composite is dispersed in a host composite and applied in this form to fibers and fabrics, with always a hydrophobic, dirt repellent boundary layer is formed on the textile.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass das Partikel-Komposit mit unterschiedlichsten Host-Matrizen kombiniert wird, wodurch neben der Repellent- funktion zusätzliche Funktionen, sogenannte 'Schicht intrinsische Funktionen' erzeugt werden.24. The method according to claim 23, characterized in that the particle composite is combined with a wide variety of host matrices, whereby in addition to the repellent function additional functions, so-called 'layer intrinsic functions' are generated.
25. Verfahren nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass in einer Fluorkarbonharz enthaltenden Ausrüstungsschicht Kontaktwinkel mit Heptan grösser als 100 ° oder in einer Fluorkarbonharz freien Ausrüstungsschicht Kontaktwinkel mit Wasser grösser als 100 ° erzielt werden. 25. The method according to claim 23 or 24, characterized in that in a finishing layer containing fluorocarbon resin contact angle with heptane greater than 100 ° or in a fluorocarbon resin free finishing layer contact angle with water greater than 100 ° can be achieved.
EP08733793A 2007-04-17 2008-04-15 Water-, oil-, and dirt-repellent finishes on fibers and textile fabrics Withdrawn EP2147145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12151766.8A EP2444545B1 (en) 2007-04-17 2008-04-15 Water, oil and dirt repellent finishing on fibres and textile area-measured material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH6272007 2007-04-17
CH4542008 2008-03-27
PCT/CH2008/000165 WO2008124960A1 (en) 2007-04-17 2008-04-15 Water-, oil-, and dirt-repellent finishes on fibers and textile fabrics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP12151766.8A Division EP2444545B1 (en) 2007-04-17 2008-04-15 Water, oil and dirt repellent finishing on fibres and textile area-measured material

Publications (1)

Publication Number Publication Date
EP2147145A1 true EP2147145A1 (en) 2010-01-27

Family

ID=39672931

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08733793A Withdrawn EP2147145A1 (en) 2007-04-17 2008-04-15 Water-, oil-, and dirt-repellent finishes on fibers and textile fabrics
EP12151766.8A Revoked EP2444545B1 (en) 2007-04-17 2008-04-15 Water, oil and dirt repellent finishing on fibres and textile area-measured material

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12151766.8A Revoked EP2444545B1 (en) 2007-04-17 2008-04-15 Water, oil and dirt repellent finishing on fibres and textile area-measured material

Country Status (6)

Country Link
US (1) US20100112204A1 (en)
EP (2) EP2147145A1 (en)
JP (1) JP2010525178A (en)
CN (1) CN101715499A (en)
BR (1) BRPI0810413A2 (en)
WO (1) WO2008124960A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053326A1 (en) * 2006-11-10 2008-05-15 Bühler PARTEC GmbH Equipment of substrates
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
JP5680900B2 (en) * 2009-12-10 2015-03-04 株式会社Snt Oil-repellent coated article and method for producing the same
DE102010001528A1 (en) * 2010-02-03 2011-08-04 Evonik Goldschmidt GmbH, 45127 New particles and composite particles, their uses and a new process for their preparation from alkoxysilyl-bearing alkoxylation products
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
CN102486007A (en) * 2010-12-02 2012-06-06 福建七匹狼实业股份有限公司 Composition providing cloth with four-protection function, and manufacturing method of four-protection ready-made garment
CA2841073C (en) * 2011-07-05 2019-08-20 Luna Innovations Incorporated Fluid-resistant textile fabrics and methods
US9771656B2 (en) 2012-08-28 2017-09-26 Ut-Battelle, Llc Superhydrophobic films and methods for making superhydrophobic films
CN102978901A (en) * 2012-11-02 2013-03-20 浙江莱美纺织印染科技有限公司 Preparation technology of water, oil and pollution resistant texture fabric
CN102965936A (en) * 2012-11-02 2013-03-13 浙江莱美纺织印染科技有限公司 Nano waterproof, oil-proof and antifouling finishing liquid
US20140165263A1 (en) 2012-12-18 2014-06-19 Ansell Limited Fluid repellent elastomeric barrier
KR101272785B1 (en) * 2012-12-18 2013-06-11 포항공과대학교 산학협력단 A method to eliminate liquid layer using superspeed partcle beam
CN103409959B (en) * 2013-08-29 2015-08-12 华纺股份有限公司 A kind of method of Tencel elastic force BLENDED FABRIC three-prevention finishing
JP6209226B2 (en) * 2014-01-24 2017-10-04 日華化学株式会社 Water repellent composition, water repellent fiber product and method for producing water repellent fiber product
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
CN104594028B (en) * 2015-02-03 2017-01-11 上海工程技术大学 Method for preparing durable cellulose fiber fabric with super-hydrophobic surface
WO2017070728A1 (en) 2015-10-30 2017-05-04 Ansell Limited Leak resistant article
CN105256547A (en) * 2015-11-13 2016-01-20 付淑珍 Novel antibacterial and flame-retardant finishing agent and preparation method thereof
CN105669159B (en) * 2015-12-29 2018-02-23 中山大学 A kind of rock-soil material performance based on nano effect improves method and device
US11098444B2 (en) 2016-01-07 2021-08-24 Tommie Copper Ip, Inc. Cotton performance products and methods of their manufacture
CN110317491B (en) * 2018-03-30 2022-08-19 兄弟工业株式会社 Pretreating agent, pretreating agent applying device, image forming method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286378A1 (en) * 2005-05-23 2006-12-21 Shivkumar Chiruvolu Nanostructured composite particles and corresponding processes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU217781B (en) 1994-07-29 2000-04-28 Wilhelm Barthlott Self cleaning surface for bodies and process for making self cleaning surface
CH695946A5 (en) * 2000-04-04 2006-10-31 Schoeller Technologies Ag Finishing of textile fibers, tissues and fabrics.
DE10233829A1 (en) * 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh Process for preparation of surfaces with selfcleaning properties by application of nano particles with production of a lotus effect useful for coating objects subjected to high soiling and water loads, e.g. in outdoor sports
JP2007514025A (en) * 2003-12-13 2007-05-31 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Multi-component thin-to-sic system
DE102004062740A1 (en) * 2004-12-27 2006-07-13 Degussa Ag Process for increasing the water-tightness of textile fabrics, textile fabrics treated in this way and their use
US7264872B2 (en) * 2004-12-30 2007-09-04 3M Innovative Properties Company Durable high index nanocomposites for AR coatings
DE102005039436B4 (en) * 2005-08-18 2009-05-07 Clariant International Limited Coating compositions containing silane-modified nanoparticles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286378A1 (en) * 2005-05-23 2006-12-21 Shivkumar Chiruvolu Nanostructured composite particles and corresponding processes

Also Published As

Publication number Publication date
EP2444545B1 (en) 2014-03-12
JP2010525178A (en) 2010-07-22
CN101715499A (en) 2010-05-26
EP2444545A1 (en) 2012-04-25
US20100112204A1 (en) 2010-05-06
WO2008124960A1 (en) 2008-10-23
BRPI0810413A2 (en) 2014-10-14

Similar Documents

Publication Publication Date Title
EP2444545B1 (en) Water, oil and dirt repellent finishing on fibres and textile area-measured material
WO2004007625A1 (en) Method for producing a surfactant-free suspension based on nanostructured, hydrophobic particles, and use of the same
EP1724392A2 (en) Process for the microbicidal finishing of textile surfaces
EP1379725B1 (en) Flat textile structures with self-cleaning and water-repellent surfaces
EP1472011A1 (en) Method for the production of protective layers with dirt and water repelling properties
DE102004062742A1 (en) Textile substrates with self-cleaning properties (lotus effect)
EP1623066B1 (en) Use of particles hydrophobized by fluorosilanes for the production of self-cleaning surfaces having lipophobic, oleophobic, lactophobic and hydrophobic properties
EP1475426A1 (en) Process for the production of removable soil- and water-resistant surface coatings
CH695946A5 (en) Finishing of textile fibers, tissues and fabrics.
WO2004033788A1 (en) Production of self-cleaning surfaces on textile coatings
DE60031240T2 (en) RETROREFLECTIVE INKS
WO2003093571A1 (en) Equipped fibers and textile surface structures
DE102012222045A1 (en) Coating of luminophores
WO2007090808A1 (en) Shaping object having an self-cleaning surface structure
DE102005062606A1 (en) New nano-scale primary particle based on silicon oxide/mixed oxide of silicon oxide and other metal oxide, useful e.g. for hydrophilic coating of hydrophobic textile materials
WO2008101363A2 (en) Anti-static multi-functional layer and method for use of the same
WO2008059007A2 (en) Aqueous formulations and use thereof
DE10248799A1 (en) Abrasion-resistant coating composition e.g. for painting cars, buildings, furniture and white goods comprises hard, hollow micro-particles concentrated at surface of the coating
EP2393883B1 (en) Zinc oxide particles which have been modified with phosphonocarboxylic acid and use of zinc oxide particles
WO2003008697A2 (en) Method for applying a self-cleaning coating to textile materials
EP3268323B1 (en) Fibre sizing with small amounts of nanomaterials
WO2004058902A1 (en) Intumescent body
EP3056604B1 (en) Plaster, washing and/or polishing substrate consisting of textile and/or non-woven and/or spongy structures for cleaning surfaces of any type with antimicrobial properties
EP1614723B1 (en) Dispersions
EP2159319A1 (en) Method for treating textile substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100209

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIENZ, ANITA

Inventor name: ANGEHRN, STEFAN

Inventor name: MEYER, MARTIN

Inventor name: MARTE, OLIVER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130529