EP2144000B1 - Burner device - Google Patents

Burner device Download PDF

Info

Publication number
EP2144000B1
EP2144000B1 EP09163782.7A EP09163782A EP2144000B1 EP 2144000 B1 EP2144000 B1 EP 2144000B1 EP 09163782 A EP09163782 A EP 09163782A EP 2144000 B1 EP2144000 B1 EP 2144000B1
Authority
EP
European Patent Office
Prior art keywords
fuel
burner
intake
lances
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09163782.7A
Other languages
German (de)
French (fr)
Other versions
EP2144000A2 (en
EP2144000A3 (en
Inventor
Harald Schütz
Guido Schmitz
Oliver Lammel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
WS Warmeprozesstechnik GmbH
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
WS Warmeprozesstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV, WS Warmeprozesstechnik GmbH filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2144000A2 publication Critical patent/EP2144000A2/en
Publication of EP2144000A3 publication Critical patent/EP2144000A3/en
Application granted granted Critical
Publication of EP2144000B1 publication Critical patent/EP2144000B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors

Definitions

  • the invention relates to a combustion device having at least one burner, which has a substantially rectangular inlet and a substantially circular mixing tube.
  • a combustion device is off US 4,383,820 A known.
  • a burner which has an inlet with coaxial inlets for fuel and air.
  • the burner inlet is followed by a mixing section in which fuel and air mix before the mixture enters a combustion chamber.
  • Fuel and air have such a flow impulse that combustion takes place only in the combustion chamber.
  • a gas turbine fuel air premixer having a dual cylinder structure of an inner cylinder and an outer cylinder. Between the two cylinders are flow paths, are introduced into the fuel and air, whereby in the flow paths, a fuel-air mixture is formed. Nozzles for injecting the fuel into the flow paths are arranged eccentrically to a longitudinal center plane of the flow path. These nozzles can be controlled independently.
  • the invention has for its object to provide a combustion device with improved mixing of fuel and air, in which the composition of the mixture of fuel and air, ie the air ratio, is variable, on the one hand to keep the NO emission low and on the other a extinction to avoid the flame.
  • the combustion device according to the invention is defined by the patent claim 1. It is generally designed in the same way as in US 4,383,820 A However, it differs from this by the characterizing features of claim 1.
  • the degree of mixing in the outlet of the burner nozzle has a significant influence on the subsequent combustion processes in the combustion chamber.
  • the goal of the best possible reduction of nitrogen oxide emissions can be achieved by keeping the combustion temperature as low as possible by appropriate control of the mixing and combustion processes.
  • the combustion temperature is regulated by an excess of combustion air through the burner.
  • the problem of power modulation is now addressed over the widest possible ⁇ range by fuel variation at a constant air mass flow.
  • the lower ⁇ limit is determined by the maximum tolerable NO emission and thus by the maximum flame temperature.
  • the NO emission is about 10 ppm (based on 15% O 2 in the combustion chamber outlet).
  • the associated adiabatic flame temperature of the global mixture is approximately 2000 K.
  • One aspect of the present invention is to combine the respective advantages of centric and eccentric positioning of the fuel input by adding a second fuel lance. Both lances can be supplied with fuel independently of each other via separate supply systems.
  • the distance of the lances from each other and also their radial position with respect to the combustion chamber axis can be varied within a certain range and can each be adapted to specific design requirements.
  • Numerical simulations show that for each operating point, that is to say for each ⁇ , a specific value of the fuel split exists on both lances, which causes a minimum of pollutant emissions during combustion. Another important aspect is that due to suitable fuel staging possibly occurring flame instabilities can be almost completely prevented.
  • transverse flows are initiated at the transition stages, by which the mixing process is greatly improved by increasing the turbulent transport and the induction of a convective secondary transport.
  • This is achieved by the combustion air is transferred from a rectangular channel into a channel with a round cross-section. Rectangular channel and round channel are "inline", ie arranged on the same burner axis and form on their transition surface two mutually parallel stages (transition stages).
  • the result is a convective-diffusive transport of the fuel-air mixture and a strong and uniform spread of the fuel in the radial direction.
  • the maximum fuel concentration at the outlet of the mixing section is thus low and the distribution of the fuel over the cross section of the mixing channel is improved.
  • the result is a reduction of thermal nitrogen oxide formation.
  • transition stages between square and round cross-section cause the induction of four Secondary vortices, each rotating about a parallel to the burner axis, but radially offset, extending vortex axis.
  • the rotations of adjacent secondary vortices have opposite directions of rotation.
  • the invention is particularly suitable for a combustion device for gas turbines, in which a plurality of burners are arranged in a ring and open into a common combustion chamber.
  • FIG. 1 a burner 10 is shown, which has a rectangular inlet 11 and subsequently a round mixing tube 12. Between inlet 11 and mixing tube 12 there is a transition 13.
  • the inlet 11 is rectangular Cross-section. It has two parallel longitudinal walls 14,15, between which the center longitudinal plane 16 is defined. The two longitudinal walls are connected by transverse walls 17,18.
  • the diameter of the mixing tube 12 is greater than the transverse extent of the inlet 11, but smaller than the longitudinal extent.
  • each of the fuel lances consists of a tube through which fuel can be supplied.
  • the fuel lances L1, L2 each have an inlet 20 and an outlet 21, which opens into the mixing tube 12.
  • Around the fuel lances is an air passage 22 having an inlet 27.
  • FIG. 1 are the two lances L1, L2 arranged at a distance from the longitudinal center plane 16, that is "eccentric".
  • the two fuel lances are provided symmetrically to the longitudinal central axis.
  • the fuel lance L1 arranged centrally, ie with its axis in the longitudinal center plane 16.
  • the fuel lance L2 is arranged eccentrically, ie at a distance from the longitudinal center plane 16th
  • FIG. 3 shows an annular burner system as used in stationary gas turbines.
  • Numerous burners 10 of the type described are arranged in a ring shape and open into a common combustion chamber 23.
  • the combustion chamber is round here and has a combustion chamber axis 24.
  • the enemas 11 of the burner 10 are not exactly rectangular here. Instead, they form a ring and are therefore bent about the axis 24.
  • FIG. 3 are also the mixing tubes 12 shown, which open into the combustion chamber 23. The flames arise in the flow direction behind the mixing tubes 12 in the combustion chamber 23.
  • Each inlet 11 contains two fuel lances L1, L2 arranged in the same way as in FIG. 1 ,
  • FIG. 4 shows different operating conditions of a burner 10, the two fuel lances according to FIG. 1 Is provided.
  • the supply of fuel to the fuel lances L1, L2 is each separately controllable.
  • the arrows F1 and F2 denote the fuel supply to the fuel lances and the arrow S indicates the air supply.
  • the distribution of the gaseous fuel is plotted on a longitudinal section plane through the burner axis and the combustion chamber axis 24.
  • proportionally different loading of the two fuel lances can be continuously change the formation and position of the flame front 25.
  • the resulting in the combustion chamber 23 recirculation flow 26 is heated by heat release in the flame front 25 to the extent that the entering into the combustion chamber fuel / air mixture undergoes sufficient preheating. This reduces the ignition delay time and prevents the flame from extinguishing.
  • FIG. 4 Figure 11 shows the diagram a) the condition that the outer fuel lance L1 is charged with 100% of the fuel quantity while the inner fuel lance L2 is blocked.
  • the representation b) shows a ratio of 50:50 and the representation c) a ratio of 0: 100.
  • CH 4 is used as the fuel.
  • the flame front 25 can be changed by changing the fuel components. This reduces the ignition delay time and prevents the flame from extinguishing. In this way, the flame temperature for each ⁇ can be adjusted so that the flame is not extinguished and at the same time the lowest possible NO production takes place.
  • Particular attention should be paid to the fact that when approaching the extinction limit an extremely strong increase in CO production, in contrast to NO production, sets in and the burnout is no longer complete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

Die Erfindung betrifft eine Verbrennungsvorrichtung mit mindestens einem Brenner, der einen im wesentlichen rechteckigen Einlauf und ein im wesentlichen rundes Mischrohr aufweist. Eine derartige Verbrennungsvorrichtung ist aus US 4 383 820 A bekannt.The invention relates to a combustion device having at least one burner, which has a substantially rectangular inlet and a substantially circular mixing tube. Such a combustion device is off US 4,383,820 A known.

In EP 0 463 218 B1 ist ein Brenner beschrieben, der einen Einlauf mit koaxialen Einlässen für Brennstoff und Luft aufweist. An dem Brennereinlauf schließt sich eine Mischstrecke an, in der Brennstoffe und Luft sich mischen, bevor das Gemisch in eine Brennkammer eintritt. Treibstoff und Luft haben einen solchen Strömungsimpuls, dass eine Verbrennung erst in der Brennkammer stattfindet.In EP 0 463 218 B1 a burner is described which has an inlet with coaxial inlets for fuel and air. The burner inlet is followed by a mixing section in which fuel and air mix before the mixture enters a combustion chamber. Fuel and air have such a flow impulse that combustion takes place only in the combustion chamber.

In der Patentanmeldung DE 10 2007 036 953 (nicht vorveröffentlicht) ist ein Brenner beschrieben, bei dem der Einlauf einen im wesentlichen rechteckigen Querschnitt hat, wobei zwei parallele Wände eine lichte Weite begrenzen. Die Mischstrecke bildet einen runden Kanal, dessen Weite größer ist als die lichte Weite zwischen den parallelen Wänden, so dass in Strömungsrichtung sich erweiternde Übergangsstufen gebildet werden. An den Übergangsstufen entstehen Querströmungen, durch die der Mischvorgang durch Erhöhung des turbulent diffusen Transports sowie der Induktion eines konvektiven Sekundärtransportes verbessert wird. Die Verbrennungsluft wird aus einem Rechteckkanal in einen Kanal mit rundem Querschnitt überführt. Die maximale Brennstoffkonzentration am Ausgang der Mischstrecke wird gering und die Verteilung des Brennstoffs über den Querschnitt des Mischkanals wird verbessert. Die Folge ist eine Reduktion der thermischen Stickoxidbildung.In the patent application DE 10 2007 036 953 (not prepublished) is described a burner in which the inlet has a substantially rectangular cross section, wherein two parallel walls define a clear width. The mixing section forms a round channel whose width is greater than the clear width between the parallel walls, so that in the flow direction widening transition stages are formed. At the transition stages, crossflows are created which enhance the mixing process by increasing turbulent diffuse transport and inducing convective secondary transport. The combustion air is transferred from a rectangular channel into a channel with a round cross-section. The maximum fuel concentration at the outlet of the mixing section becomes small and the distribution of the fuel over the cross section of the mixing channel is improved. The result is a reduction of thermal nitrogen oxide formation.

In DE 689 23 413 T2 ist eine Kraftstoff-Luftvormischvorrichtung für eine Gasturbine beschrieben, welche eine Doppelzylinderstruktur aus einem Innenzylinder und einem Außenzylinder aufweist. Zwischen beiden Zylindern liegen Strömungswege, in die Kraftstoff und Luft eingeleitet werden, wodurch in den Strömungswegen ein Kraftstoff-Luft-Gemisch gebildet wird. Düsen zum Einspritzen des Kraftstoffs in die Strömungswege sind exzentrisch zu einer Längsmittelebene des Strömungsweges angeordnet. Diese Düsen können unabhängig voneinander gesteuert werden.In DE 689 23 413 T2 For example, there is described a gas turbine fuel air premixer having a dual cylinder structure of an inner cylinder and an outer cylinder. Between the two cylinders are flow paths, are introduced into the fuel and air, whereby in the flow paths, a fuel-air mixture is formed. Nozzles for injecting the fuel into the flow paths are arranged eccentrically to a longitudinal center plane of the flow path. These nozzles can be controlled independently.

Der Erfindung liegt die Aufgabe zugrunde, eine Verbrennungsvorrichtung mit verbesserter Durchmischung von Brennstoff und Luft zu schaffen, bei der die Zusammensetzung des Gemisches aus Brennstoff und Luft, d.h. die Luftzahl, variierbar ist, um einerseits die NO-Emission gering zu halten und andererseits ein Verlöschen der Flamme zu vermeiden.The invention has for its object to provide a combustion device with improved mixing of fuel and air, in which the composition of the mixture of fuel and air, ie the air ratio, is variable, on the one hand to keep the NO emission low and on the other a extinction to avoid the flame.

Die erfindungsgemäße Verbrennungsvorrichtung ist durch den Patentanspruch 1 definiert. Sie ist generell in gleicher Weise ausgebildet wie in US 4 383 820 A beschrieben, jedoch weicht sie hiervon durch die kennzeichnenden Merkmale von Patentanspruch 1 ab.The combustion device according to the invention is defined by the patent claim 1. It is generally designed in the same way as in US 4,383,820 A However, it differs from this by the characterizing features of claim 1.

In der genannten älteren Patentanmeldung wurde dargelegt, dass der Grad der Mischung im Austritt der Brennerdüse einen wesentlichen Einfluss auf die nachfolgenden Verbrennungsvorgänge in der Brennkammer hat. Dies gilt insbesondere im Hinblick auf die Stickoxidbildung (NOX), die ihrerseits maßgeblich durch die lokale Verbrennungstemperatur (Zeldovich oder thermisches NO) bestimmt ist. Das Ziel einer bestmöglichen Reduzierung der Stickoxidemission lässt sich erreichen, indem man durch geeignete Kontrolle der Mischungs- und Verbrennungsprozesse die Verbrennungstemperatur so gering wie möglich hält. Im Falle von Gasturbinenbrennkammern wird die Verbrennungstemperatur durch einen Überschuss an Verbrennungsluft durch den Brenner reguliert. Die maßgebliche Kennzahl ist hierbei die Luftzahl λ, gebildet aus dem molaren Verhältnis von Luft zu Brennstoff, bezogen auf die stöchiometrische Zusammensetzung (λ=1). Für doppelten Luftüberschuss beispielsweise gilt dann λ=2. Im Brenner selbst werden Brennstoff und Luft zusammengeführt und es entstehen zunächst auch bei hohem Luftüberschuss stöchiometrische Bereiche. Das Mischungsverhalten eines Brenners lässt sich nun dadurch charakterisieren, in welchem Maße auftretende λ-Inhomogenitäten im Brenner vor Eintritt in die Brennkammer abgebaut werden. Im besten Fall erreicht man ein homogenes Profil mit dem λ-Wert der zugeordneten globalen Mischung. Die entsprechende adiabate Verbrennungstemperatur der globalen Mischung kann somit als die untere Grenze der optimaler Weise zu erreichenden maximalen Verbrennungstemperatur angesehen werden, vorausgesetzt es findet kein zusätzlicher Wärmeentzug statt. Der Grad der Annäherung an diesen Idealzustand charakterisiert die Mischungsgüte eines Brenners. Dieses Konzept konnte erfolgreich für eine thermische Leistung von ca. 800 kW bei einem λ -Wert von 1.6 und einer zugeordneten Leistungsdichte von ca. 13.6 MW/(m2 bar) bezogen auf die Fläche der Brennkammerkopfplatte) auf dem Prüfstand realisiert werden.In the said earlier patent application it was stated that the degree of mixing in the outlet of the burner nozzle has a significant influence on the subsequent combustion processes in the combustion chamber. This applies in particular with regard to the formation of nitrogen oxide (NO x ), which in turn is largely determined by the local combustion temperature (Zeldovich or thermal NO). The goal of the best possible reduction of nitrogen oxide emissions can be achieved by keeping the combustion temperature as low as possible by appropriate control of the mixing and combustion processes. In the case of gas turbine combustors, the combustion temperature is regulated by an excess of combustion air through the burner. The relevant characteristic here is the air ratio λ, formed from the molar ratio of air to fuel, based on the stoichiometric composition (λ = 1). For example, for double excess air, λ = 2. In the burner itself, fuel and air are brought together and initially stoichiometric areas are formed even with high excess air. The mixing behavior of a burner can now be characterized by the extent to which occurring λ inhomogeneities in the burner are reduced before entering the combustion chamber. In the best case one obtains a homogeneous profile with the λ-value of the assigned global mixture. The corresponding adiabatic combustion temperature of the global mixture may thus be considered as the lower limit of the optimum maximum combustion temperature to be achieved, provided there is no additional heat extraction. The degree of approximation to this ideal state characterizes the quality of mixing of a burner. This concept was successful for a thermal output of approx. 800 kW with a λ value of 1.6 and an associated power density of approx. 13.6 MW / (m 2 bar) based on the surface of the combustion chamber head plate) can be realized on the test bench.

In der vorliegenden Erfindung wird nun das Problem der Leistungsmodulation über einen möglichst breiten λ-Bereich durch Brennstoffvariation bei konstantem Luftmassenstrom adressiert. Die untere λ-Grenze ist durch die maximal tolerierbare NO-Emission und damit durch die maximale Flammentemperatur bestimmt. Für λ=1.6 liegt die NO-Emission bei ca. 10 ppm (bezogen auf 15% O2 im Brennkammeraustritt). Die zugeordnete adiabate Flammentemperatur der globalen Mischung liegt hier bei ca. 2000 K. Bei kleineren λ-Werten ist ein drastischer Anstieg der NO-Emission und auch CO-Emissionen (Gleichgewicht) zu verzeichnen. Es zeigt sich also, dass im niedrigen λ-Bereich, d.h. im Volllastbereich, die Mischung extrem wichtig ist. Weiterhin scheint es plausibel, dass bei Erhöhung von λ, d.h. bei Abmagerung des Gemisches, die Flamme irgendwann verlöschen wird. Die Annäherung an das Flammenverlöschen wird im Normalfall durch einen extrem starken Anstieg der CO-Emission angekündigt. Diese so definierte Verlöschgrenze ist bei ansonsten gleichen Betriebsbedingungen abhängig von der jeweils betrachteten Leistungsdichte. Während im obigen Fall der Leistungsdichte von 13.6 MW/(m2 bar) (bei λ=1.6) die Verlöschgrenze bereits bei ca. λ=1.8 erreicht wird, liegt diese für eine kleinere Leistungsdichte von 3.2 MW/(m2 bar) bei nahezu λ=3.0. Die Erfindung zeigt eine Möglichkeit, wie die Verlöschgrenze auch für sehr hohe Leistungsdichten nach oben verschoben und damit eine sehr breite Leistungsmodulation bewirkt werden kann.In the present invention, the problem of power modulation is now addressed over the widest possible λ range by fuel variation at a constant air mass flow. The lower λ limit is determined by the maximum tolerable NO emission and thus by the maximum flame temperature. For λ = 1.6, the NO emission is about 10 ppm (based on 15% O 2 in the combustion chamber outlet). The associated adiabatic flame temperature of the global mixture is approximately 2000 K. At lower λ values, there is a drastic increase in NO emission and CO emissions (equilibrium). It turns out, therefore, that in the low λ range, ie in the full load range, the mixture is extremely important. Furthermore, it seems plausible that when λ is increased, ie when the mixture is lean, the flame will eventually go out. The approach to flame extinction is usually announced by an extremely strong increase in CO emission. This extinction limit, which is defined in this way, is dependent on the particular power density considered under otherwise identical operating conditions. While in the above case the power density of 13.6 MW / (m 2 bar) (at λ = 1.6) the quenching limit is already reached at about λ = 1.8, this is almost for a smaller power density of 3.2 MW / (m 2 bar) λ 3.0 =. The invention shows one way in which the quenching limit can be shifted upwards even for very high power densities and thus a very broad power modulation can be effected.

Mit Erhöhung des globalen λ-Wertes steigen in der oben beschriebenen Abhängigkeit die Zündverzugszeiten dermaßen an, dass ein frühzeitiges Flammenverlöschen eintritt. Wenn man so will, ist in diesem Fall die Mischung "zu gut". Diesem Effekt kann man entgegenwirken, indem man die Brennstofflanze exzentrisch zur Mischrohrachse in Richtung der Brennkammerachse verschiebt. Damit wird die maximale lokale Brennstoffkonzentration erhöht und die Flamme verlischt erst bei entsprechend höherem λ. Der Nachteil ist, dass im Hauptlastfall (λ=1.6) die maximale Flammentemperatur ebenfalls und damit auch die thermische NO-Produktion ansteigt. Ein Aspekt der vorliegenden Erfindung besteht darin, die jeweiligen Vorteile der zentrischen und exzentrischen Positionierung der Brennstoffeingabe durch Hinzunahme einer zweiten Brennstofflanze miteinander zu kombinieren. Dabei lassen sich beide Lanzen über separate Zufuhrsysteme unabhängig voneinander mit Brennstoff versorgen. Der Abstand der Lanzen zueinander und auch deren radiale Position in Bezug auf die Brennkammerachse ist in einem gewissen Rahmen variierbar und kann jeweils spezifischen konstruktiven Erfordernissen angepasst werden. Numerische Simulationen zeigen, dass für jeden Betriebspunkt, das heißt für jedes λ ein spezifischer Wert der Brennstoffaufteilung auf beide Lanzen (fuel staging) existiert, der bei der Verbrennung ein Minimum an Schadstoffemissionen bewirkt. Ein weiterer wichtiger Aspekt besteht darin, dass durch geeignetes fuel staging eventuell auftretende Flammeninstabilitäten nahezu vollständig verhindert werden können.As the global λ value increases, in the dependency described above, the ignition delay times increase to such an extent that premature flame extinction occurs. If you like, in this case the mix is "too good". This effect can be counteracted by displacing the fuel lance eccentrically to the mixing tube axis in the direction of the combustion chamber axis. This will be the maximum local Fuel concentration increases and the flame extinguishes only at a correspondingly higher λ. The disadvantage is that in the case of a main load (λ = 1.6) the maximum flame temperature also rises and thus also the thermal NO production. One aspect of the present invention is to combine the respective advantages of centric and eccentric positioning of the fuel input by adding a second fuel lance. Both lances can be supplied with fuel independently of each other via separate supply systems. The distance of the lances from each other and also their radial position with respect to the combustion chamber axis can be varied within a certain range and can each be adapted to specific design requirements. Numerical simulations show that for each operating point, that is to say for each λ, a specific value of the fuel split exists on both lances, which causes a minimum of pollutant emissions during combustion. Another important aspect is that due to suitable fuel staging possibly occurring flame instabilities can be almost completely prevented.

Durch die Erfindung wird erreicht, dass an den Übergangsstufen Querströmungen initiiert werden, durch die der Mischungsvorgang durch Erhöhung des turbulentdiffusen Transportes sowie der Induktion eines konvektiven Sekundärtransportes stark verbessert wird. Dies wird dadurch erzielt, dass die Verbrennungsluft aus einem Rechteckkanal in einen Kanal mit rundem Querschnitt überführt wird. Rechteckkanal und Rundkanal sind "inline", d. h. auf derselben Brennerachse angeordnet und bilden auf ihrer Übergangsfläche zwei zueinander parallele Stufen (Übergangsstufen) aus. Es entsteht ein konvektiv-diffusiver Transport des Brennstoff-Luft-Gemisches und eine starke und gleichmäßige Ausbreitung des Brennstoffs auch in radialer Richtung. Die maximale Brennstoffkonzentration am Ausgang der Mischstrecke ist somit gering und die Verteilung des Brennstoffs über den Querschnitt des Mischkanals wird verbessert. Die Folge ist eine Reduktion der thermischen Stickoxidbildung. Die Übergangsstufen zwischen eckigem und rundem Querschnitt bewirken die Induktion von vier Sekundärwirbeln, die jeweils um eine parallel zu der Brennerachse, jedoch radial versetzt, verlaufende Wirbelachse rotieren. Die Rotationen benachbarter Sekundärwirbel haben entgegensetzten Drehsinn.By the invention it is achieved that transverse flows are initiated at the transition stages, by which the mixing process is greatly improved by increasing the turbulent transport and the induction of a convective secondary transport. This is achieved by the combustion air is transferred from a rectangular channel into a channel with a round cross-section. Rectangular channel and round channel are "inline", ie arranged on the same burner axis and form on their transition surface two mutually parallel stages (transition stages). The result is a convective-diffusive transport of the fuel-air mixture and a strong and uniform spread of the fuel in the radial direction. The maximum fuel concentration at the outlet of the mixing section is thus low and the distribution of the fuel over the cross section of the mixing channel is improved. The result is a reduction of thermal nitrogen oxide formation. The transition stages between square and round cross-section cause the induction of four Secondary vortices, each rotating about a parallel to the burner axis, but radially offset, extending vortex axis. The rotations of adjacent secondary vortices have opposite directions of rotation.

Die Erfindung eignet sich insbesondere für eine Verbrennungsvorrichtung für Gasturbinen, bei der mehrere Brenner ringförmig angeordnet sind und in eine gemeinsame Brennkammer einmünden.The invention is particularly suitable for a combustion device for gas turbines, in which a plurality of burners are arranged in a ring and open into a common combustion chamber.

Im Folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.In the following, embodiments of the invention will be explained in more detail with reference to the drawings.

Es zeigen:

Figur 1
eine Stirnansicht und eine Seitenansicht eines Brenners mit rechteckiger Mischstrecke und rundem Mischrohr, wobei zwei Brennstofflanzen exzentrisch angeordnet sind,
Figur 2
in gleicher Darstellung wie Figur 1 eine Ausführungsform, bei der eine Brennstofflanze zentrisch und eine andere Brennstofflanze exzentrisch angeordnet ist,
Figur 3
eine Darstellung einer Brennkammer mit mehreren ringförmig angeordneten Brennern, wobei die Positionen der Brennstofflanzen erkennbar sind und
Figur 4
das Prinzip eines modulierenden Brenners mit unterschiedlichen Brennstoffzufuhren zu den beiden Brennstofflanzen.
Show it:
FIG. 1
an end view and a side view of a burner with rectangular mixing section and round mixing tube, wherein two fuel lances are arranged eccentrically,
FIG. 2
in the same representation as FIG. 1 an embodiment in which one fuel lance is arranged centrically and another fuel lance is arranged eccentrically,
FIG. 3
a representation of a combustion chamber with a plurality of annularly arranged burners, wherein the positions of the fuel lances are recognizable and
FIG. 4
the principle of a modulating burner with different fuel supplies to the two fuel lances.

In Figur 1 ist ein Brenner 10 dargestellt, der einen rechteckigen Einlauf 11 und daran anschließend ein rundes Mischrohr 12 aufweist. Zwischen Einlauf 11 und Mischrohr 12 befindet sich ein Übergang 13. Der Einlauf 11 ist von rechteckigem Querschnitt. Er weist zwei parallele Längswände 14,15 auf, zwischen denen mittig die Längsmittelebene 16 definiert ist. Die beiden Längswände sind durch Querwände 17,18 verbunden. Der Durchmesser des Mischrohres 12 ist größer als die Quer-Ausdehnung des Einlaufs 11, jedoch kleiner als die Längs-Ausdehnung.In FIG. 1 a burner 10 is shown, which has a rectangular inlet 11 and subsequently a round mixing tube 12. Between inlet 11 and mixing tube 12 there is a transition 13. The inlet 11 is rectangular Cross-section. It has two parallel longitudinal walls 14,15, between which the center longitudinal plane 16 is defined. The two longitudinal walls are connected by transverse walls 17,18. The diameter of the mixing tube 12 is greater than the transverse extent of the inlet 11, but smaller than the longitudinal extent.

Gemäß Figur 1 verlaufen durch den Einlauf 11 zwei Brennstofflanzen L1,L2. Jede der Brennstofflanzen besteht aus einem Rohr, durch das Brennstoff zugeführt werden kann. Die Brennstofflanzen L1,L2 haben jeweils einen Einlass 20 und einen Auslass 21, der in das Mischrohr 12 mündet. Um die Brennstofflanzen herum befindet sich ein Luftkanal 22 mit einem Einlass 27.According to FIG. 1 run through the inlet 11 two fuel lances L1, L2. Each of the fuel lances consists of a tube through which fuel can be supplied. The fuel lances L1, L2 each have an inlet 20 and an outlet 21, which opens into the mixing tube 12. Around the fuel lances is an air passage 22 having an inlet 27.

Gemäß Figur 1 sind die beiden Lanzen L1,L2 im Abstand von der Längsmittelebene 16 angeordnet, also "exzentrisch". Die beiden Brennstofflanzen sind symmetrisch zur Längsmittelachse vorgesehen.According to FIG. 1 are the two lances L1, L2 arranged at a distance from the longitudinal center plane 16, that is "eccentric". The two fuel lances are provided symmetrically to the longitudinal central axis.

Bei dem Ausführungsbeispiel von Figur 2 ist die Brennstofflanze L1 zentrisch angeordnet, d.h. mit ihrer Achse in der Längsmittelebene 16. Die Brennstofflanze L2 ist exzentrisch angeordnet, also im Abstand von der Längsmittelebene 16.In the embodiment of FIG. 2 is the fuel lance L1 arranged centrally, ie with its axis in the longitudinal center plane 16. The fuel lance L2 is arranged eccentrically, ie at a distance from the longitudinal center plane 16th

Figur 3 zeigt ein Ringbrennersystem, wie es in stationären Gasturbinen zur Anwendung kommt. Zahlreiche Brenner 10 der beschriebenen Art sind ringförmig angeordnet und sie münden in eine gemeinsame Brennkammer 23. Die Brennkammer ist hier rund und sie weist eine Brennkammerachse 24 auf. Die Einläufe 11 der Brenner 10 sind hier nicht exakt rechteckig. Sie bilden vielmehr einen Ring und sind daher um die Achse 24 gebogen. In Figur 3 sind auch die Mischrohre 12 dargestellt, die in die Brennkammer 23 münden. Die Flammen entstehen in Strömungsrichtung hinter den Mischrohren 12 in der Brennkammer 23. FIG. 3 shows an annular burner system as used in stationary gas turbines. Numerous burners 10 of the type described are arranged in a ring shape and open into a common combustion chamber 23. The combustion chamber is round here and has a combustion chamber axis 24. The enemas 11 of the burner 10 are not exactly rectangular here. Instead, they form a ring and are therefore bent about the axis 24. In FIG. 3 are also the mixing tubes 12 shown, which open into the combustion chamber 23. The flames arise in the flow direction behind the mixing tubes 12 in the combustion chamber 23.

Gemäß Figur 3 enthält jeder Einlauf 11 zwei Brennstofflanzen L1,L2, die in gleicher Weise angeordnet sind wie in Figur 1.According to FIG. 3 Each inlet 11 contains two fuel lances L1, L2 arranged in the same way as in FIG FIG. 1 ,

Figur 4 zeigt unterschiedliche Betriebszustände eines Brenners 10, der mit zwei Brennstofflanzen gemäß Figur 1 ausgestattet ist. Die Zufuhr von Brennstoff zu den Brennstofflanzen L1,L2 ist jeweils separat steuerbar. Die Pfeile F1 und F2 bezeichnen die Brennstoffzufuhr zu den Brennstofflanzen und der Pfeil S bezeichnet die Luftzufuhr. In Figur 4 ist die Verteilung des gasförmigen Brennstoffs auf einer Längsschnittebene durch die Brennerachse und die Brennkammerachse 24 aufgetragen. Durch anteilmäßig unterschiedliche Beaufschlagung der beiden Brennstofflanzen lässt sich kontinuierlich die Ausbildung und Lage der Flammenfront 25 verändern. Dabei wird die sich in der Brennkammer 23 ergebende Rezirkulationsströmung 26 durch Wärmefreisetzung in der Flammenfront 25 in dem Maße aufgeheizt, dass das in die Brennkammer eintretende Brennstoff/Luft-Gemisch eine genügende Vorwärmung erfährt. Dadurch wird die Zündverzugszeit reduziert und das Flammenverlöschen verhindert. FIG. 4 shows different operating conditions of a burner 10, the two fuel lances according to FIG. 1 Is provided. The supply of fuel to the fuel lances L1, L2 is each separately controllable. The arrows F1 and F2 denote the fuel supply to the fuel lances and the arrow S indicates the air supply. In FIG. 4 the distribution of the gaseous fuel is plotted on a longitudinal section plane through the burner axis and the combustion chamber axis 24. By proportionally different loading of the two fuel lances can be continuously change the formation and position of the flame front 25. The resulting in the combustion chamber 23 recirculation flow 26 is heated by heat release in the flame front 25 to the extent that the entering into the combustion chamber fuel / air mixture undergoes sufficient preheating. This reduces the ignition delay time and prevents the flame from extinguishing.

In Figur 4 zeigt die Darstellung a) den Zustand, dass die äußere Brennstofflanze L1 mit 100% der Brennstoffmenge beaufschlagt ist, während die innere Brennstofflanze L2 gesperrt ist. Die Darstellung b) zeigt ein Verhältnis von 50:50 und die Darstellung c) ein Verhältnis von 0:100. Als Brennstoff wird beispielsweise CH4 benutzt. Man erkennt, dass durch Änderung der Brennstoffanteile die Flammenfront 25 verändert werden kann. Dadurch wird die Zündverzugszeit reduziert und das Flammenverlöschen verhindert. Auf diese Weise kann die Flammentemperatur für jedes λ derart eingestellt werden, dass die Flamme gerade nicht verlischt und gleichzeitig eine geringstmögliche NO-Produktion stattfindet. Besonderes Augenmerk ist hierbei auf die Tatsache zu richten, dass bei Annäherung an die Verlöschgrenze ein extrem starker Anstieg der CO-Produktion, gegenläufig zur NO-Produktion, einsetzt und der Ausbrand nicht mehr vollständig ist.In FIG. 4 Figure 11 shows the diagram a) the condition that the outer fuel lance L1 is charged with 100% of the fuel quantity while the inner fuel lance L2 is blocked. The representation b) shows a ratio of 50:50 and the representation c) a ratio of 0: 100. For example, CH 4 is used as the fuel. It can be seen that the flame front 25 can be changed by changing the fuel components. This reduces the ignition delay time and prevents the flame from extinguishing. In this way, the flame temperature for each λ can be adjusted so that the flame is not extinguished and at the same time the lowest possible NO production takes place. Particular attention should be paid to the fact that when approaching the extinction limit an extremely strong increase in CO production, in contrast to NO production, sets in and the burnout is no longer complete.

Bei einem Simulationsbeispiel hat sich ergeben, dass die NO-Emission im gesamten Leistungsbereich unter 10 ppm (bezogen auf 15% O2) liegt und bei λ=2.4 einen Minimalwert von 2.7 ppm annimmt. Neuere Simulationen mit der exzentrischen Anordnung von Figur 2 deuten darauf hin, dass der Modulationsbereich über λ=3.0 hinaus noch erweitert werden kann. Insgesamt ergibt sich, dass mit dem erfindungsgemäßen Brenner die Verbrennung als sehr schadstoffarm eingestuft werden kann.In a simulation example, it has been found that the NO emission in the entire power range is below 10 ppm (based on 15% O 2 ) and assumes a minimum value of 2.7 ppm at λ = 2.4. Newer simulations with the eccentric arrangement of FIG. 2 indicate that the modulation range can be extended beyond λ = 3.0. Overall, it follows that with the burner according to the invention, the combustion can be classified as very low in pollutants.

Claims (4)

  1. A burner device comprising at least one burner (10) including a substantially rectangular intake (11) having two parallel longitudinal walls (14,15) and two parallel transverse walls (17,18), and comprising inlets (20,27) for fuel and air, and at least one fuel lance (L1,L2) extending through the intake (11), said intake (11) being followed by a transition section (13) to a round mixing tube (12) whose axis is arranged on the longitudinal central plane of the intake (11),
    characterized in that said at least one fuel lance (L1,L2) is arranged eccentrically relative to the longitudinal central plane (16) of the intake (11) and that the diameter of the mixing tube (12) is larger than the distance of the longitudinal walls (14,15) of the intake and smaller than the distance of the transverse walls (17,18).
  2. The burner device according to claim 1, characterized in that at least two fuel lances (L1,L2) are provided, at least one of them being arranged eccentrically.
  3. The burner device according to claim 2, characterized in that the fuel lances (L1,L2) can be supplied with fuel in a controlled manner independently from each other.
  4. The burner device according to any one of claims 1-3, characterized in that a plurality of burners (10) are arranged in a ring-shaped configuration and enter a common burning chamber (23) and that, in each burner (10), a fuel lance is arranged at an offset from the longitudinal central plane of the associated intake (11) toward the longitudinal axis (24) of the burning chamber (23).
EP09163782.7A 2008-07-09 2009-06-25 Burner device Not-in-force EP2144000B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810032265 DE102008032265B4 (en) 2008-07-09 2008-07-09 incinerator

Publications (3)

Publication Number Publication Date
EP2144000A2 EP2144000A2 (en) 2010-01-13
EP2144000A3 EP2144000A3 (en) 2010-09-15
EP2144000B1 true EP2144000B1 (en) 2015-02-18

Family

ID=40845695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09163782.7A Not-in-force EP2144000B1 (en) 2008-07-09 2009-06-25 Burner device

Country Status (2)

Country Link
EP (1) EP2144000B1 (en)
DE (1) DE102008032265B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2902809C (en) 2013-03-13 2018-01-23 Industrial Turbine Company (Uk) Limited Lean azimuthal flame combustor
DE102015205069B4 (en) 2015-03-20 2020-04-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Incinerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383820A (en) * 1980-10-10 1983-05-17 Technology Application Services Corporation Fuel gas burner and method of producing a short flame
JP2528894B2 (en) * 1987-09-04 1996-08-28 株式会社日立製作所 Gas turbine combustor
EP0358437B1 (en) * 1988-09-07 1995-07-12 Hitachi, Ltd. A fuel-air premixing device for a gas turbine
ES2064538T3 (en) 1990-06-29 1995-02-01 Wuenning Joachim PROCEDURE AND DEVICE FOR COMBUSTION OF FUEL IN A COMBUSTION ENCLOSURE.
FR2756593B1 (en) * 1996-12-03 1999-01-22 Aerospatiale FUEL INJECTION MAT FOR A STATOREACTOR OPERATING ON A WIDE RANGE OF MACH NUMBER
DE19724861C1 (en) * 1997-06-12 1998-10-15 Stiebel Eltron Gmbh & Co Kg Gas burner especially used in domestic boiler
DE102007036953B3 (en) * 2007-08-04 2009-04-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. burner

Also Published As

Publication number Publication date
EP2144000A2 (en) 2010-01-13
DE102008032265A1 (en) 2010-03-18
EP2144000A3 (en) 2010-09-15
DE102008032265B4 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
EP1645802B1 (en) Premix Burner
DE60007946T2 (en) A combustion chamber
EP2156095B1 (en) Swirling-free stabilising of the flame of a premix burner
DE69719688T2 (en) Gas turbine burners and operating methods therefor
DE69715256T2 (en) COMBUSTION CHAMBER
DE4426351B4 (en) Combustion chamber for a gas turbine
EP1110034B1 (en) Burner arrangement with primary and secondary pilot burners
DE3222347C2 (en)
DE60017426T2 (en) ADJUSTABLE LEAF-OPERATED PREMIUM COMBUSTION CHAMBER
DE4416650A1 (en) Combustion process for atmospheric combustion plants
EP0401529B1 (en) Gas turbine combustion chamber
EP0801268B1 (en) Operating method of a gas turbine combustor
WO2005080878A1 (en) Premix burner and method for burning a low-calorie combustion gas
DE4223828A1 (en) Method for operating a combustion chamber of a gas turbine
EP0481111B1 (en) Gas-turbine combustion chamber
EP0718561A2 (en) Combustor
EP1235033B1 (en) Annular combustor and method of operating the same
WO2012016748A2 (en) Gas turbine combustion chamber
WO1999004196A1 (en) Arrangement of burners for heating installation, in particular a gas turbine combustion chamber
DE102007036953B3 (en) burner
DE102004027702A1 (en) Injector for liquid fuel and stepped premix burner with this injector
EP1510755B1 (en) Burner with lance and staged fuel supply.
EP2144000B1 (en) Burner device
EP2288852B1 (en) Method for operating a premix burner, and a premix burner for carrying out the method
EP1555484B1 (en) Process to operate a gas turbine combustor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WS-WAERMEPROZESSTECHNIK GMBH

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

17P Request for examination filed

Effective date: 20110105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140827

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010611

Country of ref document: DE

Effective date: 20150402

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150519

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010611

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009010611

Country of ref document: DE

26N No opposition filed

Effective date: 20151119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 710820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090625

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218