EP2138593A2 - Pièce coulée et son procédé de fabrication - Google Patents

Pièce coulée et son procédé de fabrication Download PDF

Info

Publication number
EP2138593A2
EP2138593A2 EP09163549A EP09163549A EP2138593A2 EP 2138593 A2 EP2138593 A2 EP 2138593A2 EP 09163549 A EP09163549 A EP 09163549A EP 09163549 A EP09163549 A EP 09163549A EP 2138593 A2 EP2138593 A2 EP 2138593A2
Authority
EP
European Patent Office
Prior art keywords
cast
cast component
mpa
alloy
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09163549A
Other languages
German (de)
English (en)
Other versions
EP2138593A3 (fr
Inventor
Jürgen Wüst
Richard Weizenbeck
Dirk Westerheide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna BDW Technologies GmbH
Original Assignee
Magna BDW Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna BDW Technologies GmbH filed Critical Magna BDW Technologies GmbH
Publication of EP2138593A2 publication Critical patent/EP2138593A2/fr
Publication of EP2138593A3 publication Critical patent/EP2138593A3/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the invention relates to a method for producing a cast component from an aluminum die-casting alloy specified in the preamble of claim 1.
  • Art also relates to a cast component of an aluminum die-casting alloy specified in the preamble of claim 11 Art.
  • a cast component is to be created, by means of which, for example over a short time of 1 h, a heat stability at 205 ° C or, for example, over a long term of 1000 h heat stability at 150 ° C can be achieved.
  • the short-term thermal stability is required, for example, so that the motor vehicle body in its production of a paint incineration, which takes place for example at 170 ° C for 20 min, is thermally stable accordingly.
  • the long-term thermal stability is required, for example, so that the components corresponding temperatures, which during driving, for example by to be emitted by the engine or to act on the components by solar radiation.
  • crashworthy cast components with a reduced ductility should be provided which have a yield strength Rp 0 , 2 of, for example, between 120 and 165 MPa and an elongation at break A 5 of ⁇ 7%.
  • Rp 0 , 2 yield strength
  • elongation at break A 5 of ⁇ 7% elongation at break A 5 of ⁇ 7%.
  • alloys For these components to be created, for example, alloys must be used today which have a high proportion of the alloying elements Ti, Zr and Mo. However, these alloying elements are extremely expensive, which is why the cast components are ultimately also very expensive.
  • Object of the present invention is therefore to provide a method and a cast component of the type mentioned, by means of which a cost-effective production can be realized.
  • an aluminum die-casting alloy is used by which the cast component in the cast state has an elongation at break A 5 of ⁇ 10% and a yield strength Rp 0 , 2 of ⁇ 120 MPa, the cast component being subjected to a Stability annealing at a temperature of 120 to 260 ° C following the initial molding.
  • the present cast component is by no means limited to use in the region of the crumple zones of a motor vehicle. Likewise, the present cast component can also be used at other places of use, for example in the area of the chassis or in the area of external attachments or components.
  • a particularly cost-effective aluminum die-casting alloy can be created by having ⁇ 8.5% by weight, and in particular ⁇ 8.3% by weight, of silicon. This reduced silicon content of the diecasting alloy can be compensated in particular by an optimized magnesium content.
  • this magnesium content is ⁇ 0.6 wt .-%, and in particular in a range of 0.02 to 0.3 wt .-%, is.
  • an aluminum die casting alloy is used with the following alloying elements: 4 to 8,2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.04 to 0.2 Wt .-% magnesium 0.04 to 0.08 %
  • strontium (140-180 ppm) and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • Such an aluminum diecasting alloy is thus characterized not only by an extremely low silicon content and an optimized magnesium content, but also in particular by the fact that the alloying elements Ti, Zr and Mo can be dispensed with for the most part. It is precisely these alloying elements that are decisive as price drivers for aluminum die-cast alloys.
  • an aluminum diecasting alloy is used, by means of which the cast component has a yield strength Rp 0 , 2 of ⁇ 105, and in particular of ⁇ 110 MPa, in the cast state. Starting from this yield point Rp 0 , 2 , it is thus possible in a simple manner, after the heat treatment to achieve a required yield strength Rp 0 , 2 of ⁇ 120 MPa.
  • the Stability annealing is carried out at a temperature of 200 to 240 ° C. In this way, a particularly short-term annealing can be achieved, which is in the range of, for example ⁇ 180 min, and in particular in the range of ⁇ 60 min.
  • the stability annealing is carried out in particular so that the heat-treated cast component subsequently has a yield strength Rp 0.2 of ⁇ 115 to ⁇ 220 MPa, and in particular ⁇ 125 to ⁇ 165 MPa.
  • Rp 0.2 yield strength
  • particularly favorable components can be achieved, which are used, for example, in the bodies of passenger cars.
  • an aluminum die cast alloy which comprises the following alloying elements: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.04 to 0.08 Wt .-% magnesium 0.04 to 0.08 %
  • strontium (140-180 ppm) and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • This aluminum diecasting alloy is characterized in that it has an elongation at break A 5 of ⁇ 10% and a yield strength Rp 0.2 of ⁇ 120 MPa directly after casting or molding of the cast component directly in the cast state.
  • the components created from the above-described aluminum die-casting alloy are subsequently subjected to a Stability annealing in the range of 120 to 260 ° C, and in particular in the range of 200 to 240 ° C for a time of ⁇ 180 min, for example about 20 min to 90 min, and in particular for a period of 30 minutes to 60 minutes.
  • the cast component After the heat treatment, the cast component then has a yield strength Rp 0.2 of, for example, about 110 to 120 MPa, and in particular between 115 to 118 MPa.
  • an aluminum die cast alloy is used for the cast components, which comprises the following alloying elements: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.08 to 0.12 Wt .-% magnesium 0.04 to 0.08 % By weight of titanium 14 * 10 -3 to 18 * 10 -3 % By weight strontium (140-180 ppm) and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • the aluminum diecasting alloy used in the present case again has a breaking elongation A 5 of ⁇ 10% and a yield strength Rp 0.2 of ⁇ 120 MPa in the cast state.
  • the respective cast component in the cast state is then in turn subjected to a stability annealing at a temperature of, for example, about 120 to 260 ° C., and in particular a temperature of 200 to 240 ° C. over a period of ⁇ 180 min, for example about 20 min to about 90 min , and in particular in a period of about 30 minutes to about 60 minutes subjected.
  • a stability annealing at a temperature of, for example, about 120 to 260 ° C., and in particular a temperature of 200 to 240 ° C. over a period of ⁇ 180 min, for example about 20 min to about 90 min , and in particular in a period of about 30 minutes to about 60 minutes subjected.
  • the cast component has an elongation at break A 5 of ⁇ 7% and a yield strength Rp 0.2 of, for example, about 125 to 135 MPa, and in particular from 129 to 133 MPa.
  • an aluminum die cast alloy is used for the respective cast components, which has the following alloying elements: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.12 to 0.16 Wt .-% magnesium 0.04 to 0.08 % By weight of titanium 14 * 10 -3 to 18 * 10 -3 % By weight strontium (140-180 ppm) and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • the casting components created with the abovementioned aluminum die-casting alloy have a breaking elongation A 5 of ⁇ 10% and a yield strength Rp 0.2 of ⁇ 120 MPa in the cast state, that is to say without heat treatment.
  • the individual cast components are in turn subjected to a Stabilityglühung in a temperature range of 120 to 260 ° C, and in particular from 200 to 240 ° C.
  • the stabilization annealing is again carried out over a period of up to 180 minutes, and here, for example, about 20 minutes to 90 minutes, and in particular in a period of 30 to 60 minutes.
  • the heat-treated cast components have an elongation at break A 5 of ⁇ 7% and a yield strength Rp 0.2 in the range between 135 and 150 MPa, and in particular in the range between 141 and 148 MPa.
  • an aluminum die casting alloy which has the following alloying elements: 7.8 to 8.2 Wt .-% silicon 0.5 to 0.6 Wt .-% manganese 0.15 to 0.2 Wt .-% iron 0.16 to 0.2 Wt .-% magnesium 0.04 to 0.08 %
  • strontium (140-180 ppm) and the balance aluminum with individually at most 0.05 wt .-% and a maximum of 0.2 wt .-% of production-related impurities.
  • the cast components created by the abovementioned die-cast aluminum alloy in the cast state before the heat treatment have an elongation at break A 5 of ⁇ 7% and a yield strength Rp 0.2 of ⁇ 120 MPa.
  • the cast components are in turn subjected to a Stabilityglühung at a temperature of 120 to 260 ° C, and in particular between 200 and 240 ° C.
  • the Stability annealing takes place in a period up to 180 min, in particular between 20 minutes and 90 minutes, and in particular between 30 minutes and 60 minutes.
  • cast components are created in the present case, which have after the heat treatment, an elongation at break A 5 of ⁇ 7% and a yield strength Rp 0.2 in the range 145-165 MPa, and in particular in the range 151-161 MPa.
  • the yield strength can be set to the values specified in Examples 1 to 4, depending on the area in which the respective cast component is used.
  • the magnesium content can be reduced to max. 0.6 wt .-% be adjusted.
  • the present one-stage stability annealing is carried out in a range from 120 to 260 ° C., and in particular from 200 to 240 ° C.
  • an extremely short-term stability annealing can be achieved, it being ensured in all samples of the cast components that the required short-term heat stability or long-term stability is given, without the yield strength Rp 0.2 appreciably or considerably reduced.
  • Such stability annealing at such temperatures ie, for example, a temperature of ⁇ 240 ° C. for a time ⁇ 180 min, and in particular ⁇ 60 min, also has the advantage that no distortion of the cast components is formed and heat-treated in a larger batch in a batch furnace can be.
  • a particular advantage of using the cast components, for example in motor vehicle construction, is that the cast component in the cast state - ie in the state of least strength (Rp 0.2 about 100 MPa) and maximum ductility (A 5 about 10 to 14%) - mechanically be joined, for example, riveted, can be.
  • the subsequent heat treatment which can be carried out for example during the painting or paint firing of the motor vehicle body at, for example, about 180 ° C for a period of about 30 minutes, then the final mechanical values are set.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Body Structure For Vehicles (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
EP09163549A 2008-06-24 2009-06-24 Pièce coulée et son procédé de fabrication Withdrawn EP2138593A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008029864A DE102008029864B4 (de) 2008-06-24 2008-06-24 Gussbauteil und Verfahren zu dessen Herstellung

Publications (2)

Publication Number Publication Date
EP2138593A2 true EP2138593A2 (fr) 2009-12-30
EP2138593A3 EP2138593A3 (fr) 2010-10-27

Family

ID=41165361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09163549A Withdrawn EP2138593A3 (fr) 2008-06-24 2009-06-24 Pièce coulée et son procédé de fabrication

Country Status (5)

Country Link
US (1) US20090314392A1 (fr)
EP (1) EP2138593A3 (fr)
JP (1) JP2010031360A (fr)
CA (1) CA2669706A1 (fr)
DE (1) DE102008029864B4 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825428A1 (fr) * 2019-11-25 2021-05-26 AMAG casting GmbH Composant moulé sous pression et procédé de fabrication d'un composant moulé sous pression
DE102021131973A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung
DE102021131935A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010004908B4 (de) 2010-01-19 2016-09-15 Audi Ag Gussbauteil
GB2522716B (en) * 2014-02-04 2016-09-14 Jbm Int Ltd Method of manufacture
GB2522715B (en) * 2014-02-04 2016-12-21 Jbm Int Ltd Die cast structural components
MX2017013469A (es) 2015-04-28 2018-03-01 Consolidated Eng Company Inc Sistema y metodo para tratamiento termico de piezas fundidas de aleacion de aluminio.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997550A1 (fr) * 1998-10-05 2000-05-03 Alusuisse Technology & Management AG Méthode de fabrication d' un composant d' alliage d' aluminium par moulage sous pression
WO2001023633A2 (fr) * 1999-09-24 2001-04-05 Honsel Guss Gmbh Procede de traitement thermique de pieces structurales moulees constituees d'un alliage d'aluminium destine a etre utilise a cet effet
WO2003006698A1 (fr) * 2001-07-10 2003-01-23 Aluminium Pechiney Piece coulee sous pression en alliage d'aluminium a haute ductilite
WO2005071127A1 (fr) * 2004-01-09 2005-08-04 Alcoa Inc. Alliage la/si/mn/mg pour former des pieces structurales automobiles par coulage et par traitement thermique t5
WO2005075692A1 (fr) * 2004-01-30 2005-08-18 Alcoa Inc. Alliage d'aluminium pour produire des coulages formes haute performance
US20050220660A1 (en) * 2004-03-30 2005-10-06 Fumiaki Fukuchi Al-Si based alloy and alloy member made therefrom
WO2007051162A2 (fr) * 2005-10-28 2007-05-03 Alcoa Inc. Alliage d'al-si-mg a resistance elevee aux chocs et procedes destines a la production d'un moulage automobile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773666B2 (en) * 2002-02-28 2004-08-10 Alcoa Inc. Al-Si-Mg-Mn casting alloy and method
ES2368923T3 (es) * 2004-06-29 2011-11-23 Aluminium Rheinfelden Gmbh Aleación de aluminio para la colada a presión.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997550A1 (fr) * 1998-10-05 2000-05-03 Alusuisse Technology & Management AG Méthode de fabrication d' un composant d' alliage d' aluminium par moulage sous pression
WO2001023633A2 (fr) * 1999-09-24 2001-04-05 Honsel Guss Gmbh Procede de traitement thermique de pieces structurales moulees constituees d'un alliage d'aluminium destine a etre utilise a cet effet
WO2003006698A1 (fr) * 2001-07-10 2003-01-23 Aluminium Pechiney Piece coulee sous pression en alliage d'aluminium a haute ductilite
WO2005071127A1 (fr) * 2004-01-09 2005-08-04 Alcoa Inc. Alliage la/si/mn/mg pour former des pieces structurales automobiles par coulage et par traitement thermique t5
WO2005075692A1 (fr) * 2004-01-30 2005-08-18 Alcoa Inc. Alliage d'aluminium pour produire des coulages formes haute performance
US20050220660A1 (en) * 2004-03-30 2005-10-06 Fumiaki Fukuchi Al-Si based alloy and alloy member made therefrom
WO2007051162A2 (fr) * 2005-10-28 2007-05-03 Alcoa Inc. Alliage d'al-si-mg a resistance elevee aux chocs et procedes destines a la production d'un moulage automobile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHNEIDER W ET AL: "WAERMEBEHANDLUNG VON ALUMINIUM-GUSSLEGIERUNGEN FUER DAS VAKUUM-DRUCKGIESSEN" GIESSEREI, GIESSEREI VERLAG, DUSSELDORF, DE, Bd. 84, Nr. 4, 24. Februar 1997 (1997-02-24), Seiten 17-22, XP000688088 ISSN: 0016-9765 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825428A1 (fr) * 2019-11-25 2021-05-26 AMAG casting GmbH Composant moulé sous pression et procédé de fabrication d'un composant moulé sous pression
WO2021105229A1 (fr) * 2019-11-25 2021-06-03 Amag Casting Gmbh Pièce coulée sous pression, élément de carrosserie doté de cette pièce coulée sous pression, véhicle à moteur pourvu de cet élément de carrosserie ainsi que procédé de fabrication de cette pièce coulée sous pression
DE102021131973A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung
DE102021131935A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung
WO2023099520A1 (fr) 2021-12-03 2023-06-08 Audi Ag Alliage de coulée sous pression d'aluminium

Also Published As

Publication number Publication date
DE102008029864A1 (de) 2010-01-07
DE102008029864B4 (de) 2011-02-24
CA2669706A1 (fr) 2009-12-24
EP2138593A3 (fr) 2010-10-27
JP2010031360A (ja) 2010-02-12
US20090314392A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
DE102013012259B3 (de) Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung, Verfahren zu dessen Herstellung und Verwendung des Aluminium-Werkstoffes
EP2138593A2 (fr) Pièce coulée et son procédé de fabrication
EP2735621B1 (fr) Alliage à coulée sous pression en aluminium
EP1682688B1 (fr) Alliage d'aluminium de coulée du type Al-Mg-Si contenant du scandium
EP3235917B1 (fr) Alliage d'aluminium pour moulage sous pression
EP2653579B1 (fr) Alliage d'aluminium
EP3176275B2 (fr) Alliage de coulée sous pression de silicium/aluminium. procédé de fabrication d'un composant coulé sous pression en alliage et composants de carrosserie comprenant un tel composant coulé sous pression
DE60123065T2 (de) Titanlegierung und wärmebehandlungsverfahren für grossdimensionale, halbfertige materialien aus dieser legierung
EP0224016B1 (fr) Alliage d'aluminium forgeable du type Al-Cu-Mg à haute résistance dans la gamme des températures entre 0 et 250o C
DE102008046803B4 (de) Aluminiumgusslegierung und Verfahren zur Herstellung eines Gussbauteils
EP3825428B1 (fr) Composant moulé sous pression et procédé de fabrication d'un composant moulé sous pression
DE102011105447B4 (de) Verfahren zur Herstellung von Aluminium-Druckgussteilen
DE102008056511B4 (de) Verfahren zur Herstellung dünnwandiger Metallbauteile aus einer AI-SiMg-Legierung, insbesondere von Bauteilen eines Kraftfahrzeugs
DE10163039C1 (de) Warm- und kaltumformbares Bauteil aus einer Aluminiumlegierung und Verfahren zu seiner Herstellung
WO2023099080A1 (fr) Alliage d'aluminium pour coulée sous pression
EP1234893B1 (fr) Alliage coulée du type Al-Mg-Si
EP2088216A1 (fr) Alliage d'aluminium
DE102019202676B4 (de) Gussbauteile mit hoher Festigkeit und Duktilität und geringer Heißrissneigung
DE2365045A1 (de) Durch ausscheidung verfestigte legierung
AT507490B1 (de) Aluminiumlegierung, verfahren zu deren herstellung und deren verwendung
DE102015012095A1 (de) Verfahren zur Herstellung eines Bauteils, Bauteil und Kraftfahrzeug mit einem derartigen Bauteil
DE102012021634B4 (de) Verfahren zur Herstellung einer Fahrzeugkarosserie mit einem Karosseriebauteil aus einer Magnesiumlegierung, sowie hiermit hergestellte Fahrzeugkarosserie
EP3966358B1 (fr) Composant, en particulier pour un véhicule, ainsi que procédé de fabrication d'un tel composant
EP1601806A1 (fr) Element coule sous pression et procede de fabrication associe
AT522376A1 (de) Stranggussbolzen aus einer Aluminiumbasislegierung, extrudiertes Profil und Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110428