EP2138015B1 - Schaltungsanordnung zum erzeugen einer hilfsspannung und zum betreiben mindestens einer entladungslampe - Google Patents

Schaltungsanordnung zum erzeugen einer hilfsspannung und zum betreiben mindestens einer entladungslampe Download PDF

Info

Publication number
EP2138015B1
EP2138015B1 EP07728411A EP07728411A EP2138015B1 EP 2138015 B1 EP2138015 B1 EP 2138015B1 EP 07728411 A EP07728411 A EP 07728411A EP 07728411 A EP07728411 A EP 07728411A EP 2138015 B1 EP2138015 B1 EP 2138015B1
Authority
EP
European Patent Office
Prior art keywords
coupled
terminal
auxiliary voltage
switch
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07728411A
Other languages
English (en)
French (fr)
Other versions
EP2138015A1 (de
Inventor
Peter Krummel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2138015A1 publication Critical patent/EP2138015A1/de
Application granted granted Critical
Publication of EP2138015B1 publication Critical patent/EP2138015B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices

Definitions

  • the present invention relates to a circuit arrangement for operating at least one discharge lamp having a first and a second input terminal for connecting a supply voltage, an inverter comprising at least a first and a second switch, which are coupled in series between the first and the second input terminal and between them a bridge center is defined, a drive circuit for at least the first and the second switch with an input for receiving a control signal and a device for generating an auxiliary voltage.
  • the auxiliary voltage comprises a first capacitor, a terminal for providing the auxiliary voltage, which is coupled via the first capacitor to a reference potential, a two-position controller having a first input to which the control signal is coupled in an inverted form, a second input which is connected to the Coupled to provide the auxiliary voltage, and an output, a switch having a control, a working and a reference electrode, wherein the control electrode is coupled to the output of the two-position controller, wherein the working electrode is coupled to the terminal for providing the auxiliary voltage, and an ohmic resistance.
  • the auxiliary power supply in standby has a different internal resistance as in normal operation, to reduce the power loss during normal operation.
  • An electronic operating device with an auxiliary voltage supply is known, which can either be fed via a transistor from the supply network or via an auxiliary winding of an existing boost converter choke.
  • FIG. 1 A generic, known from the prior art circuit arrangement is to illustrate the problem underlying the invention in Fig. 1 shown. It shows a section of an electronic ballast, which is usually connected via a filter circuit, a rectifier circuit, a PFC (Power Factor Correction) circuit with an AC mains. It is powered by the so-called intermediate circuit voltage U ZW , which is stabilized by means of a capacitor C UZW .
  • the intermediate circuit voltage U ZW in the present case feeds a half-bridge circuit comprising a first switch S1 and a second switch S2, and is usually of the order of 320 V.
  • the half-bridge center HM is coupled via a lamp inductor L to a discharge lamp La, which is a firing capacitor C 1 is connected in parallel, and which is coupled via a coupling capacitor C K to a reference potential. It has a controller 10, which can be digitally controlled via an interface 12, for example according to the DALI standard. In standby mode, ie with the inverter switched off, the controller 10 requires a power supply of about 2 mA, in normal operation, ie when the inverter is in operation, a power supply of about 30 mA. An "on" signal at the interface 12 causes a half-bridge driver circuit 14 to start operating and to drive the switches S1 and S2 in accordance with a default.
  • the interface evaluation made by the controller 10 must also be in the "off" state of the output circuit 16, the inverter with the switches S1 and S2, the lamp inductor L and the lamp La including wiring, be ready for use at any time, for example, to receive a new "on" command and evaluate. For this it is necessary to supply the controller 10 always in the "off” state with a voltage. Thus, to always keep the interface 12 in standby, standby losses occur, which are generally undesirable.
  • the known solution derives the standby current required for the controller 10 via an ohmic resistor R F and a two-point controller SSD controlled via a switch Q ISS directly from the intermediate circuit voltage U ZW .
  • the two-point controller SSD the control signal, which serves to turn on the half-bridge driver 14, supplied in an inverted form, so that the two-position controller starts its operation when the half-bridge driver 14 is turned off.
  • the controller 10 is no longer supplied with voltage via its operating supply circuit 18, the operating supply circuit comprising, by way of example, a capacitor C2 and two diodes D1 and D2, but via an auxiliary voltage V CC provided to a capacitor C VCC .
  • An input 20 of the two-point controller SSD is used to measure the voltage V CC .
  • Fig. 1 drawn current source ISS can be realized by an integrated circuit, in a very simplified form, however, also by an ohmic resistance.
  • the standby supply on the capacitor C VCC is only active when the output circuit is switched off via the interface 12.
  • the two-point controller SSD keeps the auxiliary voltage Vcc over the switched with the switch Q ISS power source ISS constant, by depending on the power consumption and height of the intermediate circuit voltage U ZW varies the duty cycle.
  • the standby power loss in this solution is about 0.5 to 1 W.
  • the required two-level current source is already integrated in some commercial half-bridge drivers in an advantageous manner.
  • circuit arrangement solves the problem of an additional auxiliary voltage supply for the normal "on” operation in that the circuit arrangement comprises a step-down converter which generates a regulated auxiliary voltage. It allows auxiliary voltage generation not only in standby mode but also in normal "on” operation, whereby standby power losses of 0.3 to 0.8 W can be achieved.
  • the disadvantage is that such a circuit arrangement is relatively expensive and requires a large number of components.
  • the object of the present invention is therefore to develop a generic circuit arrangement such that they basically allow a lower standby power loss with cost-effective implementation.
  • the present invention is based on the finding that the standby power loss can be significantly reduced by using a transformer.
  • the transformer is used as a flux converter, wherein the primary winding is coupled to the switch Q ISS , that a current through the primary winding leads to a change in the transmission ratio of the transformer current through the secondary winding, the secondary winding coupled to the capacitor C VCC is that a current through the secondary winding leads to a charging of the capacitor C VCC .
  • the current drawn from the intermediate circuit voltage U ZW drops by the factor of the transmission ratio compared with the in Fig. 1 shown circuit without transformer.
  • the power taken from the mains also decreases by the factor of the transformation ratio of the transformer.
  • a standby power loss of approximately 0.05 to 0.10 W can be achieved.
  • the primary winding and the ohmic resistor are connected in series, and this series circuit is coupled between the reference electrode of the switch and the first input terminal.
  • the device for generating the auxiliary voltage further comprises a first diode which is connected in parallel to the series circuit of the primary winding and the ohmic resistor and is arranged so that it allows a free-running of the current through the primary winding, and a second diode which is connected to the secondary winding in Series is connected, wherein the series circuit of secondary winding and second diode is coupled between the reference potential and the terminal for providing the auxiliary voltage.
  • the first and the second diode are preferably designed as fast recovery diodes.
  • a current source is coupled between the working electrode of the switch and the terminal for providing the auxiliary voltage. This is preferably realized particularly cost-effective by an ohmic resistance.
  • a further category of embodiments solves the second problem mentioned above in connection with the prior art: namely, it offers the advantage that it not only enables a reduction of the standby power loss, but also a continuous auxiliary voltage generation, ie an auxiliary voltage for the supply of the controller also in normal operation of the output circuit. This eliminates the operating supply circuit discussed in connection with the prior art.
  • the means for generating an auxiliary voltage further comprises a second capacitor having a first and a second terminal, wherein the capacitor is coupled to the bridge center and the primary winding such that a capacitive displacement current can flow through the primary winding.
  • this embodiment can also be used to generate a current through the secondary winding during normal operation and to charge the capacitor C VCC and thus to supply an auxiliary voltage to the controller.
  • the first terminal of the second capacitor is coupled to the bridge center and the second terminal of the second capacitor to the reference electrode of the switch. Since the switch is coupled to the primary winding such that a current through the switch generates a current through the primary winding, this ensures that a displacement current of the second capacitor leads to a current through the primary winding.
  • the auxiliary voltage generating device further comprises a third diode, the primary winding being coupled to the first input terminal via the third diode, the third diode being arranged to allow current to flow from the first input terminal to the primary winding the connection point between the primary winding and the third diode is coupled to the second terminal of the second capacitor.
  • the device for generating an auxiliary voltage further comprises a third capacitor, which is connected in parallel to the ohmic resistance. This allows the time constant at which the second capacitor is charged and discharged and thus set the duration of a current flow through the primary winding and therefore also through the secondary winding.
  • a zener diode is connected in parallel with the first capacitor. This protects the provided auxiliary voltage against overvoltage.
  • FIGS. 2 to 4 illustrated embodiments for the same and similar components continue to be used. In this respect, the following will essentially refer to the differences from the circuit arrangement of Fig. 1 received.
  • Fig. 2 illustrated embodiment of a circuit arrangement according to the invention further comprises the Fig. 1 known operating supply circuit 18 for the controller 10.
  • the half-bridge driver 14 comprises a transformer TR whose primary winding PW is arranged in series with the ohmic resistor R F.
  • the switch Q ISS becomes conductive due to appropriate control by the two-point controller SSD, a current flows from the intermediate circuit voltage U ZW through the primary winding PW and the ohmic resistance R F via the switch Q ISS and the current source ISS to charge the capacitor Cvcc.
  • the primary winding PW can over the resistor R F and a diode D F free run.
  • the secondary winding SW feeds the capacitor C VCC via a diode D CC , at which the auxiliary voltage V CC is provided.
  • the freewheeling diode D F provides with the resistor R F for the demagnetization of the transformer TR.
  • the standby mode is active and the two-point controller SSD is activated.
  • the two-point controller SSD determines that the auxiliary voltage V CC has fallen below the lower threshold of the two-position controller SSD by sensing its input 20, the current source ISS is switched on via the switch Q ISS .
  • a current flows through the primary winding PW and thus, transformed with the transmission ratio, and current from the secondary winding SW via the diode D CC in the capacitor Cvcc.
  • the voltage V CC at the capacitor C VCC increases .
  • the current source ISS is switched off via Q ISS .
  • the primary energy stored in the transformer is discharged via the resistor R F and the freewheeling diode D F.
  • the embodiments of circuit arrangements according to the invention according to Fig. 3 and according to Fig. 4 do not require a separate operating supply circuit for the controller 10, that is, the controller 10 is also in normal operation, when the output circuit 16 is in operation, over the transformer TR powered.
  • a capacitor C S between the half-bridge center HM on the one hand and the diode D F and the primary winding PW of the transformer TR on the other hand is coupled.
  • the resistor R F is a capacitor C S / F connected in parallel.
  • the output circuit 16 is activated and simultaneously deactivated the two-point controller SSD. This is the standby auxiliary voltage generation, see the comments on this Fig. 2 , shut down.
  • the switch Q ISS separates the current source ISS from the auxiliary voltage V CC .
  • the inverter comprising the switches S1 and S2 alternately switches the potential at the half-bridge center HM at a predetermined frequency between U ZW and ground.
  • Step 1 The voltage at the half-bridge center HM of the output circuit 16 decreases from the intermediate circuit voltage U ZW to ground:
  • the capacitor C S via the primary winding PW, the parallel circuit of the ohmic resistor R F and the capacitor C S / F and charged via the switch S2 to the intermediate circuit voltage U ZW .
  • This is done with a time constant which results from the ohmic resistance R F , the capacitor C S / F and the transformed load at the terminal at which the auxiliary voltage V CC is supplied to the controller 10.
  • the secondary winding SW of the transformer TR charges the capacitor C VCC via the diode D CC .
  • the transmitted energy can be optimized and adjusted.
  • the capacitor C S was 150 pF
  • the gear ratio ü of the transformer TR was 10
  • the ohmic resistance R F was 5.6 k ⁇
  • the capacitor C S / F was 6.8 nF.
  • an auxiliary voltage of V CC equal to 15 V could be generated, which was loadable at 30 mA.
  • a Zener diode D Z can be provided, as shown in dashed lines.
  • the capacitor C S can be dimensioned very small, for example 100 to 150 pF.
  • Fig. 4 illustrated embodiment of a circuit arrangement according to the invention is a variant of the in Fig. 3 shown.
  • the capacitor C S is charged via the diode D S and the switch S2.
  • An energy transfer takes place here during the unloading process of the Capacitor C S instead, which takes place via the switch S1, the primary winding PW of the transformer TR, the parallel connection of the ohmic resistor R F and the capacitor C S / F and the diode D F.
  • the charging energy can be adjusted via the transmission ratio ü of the transformer TR and the time constant effective during the respective charging process.
  • the time constant is chosen in particular such that a full transhipment of the capacitor C S for generating a maximum current-time area by the primary winding PW is made possible.

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft eine Schaltungsanordnung zum Betreiben mindestens einer Entladungslampe mit einem ersten und einem zweiten Eingangsanschluss zum Anschließen einer Versorgungsspannung, einem Wechselrichter, der zumindest einen ersten und einen zweiten Schalter umfasst, die seriell zwischen den ersten und den zweiten Eingangsanschluss gekoppelt sind und zwischen denen ein Brückenmittelpunkt definiert ist, einer Ansteuerschaltung für zumindest den ersten und den zweiten Schalter mit einem Eingang zum Empfang eines Steuersignals und einer Vorrichtung zur Erzeugung einer Hilfsspannung. Dabei umfasst die Hilfsspannung einen ersten Kondensator, einen Anschluss zur Bereitstellung der Hilfsspannung, der über den ersten Kondensator mit einem Bezugspotential gekoppelt ist, einen Zweipunktregler mit einem ersten Eingang, an den das Steuersignal in invertierter Form gekoppelt ist, einem zweiten Eingang, der mit dem Anschluss zur Bereitstellung der Hilfsspannung gekoppelt ist, und einem Ausgang, einen Schalter mit einer Steuer-, einer Arbeits- und einer Bezugselektrode, wobei die Steuerelektrode mit dem Ausgang des Zweipunktreglers gekoppelt ist, wobei die Arbeitselektrode mit dem Anschluss zur Bereitstellung der Hilfsspannung gekoppelt ist, und einen ohmschen Widerstand.
  • Stand der Technik
  • Aus der DE 10 2005 041 076 A1 ist ein elektronische Betriebsgerät bekannt, dessen Hilfsspannungsversorgung im Standby einen anderen Innenwiderstand aufweist wie im normalen Betrieb, um die Verlustleistung im normalen Betrieb zu vermindern.
  • Aus der EP 1 231 821 A1 ist ein elektronische Betriebsgerät bekannt, welches als Hilfsspannungsversorgung einen Tiefsetzsteller aufweist.
  • Aus der EP 0 439 240 A2 ist ein elektronische Betriebsgerät mit einer Hilfsspannungsversorgung bekannt, die entweder über einen Transistor aus dem Versorgungsnetz gespeist werden kann oder über eine Hilfswicklung einer vorhandenen Hochsetzstellerdrossel.
  • Eine gattungsgemäße, aus dem Stand der Technik bekannte Schaltungsanordnung ist zur Darlegung der der Erfindung zugrunde liegenden Problematik in Fig. 1 dargestellt. Sie zeigt einen Ausschnitt aus einem elektronischen Vorschaltgerät, der üblicherweise über eine Filterschaltung, eine Gleichrichterschaltung, eine PFC (Power Faktor Correction = Leistungsfaktorkorrektur)-Schaltung mit einem Wechselspannungsnetz verbunden ist. Er wird gespeist von der so genannten Zwischenkreisspannung UZW, die mittels eines Kondensators CUZW stabilisiert wird. Die Zwischenkreisspannung UZW speist vorliegend eine Halbbrückenschaltung, die einen ersten Schalter S1 und einen zweiten Schalter S2 umfasst, und liegt üblicherweise in der Größenordnung von 320 V. Der Halbbrückenmittelpunkt HM ist über eine Lampendrossel L mit einer Entladungslampe La gekoppelt, der ein Zündkondensator C1 parallelgeschaltet ist, und die über einen Koppelkondensator CK mit einem Bezugspotential gekoppelt ist. Sie weist einen Controller 10 auf, der über eine Schnittstelle 12 digital angesteuert werden kann, beispielsweise nach dem DALI-Standard. Im Standby-Betrieb, d. h. bei ausgeschaltetem Wechselrichter, benötigt der Controller 10 eine Stromversorgung von ca. 2 mA, im Normalbetrieb, d. h. wenn der Wechselrichter in Betrieb ist, eine Stromversorgung von ca. 30 mA. Ein "Ein"-Signal an der Schnittstelle 12 führt dazu, dass eine Halbbrückentreiberschaltung 14 ihren Betrieb aufnimmt und die Schalter S1 und S2 entsprechend einer Vorgabe ansteuert.
  • Die vom Controller 10 vorgenommene Schnittstellenauswertung muss auch im "Aus"-Zustand des Ausgangskreises 16, der den Wechselrichter mit den Schaltern S1 und S2, die Lampendrossel L und die Lampe La samt Beschaltung umfasst, jederzeit einsatzbereit sein, um zum Beispiel einen erneuten "Ein"-Befehl empfangen und auswerten zu können. Dazu ist es notwendig, den Controller 10 auch im "Aus"-Zustand immer mit einer Spannung zu versorgen. Um demnach die Schnittstelle 12 immer in Bereitschaft zu halten, entstehen Standby-Verluste, die generell unerwünscht sind.
  • Die bekannte Lösung leitet den für den Controller 10 erforderlichen Standby-Strom über einen ohmschen Widerstand RF und einen über einen Schalter QISS gesteuerten Zweipunktregler SSD direkt aus der Zwischenkreisspannung UZW ab. Dabei wird dem Zweipunktregler SSD das Steuersignal, das zum Anschalten des Halbbrückentreibers 14 dient, in invertierter Form zugeführt, so dass der Zweipunktregler seinen Betrieb aufnimmt, wenn der Halbbrückentreiber 14 abgeschaltet wird. Damit wird der Controller 10 nicht mehr über seine Betriebsversorgungsschaltung 18 mit Spannung versorgt, wobei die Betriebsversorgungsschaltung beispielhaft vorliegend einen Kondensator C2 sowie zwei Dioden D1 und D2 umfasst, sondern über eine an einem Kondensator CVCC bereitgestellte Hilfsspannung VCC. Ein Eingang 20 des Zweipunktreglers SSD dient zur Messung der Spannung VCC. Die in Fig. 1 eingezeichnete Stromquelle ISS kann durch einen integrierten Schaltkreis realisiert sein, in einer sehr vereinfachten Form jedoch auch durch einen ohmschen Widerstand. Gemäß Fig. 1 ist die Standby-Versorgung am Kondensator CVCC nur aktiv, wenn der Ausgangskreis über die Schnittstelle 12 ausgeschaltet ist. Der Zweipunktregler SSD hält die Hilfsspannung Vcc über die mit dem Schalter QISS geschaltete Stromquelle ISS konstant, indem er je nach Stromverbrauch und Höhe der Zwischenkreisspannung UZW das Einschaltverhältnis variiert. Die Standby-Verlustleistung beträgt bei dieser Lösung ca. 0,5 bis 1 W. Die erforderliche zweipunktgeregelte Stromquelle ist in vorteilhafter Weise bei einigen handelsüblichen Halbbrückentreibern bereits integriert.
  • Nachteilig an dieser bekannten Lösung ist die immer noch unerwünscht hohe Verlustleistung im Standby-Betrieb.
  • Ein weiterer Nachteil dieser bekannten Lösung besteht darin, dass eine zusätzliche Hilfsspannungserzeugung für den normalen "Ein"-Betrieb notwendig ist. Diese wird vorliegend durch die Betriebsversorgungsschaltung 18 realisiert, die auf dem Prinzip basiert, diese Spannung kapazitiv an einer geeigneten Stelle aus dem Ausgangskreis 16 abzuleiten.
  • Eine andere, nicht dargestellte Schaltungsanordnung löst die Problematik einer zusätzlichen Hilfsspannungsversorgung für den normalen "Ein"-Betrieb dadurch, dass die Schaltungsanordnung einen Tiefsetzsteller umfasst, der eine geregelte Hilfsspannung erzeugt. Sie erlaubt eine Hilfsspannungserzeugung nicht nur im Standby-Betrieb, sondern auch im normalen "Ein"-Betrieb, wobei Standby-Verlustleistungen von 0,3 bis 0,8 W erreicht werden können. Der Nachteil besteht darin, dass eine derartige Schaltungsanordnung verhältnismäßig teuer ist und eine Vielzahl von Bauelementen benötigt.
  • Darstellung der Erfindung
  • Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, eine gattungsgemäße Schaltungsanordnung derart weiterzubilden, dass sie grundsätzlich eine niedrigere Standby-Verlustleistung bei kostengünstiger Realisierung ermöglichen.
  • Diese Aufgabe wird gelöst durch eine Schaltungsanordnung mit den Merkmalen von Patentanspruch 1.
  • Die vorliegende Erfindung beruht auf der Erkenntnis, dass sich die Standby-Verlustleistung durch Einsatz eines Transformators deutlich reduzieren lässt. Dabei wird der Transformator als Flusswandler eingesetzt, wobei die Primärwicklung so mit dem Schalter QISS gekoppelt ist, dass ein Strom durch die Primärwicklung zu einem entsprechend dem Übertragungsverhältnis des Transformators veränderten Strom durch die Sekundärwicklung führt, wobei die Sekundärwicklung so mit dem Kondensator CVCC gekoppelt ist, dass ein Strom durch die Sekundärwicklung zu einem Laden des Kondensators CVCC führt. Durch den Einsatz eines Transformators sinkt der aus der Zwischenkreisspannung UZW entnommene Strom um den Faktor des Übersetzungsverhältnisses gegenüber der in Fig. 1 dargestellten Schaltung ohne Transformator. Damit sinkt die aus dem Netz entnommene Leistung ebenfalls um den Faktor des Übersetzungsverhältnisses des Transformators. Bei einem typischen Übersetzungsverhältnis von 10 lässt sich damit eine Standby-Verlustleistung von ca. 0,05 bis 0,10 W erreichen.
  • Bei einer bevorzugten Ausführungsform sind die Primärwicklung und der ohmsche Widerstand in Serie geschaltet und diese Serienschaltung ist zwischen die Bezugselektrode des Schalters und den ersten Eingangsanschluss gekoppelt. Dabei umfasst die Vorrichtung zur Erzeugung der Hilfsspannung weiterhin eine erste Diode, die der Serienschaltung aus der Primärwicklung und dem ohmschen Widerstand parallelgeschaltet ist und so angeordnet ist, dass sie ein Freilaufen des Stroms durch die Primärwicklung ermöglicht, und eine zweite Diode, die zur Sekundärwicklung in Serie geschaltet ist, wobei die Serienschaltung aus Sekundärwicklung und zweiter Diode zwischen das Bezugspotential und den Anschluss zur Bereitstellung der Hilfsspannung gekoppelt ist. Demnach lässt sich allein durch zwei zusätzliche Dioden und einen Transformator die Standby-Verlustleistung deutlich reduzieren. Die erste und die zweite Diode sind dabei bevorzugt als Fast Recovery-Dioden ausgebildet.
  • Bevorzugt ist zwischen die Arbeitselektrode des Schalters und den Anschluss zur Bereitstellung der Hilfsspannung eine Stromquelle gekoppelt. Diese ist bevorzugt besonders kostengünstig durch einen ohmschen Widerstand realisiert.
  • Eine weitere Kategorie von Ausführungsformen löst das zweite oben im Zusammenhang mit dem Stand der Technik erwähnte Problem: Sie bietet nämlich den Vorteil, dass sie nicht nur eine Reduktion der Standby-Verlustleistung ermöglicht, sondern auch eine Dauerhilfsspannungserzeugung, d. h. eine Hilfsspannung zur Versorgung des Controllers auch im Normalbetrieb des Ausgangskreises. Damit entfällt die im Zusammenhang mit dem Stand der Technik diskutierte Betriebsversorgungsschaltung. Diese Ausführungsformen zeichnen sich dadurch aus, dass die Vorrichtung zur Erzeugung einer Hilfsspannung weiterhin einen zweiten Kondensator mit einem ersten und einem zweiten Anschluss umfasst, wobei der Kondensator derart mit dem Brückenmittelpunkt und der Primärwicklung gekoppelt ist, dass ein kapazitiver Verschiebestrom durch die Primärwicklung fließen kann. Da der Brückenmittelpunkt sein Potential im Normalbetrieb fortlaufend zwischen Masse und der Zwischenkreisspannung wechselt, kann ein Stromfluss durch den zweiten Kondensator erzeugt und zur Erzeugung eines Stromflusses durch die Primärwicklung ausgenutzt werden. Damit kann durch diese Ausführungsform auch im Normalbetrieb ein Strom durch die Sekundärwicklung erzeugt und zur Ladung des Kondensators CVCC und damit zur Bereitstellung einer Hilfsspannung an den Controller verwendet werden.
  • Bevorzugt ist dabei der erste Anschluss des zweiten Kondensators mit dem Brückenmittelpunkt gekoppelt und der zweite Anschluss des zweiten Kondensators mit der Bezugselektrode des Schalters. Da der Schalter so mit der Primärwicklung gekoppelt ist, dass ein Strom durch den Schalter einen Strom durch die Primärwicklung erzeugt, wird dadurch sichergestellt, dass ein Verschiebestrom des zweiten Kondensators zu einem Strom durch die Primärwicklung führt.
  • In einer weiteren Ausführungsform umfasst die Vorrichtung zur Erzeugung einer Hilfsspannung weiterhin eine dritte Diode, wobei die Primärwicklung über die dritte Diode mit dem ersten Eingangsanschluss gekoppelt ist, wobei die dritte Diode angeordnet ist, einen Stromfluss vom ersten Eingangsanschluss zur Primärwicklung zuzulassen, wobei der Verbindungspunkt zwischen der Primärwicklung und der dritten Diode mit dem zweiten Anschluss des zweiten Kondensators gekoppelt ist.
  • Bevorzugt umfasst die Vorrichtung zur Erzeugung einer Hilfsspannung weiterhin einen dritten Kondensator, der dem ohmschen Widerstand parallelgeschaltet ist. Dadurch lässt sich die Zeitkonstante, mit der der zweite Kondensator geladen und entladen wird und damit die Zeitdauer eines Stromflusses durch die Primärwicklung und daher auch durch die Sekundärwicklung einstellen.
  • Schließlich ist bevorzugt, wenn dem ersten Kondensator eine Zenerdiode parallelgeschaltet ist. Damit lässt sich die bereitgestellte Hilfsspannung vor Überspannung schützen.
  • Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
  • Kurze Beschreibung der Zeichnung (en)
  • Im Nachfolgenden werden nunmehr drei Ausführungsbeispiele einer erfindungsgemäßen Schaltungsanordnung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigen:
  • Fig. 1
    in schematischer Darstellung eine aus dem Stand der Technik bekannte Schaltungsanordnung zum Betreiben mindestens einer Entladungslampe;
    Fig.
    2 in schematischer Darstellung ein erstes Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung zum Betreiben mindestens einer Entladungslampe;
    Fig. 3
    in schematischer Darstellung ein zweites Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung zum Betreiben mindestens einer Entladungslampe; und
    Fig. 4
    in schematischer Darstellung ein drittes Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung zum Betreiben mindestens einer Entladungslampe.
  • Bevorzugte Ausführung der Erfindung
  • Die mit Bezug auf Fig. 1 eingeführten Bezugszeichen werden für die in den Figuren 2 bis 4 dargestellten Ausführungsformen für gleiche und ähnliche Bauelemente weiter verwendet. Insofern wird im Nachfolgenden im Wesentlichen auf die Unterschiede zu der Schaltungsanordnung von Fig. 1 eingegangen.
  • Die in Fig. 2 dargestellte Ausführungsform einer erfindungsgemäßen Schaltungsanordnung weist weiterhin die aus Fig. 1 bekannte Betriebsversorgungsschaltung 18 für den Controller 10 auf. Zur Reduzierung der Standby-Verluste bei ausgeschaltetem Halbbrückentreiber 14 umfasst sie jedoch einen Transformator TR, dessen Primärwicklung PW seriell zum ohmschen Widerstand RF angeordnet ist. Wenn der Schalter QISS aufgrund entsprechender Ansteuerung durch den Zweipunktregler SSD leitend wird, fließt ein Strom von der Zwischenkreisspannung UZW durch die Primärwicklung PW und den ohmschen Widerstand RF über den Schalter QISS und die Stromquelle ISS, um den Kondensator Cvcc zu laden. Im nicht-leitenden Zustand des Schalter QISS kann sich die Primärwicklung PW über den ohmschen Widerstand RF und eine Diode DF freilaufen. Die Sekundärwicklung SW speist über eine Diode DCC den Kondensator CVCC, an dem die Hilfsspannung VCC bereitgestellt wird. Die Freilaufdiode DF sorgt mit dem Widerstand RF für die Entmagnetisierung des Transformators TR.
  • Sobald der Ausgangskreis 16 durch ein entsprechendes Signal an der Schnittstelle 12 und damit am Halbbrückentreiber 14 angehalten wird, ist der Standby-Betrieb wirksam und der Zweipunktregler SSD ist aktiviert. Stellt der Zweipunktregler SSD durch Sensieren seines Eingangs 20 fest, dass die Hilfsspannung VCC unter die niedrigere Schwelle des Zweipunktreglers SSD gefallen ist, wird die Stromquelle ISS über den Schalter QISS eingeschaltet. Damit fließt ein Strom über die Primärwicklung PW und damit, mit dem Übersetzungsverhältnis transformiert, auch Strom aus der Sekundärwicklung SW über die Diode DCC in den Kondensator Cvcc. Dadurch steigt die Spannung VCC am Kondensator CVCC. Sobald die Spannung VCC die obere Schwelle des Zweipunktreglers SSD erreicht, wird die Stromquelle ISS über QISS ausgeschaltet. Die im Transformator gespeicherte Primärenergie entleert sich über den Widerstand RF und die Freilaufdiode DF.
  • Die Ausführungsformen von erfindungsgemäßen Schaltungsanordnungen gemäß Fig. 3 und gemäß Fig. 4 benötigen keine separate Betriebsversorgungsschaltung für den Controller 10, d. h. der Controller 10 wird auch im Normalbetrieb, wenn der Ausgangskreis 16 in Betrieb ist, über den Transformator TR mit Spannung versorgt. Dazu ist ein Kondensator CS zwischen den Halbbrückenmittelpunkt HM einerseits und die Diode DF und die Primärwicklung PW des Transformators TR andererseits gekoppelt. Dem Widerstand RF ist ein Kondensator CS/F parallelgeschaltet. Über die Schnittstelle 12 wird der Ausgangskreis 16 aktiviert und gleichzeitig der Zweipunktregler SSD deaktiviert. Damit ist die Standby-Hilfsspannungserzeugung, siehe hierzu die Ausführungen zu Fig. 2, stillgelegt. Der Schalter QISS trennt die Stromquelle ISS von der Hilfsspannung VCC. Der Wechselrichter, der die Schalter S1 und S2 umfasst, schaltet das Potential am Halbbrückenmittelpunkt HM mit einer vorgegebenen Frequenz abwechselnd zwischen UZW und Masse hin und her.
  • Schritt 1: Die Spannung am Halbbrückenmittelpunkt HM des Ausgangskreises 16 sinkt von der Zwischenkreisspannung UZW auf Masse:
  • Hierbei wird der Kondensator CS über die Primärwicklung PW, die Parallelschaltung aus dem ohmschen Widerstand RF und dem Kondensator CS/F und über den Schalter S2 auf die Zwischenkreisspannung UZW aufgeladen. Dies erfolgt mit einer Zeitkonstante, die sich aus dem ohmschen Widerstand RF, dem Kondensator CS/F und der transformierten Last am Anschluss, an dem die Hilfsspannung VCC an den Controller 10 bereitgestellt wird, ergibt. Bei diesem Ladevorgang lädt die Sekundärwicklung SW des Transformators TR über die Diode DCC den Kondensator CVCC.
  • Mit der Dimensionierung des Kondensators CS, des Übertragungsverhältnisses ü des Transformators TR und der Bauelemente CS/F und RF kann die übertragene Energie optimiert und eingestellt werden.
  • Dabei reichen bereits kleine Kapazitätswerte für den Kondensator CS, um eine Hilfsspannung mit ausreichender Leistung zu erzeugen. In einem Ausführungsbeispiel betrug der Kondensator CS gleich 150 pF, das Übersetzungsverhältnis ü des Transformators TR war gleich 10, der ohmsche Widerstand RF gleich 5,6 kΩ und der Kondensator CS/F betrug 6,8 nF. Damit ließ sich eine Hilfsspannung von VCC gleich 15 V erzeugen, die mit 30 mA belastbar war.
  • Um die Hilfsspannung VCC vor Überspannung zu schützen, kann eine Zenerdiode DZ vorgesehen werden, wie sie gestrichelt eingezeichnet ist.
  • Schritt 2: Die Spannung am Halbbrückenmittelpunkt HM des Ausgangskreises 16 steigt von Masse auf die Zwischenkreisspannung UZW:
    • Hierbei wird der Kondensator CS über den ersten Schalter S1 und die Diode DF entladen. Er steht damit für die nächste fallende Flanke wieder zur Einspeisung eines Ladestroms zur Verfügung.
  • Infolge der Verwendung eines Transformators TR kann der Kondensator CS sehr klein dimensioniert werden, beispielsweise 100 bis 150 pF.
  • Die in Fig. 4 dargestellte Ausführungsform einer erfindungsgemäßen Schaltungsanordnung ist eine Variante zu der in Fig. 3 dargestellten. Hier wird der Kondensator CS allerdings geladen über die Diode DS und den Schalter S2. Ein Energieübertrag findet hier beim Entladevorgang des Kondensators CS statt, der über den Schalter S1, die Primärwicklung PW des Transformators TR, die Parallelschaltung aus dem ohmschen Widerstand RF und dem Kondensator CS/F und die Diode DF erfolgt. Die Ladeenergie kann über das Übersetzungsverhältnis ü des Transformators TR und die beim jeweiligen Ladevorgang wirksame Zeitkonstante eingestellt werden.
  • Die Zeitkonstante wird insbesondere so gewählt, dass eine volle Umladung des Kondensators CS zur Erzeugung einer maximalen Stromzeitfläche durch die Primärwicklung PW ermöglicht wird.

Claims (9)

  1. Schaltungsanordnung zum Betreiben mindestens einer Entladungslampe (La) mit:
    - einem ersten und einem zweiten Eingangsanschluss zum Anschließen einer Versorgungsspannung;
    - einem Wechselrichter, der zumindest einen ersten (S1) und einen zweiten Schalter (S2) umfasst, die seriell zwischen den ersten und den zweiten Eingangsanschluss gekoppelt sind und zwischen denen ein Brückenmittelpunkt (HM) definiert ist;
    - einer Ansteuerschaltung für zumindest den ersten (S1) und den zweiten Schalter (S2) mit einem Eingang zum Empfang eines Steuersignals;
    - einer Vorrichtung zur Erzeugung einer Hilfsspannung (VCC) umfassend:
    - einen ersten Kondensator (CVCC);
    - einen Anschluss zur Bereitstellung der Hilfsspannung (VCC), der über den ersten Kondensator (CVCC) mit einem Bezugspotential gekoppelt ist;
    - einen Zweipunktregler (SSD) mit einem ersten Eingang, an den das Steuersignal in invertierter Form gekoppelt ist, einem zweiten Eingang, der mit dem Anschluss zur Bereitstellung der Hilfsspannung (VCC) gekoppelt ist, und einem Ausgang;
    - einen Schalter (QISS) mit einer Steuer-, einer Arbeits- und einer Bezugselektrode, wobei die Steuerelektrode mit dem Ausgang des Zweipunktreglers (SSD) gekoppelt ist, wobei die Arbeitselektrode mit dem Anschluss zur Bereitstellung der Hilfsspannung (VCC) gekoppelt ist; und
    - einen ohmschen Widerstand (RF);
    dadurch gekennzeichnet,
    dass die Vorrichtung zur Erzeugung der Hilfsspannung (VCC) weiterhin einen Transformator (TR) mit einer Primärwicklung (PW) und einer Sekundärwicklung (SW) umfasst, wobei der Transformator (TR) derart mit dem ersten und dem zweiten Eingangsanschluss, dem Anschluss zur Bereitstellung der Hilfsspannung (VCC) und dem Schalter (QISS) gekoppelt ist, dass ein Strom durch den Schalter (QISS) zu einem Strom durch die Primärwicklung (PW) führt, welcher entsprechend dem Übertragungsverhältnis des Transformators zusätzlich zu einem Strom durch die Sekundärwicklung (SW) und damit zu einem Laden des ersten Kondensators (CVCC) führt.
  2. Schaltungsanordnung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Primärwicklung (PW) und der ohmsche Widerstand (RF) in Serie geschaltet sind und diese Serienschaltung zwischen die Bezugselektrode des Schalters (QISS) und den ersten Eingangsanschluss gekoppelt ist; wobei die Vorrichtung zur Erzeugung der Hilfsspannung (VCC) weiterhin umfasst:
    - eine erste Diode (DF), die der Serienschaltung aus der Primärwicklung (PW) und dem ohmschen Widerstand (RF) parallelgeschaltet ist und so angeordnet ist, dass sie ein Freilaufen des Stroms durch die Primärwicklung (PW) ermöglicht; und
    - eine zweite Diode (DCC), die zur Sekundärwicklung (SW) in Serie geschaltet ist, wobei die Serienschaltung aus Sekundärwicklung (SW) und zweiter Diode (DCC) zwischen das Bezugspotential und den Anschluss zur Bereitstellung der Hilfsspannung (VCC) gekoppelt ist.
  3. Schaltungsanordnung nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass zwischen die Arbeitselektrode des Schalters (QISS) und den Anschluss zur Bereitstellung der Hilfsspannung (VCC) eine Stromquelle (ISS) gekoppelt ist.
  4. Schaltungsanordnung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Stromquelle (ISS) durch einen ohmschen Widerstand realisiert ist.
  5. Schaltungsanordnung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Vorrichtung zur Erzeugung einer Hilfsspannung (VCC) weiterhin einen zweiten Kondensator (CS) mit einem ersten und einem zweiten Anschluss umfasst, der derart mit dem Brückenmittelpunkt (HM) und der Primärwicklung (PW) gekoppelt ist, dass ein kapazitiver Verschiebestrom durch die Primärwicklung (PW) fließen kann.
  6. Schaltungsanordnung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der erste Anschluss des zweiten Kondensators (CS) mit dem Brückenmittelpunkt (HM) gekoppelt ist, dass der zweite Anschluss des zweiten Kondensators (CS) mit der Bezugselektrode des Schalters (QISS) gekoppelt ist.
  7. Schaltungsanordnung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Vorrichtung zur Erzeugung einer Hilfsspannung (VCC) weiterhin eine dritte Diode (DS) umfasst, wobei die Primärwicklung (PW) über die dritte Diode (DS) mit dem ersten Eingangsanschluss gekoppelt ist, wobei die dritte Diode (DS) angeordnet ist, einen Stromfluss vom ersten Eingangsanschluss zur Primärwicklung (PW) zuzulassen, wobei der Verbindungspunkt zwischen der Primärwicklung (PW) und der dritten Diode (DS) mit dem zweiten Anschluss des zweiten Kondensators (CS) gekoppelt ist.
  8. Schaltungsanordnung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet,
    dass die Vorrichtung zur Erzeugung einer Hilfsspannung (VCC) weiterhin einen dritten Kondensator (CS/F) umfasst, der dem ohmschen Widerstand (RF) parallelgeschaltet ist.
  9. Schaltungsanordnung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass dem ersten Kondensator (CVCC) eine Zenerdiode (DZ) parallelgeschaltet ist.
EP07728411A 2007-04-23 2007-04-23 Schaltungsanordnung zum erzeugen einer hilfsspannung und zum betreiben mindestens einer entladungslampe Not-in-force EP2138015B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/053954 WO2008128575A1 (de) 2007-04-23 2007-04-23 Schaltungsanordnung zum betreiben mindestens einer entladungslampe und verfahren zum erzeugen einer hilfsspannung

Publications (2)

Publication Number Publication Date
EP2138015A1 EP2138015A1 (de) 2009-12-30
EP2138015B1 true EP2138015B1 (de) 2012-04-11

Family

ID=38621187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07728411A Not-in-force EP2138015B1 (de) 2007-04-23 2007-04-23 Schaltungsanordnung zum erzeugen einer hilfsspannung und zum betreiben mindestens einer entladungslampe

Country Status (6)

Country Link
US (1) US8098022B2 (de)
EP (1) EP2138015B1 (de)
KR (1) KR101387051B1 (de)
CN (1) CN101658074B (de)
AT (1) ATE553633T1 (de)
WO (1) WO2008128575A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009535A1 (de) * 2009-02-18 2010-08-19 Osram Gesellschaft mit beschränkter Haftung Schaltung zur Ansteuerung eines Betriebsgeräts für eine Lichtanwendung, Betriebsgerät und Verfahren zum Betrieb der Schaltung
DE102010029981A1 (de) * 2010-06-11 2011-12-15 Osram Gesellschaft mit beschränkter Haftung Elektronisches Betriebsgerät für Gasentladungslampen mit verringerter Verlustleistung und Verfahren zum Betreiben des Betriebsgerätes
EP2546967B1 (de) 2011-07-15 2014-01-29 OSRAM GmbH Verfahren zum Einspeisen in Lichtquellen und zugehörige Vorrichtung
KR102083301B1 (ko) * 2013-06-12 2020-03-03 삼성전자 주식회사 전원공급부, 그 전원공급방법 및 그것을 구비한 디스플레이장치
FR3036013B1 (fr) * 2015-05-07 2019-01-25 Ge Energy Power Conversion Technology Limited Circuit d'attaque de grille pour reduire le couplage parasite
CN106787888B (zh) * 2016-12-26 2019-04-02 安徽大学 一种三电平anpc变换器中点电压平衡控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4018865A1 (de) * 1990-01-20 1991-12-19 Semperlux Gmbh Elektronisches vorschaltgeraet zum betrieb von entladungslampen
DE10106438A1 (de) 2001-02-09 2002-08-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorschaltgerät zum Betrieb von elektrischen Lampen
US7161305B2 (en) * 2004-05-19 2007-01-09 Monolithic Power Systems, Inc. Method and apparatus for single-ended conversion of DC to AC power for driving discharge lamps
DE102005025626A1 (de) 2005-06-03 2006-12-07 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät für mindestens eine Lampe
DE102005041076A1 (de) 2005-08-30 2007-03-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betrieb mindestens einer ektrischen Lampe

Also Published As

Publication number Publication date
CN101658074B (zh) 2013-11-20
KR101387051B1 (ko) 2014-04-18
CN101658074A (zh) 2010-02-24
EP2138015A1 (de) 2009-12-30
WO2008128575A1 (de) 2008-10-30
US20100148699A1 (en) 2010-06-17
US8098022B2 (en) 2012-01-17
KR20100017276A (ko) 2010-02-16
ATE553633T1 (de) 2012-04-15

Similar Documents

Publication Publication Date Title
EP1603219B1 (de) Verfahren und Schaltung zur Leistungsfaktorkorrektur (PFC)
EP1333707B1 (de) Elektronisches Vorschaltgerät für Gasentladungslampe
EP1231821B1 (de) Vorschaltgerät zum Betrieb von elektrischen Lampen
EP0525898A2 (de) Schaltungsanordnung mit einem Schaltnetzteil
EP2138015B1 (de) Schaltungsanordnung zum erzeugen einer hilfsspannung und zum betreiben mindestens einer entladungslampe
DE102004016927A1 (de) Verfahren zur Strom- und Spannungsregelung für ein Schaltnetzteil
EP2446526B1 (de) Schaltungsanordnung zum betreiben mindestens einer led
DE102008027029A1 (de) Lampentyperkennung durch Leistungsfaktorkorrekturschaltung
DE102005022859B3 (de) Ansteuerschaltung für den Schalter in einem Schaltnetzteil
DE102007002342B3 (de) Vereinfachte primärseitige Ansteuerschaltung für den Schalter in einem Schaltnetzteil
EP1825529B1 (de) Elektrische schaltung zur ansteuerung eines piezoelektrischen elements insbesondere einer kraftstoffeinspritzanlage eines kraftfahrzeugs
DE3322943C2 (de)
DE10030176A1 (de) Entladungslampen-Lichtstromkreis
EP1583403B1 (de) Vorschaltgerät für mindestens eine Lampe
EP2324564B1 (de) Boost-konverter und verfahren zum betreiben einer elektrischen last an einem boost-konverter
DE3530638A1 (de) Schaltungsanordnung zum starten und betrieb von gasentladungslampen
EP2421336B1 (de) Elektronisches Vorschaltgerät zum Betreiben mindestens einer Entladungslampe
EP0824849A1 (de) Anordnung zum erkennen der zündung einer hochdruck-gasentladungslampe
WO2007096263A1 (de) Hochsetztreiber mit minimaler schaltfrequenz
EP1472776B1 (de) Schaltungsanordnung zur leistungsfaktor-korrektur
EP3195698B1 (de) Elektronisches vorschaltgerät und verfahren zur ansteuerung einer last
EP2515617B1 (de) Elektronisches Vorschaltgerät zum betreiben mindestens einer LED und/oder mindestens einer Entladungslampe
EP3580824B1 (de) Schaltung zur einschaltstrombegrenzung bei einem netzteil
DE3923699A1 (de) Parallele startschaltung fuer gasentladungslampen
DE10134566A1 (de) Elektronisches Vorschaltgerät mit Vorheizbetrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100119

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: CIRCUIT CONFIGURATION FOR GENERATING AN AUXILIARY VOLTAGE AND FOR OPERATING AT LEAST ONE DISCHARGE LAMP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 553633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007009701

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120411

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120411

BERE Be: lapsed

Owner name: OSRAM A.G.

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120712

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007009701

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120423

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

26N No opposition filed

Effective date: 20130114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007009701

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007009701

Country of ref document: DE

Effective date: 20130114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 553633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120423

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007009701

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170419

Year of fee payment: 11

Ref country code: GB

Payment date: 20170419

Year of fee payment: 11

Ref country code: FR

Payment date: 20170419

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20170412

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007009701

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430