EP2137475B1 - Method for cooling a cryogenic exchange line - Google Patents

Method for cooling a cryogenic exchange line Download PDF

Info

Publication number
EP2137475B1
EP2137475B1 EP08788101.7A EP08788101A EP2137475B1 EP 2137475 B1 EP2137475 B1 EP 2137475B1 EP 08788101 A EP08788101 A EP 08788101A EP 2137475 B1 EP2137475 B1 EP 2137475B1
Authority
EP
European Patent Office
Prior art keywords
expansion means
fraction
exchange line
cooling
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08788101.7A
Other languages
German (de)
French (fr)
Other versions
EP2137475A2 (en
Inventor
Philippe Court
Antoine Hernandez
Christian Monereau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2137475A2 publication Critical patent/EP2137475A2/en
Application granted granted Critical
Publication of EP2137475B1 publication Critical patent/EP2137475B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0695Start-up or control of the process; Details of the apparatus used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0295Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/062Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/064Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0655Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/18External refrigeration with incorporated cascade loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation

Definitions

  • the present invention relates to a method of cryogenic separation, refrigeration or liquefaction of a fluid by means of an exchange line.
  • cryogenics to fractionate a gas stream into at least two fluids of different composition, generally into a fluid said to be light, that is to say composed essentially of the most volatile constituents and into a so-called heavy fluid consisting essentially of the most easily condensable constituents.
  • the mixture to be fractionated is cooled in an exchanger or in a set of exchangers called the exchange line until obtaining a diphasic liquid / vapor mixture extracted from said exchange line and separated into a liquid-vapor separation device.
  • the steam can be cooled again until a new diphasic state is obtained and fractionated a second time.
  • liquid-vapor separator will be used to encompass all equipment generating at least one liquid outlet and one gas outlet from at least one two-phase supply.
  • This equipment can be of the vertical or horizontal gravity separator type, equipped or not with a mist eliminator, of the cyclone type, or of a distillation column ...
  • the liquid outlet may contain a small amount of bubbles driven by the speed of the liquid as the vapor outlet may contain liquid droplets or aerosols without departing from the scope of the invention.
  • Other applications include recovering a methane-rich fluid and a methane-depleted fluid from a source rich in various hydrocarbons. In this way, it is also possible to obtain several fluids such as a fraction rich in methane, a fraction rich in ethane or ethylene, and a C3 + fraction.
  • This type of process makes it possible in particular to recover hydrogen with a purity of approximately 95% from a mixture of hydrogen and hydrocarbons, to eliminate a part of the nitrogen contained in gas rich in hydrocarbons. hydrocarbons. It also makes it possible to recover a very rich fraction of CO 2 and a residual gas containing lighter constituents such as N 2 , Argon, O 2 ...
  • This fractionation may not be a goal in itself but only a means to provide cooling capacity for liquefying another fluid such as natural gas.
  • the various separated fluids are recombined after heating, recompressed and reinjected into the exchange line. This is called a refrigeration cycle.
  • the exchangers may be of the coil type, tube exchanger and shell or preferably of the plate heat exchanger type.
  • numerous improvements have been made to the exchange waves and the introduction of fluids, in particular two-phase fluids, into these exchangers in order to optimize the heat transfer.
  • This example relates to obtaining hydrogen under pressure at a purity of 95% from a gaseous mixture under pressure containing about 70% hydrogen, 18% methane and 12% heavier hydrocarbons.
  • the mixture to be separated 1 is introduced at ambient temperature and under a pressure of 40 bar absolute into the plate heat exchanger 10 to be cooled via the exchange passages 11.
  • the fluid 1, then two-phase is extracted from the exchanger and separated into its vapor fraction 2 and its liquid fraction 3 in the liquid-gas separator 30.
  • the liquid fraction 3 is released via the expansion valve 50 to low pressure and revaporized in the exchange line via the exchange passages 13.
  • the vapor phase 2 enriched in hydrogen and methane is again cooled in the exchanger 20 via the passages 22, partially condensed and extracted to - 160 ° C.
  • the vapor fraction 4 from the separator 40 constitutes the production of hydrogen at a content of 95 mol%. It is then reheated in the passages 24 and 14 of the exchangers 20 and 10.
  • the liquid fraction 5 consisting mainly of methane is expanded at low pressure in the valve 60, revaporized in the exchanger 20 (passages 25) and heated in the exchanger 10 (passages 15).
  • the fluids 6 and 7 respectively associated with the exchangers 20 ( passages 26) and 10 (passages 17) may optionally be used as a refrigerating auxiliary. It may be external fluids such as liquid nitrogen from a storage or a nearby air separation device, or a fluid internal to the process, such as a fraction of the hydrogen produced, partially heated and then expanded in an expansion turbine and reinjected at the cold end of the exchanger 20.
  • expansion valves 50 and 60 serve to relax liquids with a high pressure, here 40 bar abs., Until low pressure. It is therefore small valves.
  • a first cut-off temperature between the exchangers 10 and 20 of -80 ° C. for example and a cold end temperature of -80 ° C. is called the cold-setting of the exchange line. 160 ° c to obtain the required purity from equipment at room temperature or ambient, if the exchange line has not had time to reach the ambient temperature.
  • the problem of a cooling using the only free expansion of the gas to be treated in the expansion valves 50, 60 and possibly 70 is that the total flow expanded is very low and therefore the cooling capacity obtained is itself very low.
  • this cooling capacity is intended to cool the exchange line, ancillary equipment such as separators, to compensate for heat losses, ie exchanges with the outside environment ... Such cooling can take place. dozens of hours and even possibly not to achieve the desired operating point.
  • cooling supply circuits 6 and 7 for example to hasten the cold setting.
  • These passages 26 and 27 can be used permanently or only temporarily during the cooling phases.
  • liquid nitrogen at low or preferably medium pressure to accelerate the achievement of target temperature levels.
  • brazed aluminum plate heat exchangers which to date constitute the bulk of the exchange lines of cryogenic gas separation or liquefaction units.
  • EP-A-0091830 discloses a method according to the preamble of claim 1.
  • This figure shows the modifications made to the cold end of the exchange line described above. These modifications can also be made at the first separator pot 30 and more generally at each expansion of a liquid fraction.
  • the invention consists in adding to the diagram corresponding to the normal operation in steady state mode, a so-called chilling expansion valve used only (or mainly) during start-up of the unit.
  • this valve is twofold. It first allows to relax a large flow of gas thus considerably increasing the cooling capacity produced by the unit itself, that is to say that it reduces the cold time and normally allows it alone to achieve the required levels of temperature.
  • this valve firstly allows the equipment to be partially cooled and the thermal shocks to be limited, but especially to rebalance the exchange line by circulating large flows in the revaporization passages 25 and 13.
  • This new valve must therefore allow to relax a large fraction of the high pressure gas, here the fluid 2, and to introduce this expanded fluid into the passages 25 devolved normally to the liquid fraction 5.
  • This valve will preferably be installed in bypass of the expansion valve 60. It will then be about 10 times larger. This is valve 61 of the figure 2 .
  • valve 81 a valve between the fluid 2, that is to say between the outlet of the exchanger and the separator pot 40, and the inlet of the passages 25: this is then the valve 81.
  • a fraction of the flow 4 is also expanded via a valve 71.
  • the additional expansion valve 61, 71 or 81 may pass a flow of an order of magnitude at least 10 times greater than that able to be expanded in the valve 60 or 70.
  • This additional valve will be gradually closed as and when cold, especially since liquid will appear at the outlet of the exchanger.
  • HIC human operator controlled
  • PIC high pressure
  • valves it is not possible with the vast majority of commercial valves to have both a valve to pass a large gas flow, ie to have a CV at full opening 10 or more and then regulate with an opening corresponding to a CV of about 0.3. It is conventional to use a valve in an opening range of a factor 5, preferably 3, ie for example with a CV of 0.1 to 0.5 or 0.1 to 0.3 but not beyond.
  • a factor of 5 (or 3) usually makes it possible to perform the nominal run and the reduced (reduced flow) steps without any particular regulation problem.
  • the expansion valve 60 maintains the liquid level in the separator pot 40. It therefore controls the liquid flow expanded and revaporized in the exchange line. This flow being the main refrigeration supply of the exchanger 20, it is understood that its regulation is critical. It would be totally impossible with an oversized valve, let alone with a valve 10 times larger than necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé de séparation cryogénique, de réfrigération ou de liquéfaction d'un fluide au moyen d'une ligne d'échange.The present invention relates to a method of cryogenic separation, refrigeration or liquefaction of a fluid by means of an exchange line.

Il est connu d'utiliser la cryogénie pour fractionner un flux gazeux en au moins deux fluides de composition différente, généralement en un fluide dit léger, c'est à dire composé essentiellement des constituants les plus volatils et en un fluide dit lourd constitué essentiellement par les constituants les plus facilement condensables. Pour ce faire, le mélange à fractionner est refroidi dans un échangeur ou dans un ensemble d'échangeurs appelé ligne d'échange jusqu'à l'obtention d'un mélange diphasique liquide/vapeur extrait de la dite ligne d'échange et séparé dans un dispositif de séparation liquide -vapeur. La vapeur peut être refroidie de nouveau jusqu'à l'obtention d'un nouvel état diphasique et fractionnée une seconde fois.It is known to use cryogenics to fractionate a gas stream into at least two fluids of different composition, generally into a fluid said to be light, that is to say composed essentially of the most volatile constituents and into a so-called heavy fluid consisting essentially of the most easily condensable constituents. To do this, the mixture to be fractionated is cooled in an exchanger or in a set of exchangers called the exchange line until obtaining a diphasic liquid / vapor mixture extracted from said exchange line and separated into a liquid-vapor separation device. The steam can be cooled again until a new diphasic state is obtained and fractionated a second time.

A titre d'exemple, on citera le fractionnement d'un flux d'hydrocarbures (C1, C2,..., Ci, Ci+1,... Cn) en un fluide constitué essentiellement des hydrocarbures les plus légers (méthane C1, éthane C2,..., Ci) et en un deuxième fluide constitué essentiellement des hydrocarbures les plus lourds (Ci+1,...Cn). On utilise le terme «essentiellement» pour signifier qu'on retrouvera généralement une petite fraction des composés les plus légers dans la fraction lourde et inversement une petite partie des composés les plus lourds dans la fraction vapeur.By way of example, mention may be made of the fractionation of a hydrocarbon stream (C1, C2,..., Ci, Ci + 1,... Cn) into a fluid consisting essentially of the lightest hydrocarbons (methane C1 , C2 ethane, ..., Ci) and a second fluid consisting essentially of heavier hydrocarbons (Ci + 1, ... Cn). The term "essentially" is used to mean that a small fraction of the lighter compounds will generally be found in the heavy fraction and conversely a small portion of the heavier compounds in the vapor fraction.

On peut améliorer cette séparation en mettant des plateaux dans le système de séparation diphasique et en rajoutant un rebouillage et/ou une section d'épuisement dit « stripping » en anglais) pour éliminer les légers de la fraction liquide et/ou un condenseur et/ou en augmentant le reflux pour éliminer les lourds de la fraction vapeur. Ces procédés sont connus de l'homme de l'art et ne sont pas développés dans la présente invention. Par la suite, on parlera de séparateur liquide-vapeur pour englober tous les équipements générant au moins une sortie liquide et une sortie gazeuse à partir d'au moins une alimentation diphasique. Ces équipements peuvent être du type séparateur par gravité vertical ou horizontal, équipé ou pas de dévésiculeur, du type cyclone, ou de colonne à distiller...This separation can be improved by placing trays in the two-phase separation system and by adding a reboiling and / or a stripping section in order to eliminate the lighter from the liquid fraction and / or a condenser and / or or by increasing the reflux to remove heavy from the vapor fraction. These methods are known to those skilled in the art and are not developed in the present invention. Thereafter, the term liquid-vapor separator will be used to encompass all equipment generating at least one liquid outlet and one gas outlet from at least one two-phase supply. This equipment can be of the vertical or horizontal gravity separator type, equipped or not with a mist eliminator, of the cyclone type, or of a distillation column ...

La sortie liquide peut contenir une petite quantité de bulles entraînées par la vitesse du liquide de même que la sortie vapeur peut contenir des gouttelettes ou aérosols liquide sans pour autant sortir du cadre de l'invention.The liquid outlet may contain a small amount of bubbles driven by the speed of the liquid as the vapor outlet may contain liquid droplets or aerosols without departing from the scope of the invention.

D'autres applications consistent à récupérer un fluide riche en méthane et un fluide appauvri en méthane à partir d'une source riche en hydrocarbures divers. On peut de la sorte obtenir aussi plusieurs fluides tels une fraction riche en méthane, une fraction riche en éthane ou éthylène, et une fraction C3+. Ce type de procédé permet en particulier de récupérer de l'hydrogène à une pureté d'environ 95% à partir d'un mélange d'hydrogène et d'hydrocarbures, d'éliminer une partie de l'azote contenu dans des gaz riches en hydrocarbures. Il permet aussi de récupérer une fraction très riche en CO2 et un gaz résiduaire contenant des constituants plus légers tels que N2, Argon, O2...Other applications include recovering a methane-rich fluid and a methane-depleted fluid from a source rich in various hydrocarbons. In this way, it is also possible to obtain several fluids such as a fraction rich in methane, a fraction rich in ethane or ethylene, and a C3 + fraction. This type of process makes it possible in particular to recover hydrogen with a purity of approximately 95% from a mixture of hydrogen and hydrocarbons, to eliminate a part of the nitrogen contained in gas rich in hydrocarbons. hydrocarbons. It also makes it possible to recover a very rich fraction of CO 2 and a residual gas containing lighter constituents such as N 2 , Argon, O 2 ...

Ce fractionnement peut ne pas être un but en soi mais seulement un moyen de fournir de la puissance frigorifique destinée à liquéfier un autre fluide comme du gaz naturel. Dans ce cas, les divers fluides séparés sont recombinés après réchauffement, recomprimés et réinjectés dans la ligne d'échange. On parle alors de cycle frigorifique.This fractionation may not be a goal in itself but only a means to provide cooling capacity for liquefying another fluid such as natural gas. In this case, the various separated fluids are recombined after heating, recompressed and reinjected into the exchange line. This is called a refrigeration cycle.

Ces applications ont donné lieu à de nombreux développements portant tant sur les procédés que sur la technologie. En particulier, les échangeurs peuvent être du type bobiné, échangeur à tubes et calandre ou préférentiellement du type échangeur à plaques. Dans ce dernier cas, de nombreuses améliorations ont porté sur les ondes d'échange et sur l'introduction des fluides, en particulier diphasique, dans ces échangeurs afin d'optimiser le transfert thermique.These applications have led to many developments in both process and technology. In particular, the exchangers may be of the coil type, tube exchanger and shell or preferably of the plate heat exchanger type. In the latter case, numerous improvements have been made to the exchange waves and the introduction of fluids, in particular two-phase fluids, into these exchangers in order to optimize the heat transfer.

Tous les pourcentages mentionnés dans ce qui suit sont des pourcentages molaires.All the percentages mentioned in the following are molar percentages.

Un exemple de ces unités va à présent être décrit en rapport avec la Figure 1. Cet exemple porte sur l'obtention d'hydrogène sous pression à une pureté de 95 % à partir d'un mélange gazeux sous pression contenant environ 70 % d'hydrogène, 18 % de méthane et 12 % d'hydrocarbures plus lourds.An example of these units will now be described in relation to the Figure 1 . This example relates to obtaining hydrogen under pressure at a purity of 95% from a gaseous mixture under pressure containing about 70% hydrogen, 18% methane and 12% heavier hydrocarbons.

Le mélange à séparer 1 est introduit à température ambiante et sous une pression de 40 bar absolus dans l'échangeur à plaques 10 pour y être refroidi via les passages d'échange 11. A un premier niveau de température dépendant de la composition des hydrocarbures les plus lourds et de la pression, généralement de -40 à -120°C, le fluide 1, alors diphasique, est extrait de l'échangeur et séparé en sa fraction vapeur 2 et sa fraction liquide 3 dans le séparateur liquide-gaz 30. La fraction liquide 3 est détendue via la vanne de détente 50 jusqu'en basse pression et revaporisée dans la ligne d'échange via les passages d'échange 13.The mixture to be separated 1 is introduced at ambient temperature and under a pressure of 40 bar absolute into the plate heat exchanger 10 to be cooled via the exchange passages 11. At a first temperature level depending on the composition of the hydrocarbons, heavier and pressure, generally from -40 to -120 ° C, the fluid 1, then two-phase, is extracted from the exchanger and separated into its vapor fraction 2 and its liquid fraction 3 in the liquid-gas separator 30. The liquid fraction 3 is released via the expansion valve 50 to low pressure and revaporized in the exchange line via the exchange passages 13.

La phase vapeur 2 enrichie en hydrogène et en méthane est à nouveau refroidie dans l'échangeur 20 via les passages 22, partiellement condensée et extraite vers - 160°C. La fraction vapeur 4 issu du séparateur 40 constitue la production d'hydrogène à une teneur de 95% molaire. Elle est alors réchauffée dans les passages 24 puis 14 des échangeurs 20 et 10.The vapor phase 2 enriched in hydrogen and methane is again cooled in the exchanger 20 via the passages 22, partially condensed and extracted to - 160 ° C. The vapor fraction 4 from the separator 40 constitutes the production of hydrogen at a content of 95 mol%. It is then reheated in the passages 24 and 14 of the exchangers 20 and 10.

La fraction liquide 5 constituée principalement de méthane est détendue en basse pression dans la vanne 60, revaporisée dans l'échangeur 20 (passages 25) et réchauffée dans l'échangeur 10 (passages 15) Les fluides 6 et 7 associés respectivement aux échangeurs 20 (passages 26) et 10 (passages 17) peuvent éventuellement être utilisés comme appoint frigorifique. Il peut s'agir de fluides extérieurs comme par exemple de l'azote liquide issu d'un stockage ou d'un appareil de séparation d'air voisin, ou d'un fluide interne au procédé, comme par exemple une fraction de l'hydrogène produit, partiellement réchauffé puis détendue dans une turbine de détente et réinjectée au bout froid de l'échangeur 20.The liquid fraction 5 consisting mainly of methane is expanded at low pressure in the valve 60, revaporized in the exchanger 20 (passages 25) and heated in the exchanger 10 (passages 15). The fluids 6 and 7 respectively associated with the exchangers 20 ( passages 26) and 10 (passages 17) may optionally be used as a refrigerating auxiliary. It may be external fluids such as liquid nitrogen from a storage or a nearby air separation device, or a fluid internal to the process, such as a fraction of the hydrogen produced, partially heated and then expanded in an expansion turbine and reinjected at the cold end of the exchanger 20.

Il est possible aussi de favoriser la vaporisation du méthane 5 en injectant une petite fraction de la production hydrogène. C'est ce que représente le circuit éventuel comportant la vanne de détente 70.It is also possible to promote the vaporization of methane 5 by injecting a small fraction of the hydrogen production. This is what the potential circuit comprising the expansion valve 70 represents.

Il convient de noter que les vannes de détente 50 et 60 servent à détendre des liquides d'une haute pression, ici 40 bar abs., jusqu' en basse pression. Il s'agit donc de petites vannes.It should be noted that the expansion valves 50 and 60 serve to relax liquids with a high pressure, here 40 bar abs., Until low pressure. It is therefore small valves.

Il est courant d'utiliser la notion de CV en parlant de la taille des vannes. De nombreux ouvrages ou documents donnent d'une part les méthodes de calcul et d'autre part le CV des vannes disponibles dans le commerce. Pour ces dernières, il est classique d'indiquer le CV à pleine ouverture qui permet de déterminer le débit maximum qui peut passer à travers la vanne dans des conditions de fonctionnement données. A titre d'illustration et sans vouloir entrer dans les calculs, pour un débit d'alimentation gazeux de l'ordre de 10 000 Nm3/h, le CV de ces vannes serait inférieur à 1.It is common to use the notion of CV in talking about the size of the valves. Many books or documents give on the one hand the methods of calculation and on the other hand the CV of the valves available on the market. For the latter, it is conventional to indicate the full-open CV which makes it possible to determine the maximum flow rate that can pass through the valve under given operating conditions. By way of illustration and without going into the calculations, for a gas feed rate of the order of 10 000 Nm 3 / h, the CV of these valves would be less than 1.

Il en est de même de la vanne éventuelle 70 qui sert à détendre une toute petite fraction de l'hydrogène produit (quelques pourcents maximum).It is the same for the optional valve 70 which serves to relax a tiny fraction of the hydrogen produced (a few percent maximum).

De façon classique la mise en froid d'une telle unité de séparation se fait soit par détente libre du gaz à traiter soit plus généralement en utilisant un apport frigorifique extérieur.In a conventional way the cold setting of such a separation unit is either by free expansion of the gas to be treated or more generally by using an external cooling supply.

On appelle mise en froid de la ligne d'échange la procédure qui permet d'obtenir les conditions opératoires normales, ici une première température de coupure entre les échangeurs 10 et 20 de -80°C par exemple et une température au bout froid de -160°c pour obtenir la pureté requise à partir d'équipements à température ambiante ou sous ambiante, si la ligne d'échange n'a pas eu le temps d'atteindre la température ambiante.The process which makes it possible to obtain the normal operating conditions, here a first cut-off temperature between the exchangers 10 and 20 of -80 ° C. for example and a cold end temperature of -80 ° C., is called the cold-setting of the exchange line. 160 ° c to obtain the required purity from equipment at room temperature or ambient, if the exchange line has not had time to reach the ambient temperature.

Le problème d'une mise en froid en utilisant la seule détente libre du gaz à traiter dans les vannes de détente 50, 60 et éventuellement 70 est que le débit total détendu est très faible et donc que la puissance frigorifique obtenue est elle-même très faible. Or cette puissance frigorifique est destinée à refroidir la ligne d'échange, les équipements annexes tels que les séparateurs, à compenser les pertes thermiques, c'est à dire les échanges avec le milieu extérieur... Une telle mise en froid peut prendre des dizaines d'heures et même éventuellement ne pas permettre d'atteindre le point de fonctionnement souhaité.The problem of a cooling using the only free expansion of the gas to be treated in the expansion valves 50, 60 and possibly 70 is that the total flow expanded is very low and therefore the cooling capacity obtained is itself very low. However, this cooling capacity is intended to cool the exchange line, ancillary equipment such as separators, to compensate for heat losses, ie exchanges with the outside environment ... Such cooling can take place. dozens of hours and even possibly not to achieve the desired operating point.

Cela se produit en particulier dans le cas où les pertes thermiques deviennent, à un certain niveau de température atteint au bout froid, égales à la puissance frigorifique produite par détente libre. A ce point, la mise en froid s'arrête et il n'est pas possible d'aller au delà.This occurs especially in the case where the thermal losses become, at a certain temperature level reached at the cold end, equal to the cooling capacity produced by free expansion. At this point, the cold setting stops and it is not possible to go beyond.

Pour cette raison, il est courant d'utiliser les circuits d'apport frigorifique 6 et 7 par exemple pour hâter la mise en froid. Ces passages 26 et 27 peuvent être utilisés en permanence ou uniquement temporairement pendant les phases de mise en froid. Comme indiqué plus haut, il est classique d'utiliser de l'azote liquide en basse ou préférentiellement moyenne pression pour accélérer l'obtention des niveaux de température visés.For this reason, it is common to use the cooling supply circuits 6 and 7 for example to hasten the cold setting. These passages 26 and 27 can be used permanently or only temporarily during the cooling phases. As indicated above, it is conventional to use liquid nitrogen at low or preferably medium pressure to accelerate the achievement of target temperature levels.

Il est apparu cependant que pas plus que la simple détente libre dans les vannes de détente de procédé (ici 50, 60 et éventuellement 70), l'utilisation de l'apport frigorifique extérieur n'était une solution satisfaisante.However, it appeared that no more than the simple free expansion in the process relief valves (here 50, 60 and possibly 70), the use of the external cooling supply was a satisfactory solution.

En effet, l'apport de froid dans une ligne d'échange encore chaude et où en particulier il circule peu de fluides dans les passages normalement très sollicités que sont les passages de revaporisation des liquides (ici passages 13 et 25 en particulier) provoque des chocs thermiques et des contraintes importantes entre passages d'échange et au niveau des boîtes d'entrée/sortie. Ces chocs et contraintes sont susceptibles de causer rapidement des problèmes mécaniques au niveau des brasures ou soudures entre éléments constitutifs de l'échangeur.Indeed, the supply of cold in a still hot exchange line and where in particular it circulates few fluids in the normally very stressed passages that are the revaporization passages of the liquids (here passages 13 and 25 in particular) causes thermal shocks and significant stresses between exchange passages and at the input / output boxes. These shocks and stresses are likely to quickly cause mechanical problems in the brazing or welding between components of the exchanger.

C'est particulièrement vrai pour la technologie des échangeurs à plaques en aluminium brasé qui constitue à ce jour l'essentiel des lignes d'échange des unités cryogéniques de séparation ou liquéfaction des gaz.This is particularly true for the technology of brazed aluminum plate heat exchangers, which to date constitute the bulk of the exchange lines of cryogenic gas separation or liquefaction units.

EP-A-0091830 décrit un procédé selon le préambule de la revendication 1. EP-A-0091830 discloses a method according to the preamble of claim 1.

Selon l'invention, il est prévu un procédé selon la revendication 1.According to the invention there is provided a method according to claim 1.

Optionnellement :

  • le deuxième moyen de détente est une vanne ;
  • le premier et le deuxième moyen de détente sont installés en parallèle ;
  • on envoie de la vapeur provenant du troisième moyen de détente au liquide provenant du séparateur de phases ;
  • le CV du deuxième moyen de détente égale 3 fois le CV, de préférence 5 fois le CV du premier moyen de détente ;
  • le CV du deuxième moyen de détente égale 3 fois le CV, de préférence 5 fois le CV du troisième moyen de détente ;
  • pendant la mise en froid on commande le deuxième ou quatrième moyen de détente manuellement ou on régule la pression du gaz d'alimentation ;
  • la séparation cryogénique est un procédé de séparation d'hydrocarbures ou de production d'hydrogène, de préférence de 90 à 98 % de pureté ou de production de CO2, de préférence de pureté supérieure à 95 %, encore plus préférentiellement supérieure à 98 % ou un procédé d'élimination d'azote ou argon d'une fraction plus lourde ou la liquéfaction est une liquéfaction de gaz naturel.
Optionally:
  • the second detent means is a valve;
  • the first and the second detent means are installed in parallel;
  • steam from the third expansion means is supplied to the liquid from the phase separator;
  • the CV of the second expansion means equals 3 times the CV, preferably 5 times the CV of the first expansion means;
  • the CV of the second expansion means equals 3 times the CV, preferably 5 times the CV of the third expansion means;
  • during cooling, the second or fourth expansion means are manually controlled or the pressure of the supply gas is regulated;
  • cryogenic separation is a process for separating hydrocarbons or producing hydrogen, preferably of 90 to 98% purity or production of CO 2 , preferably of greater than 95% purity, still more preferably greater than 98% or a process for removing nitrogen or argon from a heavier fraction or the liquefaction is liquefaction of natural gas.

La solution préconisée dans la présente invention va maintenant être expliquée par l'intermédiaire de la Figure 2.The solution recommended in the present invention will now be explained via the Figure 2 .

Cette figure montre les modifications apportées au bout froid de la ligne d'échange décrite précédemment. Ces modifications peuvent être également apportées au niveau du premier pot séparateur 30 et plus généralement au niveau de chaque détente d'une fraction liquide.This figure shows the modifications made to the cold end of the exchange line described above. These modifications can also be made at the first separator pot 30 and more generally at each expansion of a liquid fraction.

L'invention consiste à rajouter au schéma correspondant au fonctionnement normal en régime établi, une vanne de détente dite de mise en froid utilisée seulement (voire principalement) lors des démarrages de l'unité.The invention consists in adding to the diagram corresponding to the normal operation in steady state mode, a so-called chilling expansion valve used only (or mainly) during start-up of the unit.

Le but de cette vanne est double. Elle permet d'abord de détendre un gros débit de gaz augmentant ainsi considérablement la puissance frigorifique produite par l'unité elle-même, c'est à dire qu'elle permet de réduire le temps de mise en froid et normalement permet à elle seule d'atteindre les niveaux requis de température.The purpose of this valve is twofold. It first allows to relax a large flow of gas thus considerably increasing the cooling capacity produced by the unit itself, that is to say that it reduces the cold time and normally allows it alone to achieve the required levels of temperature.

D'autre part, en cas de démarrage très rapide avec apport de puissance frigorifique extérieur, tel que l'utilisation d'azote liquide, cette vanne permet d'abord de refroidir partiellement les équipements et de limiter d'autant les chocs thermiques mais surtout de rééquilibrer la ligne d'échange en faisant circuler des débits importants dans les passages de revaporisation 25 et 13.On the other hand, in the case of very fast start-up with external cooling power supply, such as the use of liquid nitrogen, this valve firstly allows the equipment to be partially cooled and the thermal shocks to be limited, but especially to rebalance the exchange line by circulating large flows in the revaporization passages 25 and 13.

Cette nouvelle vanne doit donc permettre de détendre une fraction importante du gaz haute pression, ici le fluide 2, et d'introduire ce fluide détendu dans les passages 25 dévolus normalement à la fraction liquide 5.This new valve must therefore allow to relax a large fraction of the high pressure gas, here the fluid 2, and to introduce this expanded fluid into the passages 25 devolved normally to the liquid fraction 5.

Cette vanne sera préférentiellement installée en by-pass de la vanne de détente 60. Elle sera alors environ 10 fois plus grosse. Il s'agit de la vanne 61 de la figure 2.This valve will preferably be installed in bypass of the expansion valve 60. It will then be about 10 times larger. This is valve 61 of the figure 2 .

On peut aussi rajouter à la place une vanne entre le fluide 2, c'est à dire entre la sortie de l'échangeur et le pot séparateur 40, et l'entrée des passages 25 : il s'agit alors de la vanne 81. Conformément à l'invention on détend également une fraction du flux 4 via une vanne 71.It is also possible to add a valve between the fluid 2, that is to say between the outlet of the exchanger and the separator pot 40, and the inlet of the passages 25: this is then the valve 81. According to the invention, a fraction of the flow 4 is also expanded via a valve 71.

Dans tous les cas, la vanne additionnelle de détente 61, 71 ou 81 pourra passer un débit d'un ordre de grandeur au moins 10 fois supérieur à celui susceptible d'être détendu dans la vanne 60 ou 70.In all cases, the additional expansion valve 61, 71 or 81 may pass a flow of an order of magnitude at least 10 times greater than that able to be expanded in the valve 60 or 70.

Cette vanne additionnelle sera progressivement refermée au fur et à mesure de la mise en froid, en particulier dès lors que du liquide apparaîtra en sortie d'échangeur.This additional valve will be gradually closed as and when cold, especially since liquid will appear at the outlet of the exchanger.

Elle sera a priori totalement refermée en fonctionnement normal.It will be totally closed in normal operation.

Elle sera généralement contrôlée manuellement (HIC) mais peut également être pilotée par le maintien de la haute pression (PIC).It will usually be manually controlled (HIC) but can also be driven by the maintenance of high pressure (PIC).

Dans tous ces cas, on dira par la suite que la vanne additionnelle (61, 71 ou 81) est en parallèle avec la vanne de détente 60.In all these cases, it will be said later that the additional valve (61, 71 or 81) is in parallel with the expansion valve 60.

On notera à ce sujet qu'il n'est pas possible avec la grande majorité des vannes du commerce d'avoir à la fois une vanne permettant de passer un débit de gaz important, c'est à dire d'avoir un CV à pleine ouverture de 10 ou plus et de réguler ensuite avec une ouverture correspondant à un CV de 0.3 environ. Il est classique d'utiliser une vanne dans une plage d'ouverture d'un facteur 5, préférentiellement de 3, c'est à dire par exemple avec un CV de 0.1 à 0.5 ou de 0.1 à 0.3 mais pas au delà. Un facteur 5 (ou 3) permet d'habitude d'effectuer la marche nominale et les marches réduites (à débit réduit) sans problème particulier de régulation. Dans le cas de l'exemple de la figure 1 ou 2, en fonctionnement normal, la vanne de détente 60 permet de maintenir le niveau liquide dans le pot séparateur 40. Elle contrôle donc le débit liquide détendu et revaporisé dans la ligne d'échange. Ce débit étant le principal apport frigorifique de l'échangeur 20, on conçoit que sa régulation est critique. Elle serait totalement impossible avec une vanne surdimensionnée, a fortiori avec une vanne 10 fois plus grosse que nécessaire.Note in this regard that it is not possible with the vast majority of commercial valves to have both a valve to pass a large gas flow, ie to have a CV at full opening 10 or more and then regulate with an opening corresponding to a CV of about 0.3. It is conventional to use a valve in an opening range of a factor 5, preferably 3, ie for example with a CV of 0.1 to 0.5 or 0.1 to 0.3 but not beyond. A factor of 5 (or 3) usually makes it possible to perform the nominal run and the reduced (reduced flow) steps without any particular regulation problem. In the case of the example of the figure 1 or 2 in normal operation, the expansion valve 60 maintains the liquid level in the separator pot 40. It therefore controls the liquid flow expanded and revaporized in the exchange line. This flow being the main refrigeration supply of the exchanger 20, it is understood that its regulation is critical. It would be totally impossible with an oversized valve, let alone with a valve 10 times larger than necessary.

Comme explicité plus haut, la détente additionnelle d'un débit important de gaz à traiter doit donc se faire via un moyen complémentaire qui ne sera plus utilisé en marche normale ou qui sera au moins partiellement refermé afin de permettre un fonctionnement satisfaisant de l'unité.As explained above, the additional expansion of a large flow rate of gas to be treated must be via a complementary means that will no longer be used in normal operation or will be at least partially closed to allow satisfactory operation of the unit .

Enfin, on notera qu'il est possible, à partir du moment où l'on détend une partie appréciable du gaz d'alimentation via une vanne supplémentaire dans le circuit 25, d'injecter également dans ce circuit un débit d'appoint frigorifique tel que de l'azote liquide sans créer de contrainte trop importante. Suivant les cas, ce débit d'appoint peut être supprimé ou maintenu, au moins partiellement, pendant la marche normale alors que la vanne de détente supplémentaire sera fermée ou essentiellement fermée.Finally, it will be noted that it is possible, from the moment when a considerable part of the feed gas is expanded via an additional valve in the circuit 25, to also inject into this circuit a cooling auxiliary flow rate such as than liquid nitrogen without creating too much stress. Depending on the case, this extra flow can be suppressed or maintained, at least partially, during normal operation while the additional expansion valve is closed or substantially closed.

Claims (8)

  1. Method for the cryogenic separation, the cooling or the liquefaction of a fluid using an exchange line comprising:
    • extracting from said exchange line at least one dual phase fluid (11)
    • separating said dual phase fluid into at least one vapour fraction (4) and one liquid fraction (5) in a phase separator (40)
    • expanding at least one portion of said liquid fraction (5) using a first expansion means (60,)
    • reinjecting, reheating and at least partially vaporising said expanded liquid fraction in the exchange line
    the first expansion means is a valve
    vapour (4) is sent from the phase separator (4') to a third expansion means (70) characterised in that
    during the cooling of said exchange line, at least a fraction of the fluid extracted from the exchange line (5) and/or from the phase separator (40) is expanded in second expansion means (61, 81) parallel to the first expansion means (60) and during a normal operation, the second expansion means is essentially closed,
    and, during the cooling of said exchange line, at least a fraction of the vapour (4) from the phase separator (40) is expanded in a fourth expansion means (71) parallel with the third expansion means (70).
  2. Method according to claim 1 wherein the second expansion means (60, 61) is a valve.
  3. Method according to one of claims 1 and 2 wherein the first and the second expansion means (60, 61) are installed in parallel.
  4. Method according to claim 1 wherein the vapour from the third expansion means (70) is sent to the liquid (5) from the phase separator (40).
  5. Method according to one of the preceding claims wherein the CV of the second expansion means (61) equals 3 times the CV, preferably 5 times the CV of the first expansion means (60, 90).
  6. Method according to claim 4 wherein the CV of the second expansion means (61) equals 3 times the CV, preferably 5 times the CV of the third expansion means (70).
  7. Method according to one of the preceding claims wherein during the cooling the second or fourth expansion means (61, 71) are controlled manually or the pressure of the feed gas is regulated.
  8. Method according to one of the preceding claims wherein the cryogenic separation is a method of separating hydrocarbons or the production of hydrogen, preferably with a purity of 90 to 98% or of the production of CO2, preferably with a purity of 95 %, even more preferably greater than 98% or a method for eliminating nitrogen or argon by a heavier fraction or the liquefaction is a liquefaction of natural gas.
EP08788101.7A 2007-04-13 2008-04-02 Method for cooling a cryogenic exchange line Active EP2137475B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754462A FR2914990B1 (en) 2007-04-13 2007-04-13 METHOD FOR COLDING A CRYOGENIC EXCHANGE LINE
PCT/FR2008/050575 WO2008139085A2 (en) 2007-04-13 2008-04-02 Method for cooling a cryogenic exchange line

Publications (2)

Publication Number Publication Date
EP2137475A2 EP2137475A2 (en) 2009-12-30
EP2137475B1 true EP2137475B1 (en) 2018-06-27

Family

ID=38830440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08788101.7A Active EP2137475B1 (en) 2007-04-13 2008-04-02 Method for cooling a cryogenic exchange line

Country Status (5)

Country Link
US (1) US20100126215A1 (en)
EP (1) EP2137475B1 (en)
CN (1) CN102099647A (en)
FR (1) FR2914990B1 (en)
WO (1) WO2008139085A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100313598A1 (en) * 2009-06-16 2010-12-16 Daly Phillip F Separation of a Fluid Mixture Using Self-Cooling of the Mixture
EP2407741A1 (en) * 2010-07-14 2012-01-18 Alstom Technology Ltd Energy efficient production of CO2 out of combustion flue gases using single stage expansion and pumps for evaporation at elevated pressure
CN103857968B (en) * 2011-07-01 2016-11-23 布鲁克机械公司 For freezing heat-exchanger array is heated, for compact and effective refrigeration and the System and method for for adaptive power management
US11428463B2 (en) * 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
AU2015373431C1 (en) * 2014-12-29 2019-04-04 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling down a cryogenic heat exchanger and method of liquefying a hydrocarbon stream
US10288346B2 (en) * 2016-08-05 2019-05-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for liquefaction of industrial gas by integration of methanol plant and air separation unit
US10281203B2 (en) * 2016-08-05 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for liquefaction of industrial gas by integration of methanol plant and air separation unit
US20220065528A1 (en) * 2019-01-25 2022-03-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for supplying a backup gas under pressure
FR3099559B1 (en) * 2019-08-01 2021-07-16 Air Liquide Natural gas liquefaction process with improved exchanger configuration
WO2022003128A1 (en) * 2020-07-02 2022-01-06 Christian Blank Gas mixture separation apparatus and method for separating at least one main fluid from a gas mixture

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1276653A (en) * 1968-08-20 1972-06-07 Petrocarbon Dev Ltd Recovery of gases
BE754952A (en) * 1969-08-18 1971-02-17 Uss Eng & Consult METHOD AND APPARATUS FOR PRODUCING HIGH PURITY CARBON DIOXIDE UNDER HIGH PRESSURE FROM A MIXTURE OF LOW PRESSURE ACID GASES
US4461634A (en) * 1980-10-16 1984-07-24 Petrocarbon Developments Limited Separation of gas mixtures by partial condensation
JPS58183901A (en) * 1982-04-14 1983-10-27 コステイン・ペトロカ−ボン・リミテッド Separation of mixed gas by partial condensation
US4410342A (en) * 1982-05-24 1983-10-18 United States Riley Corporation Method and apparatus for separating a liquid product from a hydrocarbon-containing gas
US4639257A (en) * 1983-12-16 1987-01-27 Costain Petrocarbon Limited Recovery of carbon dioxide from gas mixture
US4606198A (en) * 1985-02-22 1986-08-19 Liebert Corporation Parallel expansion valve system for energy efficient air conditioning system
FR2711779B1 (en) * 1993-10-26 1995-12-08 Air Liquide Method and installation for cryogenic hydrogen purification.
DE19722490C1 (en) * 1997-05-28 1998-07-02 Linde Ag Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption
CN2315506Y (en) * 1997-10-27 1999-04-21 中国科学院低温技术实验中心 Multi-stage throttling natural gas liquefying device
US6751985B2 (en) * 2002-03-20 2004-06-22 Exxonmobil Upstream Research Company Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
US6672104B2 (en) * 2002-03-28 2004-01-06 Exxonmobil Upstream Research Company Reliquefaction of boil-off from liquefied natural gas
GB0216537D0 (en) * 2002-07-16 2002-08-28 Boc Group Plc Nitrogen rejection method and apparatus
US6986262B2 (en) * 2002-11-28 2006-01-17 Sanyo Electric Co., Ltd. Binary refrigeration unit
FR2855526B1 (en) * 2003-06-02 2007-01-26 Technip France METHOD AND INSTALLATION FOR THE SIMULTANEOUS PRODUCTION OF A NATURAL GAS THAT CAN BE LIQUEFIED AND A CUTTING OF NATURAL GAS LIQUIDS
FR2843447B1 (en) * 2003-09-30 2009-02-06 Air Liquide PROCESS AND PLANT FOR PRODUCING CARBON MONOXIDE BY CRYOGENIC DISTILLATION
DE102005024106A1 (en) * 2005-05-25 2006-11-30 Linde Ag Multistage cryogenic separation of material stream comprises dehydrogenating material stream with hydrocarbon-rich liquid, extracting liquid fraction, mixing hydrocarbon-rich gas and producing flash gas and liquid product
US7591149B2 (en) * 2006-07-24 2009-09-22 Conocophillips Company LNG system with enhanced refrigeration efficiency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2914990A1 (en) 2008-10-17
FR2914990B1 (en) 2010-02-26
EP2137475A2 (en) 2009-12-30
WO2008139085A3 (en) 2013-02-28
CN102099647A (en) 2011-06-15
WO2008139085A2 (en) 2008-11-20
US20100126215A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
EP2137475B1 (en) Method for cooling a cryogenic exchange line
KR100891907B1 (en) Integrated ngl recovery in the production of liquefied natural gas
EP0644996B1 (en) Gas cooling process and plant, especially for natural gas liquefaction
EP1118827B1 (en) Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas
EP2344821B1 (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
FR2885679A1 (en) METHOD AND INSTALLATION FOR SEPARATING LIQUEFIED NATURAL GAS
CA3054907C (en) Helium extraction from natural gas
FR2675891A1 (en) PROCESS FOR PRODUCING LIQUID NITROGEN USING LIQUEFIED NATURAL GAS AS THE ONLY REFRIGERANT.
FR2772896A1 (en) METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION
NO312857B1 (en) A method of separating a multicomponent gas stream containing at least one freeze component
FR2675890A1 (en) METHOD FOR THE REFRIGERATION TRANSFER OF NATURAL GAS LIQUEFIED TO A CRYOGENIC AIR SEPARATION UNIT USING THE HIGH PRESSURE NITROGEN CURRENT.
WO2006039182A2 (en) Recovering natural gas liquids from lng using vacuum distillation
EP3117163A1 (en) Process and apparatus for heavy hydrocarbon removal from lean natural gas before liquefaction
AU2010248092A1 (en) Nitrogen rejection methods and systems
FR2757282A1 (en) METHOD AND INSTALLATION FOR PROVIDING A VARIABLE FLOW OF AN AIR GAS
FR2920529A1 (en) Cooling unit i.e. natural gas liquefaction unit, starting method, involves injecting cleaning gas in circuit, and injecting filling gases in circuit, where average molar mass of one filling gas is higher than that of another filling gas
CA2187663C (en) Process and device for fractionating multicomponent fluids such as natural gaz
EP3252408B1 (en) Method for purifying natural gas and for liquefying carbon dioxide
EP3137830A1 (en) Method for purifying, cooling and separating a gaseous mixture and associated apparatus
EP2893276B1 (en) Method and device for condensing a carbon dioxide-rich gas stream
WO2022162041A1 (en) Method and apparatus for separating a flow rich in carbon dioxide by distillation to produce liquid carbon dioxide
EP3058296B1 (en) Method for denitrogenation of natural gas with or without helium recovery
WO2013171426A2 (en) Method and device for sub-ambient-temperature distillation
EP2938414A2 (en) Method and apparatus for separating a carbon dioxide-rich gas
WO2018055264A1 (en) Process for purifying natural gas to be liquefied

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20130228

17P Request for examination filed

Effective date: 20130828

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1012700

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008055770

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180627

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180928

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1012700

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008055770

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

26N No opposition filed

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 16

Ref country code: DE

Payment date: 20230420

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 16