EP2133568A1 - Multi-stage piston compressor - Google Patents

Multi-stage piston compressor Download PDF

Info

Publication number
EP2133568A1
EP2133568A1 EP08010771A EP08010771A EP2133568A1 EP 2133568 A1 EP2133568 A1 EP 2133568A1 EP 08010771 A EP08010771 A EP 08010771A EP 08010771 A EP08010771 A EP 08010771A EP 2133568 A1 EP2133568 A1 EP 2133568A1
Authority
EP
European Patent Office
Prior art keywords
piston
stage
cylinder
cylinder units
cylinder unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08010771A
Other languages
German (de)
French (fr)
Other versions
EP2133568B1 (en
Inventor
Harald Schulz
Roland Tittel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BORSIG COMPRESSOR PARTS GmbH
JP Sauer and Sohn Machinenbau GmbH
Original Assignee
JP Sauer and Sohn Machinenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JP Sauer and Sohn Machinenbau GmbH filed Critical JP Sauer and Sohn Machinenbau GmbH
Priority to ES08010771.7T priority Critical patent/ES2478629T3/en
Priority to EP08010771.7A priority patent/EP2133568B1/en
Priority to PL08010771T priority patent/PL2133568T3/en
Priority to US12/477,272 priority patent/US20090311114A1/en
Publication of EP2133568A1 publication Critical patent/EP2133568A1/en
Application granted granted Critical
Publication of EP2133568B1 publication Critical patent/EP2133568B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/02Multi-stage pumps of stepped piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/01Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical

Definitions

  • the invention relates to a multi-stage piston compressor with at least two piston-cylinder units.
  • Multi-stage reciprocating compressors are known to increase the pressure of a gas in multiple stages.
  • the output pressure is increased to a first intermediate pressure in a first stage by a first piston-cylinder unit.
  • This first intermediate pressure is then increased in the second stage by a second piston-cylinder unit to an even higher pressure.
  • the pistons of all piston-cylinder units are driven by a common crankshaft, which predetermines the stroke of the pistons.
  • the pressure ratio between the individual stages beyond the diameter of the individual cylinders is chosen differently, ie from stage to stage, the inner diameter of the cylinder decreases, since with each pressure increase, the volume of the gas decreases.
  • the known multi-stage reciprocating compressors are therefore such that they are determined by their mechanical design to certain stage pressure conditions, as well as a certain total volume flow and a certain total pressure. Variations are only possible with limited valve control. Therefore, it is problematic to use such reciprocating compressors where different densities or pressures and different volume flows to be realized with one and the same machine.
  • the multi-stage piston compressor according to the invention has at least two piston-cylinder units, d. H. He is trained at least two stages. In the case that more stages are provided, correspondingly more piston-cylinder units are provided. At least one piston-cylinder unit is provided for each stage.
  • each piston-cylinder unit is provided with a separate linear drive for moving the piston. That is, the piston of the first piston-cylinder unit, d. H. the first stage is moved via a separate linear drive and the piston of the second piston-cylinder unit, d. H. The second stage is powered by its own separate linear drive. So is for each stage, d. H. for each piston-cylinder unit, which forms a step, a separate linear drive provided for movement of the piston.
  • a control device is provided according to the invention, which is designed such that the linear drives are individually controllable by this in speed and stroke. That is, the controller is designed so that it can control the linear actuators of each piston-cylinder units independently, ie for each linear actuator, the stroke of the piston and also the speed of movement of the piston can be controlled or adjusted separately.
  • the start and end time of the piston movement for each piston-cylinder unit can be set separately and possibly changed by the control device correspondingly controls the respectively associated linear drive of the piston-cylinder unit, ie the piston movement starts and stops.
  • the multistage piston compressor can be flexibly adjusted to different delivery rates and pressures.
  • the speed of the pistons can be reduced if a reduced volume flow is desired.
  • stroke and speed of all pistons need not be increased or reduced to the same extent, but it is possible by the inventive independent control of the drives to vary the stroke and the speed of the individual pistons of different stages independently, in particular it is possible To change the stroke volume by changing the stroke, for example, the second stage in response to the pressure increase, which takes place in the first stage.
  • the control device is thus designed such that the step pressure ratio of the piston-cylinder unit is variable by the individual control of the linear drives of the at least two piston-cylinder units.
  • This is not possible in conventional reciprocating compressors, which have a common crankshaft that drives all the pistons, because the pressure ratio and volume ratio between the individual stages are firmly matched to one another. Due to the mechanically independent drives of the closer Piston-cylinder units and the associated individual control, it is possible according to the invention to change the stage pressure ratios of the individual stages. If the step pressure ratio of a preceding, for example, the first stage is increased, the stroke volume can be adjusted accordingly by reducing the stroke in the subsequent stage, ie, for example, the second stage. The step pressure ratio can also be changed by changing the stroke.
  • the individual control of the drives can also reduce the harmful space in the cylinder, ie, the volumetric losses can be reduced because top and bottom dead center by the linear drive and the more accurate control can be approached precisely.
  • the at least two piston-cylinder units are designed such that their cylinders have different sized inner cross sections, ie in particular different diameters.
  • the associated pistons are adapted in their cross section or diameter to the inner cross section of the cylinder.
  • This configuration ensures that in the second stage of the compressor, which must have a lower displacement than the first stage due to the higher pressure, this reduced displacement is achieved not only by changing the stroke by means of the linear drive, but also by structural adaptation of Piston-cylinder unit of the second and subsequent stages. That is, preferably, the inner cross-section decreases from stage to stage.
  • the volume ratio between the individual cylinders which is mechanically predetermined in this way, does not automatically determine the pressure or stage pressure conditions at the stages due to the separate linear drives.
  • the linear drives each have a rotating drive motor, in particular a servomotor, and a spindle drive, which converts the rotational movement of the drive motor into a linear movement for the piston.
  • a rotating drive motor in particular a servomotor
  • a spindle drive which converts the rotational movement of the drive motor into a linear movement for the piston.
  • the spindle drive can be sufficiently large forces applied to the piston.
  • this can be precisely controlled or regulated in its stroke and its driving speed.
  • the spindle drive, and / or the drive motor position sensors may be provided to accurately detect the current position of the piston and to precisely control the movement of the piston by controlling the drive motor.
  • the control device is accordingly designed to process the signals detected by the sensors and to drive the drive motor taking these signals into account.
  • the spindle drive can be known, for example, designed with a ball nut.
  • the spindle drive is lubricated for life, in particular lubricated for life, so that no ongoing supply of lubricant during operation is required.
  • differently shaped linear drives can be used which are suitable for linearly moving a piston and can be controlled individually by the control device. This can be in particular other electric linear drives.
  • suitable transmission means can be provided in order to convert a rotary movement into a linear movement.
  • the linear motion is According to the invention in stroke and speed by the control device variable.
  • the piston-cylinder units are formed dry running. So can be dispensed with a lubrication during operation, which significantly simplifies the overall design of the compressor and also allows use where contamination of the gas to be compressed with lubricant must be avoided.
  • an intercooler can be arranged between two piston-cylinder units. This cools the exiting from a first piston-cylinder unit compressed gas before it enters the subsequent second piston-cylinder unit of the second stage of the compressor. Accordingly, such an intercooler may also be arranged between a second and third, third and fourth stages, etc., depending on how many stages the compressor has. Furthermore, such a cooler can also be arranged on the output side of the last stage.
  • the piston-cylinder units may each be formed doppelhubig, so that a promotion or compression takes place both in the outward and during the return stroke.
  • a changeover valve is arranged on the output side of at least one first piston-cylinder unit, by means of which the output-side flow path between a subsequent second piston-cylinder unit and an output line, preferably an output line for a plurality of piston-cylinder units is switchable ,
  • This switching valve can also be actuated by the control device or be manually operable.
  • Such a switching valve makes it possible for the piston compressor according to the invention of a multi-stage operation in one multi-flow operation switch, in which the individual piston-cylinder units of the several stages are not arranged downstream of each other but are operated in parallel. Such an insert may be preferred when a large volume flow at a lower pressure ratio between inlet and outlet pressure of the compressor is desired.
  • the changeover valve which is arranged on the output side of the second stage, ie the second piston-cylinder unit, be switched so that the flow path no longer leads to the third piston-cylinder unit, but the flow directly is directed into an output line of the reciprocating compressor. From the thus separated or disconnected piston-cylinder unit, the linear drive of the control device is then not put into operation. In this way, the efficiency of the compressor can be increased in such an operating mode, since a power loss can be reduced.
  • the in Fig. 1 shown piston compressor is designed in three stages and has correspondingly three piston-cylinder units 2, 4 and 6.
  • the piston-cylinder units 2, 4, 6 each consist as in Fig. 4 is shown, from a circular cross-section cylinder 8 and a linearly movable piston 10 therein.
  • the piston 10 is connected to a piston rod 12.
  • the cylinder 8 has in a known manner inlet and outlet valves, which may be formed as a spring-loaded check valves, which are connected in accordance with inlet and outlet lines.
  • each piston-cylinder unit 2, 4, 6 has its own linear drive, 14, 16, 18.
  • the piston-cylinder unit 2 has a Linear drive 14, which is connected to the piston rod 12 of the piston-cylinder unit 2, to move the piston 10 linearly in the interior of the cylinder 8.
  • the piston-cylinder unit 4 is connected to its own linear drive 16, which moves the piston 10 of the second piston-cylinder unit 4.
  • the third piston-cylinder unit 6 has its own linear drive 18, which moves the piston 10 of the piston-cylinder unit 6 in the cylinder 8.
  • the linear drives 14, 16, 18 are designed as spindle drives, which are each driven by a servo motor 20, 22, 24.
  • the servomotor 20 is assigned to the linear drive 14, the servomotor 22 to the linear drive 16, and the servomotor 24 to the linear drive 18.
  • each piston-cylinder unit 2, 4, 6 has its own independent drive for the respective piston.
  • the piston 10 can be moved very precisely.
  • the servomotors 20, 22 and 24 of the linear drives 14, 16 and 18 are connected via electrical lines 26 to a control device 28 which controls the linear drives 14, 16, 18 and their servomotors 20, 22, 24 and controls.
  • an electronic coupling of the drives of the piston-cylinder units 2, 4, 6 can be achieved.
  • This has the advantage over a mechanical coupling, as is achieved in conventional reciprocating compressors on the common crankshaft, that the coupling is variable and can be changed according to different control programs in the control device 28.
  • the stroke and lifting speed of each individual linear drive 14, 16, 18 can be predetermined by the control device 28. That is, the pistons of each piston-cylinder unit 2, 4, 6 can be moved independently of the respective other piston or be controlled in their movement. This results in a much more flexible Use of the compressor with larger adjustment ranges regarding achievable pressure differences and volume flows.
  • the first piston-cylinder unit 2 has a gas inlet 30.
  • the outlet opening 32 of the first piston-cylinder unit 2 is connected via a line 33 to the inlet opening 34 of the second piston-cylinder unit 4.
  • the outlet opening 36 of the second piston-cylinder unit 4 is connected via a line 37 to the inlet opening 38 of the third piston-cylinder unit 6.
  • the outlet opening 40 of the third piston-cylinder unit is connected to a pressure line 42, which forms the outlet line of the compressor.
  • the second piston-cylinder unit 4 which forms the second stage of the compressor, has a smaller cross-section, ie a smaller inner diameter of the cylinder 8 and a smaller diameter of the associated piston 10 than in the first piston-cylinder unit 2. Accordingly is the cross-section of the third piston-cylinder unit 6 again smaller than that of the second piston-cylinder unit 4.
  • These size changes preferably correspond to the ratio of the pressure increase from stage to stage, ie from piston-cylinder unit 2 to piston-cylinder Unit 4 or from piston-cylinder unit 4 to piston-cylinder unit 6. Since in the system according to the invention the step pressure ratio is variable, the size graduation in the cross-section of the piston-cylinder units 2, 4, 6 is preferably chosen such that that it corresponds to a medium adjustable step pressure ratio. Further volume variations can then take place by the control of the stroke of the respective piston 10 via the individual linear drive 14, 16, 18. Unlike crankshaft driven systems is the Hub of the piston 10 according to the invention namely not predetermined, but via the associated linear drive 14, 16, 18 variable.
  • the control device 28 is preferably designed as a programmable logic controller and has a display and input device 44, which may for example consist of a suitable keyboard and a display or a touch-sensitive display. Alternatively or additionally, interfaces to computer systems may be provided. Alternatively, the controller 28 may be integrated into a computer system and the lines 26 may be connected via suitable interfaces. Furthermore, the control device 28 still different sensor signals, as based on Fig. 3 will be explained. In addition, it may receive position signals from the linear actuators 14, 16, 18 and / or their servomotors 20, 22, 24 to provide accurate positional control of the piston 10 in the cylinder 12 for each piston-cylinder unit 2, 4, 6 can.
  • the linear drives 2, 4, 6, it is possible to move the piston 10 very precisely in the cylinder 12. Thereby, the dead volume or the harmful space in the cylinder can be reduced and the piston 10 can be moved further than in conventional systems to the axial end wall of the cylinder 12 out, ideally approach almost completely to the wall. This can increase the volumetric efficiency of the system.
  • the traversing speed of the piston 10 can be precisely predefined and controlled by the control device 28. The travel speed is preferably chosen to be slow, preferably less than 2, more preferably less than 1 m / s. This leads to lower vibrations and too little wear of the system.
  • control device 28 By means of the control device 28, certain desired values can be specified for the compressor, in particular the desired outlet pressure at the outlet opening 40 of the third piston-cylinder unit 6. A desired volume flow can also be preset. Depending on these variables, the control device 28 individually controls the three linear drives 14, 16, 18 via control of the servomotors 20, 22, 24, so that the pistons 10 of the piston-cylinder units 2, 4, 6 each have a desired one Run the stroke at a desired travel speed. In this case, the step pressure ratio for each piston-cylinder unit 2, 4, 6, d. H.
  • switching valves 46 and 48 are arranged. These make it possible to completely switch off individual stages of the compressor.
  • the switching valve 46 can switch the flow path on the output side of the first piston-cylinder unit 2 between the inlet opening 34 and the second piston-cylinder unit 4 and an output line 50.
  • the output line 50 is connected in the example shown with the pressure line 42, but it is also conceivable that the pressure line 42 and the output line 50 are formed as a common output line.
  • the switching valve 46 When the switching valve 46 is switched so that the flow path to the inlet port 34 of the second piston-cylinder unit 4 runs, the gas compressed in the first stage is thus supplied to the second piston-cylinder unit 4 as a second stage to continue there to be condensed.
  • the switching valve 46 When the switching valve 46 is switched to the output line 50, the gas exiting the outlet opening 32 is no longer directed to the second piston-cylinder unit 4 but directly into the pressure line 42.
  • the compression takes place at this setting then only by the first piston-cylinder unit 2, the second piston-cylinder unit 4 and the third piston-cylinder unit 6 are thus switched off. In this case, due to the individual control, the associated drives in the form of servomotors 22 and 24 can be switched off so that the energy consumption can be reduced.
  • the second switching valve 48 operates in the same way.
  • the compressor operates as a two-stage compressor with the piston-cylinder units 2 and 4.
  • the switching valves 46 and 48 may allow another mode, namely, when both switching valves 46 and 48 be switched so that the emerging from the outlet openings 32 and 36 gas flow is passed directly into the output line 50. If the switching valves 46 and 48 open at the same time an additional flow input for the inlet openings 34 and 38, the piston compressor shown thus may alternatively be used as a three-flow compressor in which the three piston-cylinder units 2, 4, 6 operate in parallel. A function as a double-flow compressor is conceivable if in this mode of operation, one of the piston-cylinder units 2, 4, 6 is taken out of operation by switching off the servomotor 20, 22, and 24 respectively. Instead of opening the additional gas inlet through the switching valves 46 and 48, separate valves may be provided for this purpose.
  • Fig. 2 now shows an arrangement which essentially according to the arrangement Fig. 1 equivalent.
  • the three piston-cylinder units 2, 4, and 6, each formed double-stroke, ie the piston 10 act both in the outward and in the return stroke.
  • each intercooler 52, 54 and 56 are arranged between the piston-cylinder units 2, 4, and 6 and the output side of the piston-cylinder unit 6 .
  • the intercooler 52 is in the line 33 between the piston-cylinder units 2 and 4
  • the intercooler 44 in the line 37 between the piston-cylinder units 4 and 6 and the third intercooler 56 is the output side of the outlet opening 40 of the third piston.
  • Cylinder unit 6 is arranged.
  • the intercooler may be formed in a known manner as an air or water cooler.
  • the first piston-cylinder unit has two inlet openings 58 connected to the gas inlet 30 and correspondingly two outlet openings 32, which are connected to the line 33 and the intercooler 52 arranged in the latter.
  • the line 33 then leads to two inlet openings 34 of the second piston-cylinder unit 4.
  • the second piston-cylinder unit 4 has correspondingly two outlet openings 36, which with the line 37 and are connected to this located in the intercooler 54.
  • the line 37 leads the output side of the intercooler 54 to the two inlet openings 38 of the third piston-cylinder unit 6.
  • the third piston-cylinder unit 6 has correspondingly two outlet openings 40, which lead to the intercooler 56, which output side with the pressure line 42nd connected is.
  • Fig. 3 again schematically shows the flow paths in a reciprocating compressor according to Fig. 2 ,
  • the size differences between the piston-cylinder units 2, 4 and 6 in Fig. 3 not shown.
  • the intercoolers are in Fig. 3 not shown, it being understood that a double-stroke three-stage compressor as in Fig. 2 shown could also be formed without intercooler.
  • the compressor according to Fig. 1 provide appropriate intercooler.
  • a plurality of temperature sensors T and pressure sensors P are provided in the system. These pressure sensors are provided on the input and output side of the piston-cylinder units 2, 4, and 6 in order to detect temperature and pressure at the gas inlet 30, in the line 33, the line 37 and the pressure line 42. In addition, temperature sensors are also provided at each output of the piston-cylinder units 2, 4, and 6, so that the temperature of the gas compressed during the downstroke of the piston 10 regardless of the temperature of the compressed during the return stroke of the piston 10 Gas can be detected.
  • the output signals of the temperature sensors T and the pressure sensors P are also supplied to the control device 28 via suitable signal lines or other suitable signal transmission paths, which takes these into account as actual values in the regulation of the linear drives 14, 16, 18 or their servomotors 20, 22, 24.
  • intercooler 52, 54, 56 it is also conceivable that the cooling capacity of the intercooler of the control device 28 is variable, for example by adjusting the fan speed of the radiator.
  • the cooling capacity can be adapted to the detected actual values of the temperature on the output side of the individual stages 2, 4, 6.
  • the piston-cylinder units 2, 4, 6 are preferably designed to run dry in the examples shown, so that lubrication can be dispensed with. This is particularly advantageous if contamination of the gas to be pumped with lubricant must be prevented.
  • the linear drives 14, 16, 18 may preferably be lubricated for life, so that no ongoing lubrication during operation is required here.
  • the linear drives 14, 16, 18 may be designed as spindle drives, in particular as recirculating ball screws.

Abstract

The compressor has dry-running piston-cylinder units (2, 4, 6) including separate linear drives (14, 16, 18) e.g. ball and screw spindles, for moving a piston. A control device (28) is designed such that the linear drives are controllable individually in speed and stroke. The control device changes a stage pressure ratio of the piston-cylinder units by the individual control of the linear drives. The piston-cylinder units are designed such that cylinders of the respective piston-cylinder units have differently large inner cross sections.

Description

Die Erfindung betrifft einen mehrstufigen Kolbenkompressor mit zumindest zwei Kolben-Zylinder-Einheiten.The invention relates to a multi-stage piston compressor with at least two piston-cylinder units.

Es sind mehrstufige Kolbenkompressoren bekannt, um den Druck eines Gases in mehreren Stufen zu erhöhen. Bei derartigen mehrstufigen Kompressoren wird in einer ersten Stufe durch eine erste Kolben-Zylinder-Einheit der Ausgangsdruck auf einen ersten Zwischendruck erhöht. Dieser erste Zwischendruck wird dann in der zweiten Stufe durch eine zweite Kolben-Zylinder-Einheit auf einen nochmals höheren Druck erhöht. Dies setzt sich je nach Anzahl der verwendeten Stufen weiter fort. Bei den bekannten Kolbenkompressoren werden die Kolben aller Kolben-Zylinder-Einheiten über eine gemeinsame Kurbelwelle angetrieben, welche den Hub der Kolben fest vorgibt. In Abhängigkeit des Druckverhältnisses zwischen den einzelnen Stufen ist darüber hinaus der Durchmesser der einzelnen Zylinder unterschiedlich gewählt, d. h. von Stufe zu Stufe verkleinert sich der Innendurchmesser der Zylinder, da mit jeder Druckerhöhung das Volumen des Gases abnimmt. Die bekannten mehrstufigen Kolbenkompressoren sind daher so, dass diese durch ihre mechanische Konstruktion auf bestimmte Stufendruckverhältnisse, sowie einen bestimmten Gesamtvolumenstrom und einen bestimmten Gesamtdruck festgelegt. Variationen sind nur begrenzt durch unterschiedliche Ventilsteuerung möglich. Daher ist es problematisch derartige Kolbenkompressoren dort einzusetzen, wo unterschiedliche Verdichtungen bzw. Drücke und unterschiedliche Volumenströme mit ein und derselben Maschine realisiert werden sollen.Multi-stage reciprocating compressors are known to increase the pressure of a gas in multiple stages. In such multi-stage compressors, the output pressure is increased to a first intermediate pressure in a first stage by a first piston-cylinder unit. This first intermediate pressure is then increased in the second stage by a second piston-cylinder unit to an even higher pressure. This continues depending on the number of stages used. In the known reciprocating compressors, the pistons of all piston-cylinder units are driven by a common crankshaft, which predetermines the stroke of the pistons. Depending on the pressure ratio between the individual stages beyond the diameter of the individual cylinders is chosen differently, ie from stage to stage, the inner diameter of the cylinder decreases, since with each pressure increase, the volume of the gas decreases. The known multi-stage reciprocating compressors are therefore such that they are determined by their mechanical design to certain stage pressure conditions, as well as a certain total volume flow and a certain total pressure. Variations are only possible with limited valve control. Therefore, it is problematic to use such reciprocating compressors where different densities or pressures and different volume flows to be realized with one and the same machine.

Es ist daher Aufgabe der Erfindung einen mehrstufigen Kolbenkompressor dahingehend zu verbessern, dass mit ein und derselben Maschine Druck und Volumenstrom auf einfache Weise variiert werden können.It is therefore an object of the invention to improve a multi-stage reciprocating compressor to the effect that with one and the same machine pressure and flow rate can be varied easily.

Diese Aufgabe wird durch einen mehrstufigen Kolbenkompressor mit den im Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This object is achieved by a multi-stage piston compressor with the features specified in claim 1. Preferred embodiments will become apparent from the subclaims, the following description and the accompanying figures.

Der erfindungsgemäße mehrstufige Kolbenkompressor weist zumindest zwei Kolben-Zylinder-Einheiten auf, d. h. er ist mindestens zweistufig ausgebildet. In dem Fall, dass mehr Stufen vorgesehen sind, sind entsprechend mehr Kolben-Zylinder-Einheiten vorgesehen. Dabei ist für jede Stufe mindestens eine Kolben-Zylinder-Einheit vorgesehen. Erfindungsgemäß ist jede Kolben-Zylinder-Einheit jeweils mit einem separaten Linearantrieb zur Bewegung des Kolbens versehen. Das heißt der Kolben der ersten Kolben-Zylinder-Einheit, d. h. der ersten Stufe wird über einen separaten Linearantrieb bewegt und der Kolben der zweiten Kolben-Zylinder-Einheit, d. h. der zweiten Stufe wird über einen eigenen separaten Linearantrieb angetrieben. So ist für jede Stufe, d. h. für jede Kolben-Zylinder-Einheit, welche eine Stufe bildet, ein separater Linearantrieb zur Bewegung des Kolbens vorgesehen. Das heißt hier wird auf eine gemeinsame Antriebskurbelwelle und somit eine mechanische Kopplung der Bewegung der Kolben der einzelnen Kolben-Zylinder-Einheiten verzichtet. Eine Synchronisation bzw. Kopplung der Bewegung der einzelnen Kolben der Kolben-Zylinder-Einheit erfolgt erfindungsgemäß rein steuerungstechnisch durch Steuerung der Linearantriebe.The multi-stage piston compressor according to the invention has at least two piston-cylinder units, d. H. He is trained at least two stages. In the case that more stages are provided, correspondingly more piston-cylinder units are provided. At least one piston-cylinder unit is provided for each stage. According to the invention, each piston-cylinder unit is provided with a separate linear drive for moving the piston. That is, the piston of the first piston-cylinder unit, d. H. the first stage is moved via a separate linear drive and the piston of the second piston-cylinder unit, d. H. The second stage is powered by its own separate linear drive. So is for each stage, d. H. for each piston-cylinder unit, which forms a step, a separate linear drive provided for movement of the piston. This means that a common drive crankshaft and thus a mechanical coupling of the movement of the pistons of the individual piston-cylinder units is dispensed with. A synchronization or coupling of the movement of the individual pistons of the piston-cylinder unit according to the invention is purely control technology by controlling the linear drives.

Hierzu ist erfindungsgemäß eine Steuereinrichtung vorgesehen, welche derart ausgestaltet ist, dass die Linearantriebe von dieser individuell in Geschwindigkeit und Hub steuerbar sind. Das heißt, die Steuereinrichtung ist so ausgebildet, dass sie die Linearantriebe der einzelnen Kolben-Zylinder-Einheiten unabhängig voneinander ansteuern kann, d. h. für jeden Linearantrieb kann der Hub des Kolbens und auch die Bewegungsgeschwindigkeit des Kolbens separat gesteuert bzw. eingestellt werden. Darüber hinaus können auch Anfangs- und Endzeitpunkt der Kolbenbewegung für jede Kolben-Zylinder-Einheit separat festgelegt und ggf. verändert werden, indem die Steuereinrichtung den jeweils zugehörigen Linearantrieb der Kolben-Zylinder-Einheit entsprechend ansteuert, d. h. die Kolbenbewegung beginnt und stoppt.For this purpose, a control device is provided according to the invention, which is designed such that the linear drives are individually controllable by this in speed and stroke. That is, the controller is designed so that it can control the linear actuators of each piston-cylinder units independently, ie for each linear actuator, the stroke of the piston and also the speed of movement of the piston can be controlled or adjusted separately. In addition, the start and end time of the piston movement for each piston-cylinder unit can be set separately and possibly changed by the control device correspondingly controls the respectively associated linear drive of the piston-cylinder unit, ie the piston movement starts and stops.

Dadurch, dass auf dem mechanische Bewegungskopplung der einzelnen Kolben verzichtet wird, lässt sich der mehrstufige KolbenKompressor flexibel auf unterschiedliche Förderleistungen und Drücke einstellen. So kann beispielsweise die Geschwindigkeit der Kolben verringert werden, wenn ein verringerter Volumenstrom gewünscht ist. Dabei müssen nicht Hub und Geschwindigkeit aller Kolben im gleichen Maße vergrößert oder verkleinert werden, vielmehr ist es durch die erfindungsgemäße unabhängige Steuerung der Antriebe möglich, den Hub und die Geschwindigkeit der einzelnen Kolben der verschiedenen Stufen unabhängig voneinander zu variieren, Insbesondere ist es möglich, das Hubvolumen durch Änderung des Hubs beispielsweise der zweiten Stufe in Abhängigkeit von der Druckerhöhung, welche in der ersten Stufe stattfindet, zu verändern.Because the mechanical motion coupling of the individual pistons is dispensed with, the multistage piston compressor can be flexibly adjusted to different delivery rates and pressures. For example, the speed of the pistons can be reduced if a reduced volume flow is desired. In this case, stroke and speed of all pistons need not be increased or reduced to the same extent, but it is possible by the inventive independent control of the drives to vary the stroke and the speed of the individual pistons of different stages independently, in particular it is possible To change the stroke volume by changing the stroke, for example, the second stage in response to the pressure increase, which takes place in the first stage.

Vorzugsweise ist die Steuereinrichtung somit derart ausgebildet, dass durch die individuelle Steuerung der Linearantriebe der zumindest zwei Kolben-Zylinder-Einheiten das Stufendruckverhältnis der KolbenZylindereinheit veränderbar ist. Dies ist bei herkömmlichen KolbenKompressoren, welche über eine gemeinsame, alle Kolben antreibende Kurbelwelle verfügen, nicht möglich, da Druckverhältnis und Volumenverhältnis zwischen den einzelnen Stufen fest aufeinander abgestimmt sind. Durch die mechanisch unabhängigen Antriebe der näheren Kolben-Zylinder-Einheiten und die zugehörigen individuelle Steuerung, ist es gemäß der Erfindung möglich, die Stufendruckverhältnisse der einzelnen Stufen zu verändern. Wenn das Stufendruckverhältnis einer vorangehenden, beispielsweise der ersten Stufe erhöht wird, kann entsprechend das Hubvolumen durch Verkleinerung des Hubes in der darauf folgenden Stufe, d. h. beispielsweise der zweiten Stufe angepasst werden. Das Stufendruckverhältnis kann dabei ebenfalls durch Veränderung des Hubes verändert werden. Dabei ist es gleichzeitig möglich die Verfahrgeschwindigkeiten so anzupassen, dass auch bei unterschiedlichem Hub die einzelnen Stufen, d. h. die einzelnen Kolben-Zylinder-Einheiten mit derselben Frequenz arbeiten. Durch die individuelle Steuerung der Antriebe lässt sich darüber hinaus der schädliche Raum im Zylinder verkleinern, d. h. die volumetrischen Verluste können verringert werden, da oberer und unterer Totpunkt durch den Linearantrieb und die genauere Steuerung präzise angefahren werden können.Preferably, the control device is thus designed such that the step pressure ratio of the piston-cylinder unit is variable by the individual control of the linear drives of the at least two piston-cylinder units. This is not possible in conventional reciprocating compressors, which have a common crankshaft that drives all the pistons, because the pressure ratio and volume ratio between the individual stages are firmly matched to one another. Due to the mechanically independent drives of the closer Piston-cylinder units and the associated individual control, it is possible according to the invention to change the stage pressure ratios of the individual stages. If the step pressure ratio of a preceding, for example, the first stage is increased, the stroke volume can be adjusted accordingly by reducing the stroke in the subsequent stage, ie, for example, the second stage. The step pressure ratio can also be changed by changing the stroke. At the same time, it is possible to adjust the travel speeds so that the individual stages, ie the individual piston-cylinder units, operate at the same frequency even with different strokes. The individual control of the drives can also reduce the harmful space in the cylinder, ie, the volumetric losses can be reduced because top and bottom dead center by the linear drive and the more accurate control can be approached precisely.

Gemäß einer bevorzugten Ausführungsform sind die zumindest zwei Kolben-Zylinder-Einheiten derart ausgebildet, dass ihre Zylinder unterschiedlich große Innenquerschnitte, d. h. insbesondere unterschiedliche Durchmesser aufweisen. Die zugehörigen Kolben sind dabei in ihrem Querschnitt bzw. Durchmesser an den Innenquerschnitt der Zylinder angepasst. Durch diese Ausgestaltung wird erreicht, dass in der zweiten Stufe des Kompressors, welche aufgrund des höheren Druckes ein geringeres Hubvolumen als die erste Stufe haben muss, dieses verringerte Hubvolumen nicht nur durch Veränderung des Hubes mittels des Linearantriebes erreicht wird, sondern auch durch bauliche Anpassung der Kolben-Zylinder-Einheit der zweiten und der folgenden Stufen. Das heißt vorzugsweise verringert sich der Innenquerschnitt von Stufe zu Stufe. Das auf diese Weise mechanisch vorgegebene Volumenverhältnis zwischen den einzelnen Zylindern legt dabei jedoch aufgrund der getrennten Linearantriebe nicht auch automatisch die Druck- bzw. Stufendruckverhältnisse an den Stufen fest. Diese können vielmehr immer noch durch Veränderung des Hubes des jeweiligen Linearantriebes durch entsprechende Programmierung bzw. Einstellung der Steuereinrichtung verändert werden. So wird vereinfacht gesagt durch die die mechanische Größenabstufung der Zylinder eine grobe Volumenanpassung erreicht, während die individuelle Feinanpassung von der Steuereinrichtung durch individuelle Steuerung des Hubes der Linearantriebe erreicht wird.According to a preferred embodiment, the at least two piston-cylinder units are designed such that their cylinders have different sized inner cross sections, ie in particular different diameters. The associated pistons are adapted in their cross section or diameter to the inner cross section of the cylinder. This configuration ensures that in the second stage of the compressor, which must have a lower displacement than the first stage due to the higher pressure, this reduced displacement is achieved not only by changing the stroke by means of the linear drive, but also by structural adaptation of Piston-cylinder unit of the second and subsequent stages. That is, preferably, the inner cross-section decreases from stage to stage. However, the volume ratio between the individual cylinders, which is mechanically predetermined in this way, does not automatically determine the pressure or stage pressure conditions at the stages due to the separate linear drives. These can still be through Change in the stroke of the respective linear drive can be changed by appropriate programming or adjustment of the control device. Thus, in simplified terms, the mechanical size graduation of the cylinders achieves a coarse volume adjustment, while the individual fine adjustment is achieved by the control device by individual control of the stroke of the linear drives.

Weiter bevorzugt weisen die Linearantriebe jeweils einen drehenden Antriebsmotor, insbesondere einen Servomotor, und einen Spindeltrieb auf, welcher die Drehbewegung des Antriebsmotors in eine Linearbewegung für den Kolben umsetzt. Durch einen solchen Antrieb lassen sich ausreichend große Kräfte auf den Kolben aufbringen. Ferner lässt dieser sich in seinem Hub und seiner Fahrgeschwindigkeit präzise steuern bzw. regeln. Hierzu können an dem Kolben, dem Spindeltrieb, und/oder dem Antriebsmotor Positionssensoren vorgesehen sein, um die aktuelle Position des Kolbens genau zu erfassen und die Bewegung des Kolbens durch Steuerung bzw. Regelung des Antriebsmotors präzise zu regeln. Die Steuereinrichtung ist dementsprechend ausgebildet, die von den Sensoren erfassten Signale zu verarbeiten und den Antriebsmotor unter Berücksichtigung dieser Signale anzusteuern. Der Spindeltrieb kann bekannterweise, beispielsweise mit einer Kugelumlaufmutter ausgestaltet sein. Vorzugsweise ist der Spindeltrieb dauergeschmiert, insbesondere lebensdauergeschmiert, sodass keine laufende Schmiermittelzufuhr im Betrieb erforderlich ist. Es ist jedoch zu verstehen, dass auch anders ausgebildete Linearantriebe Verwendung finden können, welche geeignet sind, einen Kolben linear zu bewegen, und sich einzeln von der Steuereinrichtung ansteuern lassen. Dies können insbesondere andere elektrische Linearantriebe sein. Dabei können ggf. geeignete Getriebemittel vorgesehen sein, um eine drehende Bewegung in eine lineare Bewegung umzusetzen. Dabei ist die Linearbewegung jedoch erfindungsgemäß in Hub und Geschwindigkeit durch die Steuereinrichtung variabel.More preferably, the linear drives each have a rotating drive motor, in particular a servomotor, and a spindle drive, which converts the rotational movement of the drive motor into a linear movement for the piston. By such a drive can be sufficiently large forces applied to the piston. Furthermore, this can be precisely controlled or regulated in its stroke and its driving speed. For this purpose, on the piston, the spindle drive, and / or the drive motor position sensors may be provided to accurately detect the current position of the piston and to precisely control the movement of the piston by controlling the drive motor. The control device is accordingly designed to process the signals detected by the sensors and to drive the drive motor taking these signals into account. The spindle drive can be known, for example, designed with a ball nut. Preferably, the spindle drive is lubricated for life, in particular lubricated for life, so that no ongoing supply of lubricant during operation is required. However, it is to be understood that differently shaped linear drives can be used which are suitable for linearly moving a piston and can be controlled individually by the control device. This can be in particular other electric linear drives. In this case, if appropriate, suitable transmission means can be provided in order to convert a rotary movement into a linear movement. However, the linear motion is According to the invention in stroke and speed by the control device variable.

Weiter bevorzugt sind die Kolben-Zylinder-Einheiten trockenlaufend ausgebildet. So kann auf eine Schmierung im Betrieb verzichtet werden, was den Gesamtaufbau des Kompressors deutlich vereinfacht und einen Einsatz auch dort ermöglicht, wo eine Kontamination des zu verdichtenden Gases mit Schmiermittel vermieden werden muss.More preferably, the piston-cylinder units are formed dry running. So can be dispensed with a lubrication during operation, which significantly simplifies the overall design of the compressor and also allows use where contamination of the gas to be compressed with lubricant must be avoided.

Gemäß einer weiteren bevorzugten Ausführungsform kann zwischen zwei Kolben-Zylinder-Einheiten ein Zwischenkühler angeordnet sein. Dieser kühlt das aus einer ersten Kolben-Zylinder-Einheit austretende komprimierte Gas ab, bevor es in die nachfolgende zweite Kolben-Zylinder-Einheit der zweiten Stufe des Kompressors eintritt. Entsprechend kann ein derartiger Zwischenkühler auch zwischen einer zweiten und dritten, dritten und vierten Stufe, usw. angeordnet sein, abhängig davon, wie viel Stufen der Kompressor aufweist. Ferner kann ein solcher Kühler auch ausgangsseitig der letzten Stufe angeordnet sein.According to a further preferred embodiment, an intercooler can be arranged between two piston-cylinder units. This cools the exiting from a first piston-cylinder unit compressed gas before it enters the subsequent second piston-cylinder unit of the second stage of the compressor. Accordingly, such an intercooler may also be arranged between a second and third, third and fourth stages, etc., depending on how many stages the compressor has. Furthermore, such a cooler can also be arranged on the output side of the last stage.

Weiter bevorzugt können die Kolben-Zylinder-Einheiten jeweils doppelhubig ausgebildet sein, sodass eine Förderung bzw. Kompression sowohl beim Hin- als auch beim Rückhub erfolgt.More preferably, the piston-cylinder units may each be formed doppelhubig, so that a promotion or compression takes place both in the outward and during the return stroke.

Gemäß einer besonderen Ausführungsform der Erfindung ist ausgangsseitig zumindest einer ersten Kolben-Zylinder-Einheit ein Umschaltventil angeordnet, mittels welchem der ausgangsseitige Strömungsweg zwischen einer nachfolgenden zweiten Kolben-Zylinder-Einheit und einer Ausgangsleitung, vorzugsweise einer Ausgangsleitung für mehrere Kolben-Zylinder-Einheiten umschaltbar ist. Dieses Umschaltventil kann auch über die Steuereinrichtung betätigbar sein oder aber manuell betätigbar sein. Ein solches Umschaltventil ermöglicht es, den erfindungsgemäßen Kolbenkompressor von einem mehrstufigen Betrieb in einen mehrflutigen Betrieb umzustellen, in welchem die einzelnen Kolben-Zylinder-Einheiten der mehreren Stufen nicht einander nachgeschaltet angeordnet sind sondern parallel geschaltet betrieben werden. Ein solcher Einsatz kann dann bevorzugt sein, wenn ein großer Volumenstrom bei geringerem Druckverhältnis zwischen Ein- und Ausgangsdruck des Kompressors gewünscht ist. Je nach Anzahl der Stufen bzw. Kolben-Zylinder-Einheiten in dem Kolbenkompressor kann es auch möglich sein, nicht alle Kolben-Zylinder-Einheiten parallel zu schalten, sondern nur einzelne. Ferner ist es durch Verwendung eines solchen Umschaltventils auch möglich, einzelne Kolben-Zylinder-Einheiten ganz abzuschalten. So kann beispielsweise bei einem dreistufigen Kolbenkompressor das Umschaltventil, welches ausgangsseitig der zweiten Stufe, d. h. der zweiten Kolben-Zylinder-Einheit angeordnet ist, so umgeschaltet werden, dass der Strömungsweg nicht mehr zu der dritten Kolben-Zylinder-Einheit führt, sondern die Strömung direkt in eine Ausgangsleitung des Kolbenkompressors gelenkt wird. Von der so abgetrennten bzw. abgeschalteten Kolben-Zylinder-Einheit wird dann der Linearantrieb von der Steuereinrichtung überhaupt nicht in Betrieb gesetzt. Auf diese Weise lässt sich der Wirkungsgrad des Kompressors in einen solchen Betriebsmodus erhöhen, da eine Verlustleistung reduziert werden kann.According to a particular embodiment of the invention, a changeover valve is arranged on the output side of at least one first piston-cylinder unit, by means of which the output-side flow path between a subsequent second piston-cylinder unit and an output line, preferably an output line for a plurality of piston-cylinder units is switchable , This switching valve can also be actuated by the control device or be manually operable. Such a switching valve makes it possible for the piston compressor according to the invention of a multi-stage operation in one multi-flow operation switch, in which the individual piston-cylinder units of the several stages are not arranged downstream of each other but are operated in parallel. Such an insert may be preferred when a large volume flow at a lower pressure ratio between inlet and outlet pressure of the compressor is desired. Depending on the number of stages or piston-cylinder units in the reciprocating compressor, it may also be possible not to switch all piston-cylinder units in parallel, but only individual. Furthermore, it is also possible by using such a switching valve, completely disable individual piston-cylinder units. Thus, for example, in a three-stage reciprocating compressor, the changeover valve, which is arranged on the output side of the second stage, ie the second piston-cylinder unit, be switched so that the flow path no longer leads to the third piston-cylinder unit, but the flow directly is directed into an output line of the reciprocating compressor. From the thus separated or disconnected piston-cylinder unit, the linear drive of the control device is then not put into operation. In this way, the efficiency of the compressor can be increased in such an operating mode, since a power loss can be reduced.

Die Steuereinrichtung ist vorzugsweise als speicherprogrammierbare Steuerung ausgebildet, an welcher bestimmte Ausgangsparameter, insbesondere gewünschter Druck und Fördervolumen eingestellt werden können. Darüber hinaus kann die Steuereinrichtung so ausgebildet sein, dass sie Signale verschiedener Sensoren verarbeiten und die Linearantriebe der einzelnen Stufen bzw. Kolben-Zylinder-Einheiten unter Berücksichtigung dieser von Sensoren erfassten Parameter steuert. Dies können beispielsweise Druck- oder Temperatursensoren sein, welche ein- und ausgangsseitig des Kompressors und/oder zwischen den einzelnen Stufen des Kompressors angeordnet sind, um den Betriebszustand zu überwachen. Der Druck und/oder Temperatursignale können dann beispielsweise von der Steuereinrichtung berücksichtigt werden, um Hub und Geschwindigkeit der Linearantriebe so zu steuern, dass gewünschte vorgegebene Druckwerte bzw. Druckverhältnisse von dem Kompressor erreicht werden. Relativ oder zusätzlich wäre auch eine Überwachung des Volumenstroms in entsprechender Weise möglich. Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:

Fig. 1
eine schematische Ansicht eines dreistufigen Kolbenkompressors gemäß der Erfindung,
Fig. 2
eine schematische Ansicht eines dreistufigen Kolbenkompressors gemäß einer zweiten Ausführungsform der Erfindung,
Fig. 3
einen schematischen Schaltplan des Kompressors gemäß Fig. 2, und
Fig. 4
eine geschnittene Ansicht eines Zylinders.
The control device is preferably designed as a programmable logic controller to which certain output parameters, in particular desired pressure and delivery volume can be adjusted. In addition, the control device can be designed such that it processes signals from various sensors and controls the linear drives of the individual stages or piston-cylinder units taking into account these parameters detected by sensors. These may be, for example, pressure or temperature sensors which are arranged on the inlet and outlet side of the compressor and / or between the individual stages of the compressor in order to monitor the operating state. The pressure and / or temperature signals can are then taken into account by the controller, for example, to control the stroke and speed of the linear drives so that desired predetermined pressure values or pressure conditions are achieved by the compressor. Relative or in addition, it would also be possible to monitor the volume flow in a corresponding manner. The invention will now be described by way of example with reference to the accompanying drawings. In these shows:
Fig. 1
a schematic view of a three-stage reciprocating compressor according to the invention,
Fig. 2
a schematic view of a three-stage reciprocating compressor according to a second embodiment of the invention,
Fig. 3
a schematic circuit diagram of the compressor according to Fig. 2 , and
Fig. 4
a sectional view of a cylinder.

Der in Fig. 1 gezeigte Kolbenkompressor ist dreistufig ausgelegt und weist entsprechend drei Kolben-Zylinder-Einheiten 2, 4 und 6 auf. Die Kolben-Zylinder-Einheiten 2, 4, 6 bestehen jeweils wie in Fig. 4 gezeigt ist, aus einem im Querschnitt kreisförmigen Zylinder 8 und einem darin linear beweglichen Kolben 10. Der Kolben 10 ist mit einer Kolbenstange 12 verbunden. Der Zylinder 8 weist in bekannter Weise Ein- und Auslassventile, welche als federbelastete Rückschlagventile ausgebildet sein können, auf, welche entsprechend mit Ein- und Austrittsleitungen verbunden sind.The in Fig. 1 shown piston compressor is designed in three stages and has correspondingly three piston-cylinder units 2, 4 and 6. The piston-cylinder units 2, 4, 6 each consist as in Fig. 4 is shown, from a circular cross-section cylinder 8 and a linearly movable piston 10 therein. The piston 10 is connected to a piston rod 12. The cylinder 8 has in a known manner inlet and outlet valves, which may be formed as a spring-loaded check valves, which are connected in accordance with inlet and outlet lines.

Erfindungsgemäß weist jede Kolben-Zylinder-Einheit 2, 4, 6 einen eigenen Linearantrieb, 14, 16, 18 auf. Die Kolben-Zylinder-Einheit 2 weist einen Linearantrieb 14 auf, welcher mit der Kolbenstange 12 der Kolben-Zylinder-Einheit 2 verbunden ist, um deren Kolben 10 linear im Inneren des Zylinders 8 zu bewegen. Entsprechend ist die Kolben-Zylinder-Einheit 4 mit einem eigenen Linearantrieb 16 verbunden, welche den Kolben 10 der zweiten Kolben-Zylinder-Einheit 4 bewegt. Die dritte Kolben-Zylinder-Einheit 6 weist einen eigenen Linearantrieb 18 auf, welche den Kolben 10 der Kolben-Zylinder-Einheit 6 in deren Zylinder 8 bewegt.According to the invention, each piston-cylinder unit 2, 4, 6 has its own linear drive, 14, 16, 18. The piston-cylinder unit 2 has a Linear drive 14, which is connected to the piston rod 12 of the piston-cylinder unit 2, to move the piston 10 linearly in the interior of the cylinder 8. Accordingly, the piston-cylinder unit 4 is connected to its own linear drive 16, which moves the piston 10 of the second piston-cylinder unit 4. The third piston-cylinder unit 6 has its own linear drive 18, which moves the piston 10 of the piston-cylinder unit 6 in the cylinder 8.

Die Linearantriebe 14, 16, 18 sind als Spindeltriebe ausgebildet, welche jeweils durch einen Servomotor 20, 22, 24 angetrieben werden. Der Servomotor 20 ist dem Linearantrieb 14, der Servomotor 22 dem Linearantrieb 16 und der Servomotor 24 dem Linearantrieb 18 zugeordnet. Insofern weist jede Kolben-Zylinder-Einheit 2, 4, 6 einen eigenen unabhängigen Antrieb für den jeweiligen Kolben auf. Über die Linearantriebe 14, 16, 18 können die Kolben 10 sehr präzise bewegt werden.The linear drives 14, 16, 18 are designed as spindle drives, which are each driven by a servo motor 20, 22, 24. The servomotor 20 is assigned to the linear drive 14, the servomotor 22 to the linear drive 16, and the servomotor 24 to the linear drive 18. In this respect, each piston-cylinder unit 2, 4, 6 has its own independent drive for the respective piston. About the linear actuators 14, 16, 18, the piston 10 can be moved very precisely.

Die Servomotoren 20, 22 und 24 der Linearantriebe 14, 16 und 18 sind über elektrische Leitungen 26 mit einer Steuereinrichtung 28 verbunden, welche die Linearantriebe 14, 16, 18 bzw. deren Servomotoren 20, 22, 24 ansteuert bzw. regelt.The servomotors 20, 22 and 24 of the linear drives 14, 16 and 18 are connected via electrical lines 26 to a control device 28 which controls the linear drives 14, 16, 18 and their servomotors 20, 22, 24 and controls.

Durch die Steuereinrichtung 28 kann eine elektronische Kopplung der Antriebe der Kolben-Zylinder-Einheiten 2, 4, 6 erreicht werden. Diese hat gegenüber einer mechanischen Kopplung, wie sie bei herkömmlichen Kolbenkompressoren über die gemeinsame Kurbelwelle erzielt wird, den Vorteil, dass die Kopplung variabel ist und gemäß unterschiedlicher Steuer- bzw. Regelprogramme in der Steuereinrichtung 28 verändert werden kann. So können Hub und Hubgeschwindigkeit jedes einzelnen Linearantriebs 14, 16, 18 von der Steuereinrichtung 28 vorgegeben werden. Das heißt die Kolben jeder Kolben-Zylinder-Einheit 2, 4, 6 können unabhängig von den jeweiligen anderen Kolben verfahren bzw. in ihrer Bewegung gesteuert werden. Dadurch ergibt sich ein wesentlich flexiblerer Einsatz des Kompressors mit größeren Verstellbereichen hinsichtlich erzielbarer Druckdifferenzen und Volumenströme.By the control device 28, an electronic coupling of the drives of the piston-cylinder units 2, 4, 6 can be achieved. This has the advantage over a mechanical coupling, as is achieved in conventional reciprocating compressors on the common crankshaft, that the coupling is variable and can be changed according to different control programs in the control device 28. Thus, the stroke and lifting speed of each individual linear drive 14, 16, 18 can be predetermined by the control device 28. That is, the pistons of each piston-cylinder unit 2, 4, 6 can be moved independently of the respective other piston or be controlled in their movement. This results in a much more flexible Use of the compressor with larger adjustment ranges regarding achievable pressure differences and volume flows.

Die erste Kolben-Zylinder-Einheit 2 weist einen Gaseinlass 30 auf. Die Austrittsöffnung 32 der ersten Kolben-Zylinder-Einheit 2 ist über eine Leitung 33 mit der Eintrittsöffnung 34 der zweiten Kolben-Zylinder-Einheit 4 verbunden. Die Austrittsöffnung 36 der zweiten Kolben-Zylinder-Einheit 4 ist über eine Leitung 37 mit der Eintrittsöffnung 38 der dritten Kolben-Zylinder-Einheit 6 verbunden. Die Austrittsöffnung 40 der dritten Kolben-Zylinder-Einheit ist mit einer Druckleitung 42, welche die Austrittsleitung des Kompressors bildet, verbunden. Auf diese Weise kann das in den Gaseinlass 30 eintretende Gas in drei Stufen in den Kolben-Zylinder-Einheiten 2, 4 und 6 verdichtet werden. Dabei erhöht sich der Druck in jeder Stufe. Da sich durch die Druckerhöhung auch im entsprechenden Verhältnis das Volumen verringert, sind die drei Kolben-Zylinder-Einheiten 2, 4, 6 in unterschiedlichen Querschnittsgrößen ausgeführt. Die zweite Kolben-Zylinder-Einheit 4, welche die zweite Stufe des Kompressors bildet, weist einen kleineren Querschnitt, d. h. einen kleineren Innendurchmesser des Zylinders 8 und einen kleiner Durchmesser des zugehörigen Kolbens 10 auf als bei der ersten Kolben-Zylinder-Einheit 2. Entsprechend ist der Querschnitt der dritten Kolben-Zylinder-Einheit 6 noch einmal kleiner als der der zweiten Kolben-Zylinder-Einheit 4. Diese Größenänderungen entsprechen vorzugsweise dem Verhältnis der Druckerhöhung von Stufe zu Stufe, d. h. von Kolben-Zylinder-Einheit 2 zu Kolben-Zylinder-Einheit 4 bzw. von Kolben-Zylinder-Einheit 4 zu Kolben-Zylinder-Einheit 6. Da bei dem erfindungsgemäßen System das Stufendruckverhältnis variabel ist, wird die Größenabstufung im Querschnitt der Kolben-Zylinder-Einheiten 2, 4, 6 vorzugsweise so gewählt, dass sie einem mittleren einstellbaren Stufendruckverhältnis entspricht. Weitere Volumenvariationen können dann durch die Steuerung des Hubes jeweiligen des Kolbens 10 über den individuellen Linearantrieb 14, 16, 18 erfolgen. Im Unterschied zu Kurbelwellen getriebenen Systemen ist der Hub des Kolbens 10 erfindungsgemäß nämlich nicht vorgegeben, sondern über den zugehörigen Linearantrieb 14, 16, 18 variabel.The first piston-cylinder unit 2 has a gas inlet 30. The outlet opening 32 of the first piston-cylinder unit 2 is connected via a line 33 to the inlet opening 34 of the second piston-cylinder unit 4. The outlet opening 36 of the second piston-cylinder unit 4 is connected via a line 37 to the inlet opening 38 of the third piston-cylinder unit 6. The outlet opening 40 of the third piston-cylinder unit is connected to a pressure line 42, which forms the outlet line of the compressor. In this way, the gas entering the gas inlet 30 can be compressed in three stages in the piston-cylinder units 2, 4 and 6. This increases the pressure in each stage. Since the volume is also reduced by the pressure increase in the corresponding ratio, the three piston-cylinder units 2, 4, 6 are designed in different cross-sectional sizes. The second piston-cylinder unit 4, which forms the second stage of the compressor, has a smaller cross-section, ie a smaller inner diameter of the cylinder 8 and a smaller diameter of the associated piston 10 than in the first piston-cylinder unit 2. Accordingly is the cross-section of the third piston-cylinder unit 6 again smaller than that of the second piston-cylinder unit 4. These size changes preferably correspond to the ratio of the pressure increase from stage to stage, ie from piston-cylinder unit 2 to piston-cylinder Unit 4 or from piston-cylinder unit 4 to piston-cylinder unit 6. Since in the system according to the invention the step pressure ratio is variable, the size graduation in the cross-section of the piston-cylinder units 2, 4, 6 is preferably chosen such that that it corresponds to a medium adjustable step pressure ratio. Further volume variations can then take place by the control of the stroke of the respective piston 10 via the individual linear drive 14, 16, 18. Unlike crankshaft driven systems is the Hub of the piston 10 according to the invention namely not predetermined, but via the associated linear drive 14, 16, 18 variable.

Die Steuereinrichtung 28 ist vorzugsweise als speicherprogrammierbare Steuereinrichtung ausgebildet und weist eine Anzeige- und Eingabeeinrichtung 44 auf, welche beispielsweise aus einer geeigneten Tastatur und einem Display oder auch aus einem berührungsempfindlichen Display bestehen kann. Alternativ oder zusätzlich können Schnittstellen zu Computersystemen vorgesehen sein. Alternativ kann auch die Steuereinrichtung 28 in ein Computersystem integriert sein und die Leitungen 26 über geeignete Schnittstellen angeschlossen sein. Ferner kann die Steuereinrichtung 28 noch verschiedene Sensorsignale, wie anhand von Fig. 3 erläutert werden wird verarbeiten. Darüber hinaus kann sie von den Linearantrieben 14, 16, 18 und/oder deren Servomotoren 20, 22, 24 Positionssignale erhalten, um eine genaue Lageregelung des Kolbens 10 in dem Zylinder 12 für jede Kolben-Zylinder-Einheit 2, 4, 6 vornehmen zu können.The control device 28 is preferably designed as a programmable logic controller and has a display and input device 44, which may for example consist of a suitable keyboard and a display or a touch-sensitive display. Alternatively or additionally, interfaces to computer systems may be provided. Alternatively, the controller 28 may be integrated into a computer system and the lines 26 may be connected via suitable interfaces. Furthermore, the control device 28 still different sensor signals, as based on Fig. 3 will be explained. In addition, it may receive position signals from the linear actuators 14, 16, 18 and / or their servomotors 20, 22, 24 to provide accurate positional control of the piston 10 in the cylinder 12 for each piston-cylinder unit 2, 4, 6 can.

Durch die Linearantriebe 2, 4, 6 ist es möglich, den Kolben 10 sehr präzise im Zylinder 12 zu verfahren. Dadurch kann das Todvolumen bzw. der schädliche Raum im Zylinder verringert werden und der Kolben 10 kann weiter als bei herkömmlichen Systemen zu der axialen Endwandung des Zylinders 12 hin verfahren werden, idealerweise nahezu vollständig bis an die Wandung heran. Dadurch kann die volumetrische Effizienz des Systems gesteigert werden. Ferner lässt sich die Verfahrgeschwindigkeit des Kolbens 10 von der Steuereinrichtung 28 genau vorgeben und steuern bzw. regeln. Dabei wird die Verfahrgeschwindigkeit bevorzugt langsam gewählt, bevorzugt kleiner als 2, weiter bevorzugt kleiner als 1 m/s. Dies führt zu geringeren Vibrationen und, zu geringem Verschleiß des Systems.By the linear drives 2, 4, 6, it is possible to move the piston 10 very precisely in the cylinder 12. Thereby, the dead volume or the harmful space in the cylinder can be reduced and the piston 10 can be moved further than in conventional systems to the axial end wall of the cylinder 12 out, ideally approach almost completely to the wall. This can increase the volumetric efficiency of the system. Furthermore, the traversing speed of the piston 10 can be precisely predefined and controlled by the control device 28. The travel speed is preferably chosen to be slow, preferably less than 2, more preferably less than 1 m / s. This leads to lower vibrations and too little wear of the system.

Über die Steuereinrichtung 28 können dem Kompressor bestimmte Sollwerte vorgegeben werden, insbesondere der gewünschte Ausgangsdruck an der Austrittsöffnung 40 der dritten Kolben-Zylinder-Einheit 6. Auch ein gewünschter Volumenstrom kann voreingestellt werden. Abhängig von diesen Größen steuert die Steuereinrichtung 28 die drei Linearantriebe 14, 16, 18 über eine Steuerung bzw. Regelung der Servomotoren 20, 22, 24 individuell an, sodass die Kolben 10 der Kolben-Zylinder-Einheiten 2, 4, 6 jeweils einen gewünschten Hub mit einer gewünschten Verfahrgeschwindigkeit ausführen. Dabei kann das Stufendruckverhältnis für jede Kolben-Zylinder-Einheit 2, 4, 6, d. h. die Druckdifferenz zwischen Gaseinlass 30 und Austrittsöffnung 32 der ersten Kolben-Zylinder-Einheit 2, die Druckdifferenz zwischen der Eintrittsöffnung 34 und der Austrittsöffnung 36 der zweiten Kolben-Zylinder-Einheit 4 und die Druckdifferenz zwischen der Eintrittsöffnung 38 und der Austrittsöffnung 40 der dritten Kolben-Zylinder-Einheit 6 von der Steuereinrichtung individuell über eine Veränderung des Hubes des zugehörigen Kolbens 10 durch entsprechende Regelung des Linearantriebes 14, 16 und 18 eingestellt. Die Verfahrgeschwindigkeit wird entsprechend von der Steuereinrichtung 28 ebenfalls angepasst, um sicher zu stellen, dass alle drei Kolben-Zylinder-Einheiten 2, 4, und 6 mit derselben Frequenz arbeiten, d. h. auch bei unterschiedlich langem Hub die gleiche Verfahrzeit zwischen oberem und unterem Totpunkt benötigen. Durch diese Variationen des individuellen Hubes und der individuellen Verfahrgeschwindigkeit jeder einzelnen Kolben-Zylinder-Einheit 2, 4, 6 über die Steuereinheit 28 sind somit verschiedene Stufendruckverhältnisse und insbesondere unterschiedliche Gesamtverdichtungen bei verschiedenen Volumenströmen mit dem erfindungsgemäßen Kolbenkompressor reaalisierbar, ohne bauliche Veränderungen an dem Kompressor vornehmen zu müssen.By means of the control device 28, certain desired values can be specified for the compressor, in particular the desired outlet pressure at the outlet opening 40 of the third piston-cylinder unit 6. A desired volume flow can also be preset. Depending on these variables, the control device 28 individually controls the three linear drives 14, 16, 18 via control of the servomotors 20, 22, 24, so that the pistons 10 of the piston-cylinder units 2, 4, 6 each have a desired one Run the stroke at a desired travel speed. In this case, the step pressure ratio for each piston-cylinder unit 2, 4, 6, d. H. the pressure difference between gas inlet 30 and outlet opening 32 of the first piston-cylinder unit 2, the pressure difference between the inlet opening 34 and the outlet opening 36 of the second piston-cylinder unit 4 and the pressure difference between the inlet opening 38 and the outlet opening 40 of the third piston Cylinder unit 6 of the control device individually via a change in the stroke of the associated piston 10 by appropriate control of the linear drive 14, 16 and 18 adjusted. The travel speed is also adjusted accordingly by the controller 28 to ensure that all three piston-cylinder units 2, 4, and 6 are operating at the same frequency, i. H. even with differently long stroke need the same travel time between top and bottom dead center. As a result of these variations of the individual stroke and the individual travel speed of each individual piston-cylinder unit 2, 4, 6 via the control unit 28, different step pressure ratios and, in particular, different total pressures at different volume flows can be realized with the reciprocating compressor according to the invention without making structural changes to the compressor to have to.

Bei der in Fig. 1 gezeigte Ausführungsform sind in den Leitungen 33 und 37 zwischen der ersten Kolben-Zylinder-Einheit 2 und der Kolben-Zylinder-Einheit 4 sowie zwischen der zweiten Kolben-Zylinder-Einheit 4 und der dritten Kolben-Zylinder-Einheit 6 Umschaltventile 46 und 48 angeordnet. Diese ermöglichen es, einzelne Stufen des Kompressors ganz abzuschalten. So kann das Umschaltventil 46 den Strömungsweg ausgangsseitig der ersten Kolben-Zylinder-Einheit 2 zwischen der Eintrittsöffnung 34 und der zweiten Kolben-Zylinder-Einheit 4 und einer Ausgangsleitung 50 umschalten. Die Ausgangsleitung 50 ist im gezeigten Beispiel mit der Druckleitung 42 verbunden, es ist jedoch auch denkbar, dass die Druckleitung 42 und die Ausgangsleitung 50 als eine gemeinsame Ausgangsleitung ausgebildet werden. Wenn das Umschaltventil 46 so geschaltet ist, dass der Strömungsweg zu der Eintrittsöffnung 34 der zweiten Kolben-Zylinder-Einheit 4 läuft, wird das in der ersten Stufe komprimierte Gas somit der zweiten Kolben-Zylinder-Einheit 4 als zweite Stufe zugeführt, um dort weiter verdichtet zu werden. Wenn das Umschaltventil 46 zu der Ausgangsleitung 50 umgeschaltet ist, wird das aus der Austrittsöffnung 32 austretende Gas nicht mehr zu der zweiten Kolben-Zylinder-Einheit 4 sondern direkt in die Druckleitung 42 geleitet. Die Verdichtung erfolgt bei dieser Einstellung dann nur durch die erste Kolben-Zylinder-Einheit 2, die zweite Kolben-Zylinder-Einheit 4 und die dritte Kolben-Zylinder-Einheit 6 sind somit abgeschaltet. Dabei können aufgrund der individuellen Ansteuerung auch die zugehörigen Antriebe in Form der Servomotoren 22 und 24 abgeschaltet werden, sodass der Energieverbrauch reduziert werden kann. Das zweite Umschaltventil 48 funktioniert in gleicher Weise. Wenn dieses so geschaltet wird, dass die Strömung ausgangsseitig der Austrittsöffnung 36 in die Ausgangsleitung 50 gelenkt wird, wird somit kein Gas mehr zu der Eintrittsöffnung 38 der dritten Kolben-Zylinder-Einheit 6 geleitet und diese ist außer Funktion. In diesem Zustand arbeitet der Kompressor als zweistufiger Kompressor mit den Kolben-Zylinder-Einheiten 2 und 4.At the in Fig. 1 shown embodiment are in the lines 33 and 37 between the first piston-cylinder unit 2 and the piston-cylinder unit 4 and between the second piston-cylinder unit 4 and the third piston-cylinder unit 6 switching valves 46 and 48 are arranged. These make it possible to completely switch off individual stages of the compressor. Thus, the switching valve 46 can switch the flow path on the output side of the first piston-cylinder unit 2 between the inlet opening 34 and the second piston-cylinder unit 4 and an output line 50. The output line 50 is connected in the example shown with the pressure line 42, but it is also conceivable that the pressure line 42 and the output line 50 are formed as a common output line. When the switching valve 46 is switched so that the flow path to the inlet port 34 of the second piston-cylinder unit 4 runs, the gas compressed in the first stage is thus supplied to the second piston-cylinder unit 4 as a second stage to continue there to be condensed. When the switching valve 46 is switched to the output line 50, the gas exiting the outlet opening 32 is no longer directed to the second piston-cylinder unit 4 but directly into the pressure line 42. The compression takes place at this setting then only by the first piston-cylinder unit 2, the second piston-cylinder unit 4 and the third piston-cylinder unit 6 are thus switched off. In this case, due to the individual control, the associated drives in the form of servomotors 22 and 24 can be switched off so that the energy consumption can be reduced. The second switching valve 48 operates in the same way. When this is switched so that the flow is the output side of the outlet opening 36 is directed into the output line 50, thus no gas is directed to the inlet opening 38 of the third piston-cylinder unit 6 and this is out of operation. In this state, the compressor operates as a two-stage compressor with the piston-cylinder units 2 and 4.

Die Umschaltventile 46 und 48 können jedoch noch eine weitere Betriebsart ermöglichen, wenn nämlich beide Umschaltventile 46 und 48 so geschaltet werden, dass die aus den Austrittsöffnungen 32 und 36 austretende Gasströmung direkt in die Ausgangsleitung 50 geleitet wird. Wenn die Umschaltventile 46 und 48 dabei gleichzeitig einen zusätzlichen Strömungseingang für die Eintrittsöffnungen 34 und 38 öffnen, kann der gezeigte Kolbenkompressor somit alternativ auch als dreiflutiger Kompressor eingesetzt werden, bei welchem die drei Kolben-Zylinder-Einheiten 2, 4, 6 parallel arbeiten. Auch eine Funktion als zweiflutiger Kompressor ist denkbar, wenn in dieser Betriebsart eine der Kolben-Zylinder-Einheiten 2, 4, 6 durch Abschalten des Servomotors 20, 22, bzw. 24 außer Betrieb genommen wird. Anstelle den zusätzlichem Gaseintritt auch durch die Umschaltventile 46 und 48 zu öffnen, können hierzu separate Ventile vorgesehen sein.However, the switching valves 46 and 48 may allow another mode, namely, when both switching valves 46 and 48 be switched so that the emerging from the outlet openings 32 and 36 gas flow is passed directly into the output line 50. If the switching valves 46 and 48 open at the same time an additional flow input for the inlet openings 34 and 38, the piston compressor shown thus may alternatively be used as a three-flow compressor in which the three piston-cylinder units 2, 4, 6 operate in parallel. A function as a double-flow compressor is conceivable if in this mode of operation, one of the piston-cylinder units 2, 4, 6 is taken out of operation by switching off the servomotor 20, 22, and 24 respectively. Instead of opening the additional gas inlet through the switching valves 46 and 48, separate valves may be provided for this purpose.

Fig. 2 zeigt nun eine Anordnung, welche im Wesentlichen der Anordnung gemäß Fig. 1 entspricht. Dort sind die drei Kolben-Zylinder-Einheiten 2, 4, und 6 jedoch jeweils doppelhubig ausgebildet, d. h. die Kolben 10 wirken sowohl im Hin- als auch im Rückhub. Darüber hinaus sind zwischen den Kolben-Zylinder-Einheiten 2, 4, und 6 bzw. ausgangsseitig der Kolben-Zylinder-Einheit 6 jeweils Zwischenkühler 52, 54 und 56 angeordnet. Der Zwischenkühler 52 ist in der Leitung 33 zwischen den Kolben-Zylinder-Einheiten 2 und 4, der Zwischenkühler 44 in der Leitung 37 zwischen den Kolben-Zylinder-Einheiten 4 und 6 und der dritte Zwischenkühler 56 ist ausgangsseitig der Austrittsöffnung 40 der dritten Kolben-Zylinder-Einheit 6 angeordnet. Die Zwischenkühler können in bekannter Weise als Luft- oder Wasserkühler ausgebildet sein. Aufgrund des doppelhubigen Aufbaus weist die erste Kolben-Zylinder-Einheit zwei mit dem Gaseinlass 30 verbundene Eintrittsöffnungen 58 und entsprechend zwei Austrittsöffnungen 32 auf, welche mit der Leitung 33 und dem in dieser angeordneten Zwischenkühler 52 verbunden sind. Die Leitung 33 führt dann zu zwei Eintrittsöffnungen 34 der zweiten Kolben-Zylinder-Einheit 4. Die zweite Kolben-Zylinder-Einheit 4 weist entsprechend zwei Austrittsöffnungen 36 auf, welche mit der Leitung 37 und dem in dieser gelegenen Zwischenkühler 54 verbunden sind. Die Leitung 37 führt ausgangsseitig des Zwischenkühlers 54 zu den zwei Eintrittsöffnungen 38 der dritten Kolben-Zylinder-Einheit 6. Die dritte Kolben-Zylinder-Einheit 6 weist entsprechend zwei Austrittsöffnungen 40 auf, welche zu dem Zwischenkühler 56 führen, welcher ausgangsseitig mit der Druckleitung 42 verbunden ist. Die Funktionsweise des Kolbenkompressors gemäß Fig. 2 entspricht im Übrigen der oben beschriebenen Funktionsweise des Kolbenkompressors gemäß Fig. 1, nur, dass er doppelhubig arbeitet. Es ist zu verstehen, dass auch die Umschaltventile 46 und 48 mit der Verbindung zu der Ausgangsleitung 50 entsprechend bei der Ausführungsform gemäß Fig. 2 in den Leitungen 33 und 37 angeordnet werden könnten. Diese Umschaltventile würde dann zweckmäßigerweise ausgangsseitig der Zwischenkühler 50 und 54 angeordnet. Fig. 2 now shows an arrangement which essentially according to the arrangement Fig. 1 equivalent. There, the three piston-cylinder units 2, 4, and 6, however, each formed double-stroke, ie the piston 10 act both in the outward and in the return stroke. In addition, between the piston-cylinder units 2, 4, and 6 and the output side of the piston-cylinder unit 6 each intercooler 52, 54 and 56 are arranged. The intercooler 52 is in the line 33 between the piston-cylinder units 2 and 4, the intercooler 44 in the line 37 between the piston-cylinder units 4 and 6 and the third intercooler 56 is the output side of the outlet opening 40 of the third piston. Cylinder unit 6 is arranged. The intercooler may be formed in a known manner as an air or water cooler. Due to the double-stroke structure, the first piston-cylinder unit has two inlet openings 58 connected to the gas inlet 30 and correspondingly two outlet openings 32, which are connected to the line 33 and the intercooler 52 arranged in the latter. The line 33 then leads to two inlet openings 34 of the second piston-cylinder unit 4. The second piston-cylinder unit 4 has correspondingly two outlet openings 36, which with the line 37 and are connected to this located in the intercooler 54. The line 37 leads the output side of the intercooler 54 to the two inlet openings 38 of the third piston-cylinder unit 6. The third piston-cylinder unit 6 has correspondingly two outlet openings 40, which lead to the intercooler 56, which output side with the pressure line 42nd connected is. The operation of the reciprocating compressor according to Fig. 2 otherwise corresponds to the above-described operation of the reciprocating compressor according to Fig. 1 , only that he works double-stroke. It is to be understood that also the switching valves 46 and 48 with the connection to the output line 50 according to the embodiment according to FIG Fig. 2 could be arranged in the lines 33 and 37. These changeover valves would then expediently be arranged on the output side of the intercoolers 50 and 54.

Fig. 3 zeigt noch einmal schematisch die Strömungswege bei einem Kolbenkompressor gemäß Fig. 2. Zur Vereinfachung sind die Größenunterschiede zwischen dem Kolben-Zylinder-Einheiten 2, 4 und 6 in Fig. 3 nicht dargestellt. Auch die Zwischenkühler sind in Fig. 3 nicht dargestellt, wobei zu verstehen ist, dass ein doppelhubiger dreistufiger Kompressor wie er in Fig. 2 gezeigt ist auch ohne Zwischenkühler ausgebildet werden könnte. Alternativ wäre es auch möglich, bei dem Kompressor gemäß Fig. 1 entsprechende Zwischenkühler vorzusehen. Fig. 3 again schematically shows the flow paths in a reciprocating compressor according to Fig. 2 , For simplicity, the size differences between the piston-cylinder units 2, 4 and 6 in Fig. 3 not shown. Also the intercoolers are in Fig. 3 not shown, it being understood that a double-stroke three-stage compressor as in Fig. 2 shown could also be formed without intercooler. Alternatively, it would also be possible with the compressor according to Fig. 1 provide appropriate intercooler.

In Fig. 3 ist zusätzlich dargestellt, dass in dem System eine Vielzahl von Temperatursensoren T und Drucksensoren P vorgesehen ist. Diese Drucksensoren sind ein- und ausgangsseitig der Kolben-Zylinder-Einheiten 2, 4, und 6 vorgesehen um Temperatur und Druck am Gaseinlass 30, in der Leitung 33, der Leitung 37 sowie der Druckleitung 42 erfassen zu können. Darüber hinaus sind auch noch Temperatursensoren an jedem Ausgang der Kolben-Zylinder-Einheiten 2, 4, und 6 vorgesehen, sodass die Temperatur des beim Hinhub des Kolbens 10 verdichteten Gases unabhängig von der Temperatur des beim Rückhub des Kolbens 10 verdichteten Gases erfasst werden kann. Die Ausgangssignale der Temperatursensoren T und der Drucksensoren P werden über geeignete Signalleitungen oder andere geeignete Signalübertragungswege ebenfalls der Steuereinrichtung 28 zugeführt, welche diese als Ist-Werte bei der Regelung der Linearantriebe 14, 16, 18 bzw. deren Servomotoren 20, 22, 24 berücksichtigt. In dem Fall, dass Zwischenkühler 52, 54, 56 vorgesehen sind, ist es auch denkbar, dass die Kühlleistung der Zwischenkühler von der Steuereinrichtung 28 veränderbar ist, beispielsweise durch Anpassung der Lüfterdrehzahl der Kühler. So kann die Kühlleistung an die erfassten Ist-Werte der Temperatur ausgangsseitig der einzelnen Stufen 2, 4, 6 angepasst werden.In Fig. 3 In addition, it is shown that a plurality of temperature sensors T and pressure sensors P are provided in the system. These pressure sensors are provided on the input and output side of the piston-cylinder units 2, 4, and 6 in order to detect temperature and pressure at the gas inlet 30, in the line 33, the line 37 and the pressure line 42. In addition, temperature sensors are also provided at each output of the piston-cylinder units 2, 4, and 6, so that the temperature of the gas compressed during the downstroke of the piston 10 regardless of the temperature of the compressed during the return stroke of the piston 10 Gas can be detected. The output signals of the temperature sensors T and the pressure sensors P are also supplied to the control device 28 via suitable signal lines or other suitable signal transmission paths, which takes these into account as actual values in the regulation of the linear drives 14, 16, 18 or their servomotors 20, 22, 24. In the event that intercooler 52, 54, 56 are provided, it is also conceivable that the cooling capacity of the intercooler of the control device 28 is variable, for example by adjusting the fan speed of the radiator. Thus, the cooling capacity can be adapted to the detected actual values of the temperature on the output side of the individual stages 2, 4, 6.

Neben den bereits genannten Vorteilen sind die Kolben-Zylinder-Einheiten 2, 4, 6 in den gezeigten Beispielen vorzugsweise trockenlaufend ausgebildet, sodass auf eine Schmierung verzichtet werden kann. Dies ist insbesondere dann von Vorteil, wenn eine Verunreinigung des zu fördernden Gases mit Schmiermittel verhindert werden muss. Die Linearantriebe 14, 16, 18 können vorzugsweise lebensdauergeschmiert sein, sodass auch hier keine laufende Schmierung im Betrieb erforderlich ist. Beispielsweise können die Linearantriebe 14, 16, 18 als Spindeltriebe, insbesondere als Kugelumlaufspindein ausgebildet sein.In addition to the advantages already mentioned, the piston-cylinder units 2, 4, 6 are preferably designed to run dry in the examples shown, so that lubrication can be dispensed with. This is particularly advantageous if contamination of the gas to be pumped with lubricant must be prevented. The linear drives 14, 16, 18 may preferably be lubricated for life, so that no ongoing lubrication during operation is required here. For example, the linear drives 14, 16, 18 may be designed as spindle drives, in particular as recirculating ball screws.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

2, 4, 62, 4, 6
- Kolben-Zylinder-Einheiten- Piston-cylinder units
88th
- Zylinder- Cylinder
1010
- Kolben- Piston
1212
- Kolbenstange- piston rod
14, 16, 1814, 16, 18
- Linearantriebe- Linear drives
20, 22, 2420, 22, 24
- Servomotoren- servomotors
2626
- Leitungen- Cables
2828
- Steuereinrichtung- Control device
3030
- Gaseinlass- Gas inlet
3232
- Austrittsöffnung- outlet
3333
- Leitung- Management
3434
- Eintrittsöffnung- entrance opening
3636
- Austrittsöffnung- outlet
3737
- Leitung- Management
3838
- Eintrittsöffnung- entrance opening
4040
- Austrittsöffnung- outlet
4242
- Druckleitung- pressure line
4444
- Anzeige- und Eingabeeinrichtung- Display and input device
46, 4846, 48
- Umschaltventile- Changeover valves
5050
- Ausgangsleitung- output line
52, 54, 5652, 54, 56
- Zwischenkühler- Intercooler
5858
- Eintrittsöffnung- entrance opening
PP
- Drucksensor- Pressure sensor
TT
- Temperatursensor- Temperature sensor

Claims (8)

Mehrstufiger Kolbenkompressor mit zumindest zwei Kolben-Zylinder-Einheiten (2, 4, 6), welche jeweils einen separaten Linearantrieb (14, 16, 18) zur Bewegung des Kolbens aufweisen, sowie einer Steuereinrichtung (28), welche derart ausgestaltet ist, dass die Linearantriebe (14, 16, 18) individuell in Geschwindigkeit und Hub steuerbar sind.Multi-stage piston compressor with at least two piston-cylinder units (2, 4, 6), each having a separate linear drive (14, 16, 18) for moving the piston, and a control device (28) which is designed such that the Linear drives (14, 16, 18) are individually controllable in speed and stroke. Mehrstufiger Kolbenkompressor nach Anspruch 1, bei welchem die Steuereinrichtung (28) derart ausgebildet ist, dass durch individuelle Steuerung der Linearantriebe (14, 16, 18) der zumindest zwei Kolben-Zylinder-Einheiten (2, 4, 6) das Stufendruckverhältnis der Kolben-Zylinder-Einheiten (2, 4, 6) veränderbar ist.Multi-stage reciprocating compressor according to claim 1, in which the control device (28) is designed such that by individually controlling the linear drives (14, 16, 18) of the at least two piston-cylinder units (2, 4, 6) the step pressure ratio of the piston Cylinder units (2, 4, 6) is variable. Mehrstufiger Kolbenkompressor nach Anspruch 1 oder 2, bei welchem die zumindest zwei Kolben-Zylinder-Einheiten (2, 4, 6) derart ausgebildet sind, dass ihre Zylinder (12) unterschiedlich große Innenquerschnitte aufweisen.Multi-stage piston compressor according to claim 1 or 2, wherein the at least two piston-cylinder units (2, 4, 6) are designed such that their cylinders (12) have different sized inner cross-sections. Mehrstufiger Kolbenkompressor, nach einem der vorangehenden Ansprüche, bei welchem die Linearantriebe (14, 16, 18) jeweils einen drehenden Antriebsmotor (20, 22, 24) und einen Spindeltrieb aufweisen, welcher die Drehbewegung des Antriebsmotors (20, 22, 24) in eine Linearbewegung für den Kolben (10) umsetzt.Multi-stage reciprocating compressor according to one of the preceding claims, in which the linear drives (14, 16, 18) each have a rotating drive motor (20, 22, 24) and a spindle drive which rotates the drive motor (20, 22, 24) into one Linear motion for the piston (10) converts. Mehrstufiger Kolbenkompressor nach einem der vorangehenden Ansprüche, bei welchem die Kolben-Zylinder-Einheiten (2, 4, 6) trockenlaufend ausgebildet sind.Multi-stage piston compressor according to one of the preceding claims, wherein the piston-cylinder units (2, 4, 6) are designed to run dry. Mehrstufiger Kolbenkompressor nach einem der vorangehenden Ansprüche, bei welchem zwischen den zumindest zwei Kolben-Zylinder-Einheiten (2, 4, 6) ein Zwischenkühler (52, 54, 56) angeordnet ist.Multi-stage piston compressor according to one of the preceding claims, in which an intercooler (52, 54, 56) is arranged between the at least two piston-cylinder units (2, 4, 6). Mehrstufiger Kolbenkompressor nach einem der vorangehenden Ansprüche, bei welchem die Kolben-Zylinder-Einheiten (2, 4, 6) jeweils doppelhubig ausgebildet sind.Multi-stage reciprocating compressor according to one of the preceding claims, in which the piston-cylinder units (2, 4, 6) are each designed to be double-stroke. Mehrstufiger Kolbenkompressor nach einem der vorangehenden Ansprüche, bei welchem ausgangseitig zumindest einer ersten Kolben-Zylinder-Einheit (2, 4) ein Umschaltventil (46, 48) angeordnet ist, mittels welchem der ausgangsseitige Strömungsweg zwischen einer nachfolgenden zweiten Kolben-Zylinder-Einheit (4, 6) und einer Ausgangsleitung (50) umschaltbar ist.Multi-stage piston compressor according to one of the preceding claims, in which on the output side of at least one first piston-cylinder unit (2, 4) a changeover valve (46, 48) is arranged, by means of which the output-side flow path between a subsequent second piston-cylinder unit (4 , 6) and an output line (50) is switchable.
EP08010771.7A 2008-06-13 2008-06-13 Multi-stage piston compressor Not-in-force EP2133568B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES08010771.7T ES2478629T3 (en) 2008-06-13 2008-06-13 Multi-phase piston compressor
EP08010771.7A EP2133568B1 (en) 2008-06-13 2008-06-13 Multi-stage piston compressor
PL08010771T PL2133568T3 (en) 2008-06-13 2008-06-13 Multi-stage piston compressor
US12/477,272 US20090311114A1 (en) 2008-06-13 2009-06-03 Multi-stage piston compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08010771.7A EP2133568B1 (en) 2008-06-13 2008-06-13 Multi-stage piston compressor

Publications (2)

Publication Number Publication Date
EP2133568A1 true EP2133568A1 (en) 2009-12-16
EP2133568B1 EP2133568B1 (en) 2014-04-30

Family

ID=39760762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010771.7A Not-in-force EP2133568B1 (en) 2008-06-13 2008-06-13 Multi-stage piston compressor

Country Status (4)

Country Link
US (1) US20090311114A1 (en)
EP (1) EP2133568B1 (en)
ES (1) ES2478629T3 (en)
PL (1) PL2133568T3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253845A2 (en) 2009-05-12 2010-11-24 Compart Compressor Technology GmbH Method for regulating multi-layer linear compactors
CN105971842A (en) * 2016-06-24 2016-09-28 杭州呈盛液压科技有限公司 Hydraulic air compressor
EP3981983A1 (en) * 2020-10-12 2022-04-13 Mehrer Compression GmbH Compressor for compressing gases
EP3981982A1 (en) * 2020-10-12 2022-04-13 Mehrer Compression GmbH Compressor for compressing gases

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2899601A1 (en) * 2013-02-04 2014-08-07 Parker-Hannifin Corporation Gas compressor
US9951763B2 (en) * 2014-05-09 2018-04-24 Westinghouse Air Brake Technologies Corporation Compressor cooled by a temperature controlled fan
CN107061223A (en) * 2017-06-15 2017-08-18 西安交通大学 A kind of helicopter compresses preparation facilities with high pressure oxygen level Four
US11519402B2 (en) * 2017-12-21 2022-12-06 Haskel International, Llc Electric driven gas booster
JP6999503B2 (en) * 2018-06-06 2022-01-18 株式会社神戸製鋼所 Compressor
CN114576133A (en) * 2020-11-30 2022-06-03 福迪威(上海)工业仪器技术研发有限公司 Multi-stage electric air pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE669154C (en) * 1937-09-21 1938-12-17 Sueth Maschf Multi-stage piston compressor
DE681653C (en) * 1938-09-16 1939-09-29 Knorr Bremse Akt Ges Two-stage piston compressor, especially for steam locomotives
DE1228023B (en) 1960-09-29 1966-11-03 Borsig Ag Multi-stage, pressurized fluid-driven high-pressure piston compressor
US5863186A (en) 1996-10-15 1999-01-26 Green; John S. Method for compressing gases using a multi-stage hydraulically-driven compressor
US20050042111A1 (en) * 2003-02-05 2005-02-24 Zaiser Lenoir E. Fluid pump

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2017408A (en) * 1930-11-06 1935-10-15 American Smelting Refining Compression of corrosive gases
US4681513A (en) * 1985-02-01 1987-07-21 Jeol Ltd. Two-stage pump assembly
FR2726332B1 (en) * 1994-10-26 1997-01-24 Francois Couillard PISTON PUMPING SYSTEM DELIVERING FLUIDS WITH SUBSTANTIALLY CONSTANT FLOW RATE
US6183211B1 (en) * 1999-02-09 2001-02-06 Devilbiss Air Power Company Two stage oil free air compressor
US6769462B2 (en) * 2002-04-03 2004-08-03 E. I. Du Pont De Nemours And Company Dispensing apparatus
US6695591B2 (en) * 2002-05-20 2004-02-24 Grimmer Industries, Inc. Multi-stage gas compressor system
JP4377639B2 (en) * 2003-09-18 2009-12-02 株式会社日立ハイテクノロジーズ Pumps and liquid pumps for chromatography
WO2006087036A1 (en) * 2005-02-16 2006-08-24 Agilent Technologies, Inc. Fluid pump having low pressure metering and high pressure delivering
US7409833B2 (en) * 2005-03-10 2008-08-12 Sunpower, Inc. Dual mode compressor with automatic compression ratio adjustment for adapting to multiple operating conditions
JP5339914B2 (en) * 2005-11-21 2013-11-13 インテグリス・インコーポレーテッド System and method for a pump having reduced form factor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE669154C (en) * 1937-09-21 1938-12-17 Sueth Maschf Multi-stage piston compressor
DE681653C (en) * 1938-09-16 1939-09-29 Knorr Bremse Akt Ges Two-stage piston compressor, especially for steam locomotives
DE1228023B (en) 1960-09-29 1966-11-03 Borsig Ag Multi-stage, pressurized fluid-driven high-pressure piston compressor
US5863186A (en) 1996-10-15 1999-01-26 Green; John S. Method for compressing gases using a multi-stage hydraulically-driven compressor
US20050042111A1 (en) * 2003-02-05 2005-02-24 Zaiser Lenoir E. Fluid pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253845A2 (en) 2009-05-12 2010-11-24 Compart Compressor Technology GmbH Method for regulating multi-layer linear compactors
DE102009020973A1 (en) * 2009-05-12 2010-11-25 Compart Compressor Technology Gmbh Method for intermediate pressure control at variable final pressures of multi-stage, single and / or double-acting linear compressors
EP2253845A3 (en) * 2009-05-12 2011-11-09 Compart Compressor Technology GmbH Method for regulating multi-layer linear compactors
CN105971842A (en) * 2016-06-24 2016-09-28 杭州呈盛液压科技有限公司 Hydraulic air compressor
EP3981983A1 (en) * 2020-10-12 2022-04-13 Mehrer Compression GmbH Compressor for compressing gases
EP3981982A1 (en) * 2020-10-12 2022-04-13 Mehrer Compression GmbH Compressor for compressing gases

Also Published As

Publication number Publication date
US20090311114A1 (en) 2009-12-17
ES2478629T3 (en) 2014-07-22
PL2133568T3 (en) 2014-09-30
EP2133568B1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
EP2133568B1 (en) Multi-stage piston compressor
DE2529331C2 (en) Screw compressor
EP0873475B1 (en) Low-loss drive system for a plurality of hydraulic actuators
DE60028801T2 (en) Multi-stage compressor installation and method for controlling the same
EP2451626A1 (en) Toggle lever clamping unit
DE3617133A1 (en) CONTROL FOR A COMPRESSOR WITH TWIN SLIDES
EP3378581A1 (en) Multi-stage joining device and joining method therefor
DE4227332A1 (en) SCREW COMPRESSOR
EP2357363A1 (en) Operational management device for a positive displacement pump, pump system and method of operating such
DE102019112021A1 (en) Lifting-rotating module
EP3601797A1 (en) Piston compressor with enlarged regulating region
EP1288507B1 (en) Low-loss drive system for a hydraulic actuator
EP3126672B1 (en) Reciprocating-piston compressor and control method therefor
DE10240162A1 (en) Air demand controlled compressor arrangement, especially for commercial vehicles
DE3633644A1 (en) COMPRESSOR WITH VARIABLE DELIVERY PERFORMANCE
EP3388677A1 (en) Method for controlling a screw compressor
DE102004014469A1 (en) Control valve device for an adjustable swash plate compressor
EP0618025B1 (en) Injection unit
DE102005017476B4 (en) Piston diaphragm or piston pump
EP3119596B1 (en) Device for sealing and inflating inflatable articles
DE10003869C5 (en) Method for compressing fluid fluids
EP2929217A1 (en) Device for controlling the operation of a ventilator, which can be driven by a hydraulic motor, of a cooling device
DE102009008367A1 (en) Hydraulic actuating device for actuation of e.g. movable component of cabriolet, has hydraulic control system changing non-differential operation into differential operation of actuator and vice-versa
EP3080457B1 (en) Compressor
EP1036942A2 (en) Control device for a cylinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: J.P. SAUER & SOHN MASCHINENBAU GMBH

Owner name: BORSIG COMPRESSOR PARTS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 665337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011667

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2478629

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140722

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: J.P. SAUER & SOHN MASCHINENBAU GMBH

Effective date: 20141107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140609

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140613

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20140625

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011667

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011667

Country of ref document: DE

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 665337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008011667

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOLLMANN & HEMMER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008011667

Country of ref document: DE

Owner name: J.P. SAUER & SOHN MASCHINENBAU GMBH, DE

Free format text: FORMER OWNERS: BORSIG COMPRESSOR PARTS GMBH, 13507 BERLIN, DE; J.P. SAUER & SOHN MASCHINENBAU GMBH, 24159 KIEL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008011667

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOLLMANN HEMMER LINDFELD PARTNE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080613

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160520

Year of fee payment: 9

Ref country code: GB

Payment date: 20160610

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160525

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160818 AND 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150613

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: J.P. SAUER & SOHN MASCHINENBAU GMBH, DE

Effective date: 20161018

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180622

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180625

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008011667

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630