EP2132345B1 - Melt metallurgical method for the production of metal melts, and transition metal-containing charge for use therein - Google Patents

Melt metallurgical method for the production of metal melts, and transition metal-containing charge for use therein Download PDF

Info

Publication number
EP2132345B1
EP2132345B1 EP08715538.8A EP08715538A EP2132345B1 EP 2132345 B1 EP2132345 B1 EP 2132345B1 EP 08715538 A EP08715538 A EP 08715538A EP 2132345 B1 EP2132345 B1 EP 2132345B1
Authority
EP
European Patent Office
Prior art keywords
additive
weight
melt
slag
alloying component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08715538.8A
Other languages
German (de)
French (fr)
Other versions
EP2132345A1 (en
Inventor
Ulrich Meyn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MKN Technologies GmbH
Original Assignee
MKN Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MKN Technologies GmbH filed Critical MKN Technologies GmbH
Priority to PL08715538T priority Critical patent/PL2132345T3/en
Publication of EP2132345A1 publication Critical patent/EP2132345A1/en
Application granted granted Critical
Publication of EP2132345B1 publication Critical patent/EP2132345B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • C22B9/103Methods of introduction of solid or liquid refining or fluxing agents

Definitions

  • the invention relates to a melt-metallurgical process for producing a melt according to the preamble of claim 1 with at least one base metal having at least 10 wt .-% iron and at least one further alloying ingredient in a melting vessel, wherein the melt is covered with a slag.
  • the invention further relates to a transition metal-containing, in particular nickel and / or cobalt-containing, additive for producing transition metal-containing, in particular nickel and / or cobalt-containing, alloys, wherein the additive is present as a solid and has a transition metal content of ⁇ 15 wt .-%. Furthermore, the invention relates to the use of such an additive in the method according to the invention.
  • alloy constituents In order to produce iron alloys or steels enriched with certain alloy constituents, it is usually necessary to supply alloy constituents to the melt in order to adjust the composition of the melt.
  • Such constituents may in particular be nickel, cobalt but also vanadium, molybdenum, etc.
  • Ferroalloys such as ferronickel, ferro-cobalt, etc. are often used to adjust the melt composition, but also oxidic components such as NiO or nickel ores such as laterites, which have a corresponding nickel content.
  • oxidic components such as NiO or nickel ores such as laterites, which have a corresponding nickel content.
  • the addition of these ingredients is always associated with certain disadvantages.
  • ferroalloys to adjust the contents of the alloy components in the melt is relatively expensive and requires a large amount of energy.
  • the use of oxidic minerals to adjust the melt composition has the disadvantage that often a great deal of effort is required to remove unwanted impurities from unwanted trace elements such as phosphorus, tin, arsenic or certain steels cobalt, molybdenum, etc. from the ores. Even by enrichment processes such as flotation, such impurities are not always sufficient to remove. If unwanted constituents such as phosphorus, sulfur, etc.
  • nickel oxide is toxic and carcinogenic, so its use is to be avoided.
  • the WO 97/20954 describes a melt metallurgical process for the production of ferro-nickel, stainless steel or the like in which nickel, nickel ores or calcined nickel compounds are fed to a molten slag-covering slag.
  • the EP 583 164 A1 describes a process for producing stainless steel wherein finely divided oxides are mixed with finely divided reducing agents mixed to form agglomerates.
  • the US 4,919,714 describes a process for refining steel in which gas is injected into a melt with stirring while heat is supplied to the melt surface by a burner and metal oxides are added to the melt.
  • the WO 03/018850 A1 describes a steelmaking process wherein a solidified hydroxide slurry containing metals from a steel pickling process and at least one fluoride-containing compound is fed to the melt.
  • the WO 2005/098054 A1 describes a process for producing a flux which can be used in steelmaking, wherein the flux is a fluoride-containing, calcined hydroxide slurry.
  • the WO 2006/131764 A1 describes a process for producing ferroalloys wherein chromium metal, chromium-containing alloys and chrome ore are fed to a slag-covered melt.
  • the invention is therefore based on the object, a method for the manufacture of alloy melts enriched metal melts, which are preferably covered with a slag and in mass transfer to provide, which is simple and inexpensive to carry out and which allows a simple way a melt metallurgical control. Furthermore, the object is to provide an additive which can be used particularly advantageously and inexpensively in such a method.
  • the invention is achieved by providing a method according to claim 1 and providing an aggregate according to claim 15.
  • the process according to the invention uses adjuvants containing the alloying constituent to be enriched and high contents of molten metallurgically volatile constituents, in particular water and / or carbonate, the low sulfur contents, low contents of slag formers such as calcium and / or magnesium oxide, etc., as well as ores have high contents of the respective alloying ingredient.
  • the water may in particular be present at least substantially or practically exclusively as chemically bound water in the form of water of crystallization and / or hydroxide groups.
  • Such additives can be obtained in particular by the treatment of ores, for example by leaching of laterite ores, if the components to be alloyed nickel and / or cobalt.
  • these leaches can be worked up to separate other undesirable components, optionally, the desired alloying constituents can also be separated directly from these leaching by precipitation.
  • the respective precipitates can then be separated and dried, in particular in order to obtain pneumatically or gravity-feedable additives.
  • the aggregates thus obtained can be calcined or precalcined in a separate step to the content of the at Addition of the additive to the melt volatilizing components such as chemically bound water, for example in the form of water of crystallization and / or to reduce from hydroxide groups and / or carbonate, without this being always necessary.
  • the content of undesirable constituents which are neither desired alloy constituents nor constituents which volatilize in the addition of the aggregate to the molten metal nor which are slag formers may be ⁇ 15-20% by weight, ⁇ 5-10% by weight or else ⁇ 2-3 wt .-% based on the aggregate used.
  • the method according to the invention is particularly applicable when the base metal of the melt, ie the main alloy constituent thereof, is iron or the melt generally contains ⁇ 10-20% by weight of iron or is iron-containing, but also with other base metals which may in general be transition metals.
  • the process is particularly suitable for the production of steels, including low, medium and high alloyed steels.
  • the steels preferably have a high carbon content, for example ⁇ 1.5% by weight, ⁇ 1.75-2% by weight or ⁇ 2.25-2.5% by weight or ⁇ 2.75-3% by weight % Of carbon, based on the carbon content of the melt, into which the Aggregate is introduced or based on the end product of the respective Stahlher einverfaherns as it is produced in the respective melt vessel.
  • the nickel content of the resulting melt after completion of the addition of a Ni-containing additive may be ⁇ 1.5-1.75 wt .-%, ⁇ 2-2.75 wt .-% or ⁇ 3-4 wt .-%, for example about 5 wt .-% or greater.
  • the process according to the invention is furthermore preferably usable in the preparation of Cr-Fe or Cr-Fe-Ni master alloys which have a Cr content of ⁇ 30-35% by weight, ⁇ 40-45% by weight or ⁇ 45 -50 wt .-% chromium, wherein the carbon content of the melt in the process step of adding the additive according to the invention or the final product ⁇ 2-3 wt .-%, ⁇ 3.5-4 wt .-% or ⁇ 4.5 -5 wt .-% may be and wherein the melt is preferably prepared in a converter process.
  • the carbon content is usually ⁇ 8-10 wt .-%.
  • the addition of the additive according to the invention therefore usually takes place during a decarburization process carried out by means of a lance or during a refining process or directly preceding or following it.
  • the addition of the additive according to the invention preferably takes place during a main decarburization phase of the respective process of steelmaking or production of the respective alloy.
  • the additive used according to the invention is thus preferably still supplied to decarburizing melts, it being possible for partial decarburization to take place during the supply of the additive.
  • the additive to be alloyed is introduced into the respective upper space of the melt vessel or converter, ie from above the slag covering the melt, wherein the feed additive outlet is preferably spaced from the slag so that the additive travels through the atmosphere to the slag Melt down to take.
  • the additive present as a solid is fed by means of a gas stream to produce a slag-free focal spot of the molten metal directly in this.
  • the focal spot of the molten metal thus arises from the fact that the slag from the gas stream at the Appearance is completely displaced, so that the aggregate - taking into account its calcination in the feed from the feeder to the melt - can come into direct contact with the molten metal without having to pass through the slag.
  • the focal spot has the highest possible temperature, for example from ⁇ 1750 ° to 1800 ° C., preferably ⁇ 2000 ° to 2200 ° C. or ⁇ 2400 ° to 2,500 ° C, more preferably temperatures of ⁇ 2,600 ° C. Due to the very high focal spot temperatures (i.e., temperatures of the melt in the focal spot), an extremely rapid absorption of the alloying constituents from the aggregate into the melt takes place.
  • the calcination of the aggregate can be controlled in such a way, in particular by the conveying speed of the aggregate in the direction of the melt, that this takes place only immediately after or at the outlet from the usually formed as a lance feeder.
  • the calcination may in this case take place partially or predominantly during the transport from the lance to the melt surface, but also to a significant or predominant proportion directly in the focal spot (ie the melt surface exposed by the injection) or in the impact zone of the added aggregate on the molten bath, in which the melt a sink training, instead.
  • the endothermic calcination processes of the additive thus take place before it enters the melt or directly in the focal spot or the impact zone, so that a very fine separation of the aggregates takes place during the calcination and prior to their absorption by the melt.
  • the calcination gases thus penetrate only to a small extent or practically not in the molten metal and calcination of the additive in the nozzle zone, ie before exiting a lance nozzle or the like is avoided.
  • the energy balance of the manufacturing process is better controlled, which brings with it special advantages in the process management, especially with regard to the prevention of slagging of certain alloying components such.
  • the additive containing the alloying elements is preferably supplied in a stream of solids to the melt, which is surrounded by a gas stream. This can effectively create a focal spot in the melt and avoid interaction or chemical reaction of the aggregate with the slag. At the same time thereby the solids flow can be focused or adjusted in its diameter. Furthermore, the depth of penetration of the additive into the molten metal or the place of calcination can be controlled independently of the solids supply by the gas jacket and / or escape of dusts such as nickel oxide dusts are avoided from the solids flow. Furthermore, escape of volatiles formed during calcination such as H 2 O, CO 2 and the like is avoided, which is desirable in certain process controls.
  • the sheathing of the solids flow through the gas or conveying gas flow is thus preferably from the feeder, in particular a gas lance, into the focal spot.
  • the conveyor or the lance is cooled, in particular water-cooled.
  • the enveloping gas can at the same time be the conveying gas for the flow of solids.
  • the delivery gas is inert with respect to the aggregate, at least until it exits from the supply means such as a lance, or totally inert under the process conditions.
  • the conveying gas may under certain circumstances be air, preferably air enriched with nitrogen or other inert gases, or directly nitrogen or another inert gas such as argon.
  • the conveying gas does not have an oxygen content which is increased in relation to air.
  • the lance may have in a known manner a central tube for supplying solids and radially outside another coaxially arranged tube with a larger diameter or a preferably substantially circular arrangement of mostly several outlet nozzles for the sheath gas.
  • the outlet nozzles of the solids flow and / or the jacket gas can be designed in particular as Laval nozzles.
  • the possibly used carrier gas emerges together with the solids from the central tube.
  • the lance can have a water-cooled jacket.
  • the device for supplying or blowing in the additives according to the invention can be designed in the manner of a closed system, so that any human contact with the material can be avoided. This is especially important in the case of nickel-containing aggregates.
  • a silo in a pneumatic system, a silo can be loaded by a means of transport with the aid of compressed air and the dusts can be further supplied by pressure vessels to the feeder or the lance. The exiting from the lance aggregates are encased by a gas stream to minimize losses of aggregates here.
  • the endothermic effect resulting from the calcination may also be deliberately exploited to lower the bath temperature.
  • the oxygen-containing sheathing gas and / or the conveying gas can be partially or completely replaced by inert gases.
  • the highly exothermic decarburization reaction taking place by the reaction of the oxygen-containing gases with the carbon of the melt will then be partly or completely omitted.
  • the gas supply can also be carried out in such a way that a control of the temperature of the melt takes place in a predetermined process, in which the oxygen content of the shell gas and / or the delivery gas depending on process parameters of the manufacturing process such. the focal spot temperature and / or the temperature of the melt is varied elsewhere.
  • the oxygen content of the conveying and / or jacketing gas can be increased and the proportions of inert gases can be reduced and vice versa.
  • the additive to be used according to the invention can thus generally be supplied to the melt during the fresh phase of the metallurgical process, in particular the main fresh phase.
  • the jacket gas stream may contain ⁇ 25 wt .-% or ⁇ 50 wt .-% or ⁇ 75 wt .-% oxygen, in certain process variants permanently or temporarily also ⁇ 80, ⁇ 90 or ⁇ 95 wt .-% or even ⁇ 98 wt .-% contain oxygen or practical be pure oxygen.
  • the oxygen content of the jacket gas stream may be ⁇ 95 to 98 wt .-%, optionally ⁇ 80 to 90 wt .-% or even ⁇ 60 to 70 wt .-%, optionally also ⁇ 50 or ⁇ 25 wt .-%.
  • the oxygen content of the jacket gas and also of the delivery gas can be adjusted by using inert gases, for example ⁇ 10 to 20 or ⁇ 5% by weight of the gas, or virtually pure inert gases can be used.
  • the inert gas to be used depends on the respective process conditions, it may for example be nitrogen, preferably argon.
  • the delivery gas and / or the shell gas has a composition such that it is also inert with respect to the calcination of the precursor, i. H. no or only a minor reaction of the delivery and / or jacketing gas with the precursor and / or its calcination occurs or no or virtually no heat of reaction is released. This should be done for the period before the aggregate exits the feeder such as e.g. a lance, preferably in general.
  • further solids can be added to the melt together with the at least one additive which contains at least one further alloying constituent, for example further alloy constituents, which may also be of a conventional type, such as ferroalloys, and / or slag Forming substances such as calcium and / or magnesium compounds (eg CaO, MgO, dolomite, etc.), silicates or quartz, without being limited thereto.
  • the content of these further solids in the additive stream may be ⁇ 50% by weight, preferably ⁇ 20-25% by weight or ⁇ 10-20% by weight, in particular also ⁇ 5-9% by weight or ⁇ 2 4% by weight.
  • the additive stream may be free of such further solids.
  • the aggregate flow supplied to the melt may contain other solids or constituents, such as carbons, hydrocarbons in solid, liquid or gaseous form or other reducing agents such as ferrosilicon, aluminum, ferroaluminum, etc.
  • the additive to be alloyed contains ⁇ 10% by weight or ⁇ 5% by weight of such solids or reducing agents, preferably ⁇ 2 to 3% by weight or ⁇ 1% by weight.
  • the aggregate stream, optionally including gaseous components contained therein, and / or the jacket gas stream may also be free of (particulate) carbon, hydrocarbons and / or other reducing agents.
  • the lance used for the supply of aggregates thus acts not or only to a minor extent in the manner of a burner, with any reactions to take place outside the lance.
  • the additive used which may have a high content of chemically bound water, may be prepared for pneumatic conveying and / or gravity promotion suitable.
  • the content of free, only physically bound water (residual moisture) hereby may be ⁇ 5% by weight, preferably ⁇ 2-3% by weight or ⁇ 1% by weight, based on the total weight of the additive.
  • other types of conveying or feeding into the melt can be selected.
  • the aggregate may contain ⁇ 60-70% by weight, ⁇ 75-80% by weight or ⁇ 85-90% by weight or else ⁇ 95% by weight of the constituents (1) intended alloy components, (2) volatile constituents without negative metallurgical properties and (3) slag emulsions.
  • the solid additive used may be present in an average or maximum particle size of ⁇ 10 mm, ⁇ 3 to 5 mm or the like, optionally also in a finely divided form, such as a powder, e.g. with grain sizes of ⁇ 0.5-1mm, or in the form of dusts.
  • the aggregate may also be in compacted or agglomerated form, e.g. in briquetted, pelleted or granulated form, wherein the briquettes, pellets, etc. burst due to the calcination reaction and evaporation of water and / or CO2 in the supply to the focal spot and can split themselves independently finely.
  • the method according to the invention can be in particular an AOD method.
  • the melt vessel may each be an argon-oxygen decarburizer (AOD), Creusot-Loire-Uddeholm (CLU) converter, a vacuum-oxygen (VOD) converter or a Cr-converter.
  • AOD argon-oxygen decarburizer
  • CLU Creusot-Loire-Uddeholm
  • VOD vacuum-oxygen
  • Cr-converter argon-oxygen decarburizer
  • the melt vessel may be a BOP or Q-BOP converter.
  • the process may be an electro-steel process, for example, an electric arc furnace method.
  • the alloy constituents to be introduced for adjusting the composition of the molten bath may contain ⁇ 5-10% by weight or ⁇ 20-25% by weight, ⁇ 30-35% by weight or ⁇ 40-50% by weight of the additives according to the invention , which may have high levels of chemically bound water or calcining components are supplied.
  • ⁇ 75% by weight or about 100% by weight of the alloy constituents can also be supplied by the additives used according to the invention.
  • the additive stream may be ⁇ 100 kg / min, preferably 200-500 kg / min or more, in each case based on a melt of 100 to 120 tons of metal weight (ie without slag weight), with correspondingly being valid for larger amounts of melt.
  • the additive to be used in the process according to the invention can thus be obtained by dissolving or leaching the relevant alloy constituents, in particular transition metals, from an ore, a suitably prepared ore or generally a product containing the alloy constituents, which may for example also be a waste material.
  • this can be precipitated by suitable means, for example by basic agents such as MgO, CaO, dolomite, etc., which can be optionally used as a slurry, ammonia or Ammonium salts and / or carbonates or the like.
  • the precipitation can be carried out at elevated temperatures or room temperature, in exceptional cases also under cooling.
  • the resulting precipitate may thus be essentially a hydrous hydroxide, carbonate or a mixed hydroxide / carbonate.
  • the precipitation of the alloying component forming transition metal is carried out without the use of S-containing precipitants or without means that lead to an S-entry in the precipitate to be recovered.
  • the alloying constituent is thus precipitated in a mold so that the resulting aggregate consists predominantly or practically exclusively of constituents which are present in the calcination of the Aggregate when it is transferred into the upper melting vessel space, apart from the alloy constituent predominantly or practically exclusively volatile components such as H 2 O, CO 2 , etc., unlike S-containing gases such as SO 2 are melt metallurgically harmless, and / or release slag-forming components ,
  • the solution containing the alloying ingredient may be treated after dissolution or leaching of the ore or other suitable material to remove certain constituents, such as impurities. It is understood that, where appropriate, the enrichment of the transition metal from the respective source can be done in other ways, for example by extraction methods, even if they are less preferred.
  • the aggregate can then be treated in such a way that it can be conveyed pneumatically or by gravity; for this purpose, the additive can have a residual moisture of physically bound water of ⁇ 5% by weight, preferably ⁇ 1 to 3% by weight. It is understood that the residual moisture to be set depends on the respective process conditions.
  • the ready-to-use additive may have a content of ⁇ 10-15 wt .-%, ⁇ 15-20 wt .-% or even ⁇ 25-30 wt .-% of volatile in the calcination metallurgically harmless ingredients such as H 2 O and / or CO 2 , for example, ⁇ 30-35 wt .-% or ⁇ 35-40 wt .-%.
  • the content of these components is preferably ⁇ 65-70% by weight, for example ⁇ 60-65% by weight, ⁇ 55-60% by weight or ⁇ 55-60% by weight.
  • the chemically bound water may in this case be present in particular in the form of water of crystallization and / or hydroxide groups.
  • the aggregate may be precalcined to remove, for example, already a portion of the chemically bound water of crystallization, but such a step is not mandatory.
  • the statements made here can generally apply in the context of the present invention.
  • the essential metallic constituent or main constituent of the aggregate whose content in the molten metal is to be increased, at least one or more transition metals.
  • the transition metal with the highest content or the transition metals may be present individually or in total ⁇ 25-30 wt .-% or 40-50 wt .-%, preferably ⁇ 60-70 wt .-%, based on the total metal content of the aggregate, wherein here all metals, including Fe and slag-forming metals such as Ca, Mg, etc. are included.
  • the transition metal or metals are preferably those which, under the present process conditions, are in contact with the melt or after incorporation into the melt reducible oxides, so that the at least one transition metal is converted into the melt by melt metallurgical reaction with the melt in metallic form.
  • the melt thus acts on the transition metal oxide, which is formed by calcination of the additive, or possibly reducing itself to the additive itself.
  • the transition metal present in oxidic and / or metallic form preferably has not too high or virtually negligible vapor pressure, so that losses due to evaporating metal and / or metal oxide are avoided or minimized. This includes losses due to a material discharge of the metal oxide or the aggregate itself by the escaping calcination gases.
  • An essential component or main component of the additive may be at least one transition metal such as Ni, Co, V, Mo, Mn, Cr, Ti, Zr, W, Nb, Ta or a combination thereof, preferably the transition metal is Ni, Co, Mo or V In particular, Ni or Co may be present in combination, with Ni or Co being the main constituent.
  • transition metal such as Ni, Co, V, Mo, Mn, Cr, Ti, Zr, W, Nb, Ta or a combination thereof, preferably the transition metal is Ni, Co, Mo or V
  • Ni or Co may be present in combination, with Ni or Co being the main constituent.
  • nickel- and / or cobalt-containing aggregates it is particularly advantageous to use leaching of laterite or laterite ores, for example saprolite.
  • lateitic nickel ores two types can be distinguished: a very iron-rich Ni-limonite ore containing about 1 to 2% by weight of nickel bound to goethite, or nickel-silicate ores often containing more than 2% by weight of nickel; which is bound in silicates, in particular to serpentine. It is understood that other suitable sources, in particular also ores, are to be used for other transition metals.
  • the leaching of Ni / Co in particular acids can be used, for example sulfuric acid.
  • the leaching is preferably carried out by heap leaching.
  • the leaching can generally be carried out at atmospheric pressure or at elevated pressure, for example by high-pressure acid leaching.
  • other methods such as biological leaching, ammonia / ammonium leaching and the like may also be used. This may generally apply to other transition metals derived from ores or other sources.
  • the leaching is carried out without the use of sulfides and / or chlorides, which may also apply to the other process steps for the production of the additive.
  • cobalt for example by means of suitable complexing agents such as phosphonic acids, etc. This also generally applies to the separation of other undesirable components such as unwanted alloying constituents, both for the production of Ni-containing or other transition metal-containing aggregates.
  • nickel and cobalt may then be co-precipitated to give so-called mixed precipitates (MHP). This applies accordingly to other mixed transition metal precipitation.
  • the nickel-containing additive may have a nickel content of ⁇ 5-10 wt .-%, for example ⁇ 15 to 17 wt .-% or ⁇ 20 to 23 wt .-%, optionally also ⁇ 25 to 27 wt .-%, including the content of residual moisture or in each case based on a substance having a residual moisture content of about 0 wt .-%.
  • the nickel content is typically ⁇ 50-55 wt .-% or even ⁇ 40-45 wt .-%, but may also be up to about 60-65 wt .-% or higher.
  • the data relate to the additive to be used in the smelting metallurgical process.
  • Co-containing aggregates or other first transition metal period transition metals such as V, etc. including mixed aggregates containing two or more alloying constituents, such as Ni / Co aggregates, with higher-grade transition metals, such as Mo, taking into account the ratio the atomic weights of the transition metal of the higher period to that of the first period such as Ni applies.
  • the following information relates to a Ni / Co-containing aggregate, which is produced in particular by laterite leaching, but may also generally be considered within the scope of the invention.
  • the additive can chemically bound water in the form of water of crystallization and / or hydroxide groups in a proportion of ⁇ 5-10 or up to 11 wt .-% or ⁇ 15 to 21 wt .-%, optionally also ⁇ 25 to 30 wt .-% or ⁇ 35-40 wt .-%, which may also generally apply to be used in the invention additives.
  • the aggregate contains no more than 50-55% by weight or 60-65% by weight of water (including in bound form). If the aggregate is in the form of carbonate or mixed hydroxide / carbonate, the contents shall be deemed to correspond to the content of CO2 and / or chemically bound water.
  • the sulfur content of the additive is preferably ⁇ 5-10% by weight, in particular ⁇ 4% by weight or ⁇ 2-3% by weight.
  • the sulfur content is ⁇ 0.5-1% by weight or ⁇ 0.2-0.3% by weight.
  • the same can also apply to the content of Cl. This can each generally within the scope of the invention.
  • the Co content is preferably ⁇ 2.5-2% by weight, ⁇ 1.75-1.5% by weight or ⁇ 1.25-1 wt%.
  • the aggregate is used to alloy nickel and e.g. Ni is present as the main constituent.
  • the Co content is therefore uncritical with respect to other co-sources of the melt, so that there are no restrictions on the amount in which the aggregate can be used in the respective process in order to avoid undesirably high Co contents ,
  • the content of P, Cu, Sn, Pb, Nb, As, Cd and / or Pd in the aggregate is limited to those values not limited to the amount of aggregate to be added to the respective melt, by the upper limits of said components in the melt to be able to comply. If only Ni is to be alloyed by the additive, this also applies to the components Co, V, Mo, and vice versa. Because the additive can be obtained via an aqueous solution of the respective desired transition metal, the contents of said components can be comparatively easily controlled by known means.
  • the aggregate may contain other alloying constituents, such as cobalt (in the case of a Ni aggregate) or nickel (in the case of a Co aggregate), manganese, etc., if these elements are desired or not interfering with the intended use.
  • alloying constituents such as cobalt (in the case of a Ni aggregate) or nickel (in the case of a Co aggregate), manganese, etc., if these elements are desired or not interfering with the intended use.
  • a laterite leached Ni and / or Co-containing additive may further contain manganese (for example, ⁇ 0.25 to 5 wt .-% or ⁇ 1 to 2 wt .-%), wherein the content ⁇ 7 , 5 to 10 wt .-% or ⁇ 5 wt .-%, cobalt with proportions of ⁇ 0.1 to 0.25 wt .-% or ⁇ 0.75 wt .-%, wherein the cobalt content ⁇ 3 to 5% by weight or ⁇ 2 wt .-% may be.
  • manganese for example, ⁇ 0.25 to 5 wt .-% or ⁇ 1 to 2 wt .-%, wherein the content ⁇ 7 , 5 to 10 wt .-% or ⁇ 5 wt .-%, cobalt with proportions of ⁇ 0.1 to 0.25 wt .-% or ⁇ 0.75 wt .-%, wherein the cobalt content
  • the content of alloying agents including iron, in this case ⁇ 1 to 2 wt .-% or ⁇ 3 wt .-% and can be ⁇ 15 wt .-%, ⁇ 10 to 12 wt .-% or even ⁇ 8 to 10 wt .-% amount. This also applies generally in the context of the invention.
  • the aggregate may further contain slag-forming constituents such as Ca, Mg.
  • the content of the slag-forming constituents or the content of Ca and / or Mg in the aggregate may be ⁇ 0.5 to 1 wt% or 1.5 to 2 wt%, for example ⁇ 3 to 5 wt% , based on the additive free from residual moisture and in each case based on the weight of the metal.
  • the slag-forming components or Ca and / or Mg may be in a form suitable for the melt-metallurgical process, e.g. as oxide, hydroxide and / or carbonate but also silicate.
  • the content of slag-forming constituents may be ⁇ 25% by weight or ⁇ 15 to 20% by weight, in particular ⁇ 10 to 12% by weight or ⁇ 6 to 8% by weight, based on that to be used in the process Add additive without residual moisture.
  • the stated contents may be understood as including Mn, Cr, Si, Ti, Si and / or Fe, or excluding these. The above can generally be considered within the scope of the invention.
  • FIG. 1 shows an arrangement for carrying out the method according to the invention, wherein in a melting vessel 1, for example in the form of a converter, a molten metal 2 is provided, which is covered by a slag 3.
  • the melt may be an iron alloy, for example one for producing a Ni-alloyed steel having a nickel content of 1.5 to 30 wt .-%, in particular common Ni or Cr / Ni steels such as 18/8 Cr / Ni steel and / or steels with a P and S content of ⁇ 0.005 wt .-% or ⁇ 0.0035 wt .-%, which may apply regardless of the embodiment.
  • the slag is in this case a conventional slag for producing the respective alloy, for example containing high proportions of chromium oxide, MgO, CaO and / or SiO 2, which can intervene in addition to the coverage of the melt in the metallurgy of the melt.
  • a preferably water-cooled lance 4 which is arranged above the slag, is provided, which preferably penetrates into the upper region of the melting vessel 1.
  • the lance 4 consists of a central tube 5 for injecting the solid aggregate into the melt, which is surrounded on the outside by an outer tube 6 or a plurality of circumferentially around the central tube arranged individual tubes, for example ⁇ 2-3 or ⁇ 4-6 individual tubes.
  • the pipe ends can with nozzle-like outlet openings, z. B. be provided in the form of Laval nozzles in order to inject the aggregate at high speed, preferably supersonic speed, into the melt can.
  • the solid, pneumatically conveyable additive is thus, optionally injected through the central tube in the melt by means of a suitable conveying gas such as oxygen, through the outer tubes 6, a gas stream is ejected in the direction of the molten metal, which sheathed and focused the emerging from the central tube 5 solids flow ,
  • the gas jacket 7 serves, on the one hand, to materially shield the solids flow 8 from the environment and to further focus, in particular also with regard to the high proportion of volatile constituents which form during the calcination of the additive.
  • the gas stream also serves to penetrate the slag at least almost or completely and thereby to produce a slag-free focal spot 9, in which the molten metal 2 is thus exposed.
  • the temperature of the melt in the region of the focal spot can be, for example, 2,400 to 2,600 ° C.
  • the aggregate is in this case injected into the melt at such a rate that calcination of the aggregate takes place with elimination of H 2 O, CO 2 and optionally other volatile constituents, only at or after discharge of the aggregate from the lance nozzle.
  • the decomposition of the additive takes place here due to the high ambient temperatures, eg. B. the heat of radiation of the Schmelzgefäßwandung 1 a, the molten metal and the like predominantly or completely on the way from the lance nozzle 4 a to the molten pool.
  • Any non-calcined fractions of the aggregate are calcined in the focal spot 9 or the impact zone 10 onto the molten metal.
  • all volatiles such as H 2 O, CO 2 and the like are thus volatilized, so that only the non-volatile constituents, such as metal oxides, enter the melt and are taken up by it.
  • the gas passed through the central tube 5 via the flow of solids may be air, a gas depleted of oxygen or inert gas.
  • the jacketing gas performed by the outer tubes 6 may be air, an oxygen-enriched gas or pure oxygen, an inert gas, or mixtures of these.
  • the oxygen content must be adapted to the respective process conditions such as the heat balance of the melt metallurgical process.
  • further solids such as alloy constituents, slag formers or the like can be supplied to the melt with the additive stream, without this being absolutely necessary.
  • the additive stream does not contain reducing agents such as carbon, ferrosilicon, aluminum or the like.
  • the process according to the invention can be an AOD process, optionally also an electrometallurgical process.
  • the feeder of aggregates for adjusting the alloy content of the melt using highly hydrous substances is possible, whereby the manufacturing cost of the respective alloy can be significantly reduced, in particular because the aggregate cost-effectively and other costly process steps such as slag work to reduce the sulfur content of the melt, etc. avoided can be.
  • Such a process is especially given by the fact that the additive is injected directly into the very hot, slag-free focal spot.
  • the aggregate can be obtained in particular by leaching of laterites, for example by leaching using sulfuric acid at atmospheric pressure or at elevated pressure, but optionally also by other leaching methods.
  • the nickel-containing additive can then be precipitated by suitable precipitating agents such as a MgO and / or CaO slurry, by addition of carbonates such as sodium carbonate, calcium carbonate, dolomite, etc., by addition of ammonia or ammonium compounds to form essentially a nickel hydroxide.
  • Nickel carbonate or mixed nickel hydroxide / carbonate to produce.
  • the reaction with the precipitating agent can be carried out at elevated temperatures, for example at 30-80 ° C or higher, in suitable periods of, for example, a few minutes to 1 hour.
  • cobalt can be separated by suitable methods, for example by extraction methods.
  • the aggregate can be pre-dried to a residual moisture, which allows a pneumatic delivery of the same. Residual moisture here is to be understood as meaning physically bound water which can be removed at temperatures of ⁇ 120 to 150 ° C. in a suitable period of time, for example in one to two hours.
  • the aggregate can be prepared for a gravity feed suitable.
  • the aggregate may be mechanically worked up to obtain a suitable grain size or size, optionally also compacted or agglomerated.
  • the nickel content thereof is typically about 15 to 55% by weight, in particular about 20 to about 40% by weight, based on the predried aggregate (without residual moisture).
  • the content of chemically bound water in the form of water of crystallization and / or hydroxide is typically 30 to 50 wt .-% or 40 to 50 wt .-%. It is understood that optionally the aggregate can be precalcined at higher temperatures in order to reduce the water and / or carbonate content, without this being absolutely necessary.
  • the products were each obtained by leaching of laterites by means of 80% strength sulfuric acid at 90 ° C. for 0.5 hours (about 20 g of ore, slurried in 80 g of water, 100 g of sulfuric acid). Leaching times of ⁇ 1 or ⁇ 0.75 hours have generally been found to be advantageous.
  • the liquor was partially neutralized by dolomite and then mixed with a MgO slurry to produce a nickel hydroxide precipitate.
  • thermolyzed material was dried to a residual moisture of about 1.5 wt .-% (at 120 ° C for 2 hours), the content of chemically bound water was 55 wt .-% (composition 1) or 45 wt. % (Composition 2), calculated in each case as the weight loss of the material dried to a residual moisture content of about 0% by weight after thermolysis at 750 ° C. for 4 hours until constant weight. It will be appreciated that the thermolyzed material may still contain a level of carbonate or other ingredients which decompose only at elevated temperatures.
  • composition of the additive may vary depending on the ore or nickel-containing starting material used.
  • the following analysis data refers to a material that has been dried at 120 ° C for 2 hours to a residual moisture of about 0% by weight (ie, including water of crystallization).
  • Composition 1 (in% by weight) Ni 24 al 0.75 Ca 0.75 Co 1.5 Cr ⁇ 0.05 Fe 0.75 Mn 4.0 mg 6.0 Water content (crystal water) 50 Ni 38 al ⁇ 0.05 Ca 2 Co 0.5 Cr ⁇ 0, 05 Fe 2.5 Mn 1.5 mg 2.5 Water content (crystal water) 40
  • the inventive method is not limited to the use of Ni / Co-containing additives, but also other alloying constituents, in particular transition metals such as Mo, V or the like can be added in a corresponding form of the molten metal.
  • the additives are each injected from the top of the melting vessel in this in a region of the molten metal of very high temperature, in the case of slag-covered melts in a slag-free focal spot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

Die Erfindung betrifft ein schmelzmetallurgisches Verfahren zur Herstellung einer Schmelze nach dem Oberbegriff von Anspruch 1 mit zumindest einem Basismetall mit mindestens 10 Gew.-% Eisen und zumindest einem weiteren Legierungsbestandteil in einem Schmelzgefäß, wobei die Schmelze mit einer Schlacke abgedeckt ist. Ferner betrifft die Erfindung einen übergangs-metallhaltigen, insbesondere nickel- und/oder kobalthaltigen, Zuschlagstoff zur Herstellung übergangsmetallhaltiger, insbesondere nickel- und/oder kobalthaltiger, Legierungen, wobei der Zuschlagstoff als Feststoff vorliegt und einen Übergangsmetallgehalt von ≥ 15 Gew.-% aufweist. Weiterhin betrifft die Erfindung die Verwendung eines derartigen Zuschlagstoffes in dem erfindungsgemäßen Verfahren.The invention relates to a melt-metallurgical process for producing a melt according to the preamble of claim 1 with at least one base metal having at least 10 wt .-% iron and at least one further alloying ingredient in a melting vessel, wherein the melt is covered with a slag. The invention further relates to a transition metal-containing, in particular nickel and / or cobalt-containing, additive for producing transition metal-containing, in particular nickel and / or cobalt-containing, alloys, wherein the additive is present as a solid and has a transition metal content of ≥ 15 wt .-%. Furthermore, the invention relates to the use of such an additive in the method according to the invention.

Zur Herstellung von mit bestimmten Legierungsbestandteilen angereicherten Eisenlegierungen oder Stählen sind zumeist Legierungsbestandteile der Schmelze zuzuführen, um die Zusammensetzung der Schmelze einzustellen. Derartige Bestandteile können insbesondere Nickel, Kobalt aber auch Vanadium, Molybdän usw. sein. Zur Einstellung der Schmelzzusammensetzung werden oftmals Ferrolegierungen wie Ferronickel, Ferrokobalt usw. eingesetzt, aber auch oxidische Komponenten wie NiO oder auch Nickelerze wie Laterite, die einen entsprechenden Nickelgehalt aufweisen. Die Zugabe dieser Bestandteile ist jedoch jeweils mit bestimmten Nachteilen verbunden.In order to produce iron alloys or steels enriched with certain alloy constituents, it is usually necessary to supply alloy constituents to the melt in order to adjust the composition of the melt. Such constituents may in particular be nickel, cobalt but also vanadium, molybdenum, etc. Ferroalloys such as ferronickel, ferro-cobalt, etc. are often used to adjust the melt composition, but also oxidic components such as NiO or nickel ores such as laterites, which have a corresponding nickel content. However, the addition of these ingredients is always associated with certain disadvantages.

So ist die Bereitstellung von Ferrolegierungen zur Einstellung der Gehalte der Legierungsbestandteile in der Schmelze relativ kostenaufwändig und bedarf eines großen Energieaufwandes. Die Verwendung oxidischer Mineralien zur Einstellung der Schmelzzusammensetzung hat den Nachteil, dass oftmals ein hoher Aufwand zu treiben ist, um unerwünschte Verunreinigungen an unerwünschten Spurenelementen wie Phosphor, Zinn, Arsen oder auch bei bestimmten Stählen Kobalt, Molybdän usw. aus den Erzen zu entfernen. Auch durch Anreicherungsverfahren wie Flotationsverfahren sind derartige Verunreinigungen nicht immer in ausreichendem Umfang zu entfernen. Werden durch die Erze unerwünschte Bestandteile wie Phosphor, Schwefel usw. in die Schmelze eingebracht, so ergibt sich zudem ein hoher Aufwand zur Entfernung derselben aus der Schmelze, beispielsweise durch geeignete Schlackenarbeit, Anwendung mehrerer unterschiedlicher Schlacken und dergleichen. Ferner führt die Einbringung von Erzen in Metallschmelzen zu anderen Problemen, insbesondere hinsichtlich der Kinetik und des Ausmaßes der Bildung von Kristallisationskeimen, da bei der Verwendung von Erzen sich die Partikel des Zuschlagstoffes nicht immer ausreichend schnell und vollständig in der Schmelze auflösen und so unerwünschte Auswirkungen auf die Schmelzmetallurgie haben können. Des Weiteren bedingt die Einbringung von oxidischen Erzen in die Schmelze einen negativen Beitrag zur Energiebilanz, da das Aufschmelzen der Erze stark endotherm ist. Dies kann zu erheblichen prozesstechnischen und metallurgischen Problemen führen, beispielsweise auch zu einer erhöhten Verschlackung von Legierungsbestandteilen wie Chrom. Welche Elemente verschlackt werden hängt hierbei wesentlich auch von den thermischen Verhältnissen im Zeitpunkt der Verfahrensdurchführung ab.Thus, the provision of ferroalloys to adjust the contents of the alloy components in the melt is relatively expensive and requires a large amount of energy. The use of oxidic minerals to adjust the melt composition has the disadvantage that often a great deal of effort is required to remove unwanted impurities from unwanted trace elements such as phosphorus, tin, arsenic or certain steels cobalt, molybdenum, etc. from the ores. Even by enrichment processes such as flotation, such impurities are not always sufficient to remove. If unwanted constituents such as phosphorus, sulfur, etc. are introduced into the melt by the ores, this also results in a high outlay for the removal of the same from the melt, for example by suitable slag work, the use of a plurality of different slags and the like. Furthermore, the incorporation of ores into molten metals poses other problems, in particular with regard to the kinetics and the extent of the formation of nuclei, since, when ores are used, the particles of the aggregate do not always dissolve sufficiently rapidly and completely in the melt and thus have undesirable effects can have the smelting metallurgy. Furthermore, the introduction of oxidic ores into the melt has a negative contribution to the energy balance, since the melting of the ores is strongly endothermic. This can lead to considerable procedural and metallurgical problems, for example also to increased slagging of alloying constituents such as chromium. Which elements are slagged depends essentially on the thermal conditions at the time of the process implementation.

Weiterhin ist es bekannt, unmittelbar Oxide wie Nickeloxid zuzuführen, hierbei stellen sich jedoch auch die oben genannten Probleme ein. Des weiteren ist Nickeloxid toxisch und kanzerogen, so dass dessen Verwendung zu vermeiden ist.Furthermore, it is known to directly supply oxides such as nickel oxide, but this also raises the above-mentioned problems. Furthermore, nickel oxide is toxic and carcinogenic, so its use is to be avoided.

Die WO 97/20954 beschreibt ein schmelzmetallurgisches Verfahren zur Herstellung von Ferronickel, rostfreiem Stahl oder dergleichen, bei welchem Nickel, Nickelerze oder kalzinierte Nickelverbindungen einer die Metallschmelze überdeckenden Schlacke zugeführt werden.The WO 97/20954 describes a melt metallurgical process for the production of ferro-nickel, stainless steel or the like in which nickel, nickel ores or calcined nickel compounds are fed to a molten slag-covering slag.

Die EP 583 164 A1 beschreibt ein Verfahren zur Herstellung von rostfreiem Stahl, wobei fein verteilte Oxide mit fein verteilten Reduktionsmitteln vermischt unter Bildung von Agglomeraten umgesetzt werden.The EP 583 164 A1 describes a process for producing stainless steel wherein finely divided oxides are mixed with finely divided reducing agents mixed to form agglomerates.

Die US 4,919,714 beschreibt ein Verfahren zur Raffinierung von Stahl, bei welchem unter Rühren Gas in eine Schmelze eingedüst wird, während der Schmelzoberfläche durch einen Brenner Wärme zugeführt wird und wobei der Schmelze Metalloxide zugesetzt werden.The US 4,919,714 describes a process for refining steel in which gas is injected into a melt with stirring while heat is supplied to the melt surface by a burner and metal oxides are added to the melt.

Die WO 03/018850 A1 beschreibt ein Stahlherstellungsverfahren wobei ein verfestigter Hydroxidschlamm enthaltend Metalle aus einem Stahlbeizverfahren und wenigstens eine Fluorid-haltige Verbindung der Schmelze zugeführt wird.The WO 03/018850 A1 describes a steelmaking process wherein a solidified hydroxide slurry containing metals from a steel pickling process and at least one fluoride-containing compound is fed to the melt.

Die WO 2005/098054 A1 beschreibt ein Verfahren zur Herstellung eines Flussmittels, welches bei der Stahlherstellung eingesetzt werden kann, wobei das Flussmittel ein Fluorid-haltiger, kalzinierter Hydroxidschlamm ist.The WO 2005/098054 A1 describes a process for producing a flux which can be used in steelmaking, wherein the flux is a fluoride-containing, calcined hydroxide slurry.

Die WO 2006/131764 A1 beschreibt ein Verfahren zur Herstellung von Ferrolegierungen, wobei Chrommetall, chromhaltige Legierungen und Chromerze einer mit Schlacke bedeckten Schmelze zugeführt werden.The WO 2006/131764 A1 describes a process for producing ferroalloys wherein chromium metal, chromium-containing alloys and chrome ore are fed to a slag-covered melt.

Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Herstellung von mit Legierungsbestandteilen angereicherten Metallschmelzen, die vorzugsweise mit einer Schlacke bedeckt sind und mit dieser im Stoffaustausch stehen, bereitzustellen, welches einfach und kostengünstig durchführbar ist und welches auf einfache weise eine schmelzmetallurgische Steuerung ermöglicht. Ferner besteht die Aufgabe darin, einen Zuschlagstoff bereitzustellen, der in einem derartigen Verfahren besonders vorteilhaft einsetzbar und preiswert herstellbar ist.The invention is therefore based on the object, a method for the manufacture of alloy melts enriched metal melts, which are preferably covered with a slag and in mass transfer to provide, which is simple and inexpensive to carry out and which allows a simple way a melt metallurgical control. Furthermore, the object is to provide an additive which can be used particularly advantageously and inexpensively in such a method.

Die Erfindung wird durch die Bereitstellung eines Verfahrens nach Anspruch 1 und Bereitstellung eines Zuschlagstoffes nach Anspruch 15 gelöst.The invention is achieved by providing a method according to claim 1 and providing an aggregate according to claim 15.

Nach dem erfindungsgemäßen Verfahren werden Zuschlagstoffe enthaltend den anzureichernden Legierungsbestandteil und hohe Gehalte an schmelzmetallurgisch unbedenklichen flüchtigen Bestandteilen wie insbesondere Wasser und/oder Carbonat eingesetzt, die niedrige Schwefelgehalte, gegenüber der Verwendung von Erzen geringe Gehalte an Schlackebildnern wie Calcium- und/oder Magnesiumoxid usw. sowie hohe Gehalte an dem jeweiligen Legierungsbestandteil aufweisen. Das Wasser kann insbesondere zumindest im Wesentlichen oder praktisch ausschließlich als chemisch gebundenes Wasser in Form von Kristallwasser und/oder Hydroxid-Gruppen vorliegen. Derartige Zuschlagstoffe können insbesondere durch die Aufbereitung von Erzen gewonnen werden, beispielsweise durch Auslaugung von Laterit-Erzen, wenn die zu legierenden Bestandteile Nickel und/ oder Kobalt sind. Gegebenenfalls können diese Auslaugungen aufgearbeitet werden, um weitere unerwünschte Bestandteile zu trennen, gegebenenfalls können die gewünschten Legierungsbestandteile auch unmittelbar aus diesen Auslaugungen durch Ausfällung abgetrennt werden. Die jeweiligen Niederschläge können dann separiert und getrocknet werden, insbesondere um pneumatisch oder durch Schwerkraft förderbare Zuschlagsstoffe zu erhalten. Gegebenenfalls können die derart gewonnenen Zuschlagstoffe in einem separaten Schritt kalziniert bzw. vorkalziniert werden, um den Gehalt der bei der Zufügung des Zuschlagstoffes zu der Schmelze sich verflüchtigenden Bestandteile wie chemisch gebundenes Wasser z.B. in Form von Kristallwasser und/oder sich aus Hydroxid-Gruppen und/oder Carbonat zu verringern, ohne dass dies immer notwendig ist. Der Gehalt an unerwünschten Bestandteilen, die weder erwünschte Legierungsbestandteile noch Bestandteile sind, die sich bei der Zuführung des Zuschlagstoffes zu der Metallschmelze verflüchtigen, noch Schlackebildner sind, kann ≤ 15-20 Gew.-%, ≤ 5-10 Gew.-% oder auch ≤ 2-3 Gew.-% bezogen auf den eingesetzten Zuschlagstoff betragen.The process according to the invention uses adjuvants containing the alloying constituent to be enriched and high contents of molten metallurgically volatile constituents, in particular water and / or carbonate, the low sulfur contents, low contents of slag formers such as calcium and / or magnesium oxide, etc., as well as ores have high contents of the respective alloying ingredient. The water may in particular be present at least substantially or practically exclusively as chemically bound water in the form of water of crystallization and / or hydroxide groups. Such additives can be obtained in particular by the treatment of ores, for example by leaching of laterite ores, if the components to be alloyed nickel and / or cobalt. Optionally, these leaches can be worked up to separate other undesirable components, optionally, the desired alloying constituents can also be separated directly from these leaching by precipitation. The respective precipitates can then be separated and dried, in particular in order to obtain pneumatically or gravity-feedable additives. Optionally, the aggregates thus obtained can be calcined or precalcined in a separate step to the content of the at Addition of the additive to the melt volatilizing components such as chemically bound water, for example in the form of water of crystallization and / or to reduce from hydroxide groups and / or carbonate, without this being always necessary. The content of undesirable constituents which are neither desired alloy constituents nor constituents which volatilize in the addition of the aggregate to the molten metal nor which are slag formers may be ≦ 15-20% by weight, ≦ 5-10% by weight or else ≤ 2-3 wt .-% based on the aggregate used.

Überraschenderweise hat es sich herausgestellt, dass derartige Zuschlagstoffe mit sehr hohem Gehalt an sich bei der Zuführung des Zuschlagstoffes in die Schmelze verflüchtigenden Bestandteilen in derartigen Verfahren verwendbar sind und Vorteile bieten, wie die Herstellung relativ reiner Schmelzen, schmelzmetallurgische Vorteile wie geringe Verschlackung anderer Legierungsbestandteile, geringe Herstellungskosten der jeweilige Schmelze und der aus diesen hergestellten Materialien. Überraschenderweise wurde festgestellt, dass derartige Verfahren trotz der mit der Kalzinierung der zugeführten Zuschlagstoffe auftretenden Effekte wie Erzeugung großer Mengen Wasserdampf oder anderer flüchtiger Gase wie CO2, beherrschbar sind. Dies gilt insbesondere dann, wenn der Zuschlagstoff von dem oberen Bereich des Schmelzgefäßes her, d.h. schlackenseitig, zugeführt wird. Das erfindungsgemäße Verfahren ist insbesondere anwendbar, wenn das Basismetall der Schmelze, d.h. der Hauptlegierungsbestandteil derselben, Eisen ist oder die Schmelze allgemein ≥ 10-20 Gew.-% Eisen enthält oder eisenhaltig ist, aber auch bei anderen Basismetallen, die allgemein Übergangsmetalle sein können. Das Verfahren ist insbesondere zur Herstellung von Stählen geeignet, einschließlich niedrig-, mittel- und hochlegierter Stähle. Die Stähle weisen vorzugsweise einen hohen Kohlenstoffgehalt auf, beispielsweise ≥ 1,5 Gew.-%, ≥ 1,75-2 Gew.-% oder ≥ 2,25-2,5 Gew.-% oder ≥ 2,75-3 Gew.-% Kohlenstoff bezogen auf den Kohlenstoffgehalt der Schmelze, in welche der Zuschlagstoff eingebracht wird oder bezogen auf das Endprodukt des jeweiligen Stahlherstellungverfaherns wie es in dem jeweiligen Schmelzegefäß hergestellt wird. Der Nickelgehalt der resultierenden Schmelze nach Beendigung der Zugabe eines Ni-haltigen Zuschlagstoffes kann ≥ 1,5-1,75 Gew.-%, ≥ 2-2,75 Gew.-% oder ≥ 3-4 Gew.-% betragen, z.B. ca. 5 Gew.-% oder größer. Das erfindungsgemäße Verfahren ist ferner bevorzugt bei der Herstellung von Cr-Fe- oder Cr-Fe-Ni-Vorlegierungen einsetzbar, die einen Cr-Gehalt von ≥ 30-35 Gew.-%, ≥ 40-45 Gew.-% oder ≥ 45-50 Gew.-% Chrom aufweisen können, wobei der Kohlenstoffgehalt der Schmelze in dem Verfahrensschritt der Zugabe des erfindungsgemäßen Zuschlagstoffes oder des Endproduktes ≥ 2-3 Gew.-%, ≥ 3,5-4 Gew.-% oder ≥ 4,5-5 Gew.-% betragen kann und wobei die Schmelze vorzugsweise in einem Konverterprozeß hergestellt wird. Der Kohlenstoffgehalt beträgt zumeist ≤ 8-10 Gew.-%. Durch das erfindungsgemäße Verfahren findet zumeist eine Entkohlung der Schmelze statt. Die erfindungsgemäße Zugabe des Zuschlagstoffes erfolgt daher zumeist während eines mittels einer Blaslanze durchgeführten Entkohlungsprozesses oder während eines Frischprozeßes bzw. unmittelbar diesem vorangehend oder nachfolgend.Surprisingly, it has been found that such additives having a very high content of constituents volatilizing in the addition of the additive into the melt can be used in such processes and offer advantages such as the production of relatively pure melts, low metallurgical advantages such as low slagging of other alloying constituents Production costs of the respective melt and the materials produced from these. Surprisingly, it has been found that such processes can be controlled despite the effects occurring with the calcination of the added additives, such as the production of large quantities of water vapor or other volatile gases such as CO 2 . This applies in particular when the additive is supplied from the upper region of the melting vessel, ie on the slag side. The method according to the invention is particularly applicable when the base metal of the melt, ie the main alloy constituent thereof, is iron or the melt generally contains ≥10-20% by weight of iron or is iron-containing, but also with other base metals which may in general be transition metals. The process is particularly suitable for the production of steels, including low, medium and high alloyed steels. The steels preferably have a high carbon content, for example ≥ 1.5% by weight, ≥ 1.75-2% by weight or ≥ 2.25-2.5% by weight or ≥ 2.75-3% by weight % Of carbon, based on the carbon content of the melt, into which the Aggregate is introduced or based on the end product of the respective Stahlherstellungverfaherns as it is produced in the respective melt vessel. The nickel content of the resulting melt after completion of the addition of a Ni-containing additive may be ≥ 1.5-1.75 wt .-%, ≥ 2-2.75 wt .-% or ≥ 3-4 wt .-%, for example about 5 wt .-% or greater. The process according to the invention is furthermore preferably usable in the preparation of Cr-Fe or Cr-Fe-Ni master alloys which have a Cr content of ≥ 30-35% by weight, ≥ 40-45% by weight or ≥ 45 -50 wt .-% chromium, wherein the carbon content of the melt in the process step of adding the additive according to the invention or the final product ≥ 2-3 wt .-%, ≥ 3.5-4 wt .-% or ≥ 4.5 -5 wt .-% may be and wherein the melt is preferably prepared in a converter process. The carbon content is usually ≤ 8-10 wt .-%. By the method according to the invention is usually a decarburization of the melt instead. The addition of the additive according to the invention therefore usually takes place during a decarburization process carried out by means of a lance or during a refining process or directly preceding or following it.

Allgemein erfolgt die erfindungsgemäße Zugabe des Zuschlagstoffes vorzugsweise während einer Hauptentkohlungsphase des jeweiligen Verfahrens der Stahlherstellung oder Herstellung der jeweiligen Legierung. Der erfindungsgemäß eingesetzte Zuschlagstoff wird somit vorzugsweise noch zu entkohlenden Schmelzen zugeführt, wobei während der Zuführung des Zuschlagstoffes eine Teilentkohlung stattfinden kann.In general, the addition of the additive according to the invention preferably takes place during a main decarburization phase of the respective process of steelmaking or production of the respective alloy. The additive used according to the invention is thus preferably still supplied to decarburizing melts, it being possible for partial decarburization to take place during the supply of the additive.

Vorzugsweise wird der zulegierende Zuschlagstoff in den jeweiligen Oberraum des Schmelzegefäßes oder Konverters eingeführt, d.h. von oberhalb der die Schmelze bedeckenden Schlacke, wobei der Zuschlagstoffauslass der Zuführeinrichtung vorzugsweise von der Schlacke beabstandet ist, so dass der Zuschlagstoff einen Weg durch die Atmosphäre zur Schlacke bzw. zur Schmelze hin zu nehmen hat.Preferably, the additive to be alloyed is introduced into the respective upper space of the melt vessel or converter, ie from above the slag covering the melt, wherein the feed additive outlet is preferably spaced from the slag so that the additive travels through the atmosphere to the slag Melt down to take.

Vorteilhafterweise wird der als Feststoff vorliegende Zuschlagstoff mittels eines Gasstromes unter Erzeugung eines schlackefreien Brennfleckes der Metallschmelze direkt in dieser zugeführt. Dies gilt insbesondere bei der Verwendung Ni- und/ oder Co-haltiger Zuschlagstoffe, aber ggf. auch im Falle anderer Übergangsmetalle, insbesondere von V, Mo. Der Brennfleck der Metallschmelze (Schmelzbadoberfläche) entsteht somit dadurch, dass die Schlacke von dem Gasstrom an der Auftrittstelle vollständig verdrängt wird, so dass der Zuschlagstoff - unter Berücksichtigung dessen Kalzinierung bei der Zuführung aus der Zuführeinrichtung zur Schmelze - unmittelbar mit der Metallschmelze in Kontakt kommen kann, ohne durch die Schlacke durchtreten zu müssen. Es hat sich hierbei im Hinblick auf die schmelzmetallurgische Umwandlung des Zuschlagstoffes und der Legierung insgesamt als vorteilhaft herausgestellt, wenn der Brennfleck eine möglichst hohe Temperatur hat, beispielsweise von ≥ 1.750° bis 1.800°C, vorzugsweise ≥ 2.000° bis 2.200°C oder ≥ 2.400° bis 2.500°C, besonders bevorzugt Temperaturen von ≥ 2.600°C. Durch die sehr hohen Brennflecktemperaturen (d.h. Temperaturen der Schmelze im Brennfleck) erfolgt eine äußerst schnelle Aufnahme der Legierungsbestandteile aus dem Zuschlagstoff in die Schmelze.Advantageously, the additive present as a solid is fed by means of a gas stream to produce a slag-free focal spot of the molten metal directly in this. This applies in particular to the use of Ni and / or Co-containing additives, but possibly also in the case of other transition metals, in particular of V, Mo. The focal spot of the molten metal (molten bath surface) thus arises from the fact that the slag from the gas stream at the Appearance is completely displaced, so that the aggregate - taking into account its calcination in the feed from the feeder to the melt - can come into direct contact with the molten metal without having to pass through the slag. With regard to the melt-metallurgical conversion of the aggregate and of the alloy, it has turned out to be advantageous overall when the focal spot has the highest possible temperature, for example from ≥ 1750 ° to 1800 ° C., preferably ≥ 2000 ° to 2200 ° C. or ≥ 2400 ° to 2,500 ° C, more preferably temperatures of ≥ 2,600 ° C. Due to the very high focal spot temperatures (i.e., temperatures of the melt in the focal spot), an extremely rapid absorption of the alloying constituents from the aggregate into the melt takes place.

Die Kalzinierung des Zuschlagstoffes kann derart gesteuert werden, insbesondere durch die Fördergeschwindigkeit des Zuschlagstoffes in Richtung auf die Schmelze, dass diese erst unmittelbar bei oder nach Austritt aus der zumeist als Lanze ausgebildeten Zuführeinrichtung erfolgt. Die Kalzinierung kann hierbei teilweise oder überwiegend während des Transportes von der Lanze zur Schmelzoberfläche erfolgen, aber auch zu einem signifikanten oder überwiegenden Anteil unmittelbar im Brennfleck (d.h. der durch die Eindüsung freigelegten Schmelzeoberfläche) oder in der Aufprallzone des zugeführten Zuschlagstoffes auf dem Schmelzbad, in welcher die Schmelze eine Senke ausbildet, statt. Die endothermen Kalzinierungsvorgänge des Zuschlagstoffes finden somit vor dem Eintritt desselben in die Schmelze oder unmittelbar in dem Brennfleck bzw. der Aufprallzone statt, so dass eine überaus feine Zerteilung der Zuschlagstoffe bei der Kalzinierung und vor deren Aufnahnme durch die Schmelze stattfindet. Die Kalzinierungsgase dringen somit auch nur in geringem Ausmaß oder praktisch nicht in die Metallschmelze ein und eine Kalzinierung des Zuschlagstoffes in der Düsenzone, d.h. vor Austritt aus einer Lanzendüse oder dergleichen wird vermieden. Hierdurch ist insgesamt auch der Energiehaushalt des Herstellungsprozesses besser steuerbar, was besondere Vorteile in der Prozessführung mit sich bringt, insbesondere auch hinsichtlich der Vermeidung der Verschlackung bestimmter Legierungsbestandteile wie z. B. Chrom und der Metallurgie der Schmelze im Hinblick auf die durch die Kalzinierung des Zuschlagstoffes eingebrachten Kristallisationskeime. Dies gilt beispielsweise auch gegenüber einem etwaigen Eindüsen der genannten Zuschlagstoffe durch Unterbaddüsen, die unterhalb der Schlacke in die Schmelze eindringen.The calcination of the aggregate can be controlled in such a way, in particular by the conveying speed of the aggregate in the direction of the melt, that this takes place only immediately after or at the outlet from the usually formed as a lance feeder. The calcination may in this case take place partially or predominantly during the transport from the lance to the melt surface, but also to a significant or predominant proportion directly in the focal spot (ie the melt surface exposed by the injection) or in the impact zone of the added aggregate on the molten bath, in which the melt a sink training, instead. The endothermic calcination processes of the additive thus take place before it enters the melt or directly in the focal spot or the impact zone, so that a very fine separation of the aggregates takes place during the calcination and prior to their absorption by the melt. The calcination gases thus penetrate only to a small extent or practically not in the molten metal and calcination of the additive in the nozzle zone, ie before exiting a lance nozzle or the like is avoided. As a result, overall, the energy balance of the manufacturing process is better controlled, which brings with it special advantages in the process management, especially with regard to the prevention of slagging of certain alloying components such. As chromium and the metallurgy of the melt with respect to the introduced by the calcination of the aggregate crystallization nuclei. This also applies, for example, to any injection of said additives by means of underbath nozzles, which penetrate into the melt below the slag.

Der die Legierungselemente enthaltene Zuschlagstoff wird vorzugsweise in einem Feststoffstrom der Schmelze zugeführt, der von einem Gasstrom ummantelt ist. Hierdurch kann auf wirksame Weise ein Brennfleck in der Schmelze erzeugt und eine Wechselwirkung oder chemische Reaktion des Zuschlagstoffes mit der Schlacke vermieden werden. Zugleich kann hierdurch der Feststoffstrom fokussiert bzw. in seinem Durchmesser eingestellt werden. Ferner kann durch den Gasmantel die Eindringtiefe des Zuschlagstoffes in die Metallschmelze bzw. der Ort der Kalzinierung unabhängig von der Feststoffzufuhr gesteuert werden und/oder ein Entweichen von Stäuben wie beispielsweise Nickeloxidstäuben aus dem Feststoffstrom vermieden werden. Ferner wird ein Entweichen der bei der Kalzinierung entstehenden flüchtigen Bestandteile wie H2O, CO2 und dergleichen vermieden, was bei bestimmten Prozessführungen erwünscht ist. Die Ummantelung des Feststoffstroms durch den Gas- bzw. Fördergasstrom erfolgt somit vorzugsweise von der Zuführeinrichtung, insbesondere einer Gaslanze, bis in den Brennfleck hinein. Vorzugsweise ist die Fördereinrichtung bzw. die Lanze gekühlt, insbesondere wassergekühlt. Das ummantelnde Gas kann unter Umständen zugleich das Fördergas für den Feststoffstrom sein. Vorzugsweise ist das Fördergas in Bezug auf den Zuschlagstoff inert, zumindest bis zum Austritt desselben aus der Zuführeinrichtung wie z.B. einer Lanze, oder insgesamt unter den Verfahrensbedingungen inert. Das Fördergas kann unter Umständen Luft sein, vorzugsweise mit Stickstoff oder anderen Inertgasen angereicherte Luft oder unmittelbar Stickstoff oder ein anderes Inertgas wie Argon. Vorzugsweise weist das Fördergas nicht einen gegenüber Luft erhöhten Sauerstoffgehalt auf.The additive containing the alloying elements is preferably supplied in a stream of solids to the melt, which is surrounded by a gas stream. This can effectively create a focal spot in the melt and avoid interaction or chemical reaction of the aggregate with the slag. At the same time thereby the solids flow can be focused or adjusted in its diameter. Furthermore, the depth of penetration of the additive into the molten metal or the place of calcination can be controlled independently of the solids supply by the gas jacket and / or escape of dusts such as nickel oxide dusts are avoided from the solids flow. Furthermore, escape of volatiles formed during calcination such as H 2 O, CO 2 and the like is avoided, which is desirable in certain process controls. The sheathing of the solids flow through the gas or conveying gas flow is thus preferably from the feeder, in particular a gas lance, into the focal spot. Preferably, the conveyor or the lance is cooled, in particular water-cooled. Under certain circumstances, the enveloping gas can at the same time be the conveying gas for the flow of solids. Preferably, the delivery gas is inert with respect to the aggregate, at least until it exits from the supply means such as a lance, or totally inert under the process conditions. The conveying gas may under certain circumstances be air, preferably air enriched with nitrogen or other inert gases, or directly nitrogen or another inert gas such as argon. Preferably, the conveying gas does not have an oxygen content which is increased in relation to air.

Die Lanze kann in bekannter Weise ein zentrales Rohr zur Zuführung von Feststoffen aufweisen und radial außenseitig ein weiteres koaxial angeordnetes Rohr mit größerem Durchmesser oder aber eine vorzugsweise im Wesentlichen kreisförmige Anordnung von zumeist mehreren Austrittsdüsen für das Ummantelungsgas. Die Austrittsdüsen des Feststoffstromes und/oder des Ummantelungsgases können insbesondere als Laval-Düsen ausgebildet sein. Das etwaig eingesetzte Fördergas tritt mit den Feststoffen zusammen aus dem Zentralrohr aus. Die Lanze kann einen wassergekühlten Mantel aufweisen.The lance may have in a known manner a central tube for supplying solids and radially outside another coaxially arranged tube with a larger diameter or a preferably substantially circular arrangement of mostly several outlet nozzles for the sheath gas. The outlet nozzles of the solids flow and / or the jacket gas can be designed in particular as Laval nozzles. The possibly used carrier gas emerges together with the solids from the central tube. The lance can have a water-cooled jacket.

Die Vorrichtung zum Zuführen bzw. Einblasen der erfindungsgemäß Zuschlagstoffe kann in Art eines geschlossenen Systems ausgeführt sein, so dass jeglicher menschlicher Kontakt mit dem Material vermieden werden kann. Dies ist insbesondere im Falle von nickelhaltigen Zuschlagstoffen von Bedeutung. So kann in einem pneumatischen System ein Silo von einem Transportmittel unter Zuhilfenahme von Druckluft beladen und die Stäube weiter durch Druckkessel der Zuführeinrichtung bzw. der Lanze zugeführt werden. Die aus der Lanze austretenden Zuschlagstoffe werden durch einen Gasstrom ummantelt, um auch hier Verluste an Zuschlagstoffen zu minimieren.The device for supplying or blowing in the additives according to the invention can be designed in the manner of a closed system, so that any human contact with the material can be avoided. This is especially important in the case of nickel-containing aggregates. Thus, in a pneumatic system, a silo can be loaded by a means of transport with the aid of compressed air and the dusts can be further supplied by pressure vessels to the feeder or the lance. The exiting from the lance aggregates are encased by a gas stream to minimize losses of aggregates here.

Dadurch, dass die Kalzinierung der Zuschlagstoffe derart gesteuert wird, dass diese bei oder nach Austritt aus der Zuführungseinrichtung bzw. Lanze erfolgen (vorzugsweise nicht jedoch vorher), kann zudem die bestehende Abwärme von aufsteigenden Abgasen und Strahlungswärme vom Bad sowie von den umgebenden Wänden des Schmelzgefäßes bzw. Konverters zur Kalzinierung der Zuschlagstoffe genutzt werden.The fact that the calcination of the additives is controlled so that they take place at or after leaving the feeder or lance (preferably not before), can also the existing waste heat from rising exhaust gases and radiant heat from the bath and from the surrounding walls of the melting vessel or converter are used for calcination of the aggregates.

Wahlweise kann bei bestimmten metallurgischen Herstellungsverfahren der sich durch die Kalzinierung ergebene endotherme Effekt auch bewusst ausgenutzt werden, um die Badtemperatur zu erniedrigen. Hierzu kann beispielsweise das Sauerstoff enthaltende Ummantelungsgas und/oder das Fördergas teilweise oder vollständig durch Inertgase ersetzt werden. Die durch die Reaktion der sauerstoffhaltigen Gase mit dem Kohlenstoff der Schmelze stattfindende stark exotherme Entkohlungsreaktion wird dann teilweise oder vollständig unterbleiben. Es versteht sich, dass die Gaszuführung auch derart ausgeführt werden kann, dass hierdurch eine Steuerung der Temperatur der Schmelze in einem vorgegebenen Verfahren erfolgt, in dem der Sauerstoffgehalt des Ummantelungsgases und/oder des Fördergases in Abhängigkeit von Verfahrensparametern des Herstellungsverfahrens wie z.B. der Brennflecktemperatur und/oder der Temperatur der Schmelze an anderem Ort variiert wird. Nach Bedarf kann dann der Sauerstoffgehalt des Förder- und/oder Ummantelungsgases erhöht und der Anteile an Inertgasen verringert werden und umgekehrt. Der erfindungsgemäß einzusetzende Zuschlagstoff kann somit allgemein während der Frischphase des metallurgischen Prozesses, insbesondere der Hauptfrischphase, der Schmelze zugeführt werden.Optionally, in certain metallurgical manufacturing processes, the endothermic effect resulting from the calcination may also be deliberately exploited to lower the bath temperature. For this purpose, for example, the oxygen-containing sheathing gas and / or the conveying gas can be partially or completely replaced by inert gases. The highly exothermic decarburization reaction taking place by the reaction of the oxygen-containing gases with the carbon of the melt will then be partly or completely omitted. It is understood that the gas supply can also be carried out in such a way that a control of the temperature of the melt takes place in a predetermined process, in which the oxygen content of the shell gas and / or the delivery gas depending on process parameters of the manufacturing process such. the focal spot temperature and / or the temperature of the melt is varied elsewhere. If necessary, then the oxygen content of the conveying and / or jacketing gas can be increased and the proportions of inert gases can be reduced and vice versa. The additive to be used according to the invention can thus generally be supplied to the melt during the fresh phase of the metallurgical process, in particular the main fresh phase.

Der Ummantelungsgasstrom kann ≥ 25 Gew.-% oder ≥ 50 Gew.-% oder ≥ 75 Gew.-% Sauerstoff enthalten, bei bestimmten Verfahrensvarianten dauernd oder zeitweilig auch ≥ 80, ≥ 90 oder ≥ 95 Gew.-% oder auch ≥ 98 Gew.-% Sauerstoff enthalten oder praktisch reiner Sauerstoff sein. Der Sauerstoffgehalt des Ummantelungsgasstromes kann ≤ 95 bis 98 Gew.-%, gegebenenfalls ≤ 80 bis 90 Gew.-% oder auch ≤ 60 bis 70 Gew.-% sein, gegebenenfalls auch ≤ 50 oder ≤ 25 Gew.-%. Der Sauerstoffgehalt des Ummantelungsgases und auch des Fördergases kann durch Verwendung von Inertgasen eingestellt werden, beispielsweise auf ≤ 10 bis 20 oder ≤ 5 Gew.-% des Gases oder es können praktisch reine Inertgase verwendet werden. Das zu verwendende Inertgas hängt von den jeweiligen Prozessbedingungen ab, es kann beispielsweise Stickstoff, vorzugsweise Argon sein. Da aufgrund der stark endothermen Kalzinierungsreaktion der eingesetzten Zuschlagstoffe mit hohen Anteilen flüchtiger Kalzinierungskomponenten sich ebenfalls die Badtemperatur verringert und die flüchtigen Kalzinierungsprodukte wie z.B. Wasserdampf und/oder CO2 oder Reaktionsprodukte derselben wie Sauerstoff, Wasserstoff und CO eine Partialdruckerniedrigung des Sauerstoffs und/oder der Reaktionsprodukte im Brennfleck bewirken, kann nach dem erfindungsgemäßen Verfahren gegebenenfalls auf die Beimischung von Inertgasen auch verzichtet werden, um die Bad- und/oder Brennflecktemperatur zu steuern.The jacket gas stream may contain ≥ 25 wt .-% or ≥ 50 wt .-% or ≥ 75 wt .-% oxygen, in certain process variants permanently or temporarily also ≥ 80, ≥ 90 or ≥ 95 wt .-% or even ≥ 98 wt .-% contain oxygen or practical be pure oxygen. The oxygen content of the jacket gas stream may be ≦ 95 to 98 wt .-%, optionally ≦ 80 to 90 wt .-% or even ≦ 60 to 70 wt .-%, optionally also ≦ 50 or ≦ 25 wt .-%. The oxygen content of the jacket gas and also of the delivery gas can be adjusted by using inert gases, for example ≤ 10 to 20 or ≤ 5% by weight of the gas, or virtually pure inert gases can be used. The inert gas to be used depends on the respective process conditions, it may for example be nitrogen, preferably argon. Since due to the strong endothermic calcination reaction of the additives used with high levels of volatile calcination components also reduces the bath temperature and the volatile calcination products such as water vapor and / or CO 2 or reaction products thereof such as oxygen, hydrogen and CO a partial pressure reduction of the oxygen and / or the reaction products in By effecting the focal spot, it is also possible, if appropriate, to dispense with the addition of inert gases in order to control the bath and / or focal spot temperature according to the method of the invention.

Vorzugsweise weist das Fördergas und/oder das Ummantelungsgas eine Zusammensetzung auf, so dass dieses auch in Bezug auf die Kalzinierung des Zwischenstoffes inert ist, d. h. keine oder nur eine untergeordnete Reaktion des Förder- und/oder Ummantelungsgases mit dem Zwischenstoff und/oder dessen Kalzinierungsprodukten erfolgt bzw. keine oder praktisch keine Reaktionswärme freigesetzt wird. Dies sollte für den Zeitraum vor Austritt des Zuschlagstoffes aus der Zuführeinrichtung wie z.B. einer Lanze gelten, vorzugsweise allgemein.Preferably, the delivery gas and / or the shell gas has a composition such that it is also inert with respect to the calcination of the precursor, i. H. no or only a minor reaction of the delivery and / or jacketing gas with the precursor and / or its calcination occurs or no or virtually no heat of reaction is released. This should be done for the period before the aggregate exits the feeder such as e.g. a lance, preferably in general.

Zusammen mit dem mindestens einen Zuschlagstoff, der mindestens einen weiteren Legierungsbestandteil enthält, können bei Bedarf weitere Feststoffe der Schmelze zugeführt werden, beispielsweise weitere Legierungsbestandteile, die auch solche herkömmlicher Art wie Ferrolegierungen sein können, und/oder Schlacke bildende Stoffe wie Calcium- und/oder Magnesiumverbindungen (z.B. CaO, MgO, Dolomit usw.), Silikate oder Quarz, ohne hierauf beschränkt zu sein. Der Gehalt dieser weiteren Feststoffe in dem Zuschlagstoffstrom kann ≤ 50 Gew.-%, vorzugweise ≤ 20-25 Gew.-% oder ≤ 10-20 Gew.-% betragen, insbesondere auch ≤ 5-9 Gew.-% oder ≤ 2-4 Gew.-%. Gegebenenfalls kann der Zuschlagstoffstrom frei von derartigen weiteren Feststoffen sein.If necessary, further solids can be added to the melt together with the at least one additive which contains at least one further alloying constituent, for example further alloy constituents, which may also be of a conventional type, such as ferroalloys, and / or slag Forming substances such as calcium and / or magnesium compounds (eg CaO, MgO, dolomite, etc.), silicates or quartz, without being limited thereto. The content of these further solids in the additive stream may be ≦ 50% by weight, preferably ≦ 20-25% by weight or ≦ 10-20% by weight, in particular also ≦ 5-9% by weight or ≦ 2 4% by weight. Optionally, the additive stream may be free of such further solids.

Der der Schmelze zugeführte Zuschlagstrom kann weitere Feststoffe oder Bestandteile enthalten, wie beispielsweise Kohlenstoffe, Kohlenwasserstoffe in fester, flüssiger oder gasförmiger Form oder andere Reduktionsmittel wie beispielsweise Ferrosilicium, Aluminium, Ferroaluminium usw. Vorzugsweise enthält der zulegierende Zuschlagstoff jedoch ≤ 10 Gew.-% oder ≤ 5 Gew.-% derartige Feststoffe oder Reduktionsmittel, bevorzugt ≤ 2 bis 3 Gew.-% oder ≤ 1 Gew.-%. Der Zuschlagstoffstrom, gegebenenfalls einschließlich von in diesem enthaltenen gasförmigen Komponenten, und/oder der Ummantelungsgasstrom können auch frei von (teilchenförmigem) Kohlenstoff, Kohlenwasserstoffen und/ oder anderen Reduktionsmitteln sein. Die zur Zuführung der Zuschlagstoffe eingesetzte Lanze wirkt somit nicht oder nur in untergeordnetem Umfang in Art eines Brenners, wobei etwaige Reaktionen außerhalb der Lanze stattfinden sollen.The aggregate flow supplied to the melt may contain other solids or constituents, such as carbons, hydrocarbons in solid, liquid or gaseous form or other reducing agents such as ferrosilicon, aluminum, ferroaluminum, etc. Preferably, however, the additive to be alloyed contains ≦ 10% by weight or ≦ 5% by weight of such solids or reducing agents, preferably ≦ 2 to 3% by weight or ≦ 1% by weight. The aggregate stream, optionally including gaseous components contained therein, and / or the jacket gas stream may also be free of (particulate) carbon, hydrocarbons and / or other reducing agents. The lance used for the supply of aggregates thus acts not or only to a minor extent in the manner of a burner, with any reactions to take place outside the lance.

Der eingesetzte Zuschlagstoff, der einen hohen Gehalt an chemisch gebundenem Wasser aufweisen kann, kann zur pneumatischen Förderung und/oder Schwerkraftförderung geeignet aufbereitet sein. Der Gehalt an freiem, lediglich physikalisch gebundenem Wasser (Restfeuchte) kann hierbei ≤ 5 Gew.-%, vorzugsweise ≤ 2-3 Gew.-% oder ≤ 1 Gew.-% bezogen auf das Gesamtgewicht des Zuschlagstoffes betragen. Gegebenenfalls können jedoch auch andere Arten der Förderung bzw. Zuführung in die Schmelze gewählt werden.The additive used, which may have a high content of chemically bound water, may be prepared for pneumatic conveying and / or gravity promotion suitable. The content of free, only physically bound water (residual moisture) hereby may be ≦ 5% by weight, preferably ≦ 2-3% by weight or ≦ 1% by weight, based on the total weight of the additive. Optionally, however, other types of conveying or feeding into the melt can be selected.

Der Zuschlagstoff kann zu ≥ 60-70 Gew.-%, ≥ 75-80 Gew.-% oder ≥ 85-90 Gew.-% oder auch ≥ 95 Gew.-% aus den Bestandteilen (1) bestimmungsgemäß erwünschte Legierungsbestandteile, (2) flüchtig Bestandteile ohne negative schmelzmetallurgische Eigenschaften und (3) Schlackebildern bestehen.The aggregate may contain ≥ 60-70% by weight, ≥ 75-80% by weight or ≥ 85-90% by weight or else ≥ 95% by weight of the constituents (1) intended alloy components, (2) volatile constituents without negative metallurgical properties and (3) slag emulsions.

Der eingesetzte, als Feststoff vorliegende Zuschlagstoff kann in einer mittleren oder maximalen Korngröße von ≤ 10mm, ≤ 3-5mm oder dergleichen vorliegen, gegebenenfalls auch in feiner zerteilter Form wie als Pulver, z.B. mit Korngrößen von ≤ 0,5-1mm, oder in Form von Stäuben. Eventuell kann der Zuschlagstoff auch in kompaktierter oder agglomerierter Form, z.B. in brikettierter, pelletierter oder granulierter Form, vorliegen, wobei die Briketts, Pellets usw. aufgrund der Kalzinierungsreaktion und Verdampfung von Wasser und/oder CO2 bei Zuführung zum Brennfleck zerbersten und sich eigenständig fein zerteilen können.The solid additive used may be present in an average or maximum particle size of ≦ 10 mm, ≦ 3 to 5 mm or the like, optionally also in a finely divided form, such as a powder, e.g. with grain sizes of ≤ 0.5-1mm, or in the form of dusts. Optionally, the aggregate may also be in compacted or agglomerated form, e.g. in briquetted, pelleted or granulated form, wherein the briquettes, pellets, etc. burst due to the calcination reaction and evaporation of water and / or CO2 in the supply to the focal spot and can split themselves independently finely.

Das erfindungsgemäße Verfahren kann insbesondere ein AOD-Verfahren sein. Das Schmelzegefäß kann jeweils ein Argon-Sauerstoff-Entkohler (AOD), Creusot-Loire-Uddeholm (CLU)-Konverter, ein Vakuum-Sauerstoff (VOD)-Konverter oder ein Cr-Konverter sein. Gegebenenfalls kann das Schmelzegefäß ein BOP oder Q-BOP-Konverter sein. Gegebenenfalls, wenn auch weniger bevorzugt, kann das Verfahren ein Elektro-Stahl-Verfahren sein, beispielsweise ein Elektrolicht Bogenofen-Verfahren.The method according to the invention can be in particular an AOD method. The melt vessel may each be an argon-oxygen decarburizer (AOD), Creusot-Loire-Uddeholm (CLU) converter, a vacuum-oxygen (VOD) converter or a Cr-converter. Optionally, the melt vessel may be a BOP or Q-BOP converter. Optionally, though less preferably, the process may be an electro-steel process, for example, an electric arc furnace method.

Die zur Einstellung der Zusammensetzung des Schmelzbades einzubringenden Legierungsbestandteile können zu ≥ 5-10 Gew.-% oder ≥ 20-25 Gew.-%, ≥ 30-35 Gew.-% oder ≥ 40-50 Gew.-% durch die erfindungsgemäßen Zuschlagstoffe, die hohe Anteile an chemisch gebundenem Wasser oder kalzinierenden Bestandteilen aufweisen können, zugeführt werden. Gegebenenfalls können auch ≥ 75 Gew.-% oder ca. 100 Gew.-% der Legierungsbestandteile durch die erfindungsgemäß eingesetzten Zuschlagstoffe zugeführt werden.The alloy constituents to be introduced for adjusting the composition of the molten bath may contain ≥5-10% by weight or ≥20-25% by weight, ≥30-35% by weight or ≥40-50% by weight of the additives according to the invention , which may have high levels of chemically bound water or calcining components are supplied. Optionally, ≥ 75% by weight or about 100% by weight of the alloy constituents can also be supplied by the additives used according to the invention.

Je nach Größe des Schmelzegefäßes bzw. Konverters kann der Zusatzstoffstrom ≥ 100 kg/min betragen, vorzugsweise 200-500 kg/min oder auch mehr, jeweils bezogen auf eine Schmelze von 100 bis 120 Tonnen Metallgewicht (d.h. ohne Schlackengewicht), wobei für größere Schmelzemengen entsprechendes gilt.Depending on the size of the melt vessel or converter, the additive stream may be ≥ 100 kg / min, preferably 200-500 kg / min or more, in each case based on a melt of 100 to 120 tons of metal weight (ie without slag weight), with correspondingly being valid for larger amounts of melt.

Die erfindungsgemäße Zuführung von hoch wasserhaltigen Zuschlagstoffen hat sich insbesondere in Bezug auf nickel- und/oder kobalthaltige Zuschlagstoffe bewährt, ohne auf diese beschränkt zu sein. Die weiteren Ausführungen beziehen sich somit auf Ni-haltige Zuschlagstoffe, es versteht sich, dass sofern nichts anderes gesagt ist, entsprechendes für Co-haltige oder andere Zuschlagstoffe enthaltend andere Hauptlegierungsbestandteile gelten kann, beispielsweise Mn, Mo oder Cr.The supply of high-aqueous additives according to the invention has proven itself, in particular with respect to nickel- and / or cobalt-containing additives, without being limited to these. The further statements thus relate to additives containing Ni, it being understood that, unless otherwise stated, the same may apply to Co-containing or other additives containing other main alloy constituents, for example Mn, Mo or Cr.

Der in dem erfindungsgemäßen Verfahren einzusetzende Zuschlagstoff kann somit durch Lösen oder Auslaugung der relevanten Legierungsbestandteile, insbesondere Übergangsmetalle, aus einem Erz, einem in geeigneter Weise aufbereiteten Erz oder allgemein einem die Legierungsbestandteile enthaltenden Produkt, welches beispielsweise auch ein Abfallstoff sein kann, gewonnen werden. Nach Überführung des jeweiligen Legierungsbestandteils, dessen Gehalt in der Metallschmelze zu erhöhen ist, in den gelösten Zustand kann dieser durch geeignete Mittel ausgefällt werden, beispielsweise durch basische Mittel wie MgO, CaO, Dolomit usw., die gegebenenfalls als Aufschlämmung eingesetzt werden können, Ammoniak oder Ammoniumsalze und/oder Carbonate oder dergleichen. Die Ausfällung kann je nach Anwendungsfall bei erhöhten Temperaturen oder Raumtemperatur erfolgen, in Ausnahmefällen auch unter Kühlung. Der entstehende Niederschlag kann somit im Wesentlichen ein wasserhaltiges Hydroxid, Carbonat oder ein gemischtes Hydroxid/Carbonat sein. Allgemein erfolgt die Ausfällung des den Legierungsbestandteil bildenden Übergangsmetalls ohne Verwendung von S-haltigen Fällungsmitteln bzw. ohne Mittel, die zu einem S-Eintrag in den zu gewinnenden Niederschlag führen. Allgemein wird der Legierungsbestandteil somit in einer Form ausgefällt, so dass der resultierende Zuschlagstoff überwiegend oder praktisch ausschließlich aus Bestandteilen besteht, die bei der Kalzinierung des Zuschlagstoffes bei dessen Überführung in den oberen Schmelzgefäßraum abgesehen von dem Legierungsbestandteil überwiegend oder praktisch ausschließlich flüchtige Komponenten wie H2O, CO2 usw., die im Gegensatz zu S-haltigen Gasen wie SO2 schmelzmetallurgisch unbedenklich sind, und/oder Schlacke bildende Komponenten freisetzen. Gegebenenfalls kann die den Legierungsbestandteil enthaltende Lösung nach Auflösung bzw. Auslaugung des Erzes oder eines anderen geeigneten Stoffes aufbereitet werden, um bestimmte Bestandteile wie Verunreinigungen zu beseitigen. Es versteht sich, dass gegebenenfalls die Anreicherung des Übergangsmetalls aus der jeweiligen Quelle auf andere Weise erfolgen kann, z.B. durch Extraktionsverfahren, auch wenn diese weniger bevorzugt sind.The additive to be used in the process according to the invention can thus be obtained by dissolving or leaching the relevant alloy constituents, in particular transition metals, from an ore, a suitably prepared ore or generally a product containing the alloy constituents, which may for example also be a waste material. After conversion of the respective alloying ingredient whose content is to be increased in the molten metal in the dissolved state, this can be precipitated by suitable means, for example by basic agents such as MgO, CaO, dolomite, etc., which can be optionally used as a slurry, ammonia or Ammonium salts and / or carbonates or the like. Depending on the application, the precipitation can be carried out at elevated temperatures or room temperature, in exceptional cases also under cooling. The resulting precipitate may thus be essentially a hydrous hydroxide, carbonate or a mixed hydroxide / carbonate. Generally, the precipitation of the alloying component forming transition metal is carried out without the use of S-containing precipitants or without means that lead to an S-entry in the precipitate to be recovered. In general, the alloying constituent is thus precipitated in a mold so that the resulting aggregate consists predominantly or practically exclusively of constituents which are present in the calcination of the Aggregate when it is transferred into the upper melting vessel space, apart from the alloy constituent predominantly or practically exclusively volatile components such as H 2 O, CO 2 , etc., unlike S-containing gases such as SO 2 are melt metallurgically harmless, and / or release slag-forming components , Optionally, the solution containing the alloying ingredient may be treated after dissolution or leaching of the ore or other suitable material to remove certain constituents, such as impurities. It is understood that, where appropriate, the enrichment of the transition metal from the respective source can be done in other ways, for example by extraction methods, even if they are less preferred.

Der Zuschlagstoff kann anschließend derart aufbereitet werden, dass er pneumatisch oder durch Schwerkraft förderbar ist, hierzu kann der Zuschlagstoff eine Restfeuchte an physikalisch gebundenem Wasser von ≤ 5 Gew.-%, vorzugsweise ≤ 1 bis 3 Gew.-% aufweisen. Es versteht sich, dass die einzustellende Restfeuchte von den jeweiligen Prozessbedingungen abhängt.The aggregate can then be treated in such a way that it can be conveyed pneumatically or by gravity; for this purpose, the additive can have a residual moisture of physically bound water of ≦ 5% by weight, preferably ≦ 1 to 3% by weight. It is understood that the residual moisture to be set depends on the respective process conditions.

Der einsatzbereite Zuschlagstoff kann einen Gehalt von ≥ 10-15 Gew.-%, ≥ 15-20 Gew.-% oder auch ≥ 25-30 Gew.-% an bei der Kalzinierung flüchtigen, metallurgisch unbedenklichen Bestandteilen wie H2O und/oder CO2 enthalten, beispielsweise auch ≥ 30-35 Gew.-% oder ≥ 35-40 Gew.-%. Der Gehalt an diesen Bestandteilen ist vorzugsweise ≤ 65-70 Gew.-%, z.B. ≤ 60-65 Gew.-%, ≤ 55-60 Gew.-% oder ≤ 55-60 Gew.-%. Das chemisch gebundene Wasser kann hierbei insbesondere in Form von Kristallwasser und/oder Hydroxidgruppen vorliegen. Gegebenenfalls kann der Zuschlagstoff vorkalziniert werden, um auch z.B. bereits einen Teil des chemisch gebundenen Kristallwassers zu entfernen, ein derartiger Schritt ist jedoch nicht zwingend notwendig. Das hier Gesagte kann jeweils allgemein im Rahmen der vorliegenden Erfindung gelten.The ready-to-use additive may have a content of ≥ 10-15 wt .-%, ≥ 15-20 wt .-% or even ≥ 25-30 wt .-% of volatile in the calcination metallurgically harmless ingredients such as H 2 O and / or CO 2 , for example, ≥ 30-35 wt .-% or ≥ 35-40 wt .-%. The content of these components is preferably ≦ 65-70% by weight, for example ≦ 60-65% by weight, ≦ 55-60% by weight or ≦ 55-60% by weight. The chemically bound water may in this case be present in particular in the form of water of crystallization and / or hydroxide groups. Optionally, the aggregate may be precalcined to remove, for example, already a portion of the chemically bound water of crystallization, but such a step is not mandatory. The statements made here can generally apply in the context of the present invention.

Besonders bevorzugt ist wesentlicher metallischer Bestandteil oder Hauptbestandteil des Zuschlagstoffes, dessen Gehalt in der Metallschmelze zu erhöhen ist, zumindest ein oder mehrere Übergangsmetalle. Das Übergangsmetall mit höchstem Gehalt oder die Übergangsmetalle können jeweils einzeln oder in Summe ≥ 25-30 Gew.-% oder 40-50 Gew.-%, vorzugsweise ≥ 60-70 Gew.-%, bezogen auf den Gesamtmetallgehalt des Zuschlagstoffes vorliegen, wobei hier sämtliche Metalle, einschließlich Fe und Schlacke bildende Metalle wie Ca, Mg usw. umfasst sind. Das oder die Übergangsmetalle sind vorzugsweise solche, die unter den vorliegenden Verfahrensbedingungen in Kontakt mit der Schmelze oder nach Einbringung in die Schmelze reduzierbare Oxide darstellen, so dass das mindestens eine Übergangsmetall durch schmelzmetallurgische Reaktion mit der Schmelze in metallischer Form in die Schmelz übergeht. Die Schmelze wirkt somit auf das Übergangsmetalloxid, welches durch Kalzinierung des Zuschlagstoffes entsteht, oder ggf. auf den Zuschlagstoff selber reduzierend. Vorzugsweise weist das in oxidischer und/ oder metallischer Form vorliegende Übergangsmetall zudem einen nicht zu hohen oder praktisch vernachlässigbaren Dampfdruck auf, so dass Verluste durch verdampfendes Metall und/oder Metalloxid vermieden oder gering gehalten werden. Dies schließt Verluste aufgrund eines Materialaustrages des Metalloxides oder auch des Zuschlagstoffes selber durch die entweichenden Kalzinierungsgase mit ein. Wesentlicher Bestandteil oder Hauptbestandteil des Zuschlagstoffes kann zumindest ein Übergangsmetall sein wie beispielsweise Ni, Co, V, Mo, Mn, Cr, Ti, Zr, W, Nb, Ta oder eine Kombination derselben, vorzugsweise ist das Übergangsmetall Ni, Co, Mo oder V, insbesondere Ni oder Mo. Gegebenenfalls können Ni und Co in Kombination vorliegen, wobei Ni oder Co der Hauptbestandteil sein kann.Particular preference is given to the essential metallic constituent or main constituent of the aggregate, whose content in the molten metal is to be increased, at least one or more transition metals. The transition metal with the highest content or the transition metals may be present individually or in total ≥ 25-30 wt .-% or 40-50 wt .-%, preferably ≥ 60-70 wt .-%, based on the total metal content of the aggregate, wherein here all metals, including Fe and slag-forming metals such as Ca, Mg, etc. are included. The transition metal or metals are preferably those which, under the present process conditions, are in contact with the melt or after incorporation into the melt reducible oxides, so that the at least one transition metal is converted into the melt by melt metallurgical reaction with the melt in metallic form. The melt thus acts on the transition metal oxide, which is formed by calcination of the additive, or possibly reducing itself to the additive itself. In addition, the transition metal present in oxidic and / or metallic form preferably has not too high or virtually negligible vapor pressure, so that losses due to evaporating metal and / or metal oxide are avoided or minimized. This includes losses due to a material discharge of the metal oxide or the aggregate itself by the escaping calcination gases. An essential component or main component of the additive may be at least one transition metal such as Ni, Co, V, Mo, Mn, Cr, Ti, Zr, W, Nb, Ta or a combination thereof, preferably the transition metal is Ni, Co, Mo or V In particular, Ni or Co may be present in combination, with Ni or Co being the main constituent.

Zur Herstellung Nickel- und/oder Cobalt-haltiger Zuschlagstoffe ist es besonders vorteilhaft, Auslaugungen von Lateriterzen oder lateritähnlichen Erzen einzusetzen, z.B. Saprolith. Bevorzugt ist jedoch das am stärksten verwitterte Produkt Laterit. Bei lateritischen Nickelerzen können zwei Arten unterschieden werden, ein sehr eisenreichen Ni-Limonit-Erz mit ca. 1 bis 2 Gew.-% Nickel, gebunden an Goethit, oder Nickel-Silikat-Erze mit oftmals mehr als 2 Gew.-% Nickel, das in Silikaten insbesondere an Serpentin gebunden ist. Es versteht sich, dass für andere Übergangsmetalle andere geeignete Quellen, insbesondere auch Erze, einzusetzen sind.For the production of nickel- and / or cobalt-containing aggregates, it is particularly advantageous to use leaching of laterite or laterite ores, for example saprolite. However, the most weathered product laterite is preferred. For lateitic nickel ores, two types can be distinguished: a very iron-rich Ni-limonite ore containing about 1 to 2% by weight of nickel bound to goethite, or nickel-silicate ores often containing more than 2% by weight of nickel; which is bound in silicates, in particular to serpentine. It is understood that other suitable sources, in particular also ores, are to be used for other transition metals.

Zur Auslaugung von Ni/Co können insbesondere Säuren eingesetzt werden, beispielsweise Schwefelsäure. Die Auslaugung erfolgt vorzugsweise durch Haldenlaugung (heap leaching). Die Auslaugung kann allgemein bei Atmosphärendruck oder bei erhöhtem Druck erfolgen, beispielsweise durch Hochdrucksäurelaugung (high pressure acid leaching). Gegebenenfalls können auch andere Verfahren wie biologische Auslaugungsverfahren, Ammoniak/Ammonium-Auslaugung und dergleichen eingesetzt werden. Dies kann allgemein auch für andere Übergangsmetalle gelten, die aus Erzen oder anderen Quellen gewonnen werden. Vorzugsweise erfolgt die Auslaugung ohne Verwendung von Sulfiden und/oder Chloriden, was auch für die anderen Verfahrensschritte zur Herstellung des Zuschlagstoffes gelten kann.For the leaching of Ni / Co, in particular acids can be used, for example sulfuric acid. The leaching is preferably carried out by heap leaching. The leaching can generally be carried out at atmospheric pressure or at elevated pressure, for example by high-pressure acid leaching. Optionally, other methods such as biological leaching, ammonia / ammonium leaching and the like may also be used. This may generally apply to other transition metals derived from ores or other sources. Preferably, the leaching is carried out without the use of sulfides and / or chlorides, which may also apply to the other process steps for the production of the additive.

Aus der entstehenden Lösung bzw. Lauge kann zuvor durch geeignete Verfahren Kobalt abgetrennt werden, beispielsweise mittels geeigneter Komplexbildner wie Phosphonsäuren usw. Dies gilt allgemein auch für die Abtrennung anderer unerwünschter Komponenten wie unerwünschter Legierungsbestandteile, sowohl für die Herstellung von Ni-haltigen oder auch anderen übergangsmetallhaltigen Zuschlagstoffen. Gegebenenfalls können anschließend auch Nickel und Kobalt gemeinsam ausgefällt werden, um sogenannte gemischte Niederschläge (MHP) zu ergeben. Dies gilt für andere gemischte Übergangsmetallniederschläge entsprechend.From the resulting solution or alkali may be previously separated by suitable methods cobalt, for example by means of suitable complexing agents such as phosphonic acids, etc. This also generally applies to the separation of other undesirable components such as unwanted alloying constituents, both for the production of Ni-containing or other transition metal-containing aggregates. Optionally, nickel and cobalt may then be co-precipitated to give so-called mixed precipitates (MHP). This applies accordingly to other mixed transition metal precipitation.

Der nickelhaltige Zuschlagstoff kann einen Nickelgehalt von ≥ 5-10 Gew.-% aufweisen, beispielsweise ≥ 15 bis 17 Gew.-% oder ≥ 20 bis 23 Gew.-%, gegebenenfalls auch ≥ 25 bis 27 Gew.-%, einschließlich des Gehaltes an Restfeuchte oder jeweils bezogen auf einen Stoff mit einer Restfeuchte von ca. 0 Gew.-%. Der Nickelgehalt liegt typischerweise bei ≤ 50-55 Gew.-% oder auch ≤ 40-45 Gew.-%, kann ggf. aber auch bis ca. 60-65 Gew.-% oder höher betragen. Die Angaben beziehen sich auf den in dem schmelzmetallurgischen Verfahren einzusetzenden Zuschlagstoff. Entsprechendes kann auch für Co-haltige Zuschlagstoffe oder andere Zuschlagstoffe mit Übergangsmetallen der ersten Übergangsmetallperiode wie V usw. gelten, einschließlich gemischter Zuschlagstoffe mit zwei oder mehr Legierungsbestandteilen wie Ni/Co-Zuschlagstoffen, wobei für Übergangsmetalle höherer Perioden wie z.B. Mo entsprechendes unter Berücksichtigung des Verhältnisses der Atomgewichte des Übergangsmetalls der höheren Periode zu dem der ersten Periode wie z.B. Ni gilt.The nickel-containing additive may have a nickel content of ≥ 5-10 wt .-%, for example ≥ 15 to 17 wt .-% or ≥ 20 to 23 wt .-%, optionally also ≥ 25 to 27 wt .-%, including the content of residual moisture or in each case based on a substance having a residual moisture content of about 0 wt .-%. The nickel content is typically ≦ 50-55 wt .-% or even ≦ 40-45 wt .-%, but may also be up to about 60-65 wt .-% or higher. The data relate to the additive to be used in the smelting metallurgical process. The same can also apply to Co-containing aggregates or other first transition metal period transition metals such as V, etc., including mixed aggregates containing two or more alloying constituents, such as Ni / Co aggregates, with higher-grade transition metals, such as Mo, taking into account the ratio the atomic weights of the transition metal of the higher period to that of the first period such as Ni applies.

Die folgenden Angaben beziehen sich insbesondere auf einen Ni/Co-haltigen Zuschlagstoff, der insbesondere durch Lateritauslaugung erzeugt wird, sie können jedoch auch allgemein im Rahmen der Erfindung gelten.In particular, the following information relates to a Ni / Co-containing aggregate, which is produced in particular by laterite leaching, but may also generally be considered within the scope of the invention.

Der Zuschlagstoff kann chemisch gebundenes Wasser in Form von Kristallwasser und/oder Hydroxidgruppen mit einem Anteil von ≥ 5-10 oder bis 11 Gew.-% oder ≥ 15 bis 21 Gew.-%, gegebenenfalls auch ≥ 25 bis 30 Gew.-% oder ≥ 35-40 Gew.-% enthalten, was auch allgemein für im Rahmen der Erfindung einsetzbare Zuschlagstoffe gelten kann. Vorzugsweise enthält der Zuschlagstoff nicht mehr als 50-55 Gew.-% oder 60-65 Gew.-% Wasser (einschließlich in gebundener Form). Liegt der Zuschlagstoff als Carbonat oder gemischtes Hydroxid/Carbonat vor, so gelten die Gehalte entsprechend für den Gehalt an CO2 und/oder chemisch gebundenes Wasser.The additive can chemically bound water in the form of water of crystallization and / or hydroxide groups in a proportion of ≥ 5-10 or up to 11 wt .-% or ≥ 15 to 21 wt .-%, optionally also ≥ 25 to 30 wt .-% or ≥ 35-40 wt .-%, which may also generally apply to be used in the invention additives. Preferably, the aggregate contains no more than 50-55% by weight or 60-65% by weight of water (including in bound form). If the aggregate is in the form of carbonate or mixed hydroxide / carbonate, the contents shall be deemed to correspond to the content of CO2 and / or chemically bound water.

Der Schwefelgehalt des Zuschlagstoffes ist vorzugsweise ≤ 5-10 Gew.-%, insbesondere ≤ 4 Gew.-% oder ≤ 2-3 Gew.-%. Vorzugsweise ist der Schwefelgehalt ≤ 0,5-1 Gew.-% oder ≤ 0,2-0,3 Gew.-%. Entsprechendes kann auch für den Gehalt an Cl gelten. Dies kann jeweils allgemein im Rahmen der Erfindung gelten.The sulfur content of the additive is preferably ≦ 5-10% by weight, in particular ≦ 4% by weight or ≦ 2-3% by weight. Preferably, the sulfur content is ≦ 0.5-1% by weight or ≦ 0.2-0.3% by weight. The same can also apply to the content of Cl. This can each generally within the scope of the invention.

Soll der Zuschlagstoff allein der Zulegierung von Nickel, Vanadium und/oder Molybdän in der Schmelze dienen, so beträgt der Co-Gehalt vorzugsweise ≤ 2,5-2 Gew.-%, ≤ 1,75-1,5 Gew.-% oder ≤ 1,25-1 Gew.-%. Insbesondere gilt dies, wenn der Zuschlagstoff der Zulegierung von Nickel dient und z.B. Ni als Hauptbestandteil vorliegt. Der Co-Gehalt ist daher unkritisch in Bezug auf andere Co-Quellen der Schmelze, so dass in Bezug auf die Menge, in welcher der Zuschlagstoffes in dem jeweiligen Verfahren eingesetzt werden kann, keine Restriktionen gegeben sind, um unerwünscht hohe Co-Gehalte zu vermeiden.If the additive alone is to be used to alloy nickel, vanadium and / or molybdenum in the melt, the Co content is preferably ≦ 2.5-2% by weight, ≦ 1.75-1.5% by weight or ≤ 1.25-1 wt%. In particular, this applies when the aggregate is used to alloy nickel and e.g. Ni is present as the main constituent. The Co content is therefore uncritical with respect to other co-sources of the melt, so that there are no restrictions on the amount in which the aggregate can be used in the respective process in order to avoid undesirably high Co contents ,

Vorzugsweise wird der Gehalt an P, Cu, Sn, Pb, Nb, As, Cd und/oder Pd in dem Zuschlagstoff auf solche Werte begrenzt, das der Menge des zu der jeweiligen Schmelze zuzugebenden Zuschlagstoffes nicht begrenzt ist, um die Obergrenzen der genannten Komponenten in der Schmelze einhalten zu können. Soll durch den Zuschlagstoff nur Ni zulegiert werden, gilt dies auch für die Komponenten Co, V, Mo, und umgekehrt. Dadurch, dass der Zuschlagstoff über eine wässrige Lösung des jeweils gewünschten Übergangsmetalls gewonnen werden kann, können die Gehalte der genannten Komponenten vergleichsweise einfach durch bekannte Maßnahmen kontrolliert werden.Preferably, the content of P, Cu, Sn, Pb, Nb, As, Cd and / or Pd in the aggregate is limited to those values not limited to the amount of aggregate to be added to the respective melt, by the upper limits of said components in the melt to be able to comply. If only Ni is to be alloyed by the additive, this also applies to the components Co, V, Mo, and vice versa. Because the additive can be obtained via an aqueous solution of the respective desired transition metal, the contents of said components can be comparatively easily controlled by known means.

Der Zuschlagstoff kann neben dem Hauptlegierungsbestandteil weitere Legierungsbestandteile enthalten, wie beispielsweise Kobalt (im Falle eines Ni-Zuschlagstoffes) oder Nickel (im Falle eines Co-Zuschlagstoffes), Mangan usw, wenn diese Elemente für den jeweiligen Verwendungszweck erwünscht oder nicht störend sind. Im Falle eines durch Laterit-Laugung gewonnen Ni- und/oder Co-haltigen Zuschlagstoffes können weiterhin enthalten sein Mangan (beispielsweise ≥ 0,25 bis 5 Gew.-% oder ≥ 1 bis 2 Gew.-%), wobei der Gehalt ≤ 7,5 bis 10 Gew.-% oder ≤ 5 Gew.-% betragen kann, Kobalt mit Anteilen von ≥ 0,1 bis 0,25 Gew.-% oder ≥ 0,75 Gew.-%, wobei der Kobaltgehalt ≤ 3 bis 5 Gew.-% oder ≤ 2 Gew.-% liegen kann. Der Gehalt an Legierungsbildnern, einschließlich Eisen, kann hierbei ≥ 1 bis 2 Gew.-% oder ≥ 3 Gew.-% liegen und kann ≥ 15 Gew.-%, ≤ 10 bis 12 Gew.-% oder auch ≤ 8 bis 10 Gew.-% betragen. Dies auch allgemein im Rahmen der Erfindung gelten.In addition to the main alloying constituent, the aggregate may contain other alloying constituents, such as cobalt (in the case of a Ni aggregate) or nickel (in the case of a Co aggregate), manganese, etc., if these elements are desired or not interfering with the intended use. In the case of a laterite leached Ni and / or Co-containing additive may further contain manganese (for example, ≥ 0.25 to 5 wt .-% or ≥ 1 to 2 wt .-%), wherein the content ≤ 7 , 5 to 10 wt .-% or ≤ 5 wt .-%, cobalt with proportions of ≥ 0.1 to 0.25 wt .-% or ≥ 0.75 wt .-%, wherein the cobalt content ≤ 3 to 5% by weight or ≤ 2 wt .-% may be. The content of alloying agents, including iron, in this case ≥ 1 to 2 wt .-% or ≥ 3 wt .-% and can be ≥ 15 wt .-%, ≤ 10 to 12 wt .-% or even ≤ 8 to 10 wt .-% amount. This also applies generally in the context of the invention.

Der Zuschlagstoff kann des Weiteren Schlacke bildende Bestandteile wie Ca, Mg enthalten. Der Gehalt der Schlacke bildenden Bestandteile oder der Gehalt an Ca und/oder Mg in dem Zuschlagstoff kann ≥ 0,5 bis 1 Gew.-% oder 1,5 bis 2 Gew.-%, beispielsweise ≥ 3 bis 5 Gew.-% betragen, bezogen auf den Zuschlagstoff frei von Restfeuchtigkeit und jeweils bezogen auf das Gewicht des Metalls. Die Schlacke bildenden Bestandteile bzw.Ca und/oder Mg können in einer für das schmelzmetallurgische Verfahren geeigneten Form vorliegen, z.B. als Oxid, Hydroxid und/oder Carbonat aber auch Silikat. Der Gehalt an Schlacke bildenden Bestandteilen kann ≤ 25 Gew.-% oder ≤ 15 bis 20 Gew.-%, insbesondere ≤ 10 bis 12 Gew.-% oder ≤ 6 bis 8 Gew.-% betragen bezogen auf den in dem Verfahren zu verwendenden Zusatzstoff ohne Restfeuchte betragen. Die angegebenen Gehalte können sich jeweils einschließlich Mn, Cr, Si, Ti, Si und/oder Fe verstehen oder ausgenommen diese. Das oben Gesagte kann allgemein im Rahmen der Erfindung gelten.The aggregate may further contain slag-forming constituents such as Ca, Mg. The content of the slag-forming constituents or the content of Ca and / or Mg in the aggregate may be ≥ 0.5 to 1 wt% or 1.5 to 2 wt%, for example ≥ 3 to 5 wt% , based on the additive free from residual moisture and in each case based on the weight of the metal. The slag-forming components or Ca and / or Mg may be in a form suitable for the melt-metallurgical process, e.g. as oxide, hydroxide and / or carbonate but also silicate. The content of slag-forming constituents may be ≦ 25% by weight or ≦ 15 to 20% by weight, in particular ≦ 10 to 12% by weight or ≦ 6 to 8% by weight, based on that to be used in the process Add additive without residual moisture. The stated contents may be understood as including Mn, Cr, Si, Ti, Si and / or Fe, or excluding these. The above can generally be considered within the scope of the invention.

Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels erläutert, wobei die Figur eine schematische Darstellung des Schmelzgefäßes (Konverter) mit Zuführeinrichtung des Zuschlagstoffes in Form einer Lanze darstellt.The invention is explained below with reference to an embodiment, wherein the figure is a schematic representation of the melting vessel (converter) with feeding the aggregate in the form of a lance.

Figur 1 zeigt eine Anordnung zur Durchführung des erfindungsgemäßen Verfahrens, wobei in einem Schmelzgefäß 1, z.B. in Form eines Konverters, eine Metallschmelze 2 bereitgestellt wird, die von einer Schlacke 3 abgedeckt wird. Die Schmelze kann eine Eisenlegierung darstellen, z.B. eine solche zur Herstellung eines Ni-legierten Stahls mit einem Nickelgehalt von 1,5 bis 30 Gew.-%, insbesondere gängiger Ni- oder Cr/Ni-Stähle wie 18/8 Cr/Ni-Stahl und/oder von Stählen mit einem P- und S-Gehalt von jeweils < 0,005 Gew.-% oder < 0,0035 Gew.-%, was unabhängig von dem Ausführungsbeispiel gelten kann. Die Schlacke stellt hierbei eine zur Herstellung der jeweiligen Legierung übliche Schlacke dar, beispielsweise enthaltend hohe Anteile von Chromoxid, MgO, CaO und/oder SiO2, die neben der Abdeckung der Schmelze in die Metallurgie der Schmelze eingreifen kann. FIG. 1 shows an arrangement for carrying out the method according to the invention, wherein in a melting vessel 1, for example in the form of a converter, a molten metal 2 is provided, which is covered by a slag 3. The melt may be an iron alloy, for example one for producing a Ni-alloyed steel having a nickel content of 1.5 to 30 wt .-%, in particular common Ni or Cr / Ni steels such as 18/8 Cr / Ni steel and / or steels with a P and S content of <0.005 wt .-% or <0.0035 wt .-%, which may apply regardless of the embodiment. The slag is in this case a conventional slag for producing the respective alloy, for example containing high proportions of chromium oxide, MgO, CaO and / or SiO 2, which can intervene in addition to the coverage of the melt in the metallurgy of the melt.

Als Zuführeinrichtung zur Einbringung des Zuschlagstoffes in die Schmelze ist eine oberhalb der Schlacke angeordnete vorzugsweise wassergekühlte Lanze 4 vorgesehen, die vorzugsweise in den oberen Bereich des Schmelzgefäßes 1 eindringt. Die Lanze 4 besteht aus einem Zentralrohr 5 zum Eindüsen des festen Zuschlagstoffes in die Schmelze, welches außenseitig von einem Außenrohr 6 oder einer Mehrzahl von umfänglich um das Zentralrohr angeordneten Einzelrohren umgeben ist, beispielsweise von ≥ 2-3 oder ≥ 4-6 Einzelrohren. Die Rohrenden können mit düsenartigen Austrittsöffnungen, z. B. in Form Lavaldüsen versehen sein, um den Zuschlagstoff mit hoher Geschwindigkeit, vorzugsweise Überschallgeschwindigkeit, in die Schmelze eindüsen zu können. Der feste, pneumatisch förderbare Zuschlagstoff wird somit, gegebenenfalls mittels eines geeigneten Fördergases wie Sauerstoff, durch das Zentralrohr in die Schmelze eingedüst, durch die Außenrohre 6 wird ein Gasstrom in Richtung auf die Metallschmelze ausgestoßen, welcher den aus dem Zentralrohr 5 austretenden Feststoffstrom ummantelt und fokussiert. Der Gasmantel 7 dient hierbei zum einen dazu, den Feststoffstrom 8 von der Umgebung stofflich abzuschirmen und ferner zu fokussieren, insbesondere auch im Hinblick auf den hohen Anteil an flüchtigen Bestandteilen, die während der Kalzinierung des Zuschlagstoffes entstehen. Insbesondere dient der Gasstrom auch dazu, die Schlacke zumindest nahezu oder vollständig zu durchdringen und hierdurch einen schlackefreien Brennfleck 9 zu erzeugen, bei welchem die Metallschmelze 2 somit freiliegt. Die Temperatur der Schmelze im Bereich des Brennfleckes kann hierbei beispielsweise 2.400 bis 2.600°C betragen.As a feed device for introducing the additive into the melt, a preferably water-cooled lance 4, which is arranged above the slag, is provided, which preferably penetrates into the upper region of the melting vessel 1. The lance 4 consists of a central tube 5 for injecting the solid aggregate into the melt, which is surrounded on the outside by an outer tube 6 or a plurality of circumferentially around the central tube arranged individual tubes, for example ≥ 2-3 or ≥ 4-6 individual tubes. The pipe ends can with nozzle-like outlet openings, z. B. be provided in the form of Laval nozzles in order to inject the aggregate at high speed, preferably supersonic speed, into the melt can. The solid, pneumatically conveyable additive is thus, optionally injected through the central tube in the melt by means of a suitable conveying gas such as oxygen, through the outer tubes 6, a gas stream is ejected in the direction of the molten metal, which sheathed and focused the emerging from the central tube 5 solids flow , The gas jacket 7 serves, on the one hand, to materially shield the solids flow 8 from the environment and to further focus, in particular also with regard to the high proportion of volatile constituents which form during the calcination of the additive. In particular, the gas stream also serves to penetrate the slag at least almost or completely and thereby to produce a slag-free focal spot 9, in which the molten metal 2 is thus exposed. The temperature of the melt in the region of the focal spot can be, for example, 2,400 to 2,600 ° C.

Der Zuschlagstoff wird hierbei mit einer derartigen Geschwindigkeit in die Schmelze eingedüst, dass eine Kalzinierung des Zuschlagstoffes unter Abspaltung von H2O, CO2 und gegebenenfalls anderer flüchtiger Bestandteile, erst bei oder nach Austritt des Zuschlagstoffes aus der Lanzendüse erfolgt. Die Zersetzung des Zuschlagstoffes erfolgt hierbei aufgrund der hohen Umgebungstemperaturen, z. B. der Abstrahlwärme der Schmelzgefäßwandung 1a, der Metallschmelze und dergleichen überwiegend oder vollständig auf dem Weg von der Lanzendüse 4a zum Schmelzbad hin. Etwaige nicht-kalzinierte Anteile des Zuschlagstoffes werden im Brennfleck 9 bzw. der Aufprallzone 10 auf die Metallschmelze kalziniert. Bei der Kalzinierung werden somit sämtliche flüchtigen Bestandteile wie H2O, CO2 und dergleichen verflüchtigt, so dass lediglich die nicht flüchtigen Bestandteile wie Metalloxide in die Schmelze eintreten und von dieser aufgenommen werden.The aggregate is in this case injected into the melt at such a rate that calcination of the aggregate takes place with elimination of H 2 O, CO 2 and optionally other volatile constituents, only at or after discharge of the aggregate from the lance nozzle. The decomposition of the additive takes place here due to the high ambient temperatures, eg. B. the heat of radiation of the Schmelzgefäßwandung 1 a, the molten metal and the like predominantly or completely on the way from the lance nozzle 4 a to the molten pool. Any non-calcined fractions of the aggregate are calcined in the focal spot 9 or the impact zone 10 onto the molten metal. During calcination, all volatiles such as H 2 O, CO 2 and the like are thus volatilized, so that only the non-volatile constituents, such as metal oxides, enter the melt and are taken up by it.

Das über den Feststoffstrom durch das Zentralrohr 5 mit durchgeführte Gas kann Luft, ein gegenüber Luft Sauerstoff abgereichertes Gas oder Inertgas sein. Das durch die Außenrohre 6 durchgeführte Ummantelungsgas kann Luft, ein gegenüber Luft Sauerstoff angereichertes Gas oder reiner Sauerstoff darstellen, ein Inertgas sein oder Gemische aus diesen. Der Sauerstoffgehalt ist an die jeweiligen Prozessbedingungen wie beispielsweise den Wärmehaushalt des schmelzmetallurgischen Verfahrens anzupassen. Gegebenenfalls können mit dem Zuschlagstoffstrom weiteren Feststoffe wie Legierungsbestandteile, Schlackebildner oder dergleichen der Schmelze zugeführt werden, ohne dass dies zwingend notwendig ist. Vorzugsweise enthält der Zuschlagstoffstrom keine Reduktionsmittel wie Kohlenstoff, Ferrosilicium, Aluminium oder dergleichen. Das erfindungsgemäße Verfahren kann insbesondere ein AOD-Verfahren darstellen, gegebenenfalls auch ein elektrometallurgisches Verfahren.The gas passed through the central tube 5 via the flow of solids may be air, a gas depleted of oxygen or inert gas. The jacketing gas performed by the outer tubes 6 may be air, an oxygen-enriched gas or pure oxygen, an inert gas, or mixtures of these. The oxygen content must be adapted to the respective process conditions such as the heat balance of the melt metallurgical process. Optionally, further solids such as alloy constituents, slag formers or the like can be supplied to the melt with the additive stream, without this being absolutely necessary. Preferably, the additive stream does not contain reducing agents such as carbon, ferrosilicon, aluminum or the like. In particular, the process according to the invention can be an AOD process, optionally also an electrometallurgical process.

Überraschenderweise hat es sich herausgestellt, dass die Zuführung von Zuschlagstoffen zur Einstellung des Legierungsgehaltes der Schmelze unter Verwendung hoch wasserhaltiger Stoffe möglich ist, wodurch die Herstellungskosten der jeweiligen Legierung deutlich vermindert werden können, insbesondere, da der Zuschlagstoff kostengünstig herstellbar und weitere kostenaufwändige Verfahrensschritte wie eine Schlackenarbeit zur Reduzierung des Schwefelgehaltes der Schmelze usw. vermieden werden können. Eine derartige Prozessführung ist insbesondere dadurch gegeben, dass der Zuschlagstoff unmittelbar in den sehr heißen, schlackefreien Brennfleck eingedüst wird.Surprisingly, it has been found that the feeder of aggregates for adjusting the alloy content of the melt using highly hydrous substances is possible, whereby the manufacturing cost of the respective alloy can be significantly reduced, in particular because the aggregate cost-effectively and other costly process steps such as slag work to reduce the sulfur content of the melt, etc. avoided can be. Such a process is especially given by the fact that the additive is injected directly into the very hot, slag-free focal spot.

Der Zuschlagstoff kann insbesondere durch Auslaugung von Lateriten erhalten werden, beispielsweise durch Auslaugung mittels Schwefelsäure bei Atmosphärendruck oder bei erhöhtem Druck, gegebenenfalls aber auch durch andere Laugungsverfahren. Aus der sauren Lauge kann der nickelhaltige Zuschlagstoff anschließend durch geeignete Fällungsmittel wie eine MgO und/oder CaO-Aufschlämmung, durch Zugabe von Carbonaten wie Natriumcarbonat, Calciumcarbonat, Dolomit usw., durch Zugabe von Ammoniak oder Amoniumverbindungen ausgefällt werden, um im Wesentlichen ein Nickelhydroxid, Nickelcarbonat oder gemischtes Nickelhydroxid/carbonat zu erzeugen. Die Umsetzung mit dem Fällungsmittel kann bei erhöhten Temperaturen, beispielesweise bei 30-80°C oder höher, in geeigneten Zeiträumen von beispielsweise einigen Minuten bis 1 Stunde erfolgen. Gegebenenfalls kann in einem vorhergehenden Prozessschritt Kobalt durch geeignete Verfahren, beispielsweise durch Extraktionsverfahren abgetrennt werden.The aggregate can be obtained in particular by leaching of laterites, for example by leaching using sulfuric acid at atmospheric pressure or at elevated pressure, but optionally also by other leaching methods. From the acidic liquor, the nickel-containing additive can then be precipitated by suitable precipitating agents such as a MgO and / or CaO slurry, by addition of carbonates such as sodium carbonate, calcium carbonate, dolomite, etc., by addition of ammonia or ammonium compounds to form essentially a nickel hydroxide. Nickel carbonate or mixed nickel hydroxide / carbonate to produce. The reaction with the precipitating agent can be carried out at elevated temperatures, for example at 30-80 ° C or higher, in suitable periods of, for example, a few minutes to 1 hour. Optionally, in a preceding process step cobalt can be separated by suitable methods, for example by extraction methods.

Der Zuschlagstoff kann auf eine Restfeuchte vorgetrocknet werden, die eine pneumatische Förderung desselben ermöglicht. Als Restfeuchte ist hierbei physikalisch gebundenes Wasser zu verstehen, welches bei Temperaturen von ≤ 120 bis 150°C in einem geeigneten Zeitraum, beispielsweise in ein bis zwei Stunden, entfernbar ist. Der Zuschlagstoff kann für eine Schwerkraftförderung geeignet aufbereitet werden.The aggregate can be pre-dried to a residual moisture, which allows a pneumatic delivery of the same. Residual moisture here is to be understood as meaning physically bound water which can be removed at temperatures of ≦ 120 to 150 ° C. in a suitable period of time, for example in one to two hours. The aggregate can be prepared for a gravity feed suitable.

Gegebenenfalls kann der Zuschlagstoff mechanisch aufgearbeitet werden, um eine geeignete Korngröße oder Zerteilung zu erhalten, gegebenenfalls auch kompaktiert oder agglomeriert werden.Optionally, the aggregate may be mechanically worked up to obtain a suitable grain size or size, optionally also compacted or agglomerated.

Im Falle eines nickelhaltigen Zuschlagstoffes beträgt der Nickelgehalt desselben typischerweise ca. 15 bis 55 Gew.-%, insbesondere ca. 20 bis ca. 40 Gew.-%, bezogen auf den vorgetrockneten Zuschlagstoff (ohne Restfeuchte). Der Gehalt an chemisch gebundenem Wasser in Form von Kristallwasser und/oder Hydroxidgruppen beträgt typischerweise 30 bis 50 Gew.-% oder auch 40 bis 50 Gew.-%. Es versteht sich, dass gegebenenfalls der Zuschlagstoff bei höheren Temperaturen vorkalziniert werden kann, um den Wasser- und/oder Carbonatgehalt zu vermindern, ohne dass dies zwingend notwendig ist.In the case of a nickel-containing additive, the nickel content thereof is typically about 15 to 55% by weight, in particular about 20 to about 40% by weight, based on the predried aggregate (without residual moisture). The content of chemically bound water in the form of water of crystallization and / or hydroxide is typically 30 to 50 wt .-% or 40 to 50 wt .-%. It is understood that optionally the aggregate can be precalcined at higher temperatures in order to reduce the water and / or carbonate content, without this being absolutely necessary.

Im Nachfolgenden seien zwei typische Analysen des nickelhaltigen Zuschlagstoffes angegeben. Die Produkte wurden jeweils erhalten durch Auslaugung von Lateriten mittels 80%-iger Schwefelsäure bei 90°C für 0,5 Stunden (ca. 20g Erz, aufgeschlämmt in 80g Wasser; 100g Schwefelsäure). Laugungszeiten von < 1 oder < 0,75 Stunden haben sich allgemein als vorteilhaft herausgestellt. Die Lauge wurde mittels Dolomit teilweise neutralisiert und anschließend mit einer MgO-Aufschlämmung versetzt, um einen Nickelhydroxid-Niederschlag zu erzeugen.In the following two typical analyzes of the nickel-containing additive are given. The products were each obtained by leaching of laterites by means of 80% strength sulfuric acid at 90 ° C. for 0.5 hours (about 20 g of ore, slurried in 80 g of water, 100 g of sulfuric acid). Leaching times of <1 or <0.75 hours have generally been found to be advantageous. The liquor was partially neutralized by dolomite and then mixed with a MgO slurry to produce a nickel hydroxide precipitate.

Der abfiltrierte Niederschlag wurde auf eine Restfeuchte von jeweils ca. 1,5 Gew.-% getrocknet (bei 120°C für 2 Stunden), der Gehalt an chemisch gebundenem Wasser betrug 55 Gew.-% (Zusammensetzung 1) bzw. 45 Gew.-% (Zusammensetzung 2), jeweils berechnet als Gewichtsverlust des auf eine Restfeuchte von ca. 0 Gew.-% getrockneten Materials nach Thermolyse bei 750°C für 4 Stunden bis zur Gewichtskonstanz. Es versteht sich, dass das thermolysierte Material noch einen Gehalt an Carbonat oder anderen Bestandteilen enthalten kann, die sich erst bei höheren Temperaturen zersetzen.The filtered precipitate was dried to a residual moisture of about 1.5 wt .-% (at 120 ° C for 2 hours), the content of chemically bound water was 55 wt .-% (composition 1) or 45 wt. % (Composition 2), calculated in each case as the weight loss of the material dried to a residual moisture content of about 0% by weight after thermolysis at 750 ° C. for 4 hours until constant weight. It will be appreciated that the thermolyzed material may still contain a level of carbonate or other ingredients which decompose only at elevated temperatures.

Es versteht sich, dass die Zusammensetzung des Zuschlagstoffes je nach eingesetztem Erz oder nickelhaltigen Ausgangsprodukt schwanken können. Die folgenden Analyseangaben beziehen sich auf ein Material, welches auf bei 120°C für 2 Stunden auf eine Restfeuchte von ca. 0 Gew.-% getrocknet wurde (d.h. einschließlich Kristallwasser). Zusammensetzung 1 (Angaben in Gew.-%) Ni 24 Al 0,75 Ca 0,75 Co 1,5 Cr < 0,05 Fe 0,75 Mn 4,0 Mg 6,0 Wassergehalt (Kristallwasser) 50 Zusammensetzung 2 (Angaben in Gew.-%) Ni 38 Al < 0,05 Ca 2 Co 0,5 Cr < 0, 05 Fe 2,5 Mn 1,5 Mg 2,5 Wassergehalt (Kristallwasser) 40 It is understood that the composition of the additive may vary depending on the ore or nickel-containing starting material used. The following analysis data refers to a material that has been dried at 120 ° C for 2 hours to a residual moisture of about 0% by weight (ie, including water of crystallization). Composition 1 (in% by weight) Ni 24 al 0.75 Ca 0.75 Co 1.5 Cr <0.05 Fe 0.75 Mn 4.0 mg 6.0 Water content (crystal water) 50 Ni 38 al <0.05 Ca 2 Co 0.5 Cr <0, 05 Fe 2.5 Mn 1.5 mg 2.5 Water content (crystal water) 40

Es versteht sich, dass allgemein außer Erzen gegebenenfalls auch andere Stoffe zur Herstellung der erfindungsgemäß eingesetzten Zuschlagstoffe eingesetzt werden können, aus denen in entsprechender Weise nickelhaltige oder allgemein übergangsmetallhaltige Zuschlagstoffe herstellbar sind, und bei welchen die Übergangsmetalle vorzugsweise durch geeignete Auslaugung auf Basis einen wasserhaltigen Laugungsmittels gewonnen werden können.It is understood that in general, apart from ores, if appropriate, other substances for the preparation of the invention used It is possible to use additives from which nickel-containing or transition metal-containing aggregates can be produced in a corresponding manner, and in which the transition metals can preferably be obtained by suitable leaching on the basis of a water-containing leaching agent.

Weiterhin versteht es sich, dass das erfindungsgemäße Verfahren nicht auf die Verwendung Ni/Co-haltiger Zuschlagstoffe begrenzt ist, sondern auch andere Legierungsbestandteile, insbesondere Übergangsmetalle wie Mo, V oder dergleichen in entsprechender Form der Metallschmelze zugefügt werden können. Vorzugsweise werden hierbei jeweils die Zuschlagstoffe jeweils von der Oberseite des Schmelzgefäßes her in dieses in einen Bereich der Metallschmelze von sehr hoher Temperatur eingedüst werden, im Falle von Schlacke bedeckten Schmelzen in einen schlackefreien Brennfleck.Furthermore, it is understood that the inventive method is not limited to the use of Ni / Co-containing additives, but also other alloying constituents, in particular transition metals such as Mo, V or the like can be added in a corresponding form of the molten metal. Preferably, in each case the additives are each injected from the top of the melting vessel in this in a region of the molten metal of very high temperature, in the case of slag-covered melts in a slag-free focal spot.

Claims (26)

  1. Method for the production of a metal melt comprising at least one base metal containing iron at a percentage of ≥ 10% by weight and at least one further alloying component, the production taking place in a melting pot with slag covering the melt, wherein at least one additive containing the above-mentioned further alloying component in the form of a transition metal is added to the melt as a solid to enrich the same with the alloying component, wherein the additive comprises:
    (i) as a further alloying component a transition metal chosen among nickel, cobalt, vanadium or molybdenum or a combination of two or several thereof, and that percentage of nickel, cobalt, vanadium and/or molybdenum alone or in combination in said additive is 15 to 60% by weight,
    (ii) 20-60% by weight of a melt-metallurgically harmless volatile component in the form of H2O (including chemically combined water in the form of water of crystallization and/or hydroxide groups) and /or CO2,
    (iii) 0.5-25% by weight of slag formers,
    (iv) ≤ 5% by weight of sulfur,
    wherein said additive is obtainable by the preparation of ores, waste products or other products containing the said alloying component under conversion of the alloying component to a dissolved state, the precipitation of the alloying component as hydrous hydroxide, carbonate or mixed hydroxide/carbonate, and additional steps if required,
    and wherein the additive containing the alloying component is directly supplied to the metal melt while producing a slag-free focal spot of the slag-covered metal melt.
  2. Method according to claim 1, characterized in that the additive is supplied to the melt in such a manner that a calcination or decomposition of the additive takes place at least substantially only during or after leaving a feeding device that is provided and prior to or during the impingement on the metal melt or in an impact zone.
  3. Method according to one of the claims 1 or 2, characterized in that the additive is supplied to the melt in a solid material stream enveloped by a gas stream.
  4. Method according to one of the claims 1 to 3, characterized in that the focal spot has a temperature of ≥ 1,750°C.
  5. Method according to one of the claims 1 to 4, characterized in that the enveloping gas stream has an oxygen content of ≥ 25% by weight or is oxygen, at least substantially.
  6. Method according to one of the claims 1 to 5, characterized in that the enveloping gas comprises for ≥ 75% by weight at least one inert gas or consists of one or more inert gases, at least substantially.
  7. Method according to one of the claims 1 to 6, characterized in that the solid material stream containing the additive that contains the alloying component comprises further additives that contain alloying components and/or further metallurgically active substances and/or slag-forming substances.
  8. Method according to one of the claims 1 to 7, characterized in that the solid material stream containing the alloying additive comprises ≥ 10% by weight of reducing agents, including carbon, hydrocarbon and ferrosilicon.
  9. Method according to one of the claims 1 to 8, characterized in that ≥ 5 to 10% by weight of the alloying component, which is the main component of the additive, are fed to the melt via said additive.
  10. Method according to one of the claims 1 to 9, characterized in that the additive contains nickel and/or cobalt as a main alloying component.
  11. Method according to one of the claims 1 to 10, characterized in that the additive substantially is a crystallization water-containing salt, hydroxide, carbonate or mixed hydroxide/carbonate.
  12. Method according to one of the claims 1 to 11, characterized in that the additive consists for ≥ 70-80% by weight of the components (1) alloying components desired as intended, (2) volatile components negative meltmetallurgical characteristics, and (3) slag formers.
  13. Method according to one of the claims 1 to 11, characterized in that additive contains percentages of further alloying components.
  14. Method according to one of the claims 1 to 13, characterized in that the method is an AOD method.
  15. Transition metal-containing additive for the production of transition metal-containing alloys in melt metallurgical processes, wherein the additive is present as a solid and comprises:
    (i) 15-60% by weight of said further alloying component, which is a transition metal chosen among nickel, cobalt, vanadium or molybdenum or a combination of two or more of the same,
    (ii) 20-60% by weight of melt-metallurgically harmless volatile components in the form of H2O (inclusive of combined water in the form of water of crystallization and/or hydroxide groups) and/or CO2,
    (iii) 0.5-25% by weight of slag formers,
    (iv) ≤ 5% by weight of sulfur,
    and wherein the additive is obtainable by the preparation of ores, waste products or other products containing the said alloying component under conversion of the alloying component in a dissolved state, by the precipitation of the alloying component as a hydrous hydroxide, carbonate or mixed hydroxide/carbonate, and by additional steps if required.
  16. Additive according to claim 15, characterized in that the additive includes ≥ 20% by weight of combined water in the form of water of crystallization and/or hydroxide groups.
  17. Additive according to claim 16 or 17, characterized in that the content of sulfur is ≤ 2% by weight.
  18. Additive according to one of the claims 15 to 17, characterized in that the additive contains further alloying components.
  19. Additive according to one of the claims 15 to 18, characterized in that the content of said further alloying components is ≥ 3% by weight.
  20. Additive according to one of the claims 15 to 19, characterized in that the content of slag formers is ≤ 20% by weight.
  21. Additive according to one of the claims 15 to 20, characterized in that the additive is present in a state conveyable pneumatically or by gravity or in compacted state.
  22. Additive according to one of the claims 15 to 21, characterized in that the additive is obtainable or obtained by leaching laterite ore laterite-like ores, preferably by using acids.
  23. Additive according to one of the claims 15 to 22, characterized in that the additive is obtainable or obtained by the precipitation of hydroxide and/or carbonate from an aqueous solution, if necessary after previous preparation of the solution.
  24. Additive according to one of the claims 15 to 23, characterized in that after a thermal treatment at 705°C, said additive suffers from a weight loss of 20 to 60% by weight until it has reached its constant weight.
  25. Use of a transition metal-containing additive according to one of the claims 15 to 24 for the production of transition metal-containing alloys in meltmetallurgical processes, wherein the additive according to the claims 15 to 24 is supplied to a metal melt containing at least one base metal with at least 10% by weight of iron to enrich the same with the alloying component, wherein the production of the alloy takes place in a melting pot with slag covering the melt while feeding the additive and wherein the process is an AOD process, CLU process, VOD process, BOP process or Q-BOP process.
  26. Use of a transition metal-containing additive according to claim 25 in a method according to one of the claims 1 to 24.
EP08715538.8A 2007-03-29 2008-03-04 Melt metallurgical method for the production of metal melts, and transition metal-containing charge for use therein Active EP2132345B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08715538T PL2132345T3 (en) 2007-03-29 2008-03-04 Melt metallurgical method for the production of metal melts, and transition metal-containing charge for use therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007015585A DE102007015585A1 (en) 2007-03-29 2007-03-29 Melt metallurgical process for producing molten metals and transition metal-containing aggregate for use therein
PCT/DE2008/000389 WO2008119317A1 (en) 2007-03-29 2008-03-04 Melt metallurgical method for the production of metal melts, and transition metal-containing charge for use therein

Publications (2)

Publication Number Publication Date
EP2132345A1 EP2132345A1 (en) 2009-12-16
EP2132345B1 true EP2132345B1 (en) 2014-04-30

Family

ID=39402885

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08715538.8A Active EP2132345B1 (en) 2007-03-29 2008-03-04 Melt metallurgical method for the production of metal melts, and transition metal-containing charge for use therein

Country Status (13)

Country Link
US (1) US8187357B2 (en)
EP (1) EP2132345B1 (en)
JP (1) JP5395047B2 (en)
KR (1) KR101229212B1 (en)
AU (1) AU2008234283B2 (en)
BR (1) BRPI0809379B1 (en)
CU (1) CU23832A3 (en)
DE (1) DE102007015585A1 (en)
ES (1) ES2477495T3 (en)
PL (1) PL2132345T3 (en)
RU (1) RU2442829C2 (en)
TW (1) TWI396747B (en)
WO (1) WO2008119317A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011279533B2 (en) * 2010-07-15 2014-08-07 Glencore Technology Pty Limited Pyrometallurgical method
KR101229900B1 (en) * 2011-08-25 2013-02-05 주식회사 포스코 Stabilizing method of slag
EP2770067A1 (en) * 2013-02-26 2014-08-27 Siemens VAI Metals Technologies GmbH Steel production converter processes using inert gas
CN113028851B (en) * 2019-12-09 2023-03-10 财团法人金属工业研究发展中心 Stirring device with degassing and feeding functions

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1964092A1 (en) * 1968-12-23 1970-07-02 Int Nickel Ltd Process for melting a low-carbon nickel-chromium-iron alloy
US3684491A (en) * 1971-04-29 1972-08-15 Thomas H Coffield Process for the recovery of cobalt
US3898076A (en) * 1972-10-19 1975-08-05 Robert L Ranke Sealing and briquetting finely divided material with vinyl copolymer and wax
SE446014B (en) * 1981-03-10 1986-08-04 Skf Steel Eng Ab SELECTIVE REDUCTION OF HEAVY-CORNED METALS, MAINLY OXIDICAL, MATERIALS
US4426224A (en) * 1981-12-25 1984-01-17 Sumitomo Kinzoku Kogyo Kabushiki Gaisha Lance for powder top-blow refining and process for decarburizing and refining steel by using the lance
JPS59211519A (en) * 1983-05-18 1984-11-30 Nisshin Steel Co Ltd Production of low p-containing chromium steel
JPS6172916A (en) 1984-09-14 1986-04-15 Mitsubishi Heavy Ind Ltd Method for manufacturing high combustion pressure combustion chamber
JPS61110709A (en) * 1984-11-05 1986-05-29 Kobe Steel Ltd Manufacture of molten iron containing chromium
JPS6439314A (en) * 1987-08-03 1989-02-09 Daido Steel Co Ltd Method for refining steel
US4919714A (en) * 1988-11-14 1990-04-24 Daido Tokushuko Kabushiki Kaisha Method and apparatus for refining steel
JPH0356629A (en) * 1989-07-26 1991-03-12 Nisshin Steel Co Ltd Method for refining ni-containing alloy
JPH03115519A (en) * 1989-09-28 1991-05-16 Kawasaki Steel Corp Production of stainless steel
RU2051180C1 (en) * 1990-09-18 1995-12-27 Витольд Марианович Лупэйко Method of making steel in liquid steel melting bath
JPH05125425A (en) * 1991-04-26 1993-05-21 Nisshin Steel Co Ltd Production of ni-containing alloy
ZW9893A1 (en) * 1992-08-11 1993-09-15 Mintek The production of stainless steel
WO1997020954A1 (en) * 1995-12-06 1997-06-12 Wmc Resources Ltd. Simplified duplex processing of nickel ores and/or concentrates for the production of ferronickels, nickel irons and stainless steels
US5749939A (en) * 1996-12-04 1998-05-12 Armco Inc. Melting of NI laterite in making NI alloyed iron or steel
WO2000012767A1 (en) * 1998-08-28 2000-03-09 Voest-Alpine Industrieanlagenbau Gmbh Method for producing a metal melt and corresponding multfunction lance
SE519776C2 (en) * 2001-08-30 2003-04-08 Avestapolarit Ab Publ Method of producing steel, whereby a metal and fluoride-containing hydroxide slurry is returned to a steel melt
JP3703813B2 (en) * 2003-04-25 2005-10-05 有限会社ワイエスケイテクノシステム Method for separating and recovering valuable metals
AT412349B (en) * 2003-06-25 2005-01-25 Voest Alpine Ind Anlagen METHOD FOR PRODUCING AN ALLOYED METAL MELT AND PRODUCTION PLANT THEREFOR
SE527672C2 (en) * 2004-04-07 2006-05-09 Outokumpu Stainless Ab Methods of producing a flux, flux, and method in the manufacture of steel
DOP2006000048A (en) * 2005-02-24 2006-08-31 Bhp Billiton Ssm Dev Pty Ltd PRODUCTION OF FERRONICKEL (FERRONIQUEL PRODUCTION)
GB0511883D0 (en) * 2005-06-10 2005-07-20 Boc Group Plc Manufacture of ferroalloys

Also Published As

Publication number Publication date
BRPI0809379B1 (en) 2017-07-18
WO2008119317A1 (en) 2008-10-09
US8187357B2 (en) 2012-05-29
CU23832A3 (en) 2012-10-15
KR101229212B1 (en) 2013-02-01
ES2477495T3 (en) 2014-07-17
EP2132345A1 (en) 2009-12-16
KR20090125834A (en) 2009-12-07
AU2008234283B2 (en) 2010-12-23
JP5395047B2 (en) 2014-01-22
DE102007015585A1 (en) 2008-10-02
US20080236334A1 (en) 2008-10-02
TW200902729A (en) 2009-01-16
RU2442829C2 (en) 2012-02-20
RU2009139868A (en) 2011-05-10
BRPI0809379A2 (en) 2014-09-09
JP2010522824A (en) 2010-07-08
AU2008234283A1 (en) 2008-10-09
PL2132345T3 (en) 2014-09-30
TWI396747B (en) 2013-05-21

Similar Documents

Publication Publication Date Title
DE60221844T2 (en) METHOD FOR THE PRODUCTION OF GRAIN METAL
DE2738379A1 (en) PROCESS FOR REFINING METAL IRON AND STEEL
EP1090152B1 (en) Method for processing steel slags
EP2132345B1 (en) Melt metallurgical method for the production of metal melts, and transition metal-containing charge for use therein
AT513441B1 (en) Process for improving the degree of reduction when melting ferroalloy
DE60303802T2 (en) FRESHING OF FERRO ALLOYS
DE3247757A1 (en) BLOWER FOR POWDER BLOWING REFINING AND METHOD FOR DECOLIFYING AND REFINING STEEL USING THE SAME
WO2001055459A1 (en) Method for treating slags or slag mixtures on an iron bath
DE3045180A1 (en) METHOD AND DEVICE FOR PRODUCING HIGH-CHROME STEEL
DE2443177C2 (en) Metallurgical process for the direct reduction of metal oxides to metal
DE3307175A1 (en) COMPACT NODULES FOR METAL PRODUCTION AND METHOD OF METAL PRODUCTION USING SUCH NODULES
DE3442245A1 (en) Process for producing an alloy of high chromium content by smelting reduction
DE3610248A1 (en) METHOD FOR PRODUCING REMOTE ALLOYS
DE924568C (en) Process for the production of a ferro-alloy with a low carbon content, in particular ferrochrome
DE900140C (en) Process for the production of a raw material suitable for the extraction of chromium
DE668389C (en) Process for the treatment, in particular refining, of iron and steel and for the production of low-carbon ferroalloys
DE2106570A1 (en) Method and device for the treatment of iron-containing slags, which originate from the pyrometallurgy of lateritic ores
AT246198B (en) Process for the nitrogen enrichment of a steel melt covered with a slag layer
DE2146355C3 (en) Refining a steel melt
DE500982C (en) Process for producing low-carbon iron or steel alloyed with chromium or manganese
DE1225216B (en) Process for the production of iron-nickel alloys from iron ores containing nickel
DE2146355A1 (en) Process for steel finishing
DE2758477A1 (en) Molten iron treatment in converter - using oxygen contg. calcium carbide, so increased amt. of scrap iron can be added
DES0039702MA (en)
DE1087432B (en) Process for the production of the covering of iron or steel electrodes for electric arc welding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEYN, ULRICH

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008011681

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21C0007000000

Ipc: C21C0005360000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21C 5/36 20060101AFI20131206BHEP

Ipc: C22B 1/24 20060101ALI20131206BHEP

Ipc: C22B 3/00 20060101ALI20131206BHEP

Ipc: C21C 7/00 20060101ALI20131206BHEP

Ipc: C21C 5/32 20060101ALI20131206BHEP

Ipc: C22B 9/10 20060101ALI20131206BHEP

INTG Intention to grant announced

Effective date: 20140108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 665215

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011681

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2477495

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140717

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20140401427

Country of ref document: GR

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011681

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011681

Country of ref document: DE

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150304

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220324

Year of fee payment: 15

Ref country code: FI

Payment date: 20220318

Year of fee payment: 15

Ref country code: AT

Payment date: 20220318

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220221

Year of fee payment: 15

Ref country code: SE

Payment date: 20220324

Year of fee payment: 15

Ref country code: RO

Payment date: 20220302

Year of fee payment: 15

Ref country code: PL

Payment date: 20220223

Year of fee payment: 15

Ref country code: NL

Payment date: 20220322

Year of fee payment: 15

Ref country code: LU

Payment date: 20220322

Year of fee payment: 15

Ref country code: GR

Payment date: 20220318

Year of fee payment: 15

Ref country code: FR

Payment date: 20220323

Year of fee payment: 15

Ref country code: BE

Payment date: 20220322

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220331

Year of fee payment: 15

Ref country code: ES

Payment date: 20220420

Year of fee payment: 15

Ref country code: DE

Payment date: 20220525

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008011681

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 665215

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230304

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231009

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230305

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231009

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230304

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230305