EP2130741B1 - Verfahren und Vorrichtungen zur Lokalisierung von Zügen in einem Schienennetz - Google Patents

Verfahren und Vorrichtungen zur Lokalisierung von Zügen in einem Schienennetz Download PDF

Info

Publication number
EP2130741B1
EP2130741B1 EP09006432A EP09006432A EP2130741B1 EP 2130741 B1 EP2130741 B1 EP 2130741B1 EP 09006432 A EP09006432 A EP 09006432A EP 09006432 A EP09006432 A EP 09006432A EP 2130741 B1 EP2130741 B1 EP 2130741B1
Authority
EP
European Patent Office
Prior art keywords
trains
mobile radio
handoff
data
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09006432A
Other languages
English (en)
French (fr)
Other versions
EP2130741A3 (de
EP2130741A2 (de
Inventor
Andreas Dr. Wörner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Publication of EP2130741A2 publication Critical patent/EP2130741A2/de
Publication of EP2130741A3 publication Critical patent/EP2130741A3/de
Application granted granted Critical
Publication of EP2130741B1 publication Critical patent/EP2130741B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/14Following schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/02Global system for mobile communication - railways [GSM-R]

Definitions

  • the invention relates to a method for locating trains in a rail network according to the preamble of claim 1 and a system performing the method and a center therefor according to the preamble of one of the independent claims.
  • the localization of trains is known per se and is carried out by the respective operator of the railway network using their own network systems.
  • a so-called. Line train control As in the DE4235105 A1 described method used in which via a wired network, a so-called. Line train control.
  • the train control and localization can also be carried out over radio networks of the operator, which is then spoken of the so-called. Radio train control.
  • the GB 2 273 424 A discloses such a system.
  • the operators of rail networks such as Irish Bahn AG, use these methods and systems to detect the whereabouts of the trains, especially for security reasons.
  • the information about the whereabouts or the localization of the trains is also used to inform the customer about the planned trains, eg by loudspeaker announcements on the platform or through updated arrival / departure plans on the internet.
  • the customer is therefore dependent on the information services of the rail network or railway operator. It would be desirable to have an operator-independent localization and monitoring of rail traffic, from which statements could be made about the planned trains.
  • the present invention with the question of how mobile data trains operator-independent localized and tracked on the rail network and from this information about the scheduling of the trains can be obtained.
  • a method and devices are proposed, which are used for locating trains in a rail network in the supply area of a cellular mobile radio system in which mobile devices are registered, are suitable, wherein at least part of the mobile devices are located in the trains, which move through spatial areas of the mobile radio system along at least one rail track.
  • the present invention provides a method in which collective data is detected for adjacent spatial areas, to which at least one rail is assignable, indicating switching times for switching between the adjacent spatial areas for registered mobile devices; and in which by means of evaluation of the collective data for a plurality of registered mobile radios common change times are determined and recognized as attributable to trains that operate on the at least one rail track, wherein by comparing the common change times with scheduled change times, e.g. can be obtained by timetable data and / or statistical evaluation of the collective data, for trains running the respective common change time is assigned to a train to identify the train in the rail network and locate.
  • the processes already implemented in the mobile radio system for tracking mobile devices can be used to localize trains independent of the operator. If areas are considered that cover stations, then the determination of the scheduled change times can already be done by accessing the usual schedule data, which can be easily realized, for example, via queries from the Internet and / or CD-ROM stored schedules. Alternatively or additionally, in particular for any route sections the scheduled changeover times are determined by statistical evaluation of the collective data collected there.
  • the localization and tracking of trains according to the invention is made possible by a system operating independently of the operator of the rail network and can thus be used at any time and without restriction and made available to the customers.
  • the customer can use the localization and tracking of trains, for example, via a corresponding mobile and preferably Internet-based data service and can thus be informed about the current whereabouts and about delays of trains.
  • the inventive method is thus preferably realized within a mobile radio system by evaluations of mobile radio signals or data, which are detected by mobile devices, which are in trains and which are thus moved through the spatial area.
  • the method is ideally suited for detecting the frequent movement and / or the stay of many mobile radio devices in the supply area of rail networks on the basis of mobile data recorded on the network side, and thus to carry out the localization of trains.
  • the collectively detected signals are therefore mobile radio signals from mobile devices located in the trains, the signals being recorded and evaluated centrally.
  • the method is designed so that each common change time for several mobile devices the simultaneous entry into and / or the simultaneous exit from the respective spatial area indicates.
  • the scheduled change times can be easily derived from timetable data of a railway operator.
  • the scheduled change times are preferably determined by a multiple, especially daily, repeated evaluation of the collective data, it being recognized whether common change points also represent scheduled change times.
  • the collective data which are recognized as being assignable to a train, are evaluated for a temporal and spatial tracking of the trains via several adjacent spatial areas.
  • a currently determined common change time is compared with at least one scheduled change time to determine a deviation indicating a delay of a train to which the scheduled change time can be assigned.
  • collective travel times are determined from the collective data or from the changeover times determined therefrom, which in each case indicate the transit time of a train through the spatial area. It is advantageous if by means of the collective travel times different types of trains are recognized to from the change times several registered mobile devices to determine the common change times and assign the trains.
  • the collective data can be determined by means of a, in particular statistical, evaluation of entry and exit times that indicate the entry into the area or the exit from the range of active and non-active mobile devices. This preferably takes place in connection with the location update method which is actually carried out in the mobile radio system.
  • a localization of the train in a single sub-area can be carried out by means of an evaluation of individual data indicating the presence of individual active mobile radio devices in subareas of the spatial area.
  • the spatial area corresponds to a radio coverage area of the cellular mobile radio system and the sub areas are single or multiple radio cells of this radio coverage area.
  • the individual data e.g. be determined by means of an evaluation of data for a radio exchange between the radio cells with respect to the entrance and / or exit of the active mobile devices.
  • the evaluation of the individual data can be supplemented by additional data or information on the transmission and / or reception field strength of mobile radio signals in order to achieve even more accurate localization of the train within a subarea, e.g. within a radio cell.
  • the FIG. 1 shows a schematic representation of a region detail with two spatial areas LA1 and LA2, each corresponding to a radio coverage area (Location Area) of a cellular mobile radio network, to which the method is applied by way of example.
  • Each area LA1 or LA2 comprises a plurality of radio cells and is traversed by a railway W, on which various trains Z, such as suburban trains of urban transport as well as ICE long-distance trains run.
  • the entry and exit times are recorded by all mobile devices.
  • a change from one area to another is reported by all mobile devices (black circles) and recorded as collective data.
  • the individual radio cell changes with further information or individual data are recorded only for active devices (open squares).
  • a first can already be based on the collective data Localization of a train are performed by common data exchange times are determined by data analysis, which can be assigned to the individual trains by comparing with schedule data.
  • the Fig. 2 shows for the in Fig. 1 in a simplified representation, the results from a one-a-mile temporal observation or monitoring of the collective data or raw data RDT and the resulting accumulations of switching times as well as collective travel times at different times of the day.
  • the travel time TR is plotted, which is defined as the difference between the exit and entry time and indicates the length of stay of a mobile device. This corresponds to the transit time of a train, if the respective mobile device is in this train.
  • the exit time TA is plotted in the observation period between 5 o'clock in the morning and 12 o'clock in the afternoon.
  • Location updates recorded raw data RDT of each mobile device are shown as measuring points.
  • the data RDT form accumulations that correspond to individual trains. These are shown as open squares at the location of mean travel time and exit time. As an additional indication, the number of individual data belonging to the accumulations could be specified. It can be seen that there are band areas in which the collected data accumulate around a typical travel time, such as the travel time TRu or TRv. Each band corresponds to a class of moves. Here, for example, a class of trains with a typical collective travel time of about 240 seconds, so 4 minutes, recognized. The collective travel time TRv belongs to this and indicates, for example, a fast-moving long-distance train. Another class has a typical collective travel time of about 420 seconds, or 7 minutes. The collective travel time TRu belongs to this and indicates, for example, a slower moving local train.
  • the raw data evaluated here are described as collective data RDT to express that they can collectively collect, eg in the context of the so-called Location Update.
  • the collective data RDT can also indicate whether possibly several mobile devices collectively, ie simultaneously or very quickly, switch between radio coverage, which is the case especially for trains. Because not infrequently located in trains several registered mobile devices (in long-distance trains quite well 40 and more), for the quasi simultaneously a change between adjacent radio coverage areas.
  • the data can be compared with timetable data, so that in each case a specific train can be located.
  • the radio coverage area is e.g. at a station for which timetable information is available.
  • the detected change or exit times TA are then compared with the local departure and / or arrival schedules.
  • the accumulation of data at TAv and TRv is assigned to the train Zv, which is shown in the timetable as "ICE 278" for this time, namely at 10:00 o'clock.
  • the data collection is repeated regularly, in particular repeated on a daily basis to determine scheduled change times and to recognize any deviations.
  • Fig. 3 corresponding results from a daily repeated observation or monitoring of the collected collective data RDT are shown. It can be seen that this is already in the Fig. 2 Significantly repeating patterns from day to day.
  • the trains identified by the timetable are marked by ellipses and marked with the train number.
  • the fast trains make the ICE trains running on the route, the slower trains the S-Bru connections.
  • the representation covers the observation period of three days, namely from 10 to 12 July.
  • the journey time TRw11 is on July 11th even at about 820 sec, which corresponds to a delay of about 600 sec compared to the data of the other days.
  • the increase in the travel time TR is here recognized as an indicator of a disturbance prevailing in the radio coverage area (e.g., construction site), but does not have to have a particularly deleterious effect on a train's delay, e.g. is illustrated in the example shown of the trains Zw and Zx.
  • the deviations of the change times TA are essentially understood as delays of trains, the deviations from travel times, however, are considered as a local disturbance. However, if in each case for the same train in several radio coverage areas a much increased travel time to be observed, so has the Accumulation of travel times as a significant delay of the train.
  • the method described here makes it possible to use routines in the mobile radio system with which a large-area change can be detected for all mobile devices. This can be determined in the inactive mobile devices from data of the so-called. Location update messages and active mobile devices from data of the corresponding handover message. In addition to the changeover time, at least the large area from which the terminal originates as well as the large area and cell into which it has changed are known.
  • the current level of enforcement with mobile devices means there is a sufficient number of individual measurements per train.
  • the individual clusters can now be identified and grouped into individual clusters.
  • a cluster is thus defined by the amount of the associated mobile subscribers.
  • suitable key figures eg average travel time, average entry or exit time
  • Each of these clusters now represents a single move.
  • the whereabouts of the turn can now be determined more precisely on the basis of the individual data.
  • the achievable accuracy depends on the amount of information at this data level. If individual data of an associated participant are available, the position of the train can be ascertained based on the information about the individual cell changes at least to the cell. If there is more information (for example, the distance to the serving cell, reception levels), then the position can also be specified more precisely within the cell.
  • the Fig. 4 a plurality of divided into their radio cells radio coverage areas LA1, LA2, LA3, etc., through which, for example, two rail W1 and W2 lead.
  • the two trains Zu and Zv are spatially separated, ie they have different Combinations of input cell and output cell and thus belong to different traffic flows.
  • both trains Zu and Zv belong to the same rail or traffic flow (identical input and output cell). Since, however, trains within such a range are usually sufficiently separated in time, they can be identified individually (see also Fig. 2 and 3 ). However, if trains also overlap in time so that no separation is possible within the area LA2, this can be seen from the associated amount of mobile subscribers, since the amount associated with the individual trains is known from the other areas LA1 and LA2.
  • collective data RDT is acquired as raw data or input data, the exit times (see TA in FIG Fig. 2 ) of registered mobile devices in this radio coverage area. These times are described here as change times TA, in order to express that entry times could also be detected instead of or in addition to the exit times TA.
  • the raw data are described here as collective data RDT to express that they can collectively, for example in the context of the so-called. Location updates, can be detected.
  • these data RDT can indicate whether possibly multiple mobile devices collectively, ie simultaneously or very timely, between radio coverage areas (see LA1, LA2 ... in Fig. 4 ) change, which is especially the case with trains. Because not infrequently located in trains several registered mobile devices (in long-distance trains quite well 40 and more), for the quasi simultaneously a change between adjacent radio coverage areas (s. Fig. 4 ) he follows.
  • step sequence 120 it can then be determined in a step sequence 120 based on the collective data RDT and the determined change times whether registered mobile devices in a larger number simultaneously or jointly from one radio coverage area to the next, so that it can be seen that the corresponding collective data RDT trains can be assigned.
  • Other data obtained from individual, e.g. in cars, mobile devices come, can be discarded.
  • the assignment of the collective data or the corresponding mobile devices to trains which is carried out in step 120, initially involves an abstract assignment, because the individual trains are still unknown and unidentified.
  • this abstract mapping already allows tracking of the unknown trains (see step 130), e.g. to get typical movement profiles that can give hints to specific moves. It could also be determined based on a data analysis carried out for several radio coverage areas, the load of the rail network itself and the frequency of occurring delays.
  • the evaluation of the collective data RDT carried out in steps 110 and 120 also includes, for example, a statistical evaluation of the in Fig. 2 shown data collection, in which the exit times TA on the X-axis and the difference described here as travel time TR of exit time TA and entry time TE are plotted on the y-axis.
  • the travel time TR indicates the respective length of stay of a mobile device in a radio coverage area and occurs in particular in the case of trains in cluster form, as it Fig. 2 represents.
  • the raw data RDT have accumulations of travel times TR at specific exit times TA, it is assumed in accordance with the invention that mobile devices of collectively traveling persons are involved. Therefore these travel times (eg TRu and TRv in Fig. 2 ) are described here as collective travel times, which can each be assigned to a train.
  • the collective data that can be assigned abstract trains are tracked in a step 130 over several radio coverage areas to determine at least abstract profiles representing individual trains.
  • the respective common changeover times can be recorded and evaluated.
  • the timetable data or data derived therefrom can be used as scheduled changeover times. By comparing the measured common change times with the data from the arrival and / or departure timetable for this station trains can already be identified specifically and also determined if necessary, whether individual trains do not run as planned. For example, if the scheduled arrival time of the S-Bru S41 is 09:35 o'clock (s. Fig. 2 ), the train detected on the basis of the data collected on July 10th to July 12th can easily be identified as S-Bahn S41 and localized.
  • a current change time TAz12 measured which is well behind the other change times and thus deviates significantly from the scheduled time TAz.
  • the scheduled time can be derived from the timetable and / or can also be determined by statistical evaluation of the raw data RDT by checking which time or at least narrow period prevails and must be considered as a scheduled change time TAz. For example, if the scheduled arrival time of the ICE76 and the ICE600 at 10:40, it can be seen that both trains on July 12 significant delays of about 20 or 30 minutes have (s. Fig. 3 ).
  • the scheduled change times are determined not only for stations, but for any sections and provided for the comparison (step 140).
  • the data collected over several days are preferably evaluated in steps 145 and 146 as part of a preferably offline data analysis. If, at the border of the respective radio coverage area, common changeover times occur frequently at the same time over several days, these data represent scheduled changeover times, which are made available as reference data in step 139.
  • a precise identification and localization of specific moves can then be carried out in step 140.
  • the ICE76 enters the radio coverage area LA1 on a daily basis at 10:30 am and then changes to the next radio coverage area LA2 at 10:40 am. At 11:15, the ICE 76 changes to the radio cell area LA3, etc.
  • step 139 relate to any route sections and thus include the train identity, the location of the change (transition from one radio coverage area to the next) and the respective point in time.
  • the online train identification (step 140) was verified in offline step 145 by comparison with timetable data.
  • step 145 timetable changes are detected, or it is recognized that, for example, a special train operates on the considered section of the route that has been erroneously recognized as a rule in step 140.
  • step 146 the location and time of the changes can then be determined by statistical evaluation of the data for the train correctly recognized on the route under consideration.
  • step 150 Determination of any delays occurring (step 150) are specified.
  • the current identification of trains in step 140 can be performed precisely for any section of track. The trains are therefore also exactly localized in sections.
  • a more accurate localization e.g. based on individual data indicating hand-over times, field strength or the like.
  • delays can then be detected independently of the rail operator in a step 150 and made available or transmitted to the user or customer as information. For this, e.g. the transmission of a corresponding mobile message, in particular an SMS message serve.
  • the in the Fig. 5 solid lines connecting, in particular, the blocks with the process steps 110, 120, 130, 140 and 150 indicate that these process steps continuously in real time (online).
  • the dashed lines relate to steps that can not be performed in real time (offline). These include the step 146, in which a statistical analysis of the change times (entry and exit times) is carried out over a longer period of time, with which the scheduled change times can also be determined for sections outside of stations.
  • a method and devices are proposed here, which can localize and identify trains on the basis of network-recorded mobile data in real time and track their movement in real time on the network. This information can also be used to check adherence to the timetable and to quantify deviations from it.
  • the method relies essentially on information that is captured by all mobile devices. A more accurate localization of the trains can be realized by using the information that is detected only by active mobile devices.
  • the method is in principle beyond the passenger train traffic, e.g. Also applicable in freight train traffic, whenever larger quantities of mobile devices are transported in spatially clearly defined areas, e.g. also in passenger ship traffic or in container shipping, in particular on inland waters or rivers, provided that a sufficient number of containers are equipped for telematics purposes with mobile devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Lokalisierung von Zügen in einem Schienennetz nach dem Oberbegriff des Anspruchs 1 sowie ein das Verfahren durchführendes System und eine Zentrale dafür nach dem Oberbegriff eines der nebengeordneten Ansprüche.
  • Die Lokalisierung von Zügen ist an sich bekannt und wird durch den jeweiligen Betreiber des Schienennetzes mittels eigener Netzsysteme durchgeführt. Dazu wird z.B. ein wie in der DE4235105 A1 beschriebenes Verfahren verwendet, bei dem über ein leitungsgebundenes Netzwerk eine sog. Linien-Zugbeeinflussung erfolgt. Die Zugbeeinflussung und Lokalisierung kann auch über Funknetze der Betreiber durchgeführt werden, wobei dann von der sog. Funk-Zugbeeinflussung gesprochen wird. Auch die GB 2 273 424 A offenbart ein derartiges System.
  • Die Betreiber von Schienennetzen, wie z.B. die Deutsche Bahn AG, verwenden diese Verfahren und Systeme, um insbesondere aus Sicherheitsgründen die Aufenthaltsorte der Züge zu detektieren. Die Informationen über die Aufenthaltsorte bzw. die Lokalisierung der Züge wird aber auch dazu verwendet, die Kunden über die Planmäßigkeit der Züge zu informieren, z.B. durch Lautsprecheransagen am Bahnsteig oder durch aktualisierte Ankunft-/Abfahrtspläne im Internet. Hierbei besteht aber ein Interessenskonflikt des Betreibers: Zum einen möchte er sicherlich seine Kunden umfassend informieren, zum anderen möchte er sich aber möglichst positiv darstellen und gibt deshalb nur bedingt Auskunft über auftretende Zugverspätungen. Der Kunde ist also auf die Auskunftsdienste des Schienennetz- bzw. Bahn-Betreibers angewiesen. Wünschenswert wäre die Möglichkeit für eine vom Betreiber unabhängigen Lokalisierung und Überwachung des Schienenverkehrs, aus der sich Aussagen über die Planmäßigkeit der Züge gewinnen ließe.
  • Im Bereich des Straßenverkehrs gibt es bereits technische Vorschläge, die eine Lokalisierung von Fahrzeugen ermöglichen. Dabei wird auch auf bestehende Mobilfunknetze zurückgegriffen.
  • In der DE 102 25 033 A1 wird z.B. ein Verfahren beschrieben, bei dem in einem Mobilfunksystem für jeweils einen Aufenthaltsbereich, der sog. Location Area, eine Auswertung von kollektiv erfassten Daten in Form von Location Updates erfolgt (s. dort u.a. Anspruch 1). Durch eine Geo-Referenzierung werden konkrete Streckenabschnitte den Aufenthaltbereichen zugeordnet und anschließend werden die beim Location Update erfassten Daten mit Zeitmarken versehen. Das Problem der Lokalisierung und Verfolgung von Zügen wird dort nicht behandelt.
  • In der DE 103 33 793 A1 wird ein Verfahren beschrieben, bei dem auf Funkzellen-Ebene individuelle Daten einzelner Mobilfunkgeräte ausgewertet werden, um Anzahl und/oder Geschwindigkeit der sich in den einzelnen Funkzellen bewegenden Mobilfunkgeräte zu ermitteln. Außerdem werden auch Anzahl der sich nicht bewegenden Mobilfunkgeräte ermittelt und mit den vorigen Daten verglichen, um eine Verkehrsinformation zu generieren (s. dort u.a. Anspruch 1). Auch hier wird das Problem der Lokalisierung von Zügen nicht behandelt.
  • In der EP 17 42 190 A2 wird ein Verfahren beschrieben, bei dem für einen mehrere Funkzellen umfassenden Bereich die Daten erhoben und ausgewertet werden (s. dort u.a. Zusammenfassung). Hierzu wird beim Eintritt jeweils eines Mobilfunkgerätes in den Bereich die Identifikation der ersten Funkzelle dieses Bereiches erhoben und mit einem Zeitstempel versehen. Wenn dann beim Wechsel in einen nächsten Bereich werden dort auch die entsprechenden Daten erhoben werden, so kann aus dem Vergleich der Daten eine Reisezeit ermittelt werden. Allerdings wird auch hier das Problem der Lokalisierung von Zügen nicht behandelt.
  • Die vorliegende Erfindung sich aber mit der Fragestellung, wie aus Mobilfunkdaten Züge betreiberunabhängig lokalisiert sowie über das Schienennetz verfolgt und hieraus Informationen über die Planmäßigkeit der Züge gewonnen werden kann.
  • Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Lokalisierung von Zügen in einem Schienennetz sowie ein System und eine Zentrale dafür vorzustellen, die in vorteilhafter Weise für einen vom Schienennetz- oder BahnBetreiber unabhängigen Einsatz geeignet sind.
  • Insbesondere soll ein Verfahren und Vorrichtungen vorgeschlagen werden, die zur Lokalisierung von Zügen in einem Schienennetz, das im Versorgungsbereich eines zellulären Mobilfunksystems liegt, in dem Mobilfunkgeräte eingebucht sind, geeignet sind, wobei sich zumindest ein Teil der Mobilfunkgeräte in den Zügen befindet, die sich durch räumliche Bereiche des Mobilfunksystems entlang mindestens eines Schienenweges bewegen.
  • Um die obige Aufgabe zu erzielen, stellt die vorliegende Erfindung ein Verfahren vor, bei dem für benachbarte räumliche Bereiche, zu denen mindestens ein Schienenweg zuordnenbar ist, kollektive Daten erfasst werden, die für eingebuchte Mobilfunkgeräte Wechselzeitpunkte für Wechsel zwischen den benachbarten räumlichen Bereichen anzeigen; und bei dem mittels Auswertung der kollektiven Daten für mehrere eingebuchte Mobilfunkgeräte gemeinsame Wechselzeitpunkte ermittelt und als zuordnenbar zu Zügen erkannt werden, die auf dem mindestens einen Schienenweg verkehren, wobei mittels Vergleich der gemeinsamen Wechselzeitpunkte mit planmäßigen Wechselzeitpunkten, die z.B. durch Fahrplandaten und/oder statistischer Auswertung der kollektiven Daten gewonnen werden können, für verkehrende Züge der jeweilige gemeinsame Wechselzeitpunkt einem Zug zugeordnet wird, um den Zug im Schienennetz zu identifizieren und zu lokalisieren.
  • Demnach können die bereits im Mobilfunksystem implementierten Abläufe zur Verfolgung von Mobilfunkgeräten, wie z.B. das sog. Location Update, genutzt werden, um Züge betreiberunabhängig zu lokalisieren. Werden Bereiche betrachtet, die Bahnhöfe abdecken, so kann die Bestimmung der planmäßigen Wechselzeiten bereits durch Zugriff auf die üblichen Fahrplandaten erfolgen, der z.B. leicht über Abfragen von den im Internet und/oder auf CD-ROM abgelegten Fahrplänen, realisiert werden kann. Alternativ oder zusätzlich dazu können insbesondere für beliebige Streckenabschnitte die planmäßigen Wechselzeitpunkte durch statistische Auswertung der dort erhobenen kollektiven Daten ermittelt werden.
  • Die erfindungsgemäße Lokalisierung und Verfolgung von Zügen wird durch ein vom Betreiber des Schienennetzes unabhängig arbeitendes System ermöglicht und kann somit jederzeit und ohne Einschränkung genutzt und den Kunden zur Verfügung gestellt werden. Die Lokalisierung und Verfolgung von Zügen kann der Kunde beispielsweise über einen entsprechenden mobilen und vorzugsweise internetgestützten Datendienst nutzen und kann sich somit über den aktuellen Aufenthaltsort sowie über evtl. Verspätungen von Zügen informieren lassen.
  • Das erfindungsgemäße Verfahren wird also bevorzugt innerhalb eines Mobilfunksystems durch Auswertungen von Mobilfunksignalen bzw. -daten realisiert, die von Mobilfunkgeräten erfasst werden, welche sich in Zügen befinden und welche somit durch den räumlichen Bereich bewegt werden. Das Verfahren ist hier bestens dafür geeignet, auf der Basis von netzseitig erfassten Mobilfunkdaten zeitnah die gehäufte Bewegung und/oder den Aufenthalt von vielen Mobilfunkgeräten im Versorgungsbereich von Schienennetzen zu erkennen und somit die Lokalisierung von Zügen durchzuführen. Die kollektiv erfassten Signale sind also Mobilfunksignale von in den Zügen befindlichen Mobilfunkgeräten, wobei die Signale zentral erfasst und ausgewertet werden. Durch die Auswertung von diesen bereits vorhandenen und zahlreich erfassbaren Signalen wird eine ausreichend große Datenbasis geschaffen, die eine fundierte Lokalisierung und Verfolgung eines einzelnen Zuges ermöglicht.
  • Vorzugsweise ist das Verfahren so ausgestaltet, dass jeder gemeinsame Wechselzeitpunkt für mehrere Mobilfunkgeräte den zeitgleichen Eintritt in und/oder den zeitgleichen Austritt aus dem jeweiligen räumlichen Bereich angibt.
  • Zumindest für räumliche Bereiche, die Bahnhöfe abdecken, können die planmäßigen Wechselzeitpunkte leicht aus Fahrplandaten eines Bahnbetreibers abgeleitet werden.
  • Zumindest für räumliche Bereiche, die keine Bahnhöfe, sondern beliebige Streckenabschnitte, abdecken, werden die planmäßigen Wechselzeitpunkte bevorzugt durch eine mehrmals, insbesondere tageweise, wiederholte Auswertung der kollektiven Daten ermittelt, wobei erkannt wird, ob gemeinsame Wechselzeitpunkte auch planmäßige Wechselzeitpunkte repräsentieren.
  • Zumindest für Streckenabschnitte auf denen mehrere Züge zeitnah verkehren werden über mehrere benachbarte räumliche Bereiche die kollektiven Daten, die als einem Zug zuordnenbar erkannt werden, für eine zeitliche und räumliche Verfolgung der Züge ausgewertet.
  • Bevorzugt wird jeweils ein aktuell ermittelter gemeinsamer Wechselzeitpunkt mit mindestens einem planmäßigen Wechselzeitpunkt verglichen, um eine Abweichung festzustellen, die eine Verspätung eines Zuges anzeigt, dem der planmäßige Wechselzeitpunkt zuordnenbar ist.
  • Vorzugsweise werden aus den kollektiven Daten oder aus den daraus ermittelten Wechselzeitpunkten kollektive Reisezeiten bestimmt, die jeweils die Durchfahrtsdauer eines Zuges durch den räumlichen Bereich angeben. Dabei ist es von Vorteil, wenn mittels der kollektiven Reisezeiten verschiedene Arten von Zügen erkannt werden, um aus den Wechselzeitpunkten mehrerer eingebuchter Mobilfunkgeräte die gemeinsamen Wechselzeitpunkte zu ermitteln und den Zügen zuzuordnen.
  • Diese und weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich auch aus den Unteransprüchen.
  • Demnach ist es vorteilhaft, wenn das erfindungsgemäße Verfahren auch zumindest einen der folgenden optionalen zusätzlichen Schritte umfasst:
    • Zuordnung der kollektiven Daten zu Zügen anhand von Kennungen einzelner Mobilfunkgeräte;
    • Verfolgung von Zügen anhand von Kennungen einzelner Mobilfunkgeräte;
    • zur Identifizierung von Zügen Vergleich der Wechselzeitpunkte mit planmäßigen Wechselzeitpunkten, die für den jeweiligen Bereich gelten, wobei der jeweilige Bereich einen beliebigen Streckenabschnitt oder einen Bahnhof abdeckt;
    • über mehrere Tage wiederholte Analyse (Offline) der Wechselzeitpunkte zur Bestimmung von planmäßigen Wechselzeitpunkten, die auch für Bereiche gelten, die keinen Bahnhof abdecken;
    • Identifizierung von Fahrstrecken von Zügen mittels Vergleich der für mehrere Bereiche aktuell ermittelten Wechselzeitpunkten mit planmäßigen Wechselzeitpunkten.
  • Die kollektiven Daten können mittels einer, insbesondere statistischen, Auswertung von Eintritts- und Austrittszeitpunkten bestimmt werden, die den Eintritt in den Bereich bzw. den Austritt aus dem Bereich der aktiven und nicht-aktiven Mobilfunkgeräte anzeigen. Dies erfolgt vorzugsweise im Zusammenhang mit dem an sich im Mobilfunksystem durchgeführten Location-Update-Verfahren.
  • Um die Lokalisierung noch genauer durchführen zu können, kann mittels einer Auswertung von individuellen Daten, die die Präsenz einzelner aktiver Mobilfunkgeräte in Unterbereichen des räumlichen Bereichs anzeigen, eine Lokalisierung des Zuges in einem einzelnen Unterbereich durchgeführt werden. Dabei entspricht der räumliche Bereich einem Funkversorgungsbereich des zellulären Mobilfunksystems und die Unterbereiche sind einzelne oder mehrere Funkzellen dieses Funkversorgungsbereiches. In diesem Zusammenhang können dann die individuellen Daten z.B. mittels einer Auswertung von Daten für einen Funkwechsel zwischen den Funkzellen bezüglich des Eintritts- und/oder Austritts der aktiven Mobilfunkgeräte ermittelt werden.
  • Außerdem kann die Auswertung der individuellen Daten durch zusätzliche Daten oder Angaben über die Sende- und/oder Empfangsfeldstärke von Mobilfunksignalen ergänzt werden, um eine noch genauere Lokalisierung des Zuges innerhalb eines Unterbereichs, also z.B. innerhalb einer Funkzelle, durchführen zu können.
  • Im folgenden werden nun die Erfindung und die sich daraus ergebenden Vorteile im Detail anhand von Ausführungsbeispielen beschrieben, wobei auf die beiliegenden Zeichnungen Bezug genommen wird:
  • Fig. 1
    zeigt in schematischer Darstellung zwei angrenzende Funkversorgungsbereiche (Location Areas), durch die ein Schienenweg führt und in denen das Verfahren durchgeführt wird;
    Fig. 2
    zeigt in vereinfachter Darstellung die Ergebnisse aus einer zeitlichen Beobachtung bzw. Überwachung der kollektiven Reisezeiten innerhalb eines der beiden des Funkversorgungsbereiche;
    Fig. 3
    zeigt entsprechende Ergebnisse aus einer tageweise wiederholten Beobachtung bzw. Überwachung der kollektiven Reisezeiten;
    Fig. 4
    zeigt in ihre Funkzellen unterteilte Funkversorgungsbereiche, durch die zwei Schienenwege führen;
    Fig. 5
    zeigt ein Ablaufdiagramm für ein erfindungsgemäßes Verfahren.
  • Die Figur 1 zeigt in schematischer Darstellung einen Gebietsausschnitt mit zwei räumlichen Bereichen LA1 und LA2, die jeweils einem Funkversorgungsbereich (Location Area) eines zellulären Mobilfunknetzes entsprechen, auf welche das Verfahren exemplarisch angewendet wird. Jeder Bereich LA1 oder LA2 umfasst mehrere Funkzellen und wird von einem Schienenweg W durchzogen, auf dem verschiedene Züge Z, wie z.B. S-Bahnen des Nahverkehrs als auch ICE-Fernverkehrszüge, verkehren. Die Ein- und Austrittszeitpunkte werden dabei von allen Mobilfunkgeräten erfasst. Ein Wechsel von einem Bereich zum anderen wird von allen Mobilfunkgeräten gemeldet (schwarze Kreise) und als kollektive Daten erfasst. Die einzelnen Funkzellenwechsel mit weitergehenden Informationen bzw. individuellen Daten werden nur für aktive Endgeräte erfasst (offene Quadrate). Erfindungsgemäß kann bereits anhand der kollektiven Daten eine erste Lokalisierung eines Zuges durchgeführt werden, indem durch Datenauswertung gemeinsame Wechselzeitpunkte ermittelt werden, die durch Abgleich mit Fahrplandaten den einzelnen Zügen zugeordnet werden können.
  • Die Fig. 2 zeigt für den in Fig. 1 gezeigten Funkversorgungsbereich LA1 in vereinfachter Darstellung die Ergebnisse aus einer sich über einen Vormittag erstreckenden zeitlichen Beobachtung bzw. Überwachung der kollektiven Daten bzw. Rohdaten RDT und der sich ergebenden Häufungen von Wechselzeitpunkten als auch von kollektiven Reisezeiten zu verschiedenen Tageszeiten. Auf der Ordinate des Diagramms ist die Reisezeit TR aufgetragen, die als Differenz zwischen Austritts- und Eintrittszeit definiert ist und die Aufenthaltsdauer eines Mobilfunkgerätes angibt. Diese entspricht der Durchfahrtsdauer eines Zuge, wenn das jeweilige Mobilfunkgerät sich in diesem Zug befindet. Auf der Abszisse ist die Austrittszeit TA im Beobachtungszeitraum zwischen 5 Uhr morgens und 12 Uhr Mittags aufgetragen. Die jeweils im Rahmen eines. Location Updates erfassten Rohdaten RDT jedes einzelnen Mobilfunkgerätes sind als Messpunkte dargestellt. Die Daten RDT bilden Häufungen, die einzelnen Zügen entsprechen. Diese sind als offene Quadrate an der Position der mittleren Reisezeit und Austrittszeit dargestellt. Als zusätzliche Angabe könnte noch die Anzahl der zu den Häufungen gehörenden Einzeldaten angegeben werden. Erkennbar ist, dass es Bandbereiche gibt, in denen sich die erfassten Daten jeweils um eine typische Reisezeit häufen, wie z.B. um die Reisezeit TRu oder TRv. Jeder Bandbereich entspricht einer Klasse von Zügen. Hier wird beispielsweise eine Klasse von Zügen mit einer typischen kollektiven Reisezeit von ca. 240 Sekunden, also 4 Minuten, erkannt. Die kollektive Reisezeit TRv gehört hierzu und gibt z.B. einen schnell fahrenden Fernzug an. Eine weitere Klasse weist eine typische kollektive Reisezeit von ca. 420 Sekunden, also 7 Minuten, auf. Die kollektive Reisezeit TRu gehört hierzu und gibt z.B. einen langsamer fahrenden Nahverkehrszug an.
  • Einzelne Messdaten, die weit entfernt von diesen statistischen Häufungen bzw. außerhalb der Bänder liegen, können keiner entsprechenden kollektiven Reisezeit zugeordnet werden. Diese Streudaten stammen mit sehr hoher Wahrscheinlichkeit von Mobilfunkgeräten, die sich nicht in einem Zug befinden, und werden deshalb ignoriert. Die hier ausgewerteten Rohdaten werden als kollektive Daten RDT beschrieben, um auszudrücken, dass sie kollektiv, z.B. im Rahmen des sog. Location Updates, erfasst werden können. Wie anhand der Fig. 2 veranschaulicht wird, können die kollektiven Daten RDT auch anzeigen, ob evtl. mehrere Mobilfunkgeräte kollektiv, d.h. gleichzeitig oder sehr zeitnah, zwischen Funkversorgungsbereich wechseln, was insbesondere bei Zügen der Fall ist. Denn nicht selten befinden sich in Zügen mehrere eingebuchte Mobilfunkgeräte (in Fernzügen durchaus 40 und mehr), für die quasi gleichzeitig ein Wechsel zwischen benachbarten Funkversorgungsbereichen erfolgt.
  • Bereits durch Auswertung der kollektiven Daten RDT kann erkannt werden, zu welchen Zeiten Züge im beobachteten Bereich verkehren. Anhand der kollektiven Reisezeiten TR kann zudem erkannt werden, ob der jeweilige Zug wahrscheinlich ein schneller oder langsamer Zug ist. Beispielsweise zeigt die Datenhäufung beim Austrittszeitpunkt TAu an, dass dort so um etwa 9:40 Uhr ein eher langsamer Zug Zu mit einer Reisezeit von etwa TRu = 400 sec zu beobachten ist. Beim Austrittszeitpunkt TAv, der bei 10:00 Uhr liegt, wird ein eher schneller Zug Zv mit einer Reisezeit von etwa TRv = 230 sec beobachtet.
  • Um die Züge konkret zu identifizieren, können die Daten mit Fahrplandaten abgeglichen werden, so dass jeweils ein bestimmter Zug lokalisiert werden kann. Dabei befindet sich der Funkversorgungsbereich z.B. an einem Bahnhof, für den die Fahrplandaten vorliegen. Die erfassten Wechsel- bzw. Austrittszeitpunkte TA werden dann mit den dortigen Abfahr- und/oder Ankunfts-Fahrplänen verglichen. Somit könnte z.B. die Datenhäufung bei TAv und TRv, dem Zug Zv zugeordnet, der für diese Uhrzeit, nämlich für 10:00 Uhr, im Fahrplan als "ICE 278" ausgewiesen ist. Sind die Daten erst einmal konkret einem Zug zugeordnet, so können diese mit Daten, die in weiteren Funkversorgungsbereichen entlang der Zugstrecke erfasst werden korreliert und abgeglichen werden. Somit ist eine fortlaufende Lokalisierung und Verfolgung einzelner Züge möglich.
  • Vorzugsweise wird die Datenerfassung regelmäßig wiederholt, insbesondere tageweise wiederholt, um planmäßige Wechselzeitpunkte zu ermitteln und evtl. Abweichungen zu erkennen.
  • In der Fig. 3 sind entsprechende Ergebnisse aus einer tageweise wiederholten Beobachtung bzw. Überwachung der erfassten kollektiven Daten RDT dargestellt. Erkennbar ist, dass sich das bereits in der Fig. 2 abzeichnende Muster von Tag zu Tag im wesentlichen wiederholt. Die anhand des Fahrplans identifizierten Züge sind durch Ellipsen markiert und mit der Zugnummer bezeichnet. Die schnellen Züge bilden die auf der Strecke verkehrenden ICE-Verbindungen, die langsameren Züge die S-Bahn-Verbindungen. Die Darstellung umfasst den Beobachtungszeitraum von drei Tagen, nämlich vom 10. bis zum 12 Juli.
  • Erkennbar ist, dass nur relativ wenige Züge größere Schwankungen bei den ermittelten Wechselzeitpunkten TA aufweisen. Beispielsweise liegt für die Züge Zy und Zz am 12. Juli die jeweilige Wechselzeitpunkt deutlich später als an den beiden Tagen zuvor. Diese Abweichung wird als Indikator für eine Verspätung des jeweiligen Zuges verstanden. Da die Reisezeiten TR sich für die Züge Zy und Zz nicht stark ändern, kann davon ausgegangen werden, dass die die Verspätungen schon beim Eintritt in den Funkversorgungsbereich vorhanden war. Auch die meisten der anderen Züge, wie z.B. die Züge Zu und Zv, weisen nur kleinere Schwankungen in der Reisezeit TR auf. Hingegen weisen die Züge Zw und Zx jeweils am 11. Juli jeweils eine stark abweichende Reisezeit auf. Für den Zug Zw liegt am 11. Juli die Reisezeit TRw11 sogar bei etwa 820 sec, was einer Verzögerung von etwa 600 sec gegenüber den Daten der anderen Tage entspricht. Die Erhöhung der Reisezeit TR wird hier als Indikator für eine in dem Funkversorgungsbereich herrschende Störung (z.B. Baustelle) erkannt, muss sich aber nicht besonders negativ auf eine Verspätung des Zuges auswirken, wie dies z.B. am gezeigten Beispiel der Züge Zw und Zx veranschaulicht wird.
  • Somit werden im wesentlichen die Abweichungen der Wechselzeitpunkte TA als Verspätungen von Zügen verstanden, die Abweichungen von Reisezeiten werden hingegen als lokale Störung angesehen. Sollte jedoch für denselben Zug in mehreren Funkversorgungsbereichen jeweils eine stark angestiegene Reisezeit zu beobachten sein, so wirkt sich die Akkumulierung der Reisezeiten als signifikante Verspätung des Zuges aus.
  • Mit dem hier beschriebenen Verfahren kann auf Routinen im Mobilfunksystem zurückgegriffen werden, mit denen sich ein Large-Area-Wechsel für alle Mobilfunkgeräte erkennen lässt. Dies kann bei den inaktiven Mobilfunkgeräten aus Daten der sog. Location-Update-Meldungen und bei aktiven Mobilfunkgeräten aus Daten der entsprechenden Handover-Meldung ermittelt werden. Dabei ist neben dem Wechselzeitpunkt zumindest die Large Area, aus der das Endgerät stammt, sowie die Large Area und Zelle, in die es gewechselt ist, bekannt.
  • Die eine Large Area durchquerenden Verkehrsströme machen sich dadurch bemerkbar, dass bestimmte Eintritts-Austrittskombinationen verstärkt auftreten. Aus dem Eintrittszeitpunkt TE in die Location Area und dem Austrittszeitpunkt TA aus der Location Area lässt sich die Reisezeit TR als Differenz von Austritts- zu Eintrittszeit berechnen (TR=TA-TE).
  • Da auf dieser Datenebene alle Mobilfunkgeräte erfasst werden, liegt bei dem derzeitigen Durchsetzungsgrad mit Mobilfunkgeräten eine ausreichende Anzahl an Einzelmessungen pro Zug vor. Durch statistische Methoden der Clusteranalyse lassen sich nun die einzelnen Häufungen erkennen und zu einzelnen Clustern zusammenfassen. Ein Cluster ist also definiert durch die Menge der zugehörigen Mobilfunkteilnehmer. Für die einzelnen Cluster können dann geeignete Kennzahlen (z.B. mittlere Reisezeit, mittlere Eintritts- oder Austrittszeit) ermittelt werden. Jedes dieser Cluster repräsentiert nun einen einzelnen Zug.
  • Erfasst und vergleicht man die Daten über mehrere Tage, so erscheint ein sich täglich wiederholendes Muster (siehe Fig. 3). Geht man davon aus, dass im Regelfall Züge planmäßig verkehren, lassen sich bereits hier Planabweichungen erkennen. Da der Austritt aus einer Large Area auch den Eintritt in die nächste Large Area darstellt, sind die Informationen derart verknüpft, dass sich ein Zug über den gesamten durch Daten abgedeckten Bereich verfolgen lässt. Selbst in dem Falle, dass sich einzelne Züge in einem Streckenabschnitt nicht nur räumlich sondern auch zeitlich so überlappen, dass sie innerhalb einer Large Area nicht getrennt werden können und als ein Zug erscheinen, so kann dieser Umstand anhand der bekannten Menge der zugehörigen Mobilfunkteilnehmer der einzelnen Züge aus vorangegangenen oder folgenden Large Areas erkannt und korrekt zugeordnet werden (s. Fig. 4). Somit lässt sich für einen Zug die vollständige Route auf dem Streckennetz bestimmen, wobei für alle Large Area - Wechsel die Wechselzeitpunkte bekannt sind. Durch Vergleich mit dem Fahrplan lassen sich damit die einzelnen Züge identifizieren. In dem Beispiel lagen nur die Daten einer Large Area vor. Dennoch konnten bereits die meisten Züge allein schon durch Vergleich mit dem Ankunftsfahrplan des entsprechenden Zielbahnhofes eindeutig identifiziert werden (s. Fig. 3).
  • Hierdurch lassen sich bereits auf dieser Stufe Züge eindeutig identifizieren und in Echtzeit ihre Bewegung auf dem Netz verfolgen und durch Vergleich mit dem Soll-Eahrplan die Pünktlichkeit der Züge überwachen.
  • Um darüber hinaus die Züge noch genauer lokalisieren zu können, werden noch individuell auf Funkzellenebene ermittelte Daten der aktiven Mobilfunkgeräte ausgewertet.
  • Nachdem die einzelnen Züge identifiziert und die Menge der zugehörigen Teilnehmer bestimmt ist, kann nun anhand der individuellen Daten der Aufenthaltsort des Zuges noch genauer bestimmt werden. Die hierbei erreichbare Genauigkeit hängt von dem Informationsumfang auf dieser Datenebene ab. Liegen individuelle Daten eines zugehörigen Teilnehmers vor, so kann anhand der Informationen über die einzelnen Zellwechsel die Position des Zuges zumindest zellgenau festgestellt werden. Liegen weitere Informationen (z.B. Entfernungsangabe zur bedienenden Zelle, Empfangstärken) vor, so kann mithilfe dieser die Position auch genauer innerhalb der Zelle festgelegt werden.
  • Da zu einem Zeitpunkt nur ein Bruchteil der Mobilfunkgeräte aktiv ist, fallen die individuellen Daten weniger häufig an, als die zuvor betrachteten kollektiven Daten. Das Datenaufkommen auf dieser Ebene ist im Wesentlichen durch das Telefonierverhalten der Zugreisenden bestimmt. Dies dürfte aber heutzutage so beschaffen sein, dass eine nahezu vollständige Lokalisierung auf dieser Ebene erreichbar ist.
  • Zur Veranschaulichung zeigt die Fig. 4 mehrere in ihre Funkzellen unterteilte Funkversorgungsbereiche LA1, LA2, LA3 usw., durch die beispielsweise zwei Schienenwege W1 und W2 führen.
  • Innerhalb der Bereiche LA 1 und LA3 sind die beiden Züge Zu und Zv räumlich getrennt, d.h. sie haben unterschiedliche Kombinationen von Eingangszelle und Ausgangszelle und gehören somit unterschiedlichen Verkehrsströmen an.
  • Innerhalb des Bereiches LA2 gehören beide Züge Zu und Zv dem selbem Schienenweg bzw. Verkehrsstrom an (identische Eingangs- und Ausgangszelle). Da aber in der Regel Züge innerhalb eines solchen Bereiches zeitlich ausreichend voneinander getrennt sind, können sie einzeln identifiziert werden (siehe auch Fig. 2 und 3). Sollten jedoch Züge sich auch zeitlich so überlappen, dass innerhalb des Bereiches LA2 keine Trennung möglich ist, so lässt sich dies anhand der zugehörigen Menge an Mobilfunkteilnehmern erkennen, da die den einzelnen Zügen zugehörige Menge anhand der anderen Bereiche LA1 und LA2 bekannt ist.
  • Anhand der Figur 5 wird nachfolgend dieses Verfahren anhand des dort exemplarisch dargestellten Ablaufsdiagramms beschrieben.
  • Zunächst werden in einem Schritt 110 für einen Funkversorgungsbereich als Rohdaten bzw. Eingangsdaten kollektive Daten RDT erfasst, die Austrittszeitpunkte (s. TA in Fig. 2) von eingebuchten Mobilfunkgeräten in diesem Funkversorgungsbereich anzeigen. Diese Zeitpunkte werden hier als Wechselzeitpunkte TA beschrieben, um auszudrücken, dass anstelle von oder zusätzlich zu den Austrittszeitpunkten TA auch Eintrittszeitpunkte erfasst werden könnten. Die Rohdaten werden hier als kollektive Daten RDT beschrieben, um auszudrücken, dass sie kollektiv, z.B. im Rahmen des sog. Location Updates, erfasst werden können. Zudem können diese Daten RDT anzeigen, ob evtl. mehrere Mobilfunkgeräte kollektiv, d.h. gleichzeitig oder sehr zeitnah, zwischen Funkversorgungsbereichen (siehe LA1, LA2... in Fig. 4) wechseln, was insbesondere bei Zügen der Fall ist. Denn nicht selten befinden sich in Zügen mehrere eingebuchte Mobilfunkgeräte (in Fernzügen durchaus 40 und mehr), für die quasi gleichzeitig ein Wechsel zwischen benachbarten Funkversorgungsbereichen (s. Fig. 4) erfolgt.
  • Somit kann dann in einer Schrittfolge 120 anhand der kollektiven Daten RDT und den ermittelten Wechselzeitpunkten festgestellt werden, ob eingebuchte Mobilfunkgeräte in einer größeren Anzahl gleichzeitig bzw. gemeinsam von einem Funkversorgungsbereich zum nächsten wechseln, so dass hieraus erkennbar ist, dass die entsprechenden kollektiven Daten RDT Zügen zugeordnet werden können. Andere Daten, die von einzelnen, z.B. in Autos befindlichen, Mobilfunkgeräten stammen, können verworfen werden.
  • Bei der im Schritt 120 durchgeführten Zuordnung der kollektiven Daten bzw. der entsprechenden Mobilfunkgeräte zu Zügen handelt es sich zunächst noch um eine abstrakte Zuordnung, weil die einzelnen Züge noch unbekannt und nicht identifiziert sind. Jedoch ermöglicht bereits diese abstrakte Zuordnung eine Verfolgung der unbekannten Züge (s. Schritt 130), um z.B. typische Bewegungsprofile zu erhalten, die Hinweise auf konkrete Züge geben können. Auch könnte anhand einer für mehrere Funkversorgungsbereiche durchgeführten Datenanalyse die Belastung des Schienennetzes an sich und die Häufigkeit von auftretenden Verspätungen ermittelt werden.
  • Die in den Schritten 110 und 120 durchgeführte Auswertung der kollektiven Daten RDT umfasst beispielsweise auch eine statistische Auswertung der in Fig. 2 dargestellten Datenerhebung, bei der die Austrittszeitpunkte TA auf der X-Achse und die hier als Reisezeit TR beschriebene Differenz von Austrittszeit TA und Eintrittszeit TE auf der y-Achse aufgetragen werden. Die Reisezeit TR gibt die jeweilige Aufenthaltsdauer eines Mobilfunkgerätes in einem Funkversorgungsbereich an und tritt insbesondere im Falle von Zügen in Clusterform auf, so wie es die Fig. 2 darstellt. Dadurch kann erkannt werden, welche der erfassten Rohdaten RDT zu kollektiv sich bewegenden Mobilfunkgeräten gehören. Sofern die Rohdaten RDT Häufungen von Reisezeiten TR zu bestimmten Austrittszeitpunkten TA aufweisen, wird erfindungsgemäß angenommen, dass es sich um Mobilfunkgeräte von kollektiv in Zügen reisender Personen handelt. Deshalb werden diese Reisezeiten (z.B. TRu und TRv in Fig. 2) hier als kollektive Reisezeiten beschrieben, die jeweils einem Zug zugeordnet werden können.
  • Durch eine Datenanalyse der kollektiven Reisezeiten ist z.B. auch eine Differenzierung zwischen verschiedenen Zugtypen möglich. Denn die relativ langen Reisezeiten, wie z.B. TRu, zeigen eher langsam fahrende oder oft haltende Züge an, wie z.B. die S-Bahn Zu. Die kurzen Reisezeiten zeigen eher schnelle Fernzüge an, wie z.B. den Schnellzug bzw. InterCityExpress Zv. Auch wenn hier noch keine konkrete Datenzuordnung zu Zügen möglich ist, wie z.B. die Zuordnung der Daten TRv und TAv zum ICE278 (s. Fig. 3), so kann bereits diese Datenanalyse ergeben, ob eventuell einzelne Züge nicht planmäßig und insbesondere verspätet sind.
  • Die kollektiven Daten, die abstrakt Zügen zugeordnet werden können, werden in einem Schritt 130 über mehrere Funkversorgungsbereiche verfolgt, um zumindest abstrakte Profile zu ermitteln, die einzelne Züge repräsentieren. Dabei können insbesondere die jeweiligen gemeinsamen Wechselzeitpunkte erfasst und ausgewertet werden.
  • Zur Identifizierung einzelner Züge werden in einem Schritt. 140 die gemeinsamen Wechselzeitpunkte mit planmäßigen Wechselzeitpunkten verglichen, die im Teilschritt 139 bereit gestellt werden.
  • Beziehen sich die erhobenen Daten auf einen Funkversorgungsbereich, der einen Bahnhof abdeckt, so können als planmäßige Wechselzeitpunkte z.B. die Fahrplandaten oder davon abgeleitete Daten herangezogen werden. Durch Vergleich der gemessenen gemeinsamen Wechselzeitpunkte mit den Daten aus dem Ankunfts- und/oder Abfahrtsfahrplan für diesen Bahnhof können bereits Züge konkret identifiziert werden und auch ggf. festgestellt werden, ob einzelne Züge nicht planmäßig verkehren. Wenn z.B. die planmäßige Ankunftszeit der S-Bahn S41 bei 09:35 Uhr liegt (s. Fig. 2), so kann der anhand der am 10. Juli bis 12. Juli erhobenen Daten erkannte Zug Zu leicht als S-Bahn S41 identifiziert und lokalisiert werden.
  • Oder es wird beispielsweise für den Zug Zz (s. Fig. 3) am 12. Juli ein aktueller Wechselzeitpunkt TAz12 gemessen, der deutlich hinter den anderen Wechselzeitpunkten liegt und somit signifikant vom planmäßigen Zeitpunkt TAz abweicht. Der planmäßige Zeitpunkt kann aus dem Fahrplan abgeleitet werden und/oder kann auch durch statistische Auswertung der Rohdaten RDT ermittelt werden, indem geprüft wird, welcher Zeitpunkt oder zumindest enger Zeitraum vorherrscht und als planmäßiger Wechselzeitpunkt TAz angesehen werden muss. Wenn z.B. die planmäßige Ankunftszeit des ICE76 sowie auch des ICE600 bei 10:40 Uhr liegt, so lässt sich erkennen, dass beide Züge am 12. Juli deutliche Verspätungen von etwa 20 bzw. 30 Minuten aufweisen (s. Fig. 3).
  • Vorzugsweise werden im Schritt 139 die planmäßigen Wechselzeitpunkte nicht nur für Bahnhöfe, sondern für beliebige Streckenabschnitte ermittelt und für den Vergleich (Schritt 140) bereit gestellt. Dazu werden zuvor in Schritten 145 und 146 im Rahmen einer vorzugsweise Offline durchgeführten Datenanalyse bevorzugt die über mehrere Tage erhobenen Daten ausgewertet. Treten an der Grenze des jeweiligen Funkversorgungsbereichs an mehreren Tagen gemeinsame Wechselzeitpunkte gehäuft zu derselben Zeit auf, so repräsentieren diese Daten planmäßige Wechselzeitpunkte, die im Schritt 139 als Referenzdaten zur Verfügung gestellt werden. Durch die schon im Schritt 130 durchgeführte Verfolgung kann dann im Schritt 140 eine genaue Identifizierung und Lokalisierung von konkreten Zügen durchgeführt werden.
  • Beispielsweise kann ermittelt werden, dass der ICE76 täglich in den Funkversorgungsbereich LA1 planmäßig um 10:30 Uhr eintritt und dann um 10:40 Uhr zum nächsten Funkversorgungsbereich LA2 wechselt. Um 11:15 Uhr wechselt der ICE 76 dann in den Funkzellenbereich LA3 usw..
  • Diese im Schritt 139 bereit gestellten Daten beziehen sich auf beliebige Streckenabschnitte und umfassen also die Zugidentität, den Ort des Wechsels (Übergang von einem Funkversorgungsbereich zum nächsten) sowie den jeweiligen Zeitpunkt. Um zuverlässige Daten zu haben wurde im Offline-Schritt 145 durch Vergleich mit Fahrplandaten die jeweils Online durchgeführte Zugidentifizierung (Schritt 140) verifiziert. Dabei kann auf Basis der über mehrere Tage erhobenen Daten u.a. festgestellt werden, ob die jeweils aktuell (im Schritt 140) erfolgte Zugidentifizierung korrekt ist. Beispielsweise werden im Schritt 145 Fahrplanänderungen erkannt, oder es wird erkannt, dass auf dem betrachteten Streckenabschnitt z.B. ein Sonderzug verkehrt, der fälschlicherweise im Schritt 140 als Regelzug erkannt wurde. Diese und weitere Fehler können somit im Schritt 145 korrigiert werden. Im Schritt 146 können dann für den richtig erkannten Zug auf der betrachteten Strecke jeweils Ort und Zeitpunkt der Wechsel durch statistische Auswertung der Daten ermittelt werden.
  • Mit diesen dann im Block 139 vorliegenden genauen Daten kann u.a. Bestimmung von evtl. auftretenden Verspätungen (Schritt 150) präzisiert werden. Außerdem kann mit den Daten aus Block 139 die aktuelle Identifizierung von Zügen im Schritt 140 genau für jeden beliebigen Streckenabschnitt durchgeführt werden. Die Züge sind somit auch abschnittsweise exakt lokalisierbar.
  • Bei Bedarf kann in einem Schritt 141 noch eine genauere Lokalisierung z.B. anhand von individuellen Daten erfolgen, die Hand-Over-Zeitpunkte, Feldstärke oder dergleichen angeben.
  • Anhand des im Schritt 140 durchgeführten Datenvergleichs können in einem Schritt 150 dann Verspätungen unabhängig vom Bahnbetreiber erkannt und dem Nutzer bzw. Kunden als Information zur Verfügung gestellt oder übermittelt werden. Hierzu kann z.B. die Übertragung einer entsprechenden Mobilfunknachricht, insbesondere einer SMS-Nachricht, dienen.
  • Die in der Fig. 5 durchgezeichneten Linien, die insbesondere die Blöcke mit den Verfahrensschritten 110, 120, 130, 140 und 150 verbinden, zeigen an, dass diese Verfahrensschritte fortlaufend in Echtzeit(Online) durchgeführt werden. Die gestrichelten Linien hingegen betreffen Schritte, die auch nicht in Echtzeit (Offline) durchgeführt werden können. Hierzu zählt der Schritt 146, bei dem über einen längeren Zeitraum eine statistische Analyse der Wechselzeitpunkte (Ein- bzw. Austrittszeiten) durchgeführt wird, mit der auch für Streckenabschnitte außerhalb von Bahnhöfen die planmäßigen Wechselzeitpunkte ermittelt werden können.
  • Zusammenfassend werden also hier ein Verfahren und Vorrichtungen vorgeschlagen, welche auf Basis von netzseitig erfassten Mobilfunkdaten zeitnah Züge lokalisieren und identifizieren und ihre Bewegung in Echtzeit auf dem Netz verfolgen kann. Aus diesen Informationen lässt sich auch die Einhaltung des Fahrplans überprüfen und Abweichung von selbigen quantifizieren. Das Verfahren stützt sich dabei im wesentlichen auf Informationen, die von allen Mobilfunkendgeräten erfasst werden. Eine genauere Lokalisierung der Züge kann dabei durch Verwendung der Informationen realisiert werden, die nur von aktiven Mobilfunkgeräten erfasst werden.
  • Das Verfahren ist prinzipiell über den Personenzugverkehr hinaus z.B. auch im Güterzugverkehr anwendbar, immer dann, wenn größere Mengen an Mobilfunkgeräten in räumlich klar abgegrenzten Bereichen transportiert werden, z.B. auch im Personenschiffsverkehr oder in der Containerschifffahrt, insbesondere auf Binnengewässern bzw. Flüssen, sofern eine ausreichende Anzahl der Container zu Telematikzwecken mit Mobilfunkendgeräten ausgestattet sind.

Claims (16)

  1. Verfahren (100) zur Lokalisierung von Zügen (Zu, Zv) in einem Schienennetz, das im Versorgungsbereich eines zellulären Mobilfunksystems liegt, in dem Mobilfunkgeräte eingebucht sind, wobei sich zumindest ein Teil der Mobilfunkgeräte in den Zügen (Zu, Zv) befindet, die sich durch räumliche Bereiche (LA1, LA2) des Mobilfunksystems entlang mindestens eines Schienenweges (W1, W2) bewegen, wobei das Verfahren folgende Schritte aufweist:
    - für benachbarte räumliche Bereiche (LA1,LA2), zu denen mindestens ein Schienenweg (W1, W2) zuordnenbar ist, werden kollektive Daten (RDT) erfasst, die für eingebuchte Mobilfunkgeräte Wechselzeitpunkte (TA) für Wechsel zwischen den benachbarten räumlichen Bereichen (LA1, LA2) anzeigen (110);
    - mittels Auswertung der kollektiven Daten (RDT) werden für mehrere eingebuchte Mobilfunkgeräte gemeinsame Wechselzeitpunkte (TAu, TAv) ermittelt und als zuordnenbar zu Zügen (Zu, Zv) erkannt, die auf dem mindestens einen Schienenweg (W1, W2) verkehren (120);
    - mittels Vergleich der gemeinsamen Wechselzeitpunkte (TAu, TAv) mit planmäßigen Wechselzeitpunkten für verkehrende Züge (Zu, Zv) wird der jeweilige gemeinsame Wechselzeitpunkt (TAu) einem Zug (Zu) zugeordnet, um den Zug (Zu) im Schienennetz zu identifizieren und zu lokalisieren (140).
  2. Verfahren (100) nach Anspruch 1, dadurch gekennzeichnet, dass jeder gemeinsame Wechselzeitpunkt (TAu) für mehrere Mobilfunkgeräte den zeitgleichen Eintritt in und/oder den zeitgleichen Austritt aus dem jeweiligen räumlichen Bereich (LA1; LA2) angibt.
  3. Verfahren (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest für räumliche Bereiche, die Bahnhöfe abdecken, die planmäßigen Wechselzeitpunkte aus Fahrplandaten eines Bahnbetreibers abgeleitet werden (139) .
  4. Verfahren (100) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest für räumliche Bereiche, die keine Bahnhöfe, sondern beliebige Streckenabschnitte, abdecken, die planmäßigen Wechselzeitpunkte durch eine mehrmals, insbesondere tageweise, wiederholte Auswertung der kollektiven Daten (RDT) ermittelt werden, wobei erkannt wird, ob gemeinsame Wechselzeitpunkte (TAu, ... TAz) auch planmäßige Wechselzeitpunkte repräsentieren (146).
  5. Verfahren (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest für Streckenabschnitte auf denen mehrere Züge zeitnah verkehren über mehrere benachbarte räumliche Bereiche die kollektiven Daten (RDT), die als einem Zug zuordnenbar erkannt werden, für eine zeitliche und räumliche Verfolgung der Züge ausgewertet werden (130).
  6. Verfahren (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeweils ein aktuell ermittelter gemeinsamer Wechselzeitpunkt (TAz12) mit mindestens einem planmäßigen Wechselzeitpunkt (TAz) verglichen wird, um eine Abweichung festzustellen, die eine Verspätung eines Zuges (Zz) anzeigt, dem der planmäßige Wechselzeitpunkt (TAz) zuordnenbar ist (150).
  7. Verfahren (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus den kollektiven Daten (RDT) oder aus den daraus ermittelten Wechselzeitpunkten (TA) kollektive Reisezeiten (TRu, TRv) bestimmt werden, die jeweils die Durchfahrtsdauer eines Zuges (Zu, Zv) durch den räumlichen Bereich (LA1) angeben (110).
  8. Verfahren (100) nach Anspruch 7, dadurch gekennzeichnet, dass mittels der kollektiven Reisezeiten (TRu, TRv) verschiedene Arten von Zügen erkannt werden, um aus den Wechselzeitpunkten (TA) mehrerer eingebuchter Mobilfunkgeräte die gemeinsamen Wechselzeitpunkte (TAu, TAv) zu ermitteln und den Zügen (Zu, Zv) zuzuordnen (120).
  9. Verfahren (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren auch zumindest einen der folgenden zusätzlichen Schritte umfasst:
    - Zuordnung der kollektiven Daten (RDT) zu Zügen (Zu, Zv) anhand von Kennungen einzelner Mobilfunkgeräte (120);
    - Verfolgung von Zügen (Zu, Zv) anhand von Kennungen einzelner Mobilfunkgeräte (130);
    - zur Identifizierung von Zügen (Zu, Zv) Vergleich der Wechselzeitpunkte (TA) mit planmäßigen Wechselzeitpunkten, die für den jeweiligen Bereich (LA1) gelten, wobei der jeweilige Bereich (LA1) einen Bahnhof abdeckt (140);
    - über mehrere Tage wiederholte Analyse der Wechselzeitpunkte (TA) zur Bestimmung von planmäßigen Wechselzeitpunkten, die auch für Bereiche (LA) gelten, die keinen Bahnhof abdecken (146);
    - Identifizierung von Fahrstrecken von Zügen mittels Vergleich der für mehrere Bereiche (LA) aktuell ermittelten Wechselzeitpunkten mit planmäßigen Wechselzeitpunkten (140).
  10. Verfahren (100) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die kollektiven Daten (RDT) mittels einer, insbesondere statistischen, Auswertung von Eintritts- und Austrittszeitpunkten bestimmt werden, die den Eintritt in den Bereich (LA1, LA2) bzw. den Austritt aus dem Bereich (LA1, LA2) der aktiven und nicht-aktiven Mobilfunkgeräte anzeigen (110).
  11. Verfahren (100) nach Anspruch 10, dadurch gekennzeichnet, dass die kollektiven Daten mittels einer Auswertung von Aktualisierungsdaten für den Funkversorgungsbereich (LA2) bezüglich des Eintritts- und Austritts der aktiven und nicht-aktiven Mobilfunkgeräte ermittelt werden (110).
  12. Verfahren (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels einer Auswertung von individuellen Daten, die.die Präsenz einzelner aktiver Mobilfunkgeräte in Unterbereichen (C*) des räumlichen Bereichs (LA1) anzeigen, eine Lokalisierung des Zuges (Zu) in einem einzelnen Unterbereich (C*) durchgeführt wird (141).
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Bereich ein Funkversorgungsbereich (LA1) des zellulären Mobilfunksystems ist und dass die Unterbereiche einzelne oder mehrere Funkzellen (C*) des Funkversorgungsbereiches (LA1) sind (141).
  14. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass die Auswertung der individuellen Daten durch zusätzliche Daten oder Angaben über die Sende- und/oder Empfangsfeldstärke von Mobilfunksignalen ergänzt wird, um eine Lokalisierung des Zuges (Zu) innerhalb eines Unterbereichs (C*) durchzuführen (141).
  15. System zur Lokalisierung von Zügen (Zu, Zv) in einem Schienennetz, das im Versorgungsbereich eines zellulären Mobilfunksystems liegt, in dem Mobilfunkgeräte eingebucht sind, wobei sich zumindest ein Teil der Mobilfunkgeräte in den Zügen (Zu, Zv) befindet, die sich durch räumliche Bereiche (LA1, LA2) des Mobilfunksystems entlang mindestens eines Schienenweges (W1, W2) bewegen, wobei das System eine Zentrale mit Rechenmitteln aufweist, die folgende Schritte ausführen:
    - für benachbarte räumliche Bereiche (LA1, LA2), zu denen mindestens ein Schienenweg (W1, W2) zuordnenbar ist, erfassen die Rechenmittel kollektiven Daten (RDT) die für eingebuchte Mobilfunkgeräte Wechselzeitpunkte (TA) für Wechsel zwischen den benachbarten räumlichen Bereichen (LA1, LA2) anzeigen;
    - mittels Auswertung der kollektiven Daten (RDT) ermittelt die Recheneinheit für mehrere eingebuchte Mobilfunkgeräte gemeinsame Wechselzeitpunkte (TAu, TAv) und erkennt sie als zu Zügen (Zu, Zv) zuordnenbar, die auf dem mindestens einen Schienenweg (W1, W2) verkehren;
    - mittels Vergleich der gemeinsamen Wechselzeitpunkte (TAu, TAv) mit planmäßigen Wechselzeitpunkten für verkehrende Züge (Zu, Zv) wird der jeweilige gemeinsame Wechselzeitpunkt (TAu) einem Zug (Zu) zugeordnet, um den Zug (Zu) im Schienennetz zu identifizieren und zu lokalisieren (190).
  16. Zentrale für ein System zur Lokalisierung von Zügen (Zu, Zv) in einem Schienennetz, das im Versorgungsbereich eines zellulären Mobilfunksystems liegt, in dem Mobilfunkgeräte eingebucht sind, wobei sich zumindest ein Teil der Mobilfunkgeräte in den Zügen (Zu, Zv) befindet, die sich durch räumliche Bereiche (LA1, LA2) des Mobilfunksystems entlang mindestens eines Schienenweges (W1, W2) bewegen, wobei die Zentrale Rechenmitteln aufweist, die folgende Schritte ausführen:
    - für benachbarte räumliche Bereiche (LA1, LA2), zu denen mindestens ein Schienenweg (W1, W2) zuordnenbar ist, erfassen die Rechenmittel kollektiven Daten (RDT) die für eingebuchte Mobilfunkgeräte Wechselzeitpunkte (TA) für Wechsel zwischen den benachbarten räumlichen Bereichen (LA1, LA2) anzeigen;
    - mittels Auswertung der kollektiven Daten (RDT) ermittelt die Recheneinheit für mehrere eingebuchte Mobilfunkgeräte gemeinsame Wechselzeitpunkte (TAu, TAv) und erkennt sie als zu Zügen (Zu, Zv) zuordnenbar, die auf dem mindestens einen Schienenweg (W1, W2) verkehren;
    - mittels Vergleich der gemeinsamen Wechselzeitpunkte (TAu, TAv) mit planmäßigen Wechselzeitpunkten für verkehrende Züge (Zu, Zv) wird der jeweilige gemeinsame Wechselzeitpunkt (TAu) einem Zug (Zu) zugeordnet, um den Zug (Zu) im Schienennetz zu identifizieren und zu lokalisieren (140).
EP09006432A 2008-06-02 2009-05-13 Verfahren und Vorrichtungen zur Lokalisierung von Zügen in einem Schienennetz Not-in-force EP2130741B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008026253A DE102008026253A1 (de) 2008-06-02 2008-06-02 Verfahren und Vorrichtungen zur Lokalisierung von Zügen in einem Schienennetz

Publications (3)

Publication Number Publication Date
EP2130741A2 EP2130741A2 (de) 2009-12-09
EP2130741A3 EP2130741A3 (de) 2010-04-28
EP2130741B1 true EP2130741B1 (de) 2011-08-24

Family

ID=40974571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09006432A Not-in-force EP2130741B1 (de) 2008-06-02 2009-05-13 Verfahren und Vorrichtungen zur Lokalisierung von Zügen in einem Schienennetz

Country Status (4)

Country Link
EP (1) EP2130741B1 (de)
AT (1) ATE521518T1 (de)
DE (1) DE102008026253A1 (de)
ES (1) ES2372444T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314887B (zh) * 2019-10-12 2022-05-17 北京直真科技股份有限公司 基于xdr话单实现覆盖高铁线路无线小区资源标签的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235105A1 (de) 1992-10-17 1994-04-21 Sel Alcatel Ag System zur linienförmigen Zugbeeinflussung mit verbesserter Fahrzeugortung
GB2273424A (en) * 1992-12-14 1994-06-15 Motorola Ltd A cellular communications system and method for hand-off
WO2001087685A1 (de) * 2000-05-17 2001-11-22 Creaholic Sa Verfahren zur positionsbestimmung für schienenfahrzeuge
US20030096621A1 (en) * 2001-11-19 2003-05-22 Rittwik Jana Method and apparatus for identifying a group of users of a wireless service
DE10225033B4 (de) 2002-06-06 2008-06-19 Kyamakya, Kyandoghere, Prof.Dr.-Ing. Verfahren zur Gewinnung von Verkehrsinformationen, wie Stau, Verkehrsdichte oder Geschwindigkeit
DE10333793B4 (de) 2003-07-24 2010-03-18 Vodafone Holding Gmbh Verfahren und System zum Erzeugen von Informationsdaten
AT502073B1 (de) 2005-06-23 2007-06-15 Mobilkom Austria Ag Verfahren und system zur gewinnung von verkehrsfluss-informationen
DE102006053484A1 (de) * 2006-11-14 2008-05-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung von Daten über die Verkehrslage in einem Straßennetz

Also Published As

Publication number Publication date
EP2130741A3 (de) 2010-04-28
EP2130741A2 (de) 2009-12-09
ATE521518T1 (de) 2011-09-15
ES2372444T3 (es) 2012-01-19
DE102008026253A1 (de) 2009-12-03

Similar Documents

Publication Publication Date Title
EP1628274B1 (de) Verfahren und System zum Ermitteln von Verkehrsinformationen und zum Steuern des Verkehrs
DE102007014528B4 (de) Verfahren zum Identifizieren einer Teilmenge von Positionen
EP1674371B1 (de) Verfahren und Vorrichtung zur Zugsignalisierung
DE19509696C2 (de) Verfahren zur gegenseitigen Kontaktaufnahme zwischen Zügen und Einrichtung zur Durchführung des Verfahrens
EP2631152A1 (de) Verfahren und Vorrichtung für die Verwaltung von Ressourcen in einem Schienennetz
EP2126876B1 (de) Verfahren zur überwachung eines rollverkehrs-management-systems für flughäfen
DE102013104088A1 (de) Verfahren zur automatischen Detektion von charakteristischen Elementen, insbesondere eines Bahnübergangs, und Einrichtung dafür
EP3665036B1 (de) Verfahren zur zustandsbestimmung von wenigstens einer entlang einer fahrstrecke verlaufenden fahrleitung
EP2464556B1 (de) Verfahren und elektronische einrichtung zur zustandsüberwachung von bauteilen bei schienenfahrzeugen
EP2201549A1 (de) Verfahren und verkehrsnachfrage-analyseeinheit zur bestimmung von quelle-ziel-nachfragedaten von verkehrsflüssen
EP1297309B1 (de) Verfahren zur erfassung von verkehrslagedaten
WO2001001715A1 (de) Ortungsverfahren mit einem mobilfunksystem
EP2130741B1 (de) Verfahren und Vorrichtungen zur Lokalisierung von Zügen in einem Schienennetz
EP1972894B1 (de) Verfahren, computergestützte Vorrichtung und System zur Wegstreckenbestimmung
CN108423035A (zh) 一种地铁车辆段列车车组号跟踪方法
EP1295273B1 (de) Verfahren zur erfassung von verkehrslagedaten
DE102016215767A1 (de) Vorhersage des Zuglaufs
EP3406504B1 (de) Warnsystem für eine gleisbaustelle und verfahren zum betreiben einer gleisbaustelle
DE102006029845B4 (de) Vorrichtung und Verfahren zur Absicherung von Streckenabschnitten eines segmentierten Fahrweges für einen schienengebundenen Fahrzeugverband
DE10334140B4 (de) Verfahren und System zur Ermittlung von Verkehrsdaten
EP1213202A1 (de) Verfahren zur Abbildung des Geleisezustandes und/oder des mechanischen Betriebsverhaltens von Schienenfahrzeugen
WO2011000740A1 (de) Verfahren und system zur ermittlung von verkehrsinformationen
DE19948877A1 (de) Verfahren zur Erfassung von Verkehrsdaten mittels Lokalisierungsdaten von Mobilfunkkommunikationssystemen
EP1935749B1 (de) Verfahren und System zum Orten eines Schienenfahrzeugs
WO2001087685A1 (de) Verfahren zur positionsbestimmung für schienenfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 25/02 20060101AFI20110321BHEP

Ipc: B61L 27/00 20060101ALN20110321BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001159

Country of ref document: DE

Effective date: 20111020

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2372444

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120119

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001159

Country of ref document: DE

Effective date: 20120525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210525

Year of fee payment: 13

Ref country code: NL

Payment date: 20210519

Year of fee payment: 13

Ref country code: IT

Payment date: 20210531

Year of fee payment: 13

Ref country code: FR

Payment date: 20210521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210518

Year of fee payment: 13

Ref country code: BE

Payment date: 20210519

Year of fee payment: 13

Ref country code: ES

Payment date: 20210618

Year of fee payment: 13

Ref country code: CH

Payment date: 20210525

Year of fee payment: 13

Ref country code: GB

Payment date: 20210526

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009001159

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 521518

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220513

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220513

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220513

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220514