EP2126000A2 - Procede d' hydrotraitement d' une charge gazole, unite d' hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante - Google Patents

Procede d' hydrotraitement d' une charge gazole, unite d' hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante

Info

Publication number
EP2126000A2
EP2126000A2 EP08761875A EP08761875A EP2126000A2 EP 2126000 A2 EP2126000 A2 EP 2126000A2 EP 08761875 A EP08761875 A EP 08761875A EP 08761875 A EP08761875 A EP 08761875A EP 2126000 A2 EP2126000 A2 EP 2126000A2
Authority
EP
European Patent Office
Prior art keywords
reactor
unit
hydrotreatment
oil
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08761875A
Other languages
German (de)
English (en)
Inventor
César VERGEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Raffinage Marketing SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Raffinage Marketing SA filed Critical Total Raffinage Marketing SA
Publication of EP2126000A2 publication Critical patent/EP2126000A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0488Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed in separate reactors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/60Controlling or regulating the processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/002Apparatus for fixed bed hydrotreatment processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/123Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/126Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on other metals or derivates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to a process for the hydrotreatment of a diesel fuel charge, a hydrotreatment unit for carrying out said process, and a corresponding hydrorefining unit.
  • the desired bases are therefore light bases, with low sulfur content, high cetane number, and distilling completely before 360 ° C.
  • the objectives are to further reduce the sulfur content to a value of less than 10 mg / kg by 2009 and to increase the minimum value of the cetane engine.
  • One solution for improving the cetane number is to add a procetane additive. It is most often of alkyl nitrates which intervene in the elementary stages of oxidation before the self-ignition of the mixture. They reduce the ignition time and increase the cetane number by 3 to 5 points depending on the amount added.
  • Another solution is to add to the mixture a substitute fuel, such as a biofuel, because the vegetable oil esters generally have a good cetane number.
  • a substitute fuel such as a biofuel
  • the European Directive 2003/30 / EC aims in particular to promote the use of biofuels.
  • the European community has adopted a 5.75% biofuel fuel (fuel burn) target for fuel in 2010. That is, the amount of biofuel present in the mixture must provide 5.75% of the mixture's PCI.
  • EMC rapeseed oil methyl ester
  • the mixtures obtained from vegetable oil methyl esters have the advantage of a cetane conforming to the standard, but they pose problems of cold resistance and oxidation stability. In addition, these mixtures are too heavy and have a density much higher than the specification of the standard, which causes formulation difficulties at high incorporation rates.
  • the patent application EP 1 693 432 describes a process for hydrotreating a mixture of a charge of petroleum origin and a charge of biological origin.
  • the treatment of such a mixture of petroleum and biological feedstock at the top of the reactor causes a drop in the hydrogen partial pressure and therefore a decrease in the catalytic activity in hydrotreatment of the petroleum charge.
  • parallel reactions during hydropowering of triglycerides lead to the production of gases such as carbon dioxide CO2, methane CH 4 , and carbon monoxide CO which is considered a reversible inhibitor of desulphurizing activity. catalyst.
  • the applicant has proposed in its French patent application 06.06892, a process for the hydrotreatment of a mixture of a charge of petroleum origin of diesel type and a load of biological origin of the vegetable oils and / or animal fats type. without liquid effluent recycle device at the reactor head.
  • This mixture is introduced at the reactor head, in the manner of a usual charge.
  • the process described in this application in one of its variants, comprises a unit for separating and treating carbon monoxide present in the recycle gases.
  • the invention proposes a process for the catalytic hydrotreatment of a fuel of petroleum origin of diesel type and of a feed of biological origin based on vegetable oils and / or animal fats in a unit of hydrotreating, characterized in that said hydrotreatment unit comprises at least one hydrotreating reactor operating against the current.
  • the subject of the invention is also a hydrotreating unit for implementing said method, and a corresponding hydrorefining unit.
  • charge of biological origin is intended to mean any renewable charge commonly defined by the term biomass.
  • HDO triglyceride oxygenation
  • the gases formed due to the HDO reactions of the triglycerides are removed by the countercurrent flow of gas, thus avoiding the CO 2 and CO 2 inhibition effect. dilution effect of hydrogen by the gases formed.
  • the hydrorefining reactions of the petroleum fraction thus take place under favorable conditions where the partial pressure of hydrogen is higher. This also makes it possible to obtain very low levels of sulfur, since the heavier and most refractory sulfur molecules, which are generally the most difficult and the longest to be desulphurized, are found at the bottom of the reactor at a partial pressure. higher hydrogen, and are more easily desulfurized.
  • there is no H 2 S and other elements harmful to the reaction which facilitates all the more, the desulfurization of these molecules refractory.
  • the process according to the invention also minimizes the residence time in the CO reactor formed in the HDO reaction, which limits methanation reactions of CO to produce CH4. Hydrogen consumption is therefore reduced, and the overall exothermicity of the reaction is lower.
  • Another advantage of the invention is that since the processing of the biologically based feeds based on vegetable and / or animal oils is highly exothermic, it requires a means of controlling the reaction temperature such as the use of a volume. important dilution. As a result, up to now, these vegetable and / or animal oils have been processed in dedicated units with high liquid effluent recycling. It is thus possible to limit or even eliminate the recycling of liquid effluent by using the process according to the invention compared with known processes for refining a feedstock of biological origin alone, since the feedstock of biological origin is either injected with the charge of petroleum origin, or downstream of the injection thereof, so that it is always diluted.
  • the hydrotreatment unit comprises a single countercurrent reactor in which the charges of petroleum and biological origin are injected.
  • the two charges are injected at the top of the reactor.
  • the charge of petroleum origin is injected at the head of the reactor, whereas the charge of biological origin is, as for it, injected downstream of it.
  • the feedstock of biological origin is injected, in part, at the reactor head, such as the feedstock of petroleum origin, and partly downstream of it.
  • CoMo for the hydroprocessing zone of the oil cut and preferably NiMo for the second zone treating the triglycerides.
  • This variant has the advantage of allowing the use of an existing hydrotreatment unit in which an entry for the charge of biological origin will have been added.
  • the hydroprocessing unit comprises two separate reactors, a first reactor operating in cocurrent and a second reactor operating in countercurrent and receiving the liquid effluent leaving the first reactor, the petroleum feed being injected. in the first cocurrent reactor, and the feedstock of biological origin being injected into the first cocurrent reactor and / or into the second countercurrent reactor mixed with the liquid effluent exiting the first reactor.
  • the feedstock of petroleum origin is injected at the top of the first cocurrent reactor and the charge of biological origin is injected at the head of the second reactor in countercurrent, mixed with the liquid effluent leaving the first reactor.
  • the feedstock of biological origin is also possible for the feedstock of biological origin to be injected, in part, into the first co-current reactor downstream of the feed of petroleum origin, and partly, at the head of the second countercurrent reactor. mixing with the liquid effluent leaving the first reactor.
  • This variant has the advantage of allowing the treatment of the feedstock of biological origin at a temperature lower than the treatment temperature of the feedstock of petroleum origin.
  • the hydrotreatment of the feedstock of biological origin can be done at a lower temperature, so that it is not necessary to heat the feed much to treat it.
  • a large part of the hydrotreating treatment of the petroleum feed has already taken place in the first reactor, the second reactor then allows the hydrofinishing of the treatment of the petroleum feedstock and does not require such high temperatures. This hydrofinishing makes it possible to obtain sulfur content much lower compared to the levels usually obtained in hydrorefining.
  • This lower temperature in the second countercurrent reactor also makes it possible to limit any problems related to the thermal stability of the feedstock of biological origin, in particular when the liquid effluent leaving the first reactor is cooled prior to its mixing. with the charge of biological origin.
  • the countercurrent configuration makes it possible to obtain a further hydrogenation of the aromatic compounds due to a greater hydrogen partial pressure at the bottom of the reactor and a lower operating temperature.
  • This allows a substantial improvement in the cetane of the final product, which is all the more important when the introduced petroleum feed comprises cuts of high aromatic content, such as those from FCC units or coking.
  • the diesel-type feedstock is chosen from diesel fuel cuts derived from the distillation of a crude oil and / or a synthetic crude resulting from the treatment of oil shale or heavy crude oils and extra-heavy or of the effluent from the Fischer Tropsch process, the diesel fuel cuts resulting from different conversion processes, in particular, those resulting from catalytic and / or thermal cracking (FCC, coking, visbreaking).
  • FCC catalytic and / or thermal cracking
  • the charge of biological origin based on vegetable oils and / or animal fats is introduced up to a level of 30% by weight. More particularly, the level of biological filler based on vegetable oils and / or animal fats is preferably less than or equal to 15% by weight.
  • the introduction of such a load rate of biological origin only slightly affects the cold properties of the final product.
  • the cloud point of the final effluent generally only has a difference of 1 ° C with respect to the effluent obtained without injection of biomass. This result, which differs from what the mixtures laws would have predicted, is very interesting because it demonstrates the synergy, during the process according to the invention, between the two types of charges.
  • the vegetable or animal oils contained in the feed of biological origin used according to the invention are mainly composed of triglycerides of fatty acids (> 90% by weight), whose chain lengths depend on the nature of the oil used. They may also contain fatty acids. For the purposes of the invention, vegetable oils and animal fats may also contain fatty acid esters.
  • vegetable oils and animal fats can be used raw. But they are preferentially refined in order to avoid fouling of the processing unit. In this case, we speak of degummed oils, that is to say after removal of a large part of the phospholipids.
  • Vegetable oils can in particular be palm oil, soybean oil, rapeseed oil, sunflower oil, linseed oil, oil of rice bran, corn oil, olive oil, castor oil, sesame oil, pine oil, peanut oil, palm kernel oil, lemon coconut oil, babasu oil, seaweed oil or a mixture of two or more of these oils. These oils will produce essentially C 12 to C 18 paraffins.
  • Palm oil is particularly preferred because it is one of the oils with the carbon chains closest to the average length of the carbon chains of a diesel engine, with nearly 50% of C 16. Palm oil is one of the most saturated, its hydrotreatment requires a lesser amount of hydrogen compared to other oils. In addition, the thermal stability of the palm oil limits the clogging of the heat exchangers located upstream of the reactor in a conventional hydrorefining unit. Palm oil also has the advantage of having its profile centered on that of the diesel fuel, which limits the disruption of the latter, to be economical, and to be little used for human food.
  • animal fats one can for example use fish fat, animal oil.
  • a particularly advantageous way of using the invention is therefore to preferentially use palm oil or any other vegetable or animal oil that can produce, by hydrotreatment, a maximum of linear C15 to C18 paraffins so as to induce a significant increase in the cetane number of the charges produced while decreasing the density, and to better efficientlyze bases with low cetane number and high density, such as the LCO ("Light Cycle OiI") which is characterized by a density It has a high cetane number and a very low cetane number, and gas oils derived from acidic crude oils which have excellent cold properties but have the characteristics of having a high density and a low cetane number.
  • the process according to the invention makes it possible to promote the hydrogenation of the aromatic compounds and to substantially improve the cetane of the final product.
  • the catalytic injection zone of the charge of biological origin comprises a first layer of metal trap catalyst.
  • metal trap catalysts are known in themselves, and are generally composed of macroporous alumina. The purpose of using such a metal trap, commercially known is to rid the vegetable oils and / or animal fats of any impurities they contain (Na, K, Cl ).
  • the charge treatment temperature in the countercurrent reactor is from 250 to 420 ° C., preferably from 280 to 400 ° C.
  • the different charges are treated at a pressure of 25 to 150 bar, preferably 30 to 70 bar.
  • the WH of the feedstock in the countercurrent reactor is from 0.3 to 10, preferably from 0.6 to 5.
  • the charge of biological origin is treated on at least one catalytic bed in the hydrotreatment unit, the catalytic bed containing at least one catalyst based on metal oxides chosen from the oxides of the metals of the group VI-B (Mo, W) and VIII-B (Co, Ni, Ru, Rh) and / or noble metals such as Pt and Pd, supported on a support selected from alumina, silica, silica alumina, zeolite , ferrierite, phosphated alumina, phosphated alumina silica, mordenite, mazite.
  • the catalyst used will be NiMo, CoMo, NiW, PtPd, or a mixture of two or more thereof.
  • the catalyst used may also be based on metals in the mass state such as the catalyst commercially known as Nebula.
  • the charge of biological origin introduced into the hydrotreatment unit is treated on at least one catalytic bed containing at least partly a catalyst with an isomerizing function, based on metal oxides or noble metals such as Pt, Pd, on an acidic support such as amorphous silica, zeolite, ferrierite, phosphated alumina, phosphated silica alumina.
  • the catalytic beds containing metal oxides on an acidic support have the advantage of promoting the isomerization reactions, which can make it possible to improve, that is to say to reduce very clearly, the cloud point of the final product.
  • This catalyst may be composed of metal oxides on an acidic support such as amorphous silica, zeolite, ferrierite, phosphated alumina, phosphated silica alumina.
  • the countercurrent configuration makes that I ⁇ 2S and other impurities such as CO and CO2 are almost absent in the lower part of the reactor, and that the partial pressure of hydrogen is very high, which means that allows the installation of a catalytic bed based on noble metal oxides, thus leading to better hydrodesulfurization and isomerization activity.
  • the first catalytic zone intended for treating the petroleum feed contains one or more catalyst beds containing catalysts which have a good performance.
  • the second catalytic zone intended for treatment of the charge of biological origin contains one or more catalyst beds containing catalysts having a good performance for the deoxygenation of the triglycerides of the charge (for example based on NiMo) and / or or catalysts promoting isomerization reactions.
  • a catalyst with an isomerizing function to improve the cold properties of the product.
  • water is injected into the hydroprocessing unit in the biological charge treatment zone.
  • the presence of water in the reactor, and more specifically in the biological load treatment zone makes it possible to shift the equilibrium of the "CO shift" reaction towards the conversion of CO to CO2, which can be much more easily eliminated.
  • the conversion of the CO produced by the dichlorodeoxygenation reaction to CO2 and H2 is facilitated by limiting the methanation reaction which produces the methane CH 4 , which results in a decrease in the exothermicity and the consumption of Fh.
  • the water, in vapor form is removed by the counter-current circulating gas flow.
  • CO treatment can be implemented when the CO content of the recycle gases reaches a predetermined value.
  • the separation and treatment of carbon monoxide can be achieved by introducing into the recycle gas treatment system, a device for separating and treating carbon monoxide.
  • CO conversion equipment referred to as "CO shift” by specialists
  • CO shift by specialists
  • a PSA treatment unit abbreviation for Pressure Swing Adsorption
  • This technology is known in itself.
  • the adsorbents are selected according to the nature of the impurities to be removed from hydrogen-carrying streams, which in our case are carbon monoxide CO and optionally methane CH4, ethane C2H6 and propane C3H8.
  • the gases thus separated are used in a steam reformer, such as a methane steam reformer (“SMR": steam methane reformer).
  • SMR methane steam reformer
  • the CO and the other products of deoxygenation of the charge of biological origin are thus valued as synthesis gas for the production of a hydrogenated gas of biological origin.
  • the CO is therefore valued and therefore, in order to avoid its inhibitory effect, it is not necessary to reduce its concentration in favor of the CO2 concentration which can be more easily eliminated.
  • a treatment is also carried out in which the carbon dioxide (CO2) and the hydrogen sulphide (H2S) present in said recycle gas are separated and treated before reinjection thereof into the hydrotreatment unit.
  • This treatment is for example carried out by passing the recycle gas into an amine absorber.
  • This additional treatment thus makes it possible to eliminate from the circuit the gases to be treated, ie CO2 and I ⁇ 2S.
  • Another particularly advantageous way of using the invention is to compensate for the exothermicity which necessarily results from the addition of these oils.
  • the exothermicity of the hydroprocessing of the feed is controlled by means of thermal regulation systems.
  • a conventional hydrotreatment unit this is a example of the improvement of the liquid / gas distribution, gaseous and / or liquid quench (that is to say the supply of cold gases or liquids in the reactor), distribution of the volume of catalyst on several catalytic beds , preheating management of the charge at the reactor inlet, in particular by action on the furnace and / or the heat exchangers located upstream of the reactor, on bypass lines, etc. to lower the temperature at the reactor inlet.
  • a liquid liquid quench
  • This liquid may for example consist of a part of the hydrorefined charge exiting the hydroforming unit. It is introduced at the level of the biological load treatment zone, in particular when the hydrotreating unit comprises a single reactor. When the hydroprocessing unit comprises two reactors, this liquid may consist of a part of the effluent of the first reactor. It is introduced, likewise, at the level of the treatment area of the load of biological origin.
  • a thermal regulation system consists of recovering heat from the effluent leaving the first reactor in order to lower its temperature before injection into the second reactor. This allows to achieve a significant energy gain.
  • the invention also relates to a dtrydroraffinage unit comprising at least one catalytic hydrotreatment unit for carrying out said method.
  • the hydrotreatment unit comprises at least one fixed bed hydrotreatment reactor operating countercurrently.
  • the hydrorefining unit comprises a system for treating recycle gases from the hydrotreating unit before being reinjected into said unit, this treatment system comprising a device for separating and treating carbon monoxide so as to removing the carbon monoxide present in said recycle gas.
  • the hydrotreatment unit comprises a single reactor operating against the current. The charges of petroleum and biological origin are then injected into this reactor.
  • the hydrotreatment unit comprises two distinct reactors, a first reactor operating in cocurrent and a second reactor operating in countercurrent, receiving the liquid effluent leaving the first reactor, the charge of petroleum origin being injected into the first reactor co-current.
  • the charge of biological origin is then injected into the first cocurrent reactor and / or into the second countercurrent reactor mixed with the liquid effluent leaving the first reactor.
  • FIG. 1 is a simplified diagram of a hydrorefining unit comprising a hydrotreating unit according to a first embodiment of the invention, comprising a single countercurrent reactor.
  • FIG. 2 is a simplified diagram of a hydrorefining unit comprising a hydrotreatment unit according to a second embodiment of the invention, comprising a first cocurrent reactor and a second countercurrent reactor.
  • a catalytic hydrotreating unit is formed of a single reactor (1), as shown in FIG. 1.
  • This counter-current reactor (1) is provided with a first inlet (2) for the introduction of a petroleum feedstock (Cp) of diesel type and a second inlet (3) for the introduction of a feedstock of biological origin (Cb) based on vegetable and / or animal oils.
  • Cp petroleum feedstock
  • Cb biological origin
  • these inputs are located at the reactor head.
  • it could be expected that the two charges are combined before entering the reactor and enter through the usual inlet of the reactor.
  • the reactor (1) comprises an inlet (4) for the introduction of hydrogen H 2 in countercurrent.
  • a line (5) brings the charge of petroleum origin (Cp) to the first inlet (2) of the reactor, while a line (6) brings the charge of biological origin (Cb) to the second inlet (3) of the reactor.
  • the liquid effluent leaving the reactor (1) is discharged by means of a line (14).
  • a heat exchanger (7) is placed downstream of the reactor (1) on the line (14) to heat the charge Cp circulating in the line (5), upstream of the reactor (1).
  • the gas leaving the reactor (1) is sent to a separator (9) which makes it possible to separate from the effluent a gas rich in hydrogen and also containing CO and CO 2 .
  • This gas is fed into a unit (10) for the treatment and separation of CO2, for example an amine absorber, then in a unit (1 1) for separation and treatment of CO, of the PSA type.
  • the CO separated in this unit (1 1), as well as other separated gases such as CH 4 , C 2 H 6, C 3 H 8 can be advantageously sent to a unit SMR (12) for the production of hydrogen H 2 .
  • This hydrogen can then optionally be returned to the line (13) bringing the recycle gas into the reactor (1) against the current.
  • a catalytic hydrolysis unit according to the invention is formed of two reactors (20), (21).
  • FIG. 2 represents a hydrorefining unit equipped with such a catalytic hydrotreatment unit.
  • the first reactor (20) operates in co-current, while the second reactor (21) operates against the current.
  • the charge of petroleum origin Cp is brought to the top of this first reactor (20) by means of a line (22), but the liquid effluent leaving this first reactor, instead of being directed towards a separation section , is sent to the top of the second reactor (21) by means of a line (23).
  • a line (25) recovers the liquid effluent at the outlet of the second reactor (21) and conducts it to a separation section.
  • a heat exchanger (26) is placed downstream of the first reactor (20) on the line (23) in order to heat the charge Cp circulating in the line (22), upstream of the first reactor (20).
  • the diihydrorefining unit comprises, in addition, a second heat exchanger (27) placed downstream of the second reactor (21) on the line (25), and also heating the charge Cp circulating in the line (22) upstream of the first reactor (20), this second exchanger (27) being for example placed upstream of the first exchanger ( 26).
  • a line (28) connected to the line (22) provides the charge Cp to be treated in the first cocurrent reactor, a gas rich in H2.
  • the liquid effluent is recovered which is cooled and then separated in a separation section not shown here.
  • the gas leaving the second reactor (21) is sent to a separator (30) which separates from the effluent a gas rich in hydrogen and also containing CO and CO2.
  • This gas is fed into a unit (31) for treating and separating CO2, for example an amine absorber, and then in a unit (32) for separating and treating CO, of the PSA type.
  • the CO separated in this unit (32), as well as the other separated gases such as CH4, C2H6 and C3H8, can be advantageously sent to a SMR unit (33) for the production of H2 hydrogen.
  • This hydrogen can then optionally be returned to the line (28) bringing the recycle gas into the first reactor (20) co-currently and into the line (34) bringing the recycle gas into the second reactor (21) against - current.
  • This unit thus makes it possible to carry out the hydrorefining of the petroleum fractions in the first reactor (20) and to carry out a finishing of the ltrydroraffinage of the petroleum fractions in the second reactor (21), as well as the deoxygenation of the triglycerides of the charge of biological origin against a current.
  • this hydrorefining unit can be used for the hydrotreatment of a petroleum-based filler with or without the addition of a filler of biological origin.
  • the diesel-based feedstock studied is composed of 30% LCO ("Light Cycle OII") and 70% diesel fuel cuts from straight-run (SR) according to the English name). a crude oil.
  • LCO Light Cycle OII
  • SR straight-run
  • Tables 1 and 2 The characteristics of this diesel fuel as well as those of palm oil incorporated at about 15% by weight are shown in Tables 1 and 2 respectively.
  • Myristic acid 14 0 1, 1
  • Palmitoleic acid 16 1 0.2
  • Oleic acid 18 1 37.7
  • Linolenic acid 18 3 0.2
  • Arachidic acid 20 0 0.4
  • Gondoic acid 20 1 0, 1
  • Example 1 which serves as a reference, the treatment is carried out on a unit comprising a hydrotreating reactor operating in co-current, in which the catalyst volume is 54.6 m 3 .
  • the simultaneous feeding of palm oil and the feedstock Diesel is at the top of the reactor.
  • the hydrogen partial pressure is 63 bars, and the average treatment temperature is 362 ° C. This temperature makes it possible to ensure a sulfur content of 10 ppm from the feedstock treated here.
  • Example 2 the treatment is carried out on a unit comprising a hydrotreating reactor operating against the current.
  • the diesel feed and the palm oil feed are incorporated at the top of the reactor.
  • the overall volume of catalyst in the unit is 54.6 m 3 (identical to that of Example 1).
  • the average reaction temperature is 350 ° C., which makes it possible to ensure a sulfur content of 10 ppm from the feedstock treated here.
  • the treatment is also done on a unit comprising a treatment reactor operating against the current.
  • the diesel fuel feed and the palm oil feed are incorporated at the reactor head.
  • the overall catalyst volume of 33.3 m 3 .
  • the average reaction temperature in the first reactor is 362 ° C. (identical to that of Example 1), which allows the unit (together of the two reactors in series) to ensure a sulfur content of 10 ppm. from the load processed here.
  • the reactors contain a commercial hydrodesulfurization catalyst known to those skilled in the art, consisting of porous alumina on which nickel and molybdenum oxides are deposited.
  • This catalyst is in the form of extrudates 1 to 2 mm in diameter of trilobal shape.
  • the loading density is 950 kg / m 3 of catalyst loaded into the unit.
  • the hydrogen partial pressure at the inlet of the reactor is 63 bars.
  • the hydrogen blanket used for the exposed examples is 350 Nl / l (i.e., the amount of Normal-liters of hydrogen per liter of feedstock).
  • a stripping section of the liquid effluent is present at the outlet of the reactor to eliminate gases such as H2S, NH3, CO, CO2 when these compounds are present in the effluent.
  • Table 3 summarizes the operating conditions of the unit used. Table 3: Operational conditions for obtaining a diesel with 10 ppm of sulfur
  • the cycle time is lengthened. In this case, one can expect to have an extended cycle time of at least 1 year.
  • Table 4 groups together the results of a detailed analysis of the effluent obtained for Examples 1, 2 and 3.
  • the incorporation of palm oil in charge of a hydrodesulfurization unit comprising a reactor operating against the current has the consequence of adding normal paraffins in the final product, and the characteristics of the products obtained are favorably affected.
  • the cloud point of effluents is -2 ° C, then One would have expected, with the incorporation of 15% of palm oil to the diesel fuel load, to a greater impact on the cloud point.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un procédé d'hydrotraitement catalytique d'une charge d'origine pétrolière de type gazole et d'une charge d'origine biologique à base d'huiles végétales et/ou graisses animales dans une unité d'hydrotraitement, caractérisé en ce que ladite unité d'hydrotraitement comprend au moins un réacteur d'hydrotraitement fonctionnant à contre-courant. L'invention a aussi pour objet une unité d'hydrotraitement pour la mise en oevre dudit procédé, et une unité d'hydro raffinage correspondante.

Description

PROCEDE D HYDROTRAITEMENT D'UNE CHARGE GAZOLE, UNITE D HYDROTRAITEMENT POUR LA MISE EN ŒUVRE DUDIT PROCEDE, ET UNITE D'HYDRORAFFINAGE CORRESPONDANTE
L'invention concerne un procédé d' hydrotraitement d'une charge gazole, une unité d'hydrotraitement pour la mise en oeuvre dudit procédé, ainsi qu'une unité d'hydroraffinage correspondante.
En raison de la sévérisation des normes antipollution pour les moteurs diesel, les spécifications des gazoles moteurs au cours des deux dernières décennies ont évolué et font apparaître de nouvelles contraintes qui ont conduit à une modification des formulations des mélanges de gazoles moteurs.
Depuis janvier 2005, les spécifications des gazoles moteurs sont les suivantes (norme européenne EN590) :
Masse volumique (à 15°C) : 820-845 kg/m3
T95% (Température de distillation de 95% du gazole) : 360 0C (maximale)
Teneur en soufre : 50mg/kg (maximale) Cétane moteur : 51 (minimum)
Cétane calculé (ASTM D4737) : 46 (minimum) Point de trouble : < -5°C en hiver,
< +5°C en été.
Les bases recherchées sont donc des bases légères, à basse teneur en soufre, à indice cétane élevé, et distillant complètement avant 3600C.
Les objectifs sont de réduire encore la teneur en soufre jusqu'à une valeur inférieure à lOmg/kg d'ici 2009 et d'augmenter la valeur minimale du cétane moteur.
Une solution pour améliorer l'indice de cétane consiste à ajouter un additif pro cétane. Il s'agit le plus souvent de nitrates d'alkyle qui interviennent dans les étapes élémentaires d'oxydation avant l'auto inflammation du mélange. Ils réduisent ainsi le délai d'inflammation et permettent d'accroître l'indice de cétane de 3 à 5 points selon la quantité ajoutée.
Une autre solution consiste à ajouter au mélange un carburant de substitution, tel qu'un biocarburant, car les esters d'huiles végétales présentent généralement un bon indice de cétane. De ce fait, la directive européenne 2003 /30 /CE vise notamment à promouvoir l'utilisation de biocarburants. Dans les transports, la communauté européenne a adopté un objectif de part de biocarburants de 5,75% du PCI (Pouvoir calorifique Inférieur) des carburants en 2010. C'est-à-dire que la quantité de biocarburant présente dans le mélange doit procurer 5,75% du PCI du mélange.
Actuellement, le gouvernement français a instauré une taxe : la TGAP (Taxe Générale des Activités Polluantes), qui concerne les carburants mis à la consommation sur le territoire français. Les carburants soumis à cette taxe sont le « SP95 », le « SP98 » et le « Gazole Moteur ». L'objectif de cette taxe est d'inciter l'incorporation de Biocarburant en augmentant progressivement le pourcentage du PCI (Pouvoir Calorifique Inférieur) apporté par la proportion de biocarburant de 1 ,75% en 2006 à 7,00% en 2010. Cet ajout est réalisé sur la base énergétique et l'origine « Bio » des produits incorporés. Ainsi, l'ETBE (éthyle tertiobutyléther) voit son taux réduit puisqu'il ne contient que 47% d'éthanol (d'origine agricole) et un PCI inférieur à l'essence.
Pour les gazoles moteurs, les biocarburants les plus couramment utilisés sont les esters d'huile végétale, comme l'ester méthylique d'huile de colza (EMC).
Ces gazoles moteurs sont en général obtenus par mélange du biocarburant au gazole moteur après traitement de ce dernier. Ces mélanges sont ainsi souvent effectués par les distributeurs, juste avant la mise en distribution du carburant.
Les mélanges obtenus à partir d'esters méthyliques d'huile végétale présentent l'avantage d'un cétane conforme à la norme, mais ils posent des problèmes de tenue à froid et de stabilité à l'oxydation. De plus, Ces mélanges sont trop lourds et présentent une densité très supérieure à la spécification de la norme, ce qui entraîne des difficultés de formulation à des taux d'incorporation élevés.
On connaît déjà des procédés de raffinage de la biomasse qui ont été élaborés pour produire ces biocarburants. Ainsi, les documents US 4 992 605, US 5 705 722, EP 1 396 531 et SE 520 633 décrivent des procédés d'hydrotraitement des triglycérides contenus dans les huiles végétales. Les réactions mises en oeuvre sont toutefois fortement exothermiques. Afin de limiter les problèmes liés à cette forte exothermicité, il est nécessaire de faire re-circuler jusqu'à 80% de la charge en sortie du réacteur d'hydrotraitement, à l'entrée de celui-ci, d'où la nécessité de la réalisation d'une installation nouvelle dédiée à ce procédé d'hydrotraitement, et de surdimensionner hydrauliquement cette unité par rapport à la quantité de la charge réellement traitée.
Par ailleurs, la demande de brevet EP 1 693 432 décrit un procédé d'hydrotraitement d'un mélange d'une charge d'origine pétrolière et d'une charge d'origine biologique. Néanmoins, les réactions dtiydrodéoxygénation des triglycérides étant plus rapides que celles diiydroraffïnage des coupes pétrolières, le traitement d'un tel mélange de charges d'origine pétrolière et biologique en tête du réacteur provoque une baisse de la pression partielle en hydrogène et donc une baisse de l'activité catalytique en hydrotraitement de la charge pétrolière. De plus, des réactions parallèles durant lTiydro raffinage des triglycérides, conduisent à la production de gaz tels que le dioxyde de carbone CO2, le méthane CH4, et l'oxyde de carbone CO qui est considéré comme un inhibiteur réversible de l'activité désulfurante du catalyseur. Or, dans une unité d'hydrotraitement classique, ces gaz contenant l'hydrogène H2 (gaz de recycle) sont le plus souvent séparés de l'effluent sortant du réacteur, puis réinjectés dans le réacteur après passage dans un système de traitement. La présence de CO dans le gaz de recycle s'avère donc pénalisante pour les réactions dliydroraffinage de la coupe pétrolière.
La demanderesse a proposé dans sa demande de brevet français 06.06892, un procédé d'hydrotraitement d'un mélange d'une charge d'origine pétrolière de type gazole et d'une charge d'origine biologique du type huiles végétales et/ou graisses animales, sans dispositif de recycle d'effluent liquide en tête de réacteur. Ce mélange est introduit en tête de réacteur, à la manière d'une charge usuelle. Le procédé décrit dans cette demande, dans l'une de ses variantes, comporte une unité de séparation et de traitement du monoxyde de carbone présent dans les gaz de recycle.
Néanmoins, il existe toujours un besoin dans la technique d'améliorer les performances du procédé d'hydrotraitement d'un mélange d'une charge d'origine pétrolière et d'une charge d'origine biologique, tout en limitant la formation de gaz du type CH4, ainsi que H2O.
Notamment, lorsque l'on ajoute des triglycérides dans une charge gazole, il est nécessaire d'augmenter la quantité d'hydrogène H2 fournie afin de couvrir l'augmentation de la consommation de H2, et d'augmenter la température de la réaction, ou le volume catalytique, si l'on souhaite maintenir la même activité en hydrodésulfuration (HDS), c'est-à-dire si l'on souhaite atteindre le même taux de soufre en sortie par rapport à une HDS classique où seule une charge d'origine pétrolière est traitée. Cependant, une température de réaction plus élevée entraîne une réduction de la durée d'un cycle, de sorte qu'il est préférable de pouvoir diminuer cette température afin d'augmenter cette durée. Il est également préférable de limiter la consommation de H2 pour des raisons d'économie.
A cette fin, l'invention propose un procédé d'hydrotraitement catalytique d'une charge d'origine pétrolière de type gazole et d'une charge d'origine biologique à base d'huiles végétales et/ou graisses animales dans une unité d'hydrotraitement, caractérisé en ce que ladite unité d'hydrotraitement comprend au moins un réacteur d'hydrotraitement fonctionnant à contre-courant.
A cet effet, l'invention a aussi pour objet une unité d'hydrotraitement pour la mise en œuvre dudit procédé, et une unité d'hydroraffinage correspondante.
On entend, au sens de la présente invention, par charge d'origine biologique, toute charge renouvelable, définie couramment par le terme biomasse.
En raison de l'utilisation d'une configuration dans laquelle au moins un réacteur d'hydrotraitement fonctionne à contre-courant, le traitement de la charge d'origine pétrolière n'est pas perturbé par le traitement de la charge d'origine biologique.
En effet, comme les réactions dTiydrodéoxygénation (HDO) des triglycérides sont plus rapides que celles d'hydroraffinage des coupes pétrolières, ces réactions d'HDO se font préférentiellement dans la partie haute dudit réacteur. La disposition à contre-courant permet donc de réaliser ces réactions d'HDO dans des conditions où la pression partielle d'H2 est la plus faible, ce qui limite la formation de gaz tels que le méthane CH4 et favorise la réaction de « water shift » qui produit de IΗ2 et du CO2 à partir du CO, avec comme conséquence une diminution de la consommation d'H2 et de l'exothermicité de la réaction. En effet, les réactions de craquage qui surviennent lors de la déoxygénation de la charge d'origine biologique (par décarbonilation et/ ou décarboxylation), conduisent au détachement d'un carbone en bout de chaîne, ce qui va induire un équilibre thermodynamique entre CO/CO2/CH4 par les réactions de « CO Shift » (CO+H2O<->CO2+H2) et de méthanation du CO (CO+3H2<->CH4+H2O) et du CO2 (CO2+4H2<- >CH4+2H2O).
De plus, de par la disposition à contre-courant, les gaz formés du fait des réactions d'HDO des triglycérides sont éliminés par le flux gazeux circulant à contre-courant, évitant ainsi l'effet d'inhibition dû au CO et l'effet de dilution de l'hydrogène par les gaz formés. Les réactions dliydroraffinage de la coupe pétrolière, ont ainsi lieu dans des conditions favorables où la pression partielle d'hydrogène est plus élevée. Ceci permet également d'aboutir à des teneurs très faibles en soufre, car les molécules soufrées les plus lourdes et les plus réfractaires, qui sont généralement les plus difficiles et les plus longues à désulfurer, se retrouvent en bas du réacteur à une pression partielle en hydrogène plus élevée, et s'en trouvent plus facilement désulfurées. De plus, du fait de la disposition à contre-courant, dans cette partie du réacteur, on ne retrouve pas de H2S et d'autres éléments nuisibles à la réaction, ce qui facilite d'autant plus, la désulfuration de ces molécules réfractaires.
Le procédé selon l'invention, minimise également le temps de séjour dans le réacteur du CO formé dans la réaction d'HDO, ce qui limite les réactions de méthanation du CO pour produire du CH4. La consommation d'hydrogène s'en trouve donc diminuée, et l'exothermicité globale de la réaction plus faible.
Par ailleurs, la configuration d'au moins un réacteur à contre- courant étant plus efficace du point de vue de l'activité catalytique, on peut alors travailler soit à iso volume catalytique à des températures plus faibles, ce qui minimise les réactions de décarbonilation et décarboxylation qui donnent origine aux gaz CO, CO2 et CH4. Soit, on peut travailler à iso température, avec des volumes catalytiques moindres, pour obtenir les mêmes performances réactionnelles.
De plus, généralement, des réactions de recombinaison d'oléfines avec du H2S, favorisées à haute température, sont à l'origine de la formation de mercaptans et rendent difficile l'obtention de gazole à très basse teneur en soufre. Or, des conditions de traitement à une température de réaction plus basse ainsi que l'absence de H2S en bas du réacteur à contre-courant, sont favorables à la minimisation de ces réactions de recombinaison, ce qui permet d'obtenir un produit à très basse teneur en soufre (<3 ppm).
Un autre avantage de l'invention est que ltrydrotraitement des charges d'origine biologique à base d'huiles végétales et/ ou animales étant fortement exothermique, il nécessite un moyen de contrôle de la température de réaction tel que l'utilisation d'un volume important de dilution. De ce fait, jusqu'à présent, ces huiles végétales et/ ou animales étaient traitées dans des unités dédiées, à recyclage d'effluent liquide élevé. Il est ainsi possible de limiter, voire de supprimer le recyclage d'effluent liquide en utilisant le procédé selon l'invention par rapport aux procédés connus de raffinage d'une charge d'origine biologique seule, car la charge d'origine biologique est soit injectée avec la charge d'origine pétrolière, soit en aval de l'injection de celle-ci, de sorte qu'elle est toujours diluée. Le ratio CO/CO2 est toujours piloté par la constante d'équilibre de la réaction de « CO shift » (CO+H2O<->CO2+H2). Ainsi, une diminution de la concentration en CO dont l'effet inhibiteur est problématique, en faveur de la concentration en CO2, qui peut être plus facilement éliminé, par exemple par lavage aux aminés, est obtenue par : - la diminution de la pression partielle d'H2, obtenue selon l'invention par le fait qu'une grande partie de l'hydrogène est consommée par lTiydrotraitement de la charge gazole dans la partie basse du réacteur à contre-courant, alors que lliydrodéoxygénation de la charge d'origine biologique se fait de manière préférentielle dans la partie haute dudit réacteur,
- un traitement de la charge d'origine biologique à la température la plus basse possible, ce qui peut être obtenu dans une variante de l'invention décrite plus loin,
- l'ajout d'eau, qui peut être obtenu dans une autre variante de l'invention décrite plus loin,
- l'élimination du monoxyde de carbone du gaz de recycle de l'unité, tel que décrit plus loin.
Dans une première variante du procédé selon l'invention, l'unité dTiydrotraitement comprend un unique réacteur fonctionnant à contre- courant dans lequel les charges d'origine pétrolière et biologique sont injectées. Préférentiellement, les deux charges sont injectées en tête du réacteur. Il est également possible que la charge d'origine pétrolière soit injectée en tête de réacteur, alors que la charge d'origine biologique soit, quant à elle, injectée en aval de celle-ci. Il est également possible que la charge d'origine biologique soit injectée, pour partie, en tête de réacteur, comme la charge d'origine pétrolière, et pour partie en aval de celle-ci.
Il est possible alors, dans le procédé selon l'invention, d'utiliser des catalyseurs différents dans chacune des zones catalytiques où sont injectées les charges d'origine pétrolière et biologique : par exemple
CoMo pour la zone dTiydro raffinage de la coupe pétrolière et de préférence NiMo pour la deuxième zone traitant les triglycérides.
Cette variante présente l'avantage de permettre l'utilisation d'une unité dTiydrotraitement existante dans laquelle on aura ajouté une entrée pour la charge d'origine biologique.
Dans une deuxième variante, l'unité dTiydro traitement comprend deux réacteurs distincts, un premier réacteur fonctionnant à co-courant et un deuxième réacteur fonctionnant à contre-courant recevant l'effluent liquide sortant du premier réacteur, la charge d'origine pétrolière étant injectée dans le premier réacteur à co-courant, et la charge d'origine biologique étant injectée dans le premier réacteur à co- courant et/ ou dans le deuxième réacteur à contre-courant en mélange avec l'effluent liquide sortant du premier réacteur.
De préférence, la charge d'origine pétrolière est injectée en tête du premier réacteur à co-courant et la charge d'origine biologique est injectée en tête du deuxième réacteur à contre-courant, en mélange avec l'effluent liquide sortant du premier réacteur. Il est possible également, que la charge d'origine biologique soit injectée, pour partie, dans le premier réacteur à co-courant en aval de la charge d'origine pétrolière, et pour partie, en tête du deuxième réacteur à contre-courant en mélange avec l'effluent liquide sortant du premier réacteur.
Cette variante présente l'avantage de permettre le traitement de la charge d'origine biologique à une température plus basse que la température de traitement de la charge d'origine pétrolière. En effet, liiydrotraitement de la charge d'origine biologique peut se faire à une température plus faible, de sorte qu'il n'est pas nécessaire de chauffer beaucoup la charge pour la traiter. De plus, une grande partie de lirydro traitement de la charge d'origine pétrolière a déjà eu lieu dans le premier réacteur, le second réacteur permet alors liiydrofinissage du traitement de la charge d'origine pétrolière et ne nécessite pas de températures aussi élevées. Cet hydrofinissage permet d'obtenir une teneur en soufre beaucoup plus basse par rapport aux teneurs habituellement obtenues en hydroraffinage.
De plus, ces conditions de traitement à une température de réaction plus basse dans le deuxième réacteur à contre-courant, ainsi que l'absence d'i-hS, dans la partie basse du réacteur à contre-courant, sont favorables à la minimisation des réactions de recombinaison d'oléfines avec du H2S à l'origine de la formation des mercaptans, ce qui permet d'obtenir un produit à très basse teneur en soufre.
Cette température plus basse dans le second réacteur à contre- courant permet également de limiter d'éventuels problèmes liés à la stabilité thermique de la charge d'origine biologique, en particulier lorsque l'effluent liquide sortant du premier réacteur est refroidi préalablement à son mélange avec la charge d'origine biologique.
Il est notamment possible de récupérer la chaleur de cet effluent, et d'abaisser ainsi la température de ce dernier, pour chauffer la charge d'origine pétrolière, et le cas échéant la charge d'origine biologique, avant leur entrée dans leur réacteur respectif.
L'exothermicité de la réaction dtiydrotraitement de la charge d'origine biologique nécessite en outre un volume important de dilution qui est assuré par la charge d'origine pétrolière partiellement hydro traitée, sortant du premier réacteur.
L'abaissement de la température du second réacteur à contre- courant favorise également une diminution de la production de CO.
Par ailleurs, la configuration à contre-courant permet d'obtenir une hydrogénation plus poussée des composés aromatiques du fait d'une pression partielle d'hydrogène plus importante en bas du réacteur et d'une température d'opération plus faible. Ceci permet une amélioration sensible du cétane du produit final, ce qui est d'autant plus important lorsque la charge pétrolière introduite comprend des coupes à forte teneur en aromatiques, telles que celles provenant des unités FCC ou de cokéfaction.
Enfin, mener les réactions dtiydrodésulfuration et les réactions dtiydrodéoxygénation dans deux réacteurs distincts permet une gestion indépendante des catalyseurs dans chacun des réacteurs, et rend possible la production de gazoles sans biomasse. On peut pour cela, soit isoler le second réacteur pour n'utiliser que le premier réacteur, soit arrêter l'alimentation en huiles végétales et/ ou graisses animales et utiliser les deux réacteurs pour liiydrotraitement de la charge gazole. Avantageusement, la charge d'origine pétrolière de type gazole est choisie parmi les coupes gazole provenant de la distillation d'un pétrole brut et/ ou d'un brut synthétique issu du traitement des schistes bitumineux ou de pétroles bruts lourds et extra-lourds ou de l'effluent du procédé Fischer Tropsch, les coupes gazoles issues de différents procédés de conversion, en particulier, celles issues du craquage catalytique et/ ou thermique (FCC, cokéfaction, viscoréduction).
En particulier, on introduit la charge d'origine biologique à base d'huiles végétales et/ou de graisses animales jusqu'à un taux de 30% en masse. Plus particulièrement, le taux de charge d'origine biologique à base d'huiles végétales et/ ou de graisses animales est de préférence inférieur ou égal à 15 % en masse. En effet, l'introduction d'un tel taux de charge d'origine biologique n'affecte que très légèrement les propriétés à froid du produit final. En particulier, le point de trouble de l'effluent final ne présente, généralement, qu'un écart de 1 °C par rapport à l'effluent obtenu sans injection de biomasse. Ce résultat, qui diffère de ce qu'auraient prédit les lois de mélanges, est très intéressant car il démontre la synergie, au cours du procédé selon l'invention, entre les deux types de charges.
L'introduction de taux élevés de charge d'origine biologique est permise grâce à l'utilisation de la charge d'origine pétrolière hydrotraitée comme diluant, sans la nécessité d'une re-circulation d'effluent liquide en amont de l'introduction de la charge d'origine biologique.
Les huiles végétales ou animales contenues dans la charge d'origine biologique utilisée selon l'invention sont composées majoritairement de triglycérides d'acides gras (>90% en poids), dont les longueurs de chaîne dépendent de la nature de l'huile utilisée. Elles peuvent également contenir des acides gras. Au sens de l'invention, les huiles végétales et graisses animales peuvent également contenir des esters d'acides gras.
Dans le cadre de l'invention, les huiles végétales et graisses animales peuvent être utilisées brutes. Mais elles sont préférentiellement raffinées afin d'éviter l'encrassement de l'unité dtrydrotraitement. Dans ce cas, on parle d'huiles dégommées, c'est-à- dire après retrait d'une grande partie des phospholipides.
Les huiles végétales peuvent en particulier être l'huile de palme, l'huile de soja, l'huile de colza, l'huile de tournesol, l'huile de lin, l'huile de son de riz, l'huile de maïs, l'huile d'olive, l'huile de ricin, l'huile de sésame, l'huile de pin, l'huile d'arachide, l'huile de palmiste, l'huile de coco, l'huile de babasu, l'huile issue des algues ou un mélange de deux ou plusieurs de ces huiles. Ces huiles vont produire essentiellement des paraffines en C12 à C 18.
L'huile de palme est particulièrement préférée, car c'est l'une des huiles comportant les chaînes carbonées les plus proches de la longueur moyenne des chaînes carbonées d'un gazole moteur, avec près de 50% de C 16. Comme l'huile de palme est l'une des plus saturées, son hydrotraitement nécessite une quantité d'hydrogène moindre par rapport aux autres huiles. De plus, la stabilité thermique de l'huile de palme limite l'encrassement des échangeurs thermiques situés en amont du réacteur dans une unité d' hydroraffinage classique. L'huile de palme présente en outre l'avantage d'avoir son profil centré sur celui de la charge gazole, ce qui limite la perturbation de ce dernier, d'être économique, et d'être peu utilisée pour l'alimentation humaine.
Comme graisses animales, on peut par exemple utiliser la graisse de poisson, l'huile animale.
Une façon particulièrement avantageuse d'utiliser l'invention, est donc d'utiliser préférentiellement l'huile de palme ou toute autre huile végétale ou d'origine animale susceptible de produire par hydrotraitement un maximum de paraffines linéaires en C15 à C18 de façon à induire une augmentation importante de l'indice de cétane des charges produites tout en diminuant la densité, et à mieux valoriser les bases à indice de cétane faible et densité élevée, telles que le LCO (« Light Cycle OiI ») qui se caractérise par une densité élevée et un indice de cétane très bas, et les gazoles issus de bruts acides qui présentent d'excellentes propriétés à froid mais ont comme caractéristiques de présenter une densité élevée et un faible indice de cétane. De plus, le procédé selon l'invention permet de favoriser l'hydrogénation des composés aromatiques et d'améliorer sensiblement le cétane du produit final.
Avantageusement, la zone catalytique d'injection de la charge d'origine biologique comprend une première couche de catalyseur piège à métaux. Ces catalyseurs pièges à métaux sont connus en eux mêmes, et sont généralement composés d'alumine macroporeuse. Le but d'utiliser un tel piège à métaux, commercialement connu est de débarrasser les huiles végétales et/ ou graisses animales des éventuelles impuretés qu'elles contiennent (Na, K, Cl...).
Selon une caractéristique particulière de l'invention, on utilise une quantité d'hydrogène introduite dans le réacteur à contre-courant de 50 à 2000 Normaux-litres de Fh par litre de charge, préférentiellement de 100 à 1500 Normaux-litres de H2 par litre de charge, et encore plus préférentiellement de 120 à 500 Normaux-litres de H2 par litre de charge.
Selon une caractéristique particulière de l'invention, la température de traitement de la charge dans le réacteur à contre- courant est de 250 à 4200C, de préférence de 280 à 4000C.
Selon une caractéristique particulière de l'invention, on traite les différentes charges à une pression de 25 à 150 bars, de préférence de 30 à 70 bars.
Selon une autre caractéristique de l'invention, la WH de la charge dans le réacteur à contre-courant est de 0,3 à 10, de préférence de 0,6 à 5.
Dans les conditions du procédé (P, T°), la formation de CH4 et H2O est ainsi ralentie car les réactions sont limitées (voir les réactions de CO shift et de méthanation décrites plus haut). Il en résulte une consommation plus faible de H2 et la production d'un gaz de recycle plus concentré en hydrogène.
Selon une caractéristique particulière de l'invention, on traite la charge d'origine biologique sur au moins un lit catalytique dans l'unité dTiydrotraitement, le lit catalytique contenant au moins un catalyseur à base d'oxydes métalliques choisis parmi les oxydes des métaux du groupe VI-B (Mo, W) et VIII-B (Co, Ni, Ru, Rh) et/ou de métaux nobles tels que Pt et Pd, supportés sur un support choisi parmi l'alumine, silice, silice alumine, zéolithe, ferrierite, alumine phosphatée, silice alumine phosphatée, mordénite, mazite. Par exemple, le catalyseur utilisé sera du NiMo, CoMo, NiW, PtPd, ou un mélange de deux ou plusieurs de ceux-ci. Le catalyseur utilisé peut également être à base de métaux à l'état massique tel que le catalyseur commercialement connu sous le nom Nebula.
Selon une autre caractéristique particulière de l'invention, on traite la charge d'origine biologique introduite dans l'unité diiydrotraitement sur au moins un lit catalytique contenant au moins pour partie un catalyseur avec une fonction isomérisante, à base d'oxydes métalliques ou de métaux nobles tels que Pt, Pd, sur un support acide tel que silice alumine amorphe, zéolithe, ferrierite, alumine phosphatée, silice alumine phosphatée.
Avantageusement, dans le dernier lit du réacteur catalytique fonctionnant à contre-courant, on utilisera un catalyseur avec une fonction isomérisante permettant d'améliorer les propriétés à froid du produit. En effet, les lits catalytiques contenant des oxydes métalliques sur support acide présentent l'avantage de favoriser les réactions d'isomérisation, ce qui peut permettre d'améliorer, c'est-à-dire de réduire très nettement, le point de trouble du produit fini. Ce catalyseur pourra être composé d'oxydes métalliques sur un support acide tel que silice alumine amorphe, zéolithe, ferrierite, alumine phosphatée, silice alumine phosphatée.
On utilisera préférentiellement des oxydes de nickel et de tungstène et encore plus préférentiellement des oxydes de métaux nobles, tels que le platine, le palladium...
En effet, la configuration contre-courant fait que IΗ2S et les autres impuretés telles que le CO et le CO2 sont quasiment absents dans la partie basse du réacteur, et que la pression partielle de l'hydrogène est quant à elle très élevée, ce qui permet d'y installer un lit catalytique à bases d'oxydes de métaux nobles, conduisant ainsi à une meilleure activité en hydrodésulfuration et en isomérisation.
Avantageusement, dans la deuxième variante de l'invention selon laquelle l'unité dTiydrotraitement comprend deux réacteurs distincts, la première zone catalytique destinée au traitement de la charge d'origine pétrolière contient un ou plusieurs lits de catalyseur contenant des catalyseurs qui présentent une bonne performance en hydrodésulfurisation, tandis que la deuxième zone catalytique destinée au traitement de la charge d'origine biologique contient un ou plusieurs lits de catalyseur contenant des catalyseurs présentant une bonne performance pour la déoxygénation des triglycérides de la charge (par exemple à base de NiMo) et/ ou des catalyseurs favorisant les réactions d'isomérisation.
De préférence, dans le dernier lit de la deuxième zone catalytique on utilisera un catalyseur avec une fonction isomérisante permettant d'améliorer les propriétés à froid du produit.
Avantageusement, on injecte de l'eau dans l'unité dTiydro traitement dans la zone de traitement de la charge d'origine biologique. La présence d'eau dans le réacteur, et plus précisément, dans la zone de traitement de la charge d'origine biologique, permet en effet de déplacer l'équilibre de la réaction de « CO shift » vers la transformation du CO en CO2, qui peut être beaucoup plus facilement éliminé. On favorise ainsi la conversion du CO produit par la réaction dtrydrodéoxygénation, vers du CO2 et H2, en limitant la réaction de méthanation qui produit le méthane CH4, ce qui résulte en une diminution de l'exothermicité et de la consommation d'Fh. De plus, dans le procédé selon l'invention, l'eau, sous forme vapeur, est éliminée par le flux gazeux circulant à contre-courant.
Dans une variante particulièrement avantageuse du procédé, comprenant un traitement de gaz de recycle issu de l'unité d'hydrotraitement avant sa réinjection dans ladite unité, on effectue un traitement supplémentaire du monoxyde de carbone présent dans ledit gaz de recycle. II est ainsi possible de ne pas réinjecter le monoxyde de carbone dans le réacteur pour ne pas risquer d'inhiber le catalyseur.
En particulier, un tel traitement du CO peut être mis en œuvre lorsque la teneur en CO des gaz de recycle atteint une valeur prédéterminée . La séparation et le traitement du monoxyde de carbone peuvent être réalisés par l'introduction, dans le système de traitement des gaz de recycle, d'un dispositif de séparation et de traitement du monoxyde de carbone. En particulier, il est possible d'utiliser des équipements de conversion du CO (appelés « CO shift » par les spécialistes) tels que ceux généralement fournis par les fabricants d'unité d'hydrogène. Ainsi, de préférence, on traite le monoxyde de carbone au moyen d'une unité' de conversion de CO utilisant la réaction de « CO shift ». On transforme ainsi le CO en CO2, qui peut être éliminé plus facilement.
Il est également possible d'utiliser une unité de traitement PSA (abréviation de Pressure Swing Adsorption - Adsorption par Variations de Pression). Cette technologie est connue en elle même. Les adsorbants sont sélectionnés en fonction de la nature des impuretés à éliminer des courants porteurs d'hydrogène, et qui sont dans notre cas le monoxyde de carbone CO et éventuellement le méthane CH4, l'éthane C2H6 et le propane C3H8. Préférentiellement, les gaz ainsi séparés sont utilisés dans un vaporéformeur, tel qu'un vaporéformeur de méthane (« SMR » : Steam Méthane Reformer). Le CO et les autres produits de la déoxygénation de la charge d'origine biologique, sont ainsi valorisés comme gaz de synthèse pour la production d'un gaz hydrogéné d'origine biologique. En utilisant cette configuration, le CO est donc valorisé et on n'est donc pas tenu, afin d'éviter son effet inhibiteur, de diminuer sa concentration en faveur de la concentration en CO2 qui peut être plus facilement éliminé.
Avantageusement, on effectue en outre un traitement au cours duquel on sépare et on traite le dioxyde de carbone (CO2) et l'hydrogène sulfuré (H2S) présents dans ledit gaz de recycle avant la réinjection de ce dernier dans l'unité dtiydrotraitement. Ce traitement est par exemple réalisé par passage du gaz de recycle dans un absorbeur aminé. Ce traitement supplémentaire permet donc d'éliminer du circuit les gaz à traiter, c'est à dire le CO2 et IΗ2S.
Une autre façon particulièrement avantageuse d'utiliser l'invention, particulièrement lorsque le taux d'huiles végétales et/ou de graisses animales est important, est de compenser l'exothermicité qui résulte nécessairement de l'ajout des ces huiles.
Ainsi, avantageusement, on contrôle l'exothermicité de l'hydrotraitement de la charge au moyen de systèmes de régulation thermique. Dans une unité d'hydrotraitement classique, il s'agit par exemple de l'amélioration de la distribution liquide/gaz, de quench gazeux et/ ou liquides (c'est-à-dire l'apport de gaz ou liquides froids dans le réacteur), de répartition du volume de catalyseur sur plusieurs lits catalytiques, de gestion de préchauffe de la charge à l'entrée du réacteur, notamment par action sur le four et/ ou les échangeurs de chaleur situés en amont du réacteur, sur des lignes de dérivation (by- pass), etc. pour abaisser la température à l'entrée du réacteur.
Selon une première variante de l'invention, on préférera l'ajout d'un liquide (quench liquide) pour gérer l'exothermicité. Ce liquide peut par exemple être constitué d'une partie de la charge hydroraffinée sortant de l'unité dtiydroraffmage. Il est introduit au niveau de la zone de traitement de la charge d'origine biologique, en particulier lorsque l'unité d'hydrotraitement comprend un unique réacteur. Lorsque l'unité dTiydro traitement comprend deux réacteurs, ce liquide peut être constitué d'une partie de l'effluent du premier réacteur. Il est introduit, de même, au niveau de la zone de traitement de la charge d'origine biologique.
Selon une deuxième variante de l'invention dans laquelle deux réacteurs distincts sont utilisés, un système de régulation thermique consiste à récupérer de la chaleur de l'effluent sortant du premier réacteur afin d'abaisser sa température avant son injection dans le deuxième réacteur. Ceci permet de réaliser un important gain énergétique.
L'invention concerne également une unité dtrydroraffinage comprenant au moins une unité d' hydrotraitement catalytique pour la mise en œuvre dudit procédé. Avantageusement, l'unité d'hydrotraitement comprend au moins un réacteur d'hydrotraitement en lit fixe fonctionnant à contre-courant. En outre, l'unité dTiydroraffinage comprend un système de traitement des gaz de recycle issus de l'unité d'hydrotraitement avant leur réinjection dans ladite unité, ce système de traitement comprenant un dispositif de séparation et de traitement du monoxyde de carbone de manière à éliminer le monoxyde de carbone présent dans ledit gaz de recycle.
Dans une première variante, l'unité d'hydrotraitement comprend un unique réacteur fonctionnant à contre-courant. Les charges d'origine pétrolière et biologique sont alors injectées dans ce réacteur. Dans une seconde variante, l'unité d'hydrotraitement comprend deux réacteurs distincts, un premier réacteur fonctionnant à co-courant et un deuxième réacteur fonctionnant à contre-courant recevant l'effluent liquide sortant du premier réacteur, la charge d'origine pétrolière étant injectée dans le premier réacteur à co-courant.
La charge d'origine biologique est alors injectée dans le premier réacteur à co-courant et/ ou dans le deuxième réacteur à contre-courant en mélange avec l'effluent liquide sortant du premier réacteur.
L'invention est maintenant décrite en référence aux dessins annexés, non limitatifs, dans lesquels :
- la figure 1 est un schéma simplifié d'une unité dtiydroraffinage comprenant une unité d'hydrotraitement selon un premier mode de réalisation de l'invention, comportant un unique réacteur à contre-courant.
- la figure 2 est un schéma simplifié d'une unité dttydroraffinage comprenant une unité d'hydrotraitement selon un deuxième mode de réalisation de l'invention, comportant un premier réacteur à co-courant et un deuxième réacteur à contre- courant.
Selon un premier mode de réalisation, une unité d'hydrotraitement catalytique selon l'invention est formée d'un unique réacteur (1), tel que représenté sur la figure 1. Ce réacteur (1) fonctionnant à contre-courant est pourvu d'une première entrée (2) pour l'introduction d'une charge d'origine pétrolière (Cp) de type gazole et une deuxième entrée (3) pour l'introduction d'une charge d'origine biologique (Cb) à base d'huiles végétales et/ou animales. De préférence, ces entrées sont situées en tête de réacteur. On pourrait toutefois prévoir que les deux charges soient réunies avant leur entrée dans le réacteur et entrent par l'entrée habituelle du réacteur.
Par ailleurs, le réacteur (1) comprend une entrée (4) pour l'introduction d'hydrogène H2 en contre-courant. Une ligne (5) amène la charge d'origine pétrolière (Cp) à la première entrée (2) du réacteur, tandis qu'une ligne (6) amène la charge d'origine biologique (Cb) à la deuxième entrée (3) du réacteur. L'effluent liquide sortant du réacteur (1) est évacué au moyen d'une ligne ( 14). Un échangeur de chaleur (7) est placé en aval du réacteur (1) sur la ligne (14) afin de chauffer la charge Cp circulant dans la ligne (5), en amont du réacteur (1).
En aval de l'échangeur de chaleur (7), et en amont du réacteur (1), la charge circulant dans la ligne (5) est chauffée par un four (8).
Le gaz en sortie du réacteur (1) est envoyé vers un séparateur (9) qui permet de séparer de l'effluent un gaz riche en hydrogène et contenant également du CO et du CO2. Ce gaz est amené dans une unité (10) de traitement et de séparation du CO2, par exemple un absorbeur aux aminés, puis dans une unité (1 1) de séparation et de traitement du CO, du type PSA. Le CO séparé dans cette unité (1 1), ainsi que les autres gaz séparés tels que CH4, C2H6, C3H8 peuvent être avantageusement envoyés vers une unité SMR (12) pour la production d'hydrogène H2. Cet hydrogène peut alors être éventuellement renvoyé dans la ligne (13) ramenant le gaz de recycle dans le réacteur (1) à contre-courant.
Selon un deuxième mode de réalisation, une unité diiydrotraitement catalytique selon l'invention est formée de deux réacteurs (20), (21). La figure 2 représente une unité dtiydroraffinage équipée d'une telle unité dTiydrotraitement catalytique.
Le premier réacteur (20) fonctionne à co-courant, tandis que le deuxième réacteur (21) fonctionne à contre-courant.
La charge d'origine pétrolière Cp est amenée en tête de ce premier réacteur (20) au moyen d'une ligne (22), mais l'effluent liquide sortant de ce premier réacteur, au lieu d'être dirigé vers une section de séparation, est envoyé en tête du deuxième réacteur (21) au moyen d'une ligne (23). Une ligne (24) amenant la charge d'origine biologique
Cb rejoint la ligne (23) avant son entrée en tête du deuxième réacteur (21). Des entrées distinctes pourraient toutefois être envisagées dans le deuxième réacteur.
Une ligne (25) récupère l'effluent liquide en sortie du deuxième réacteur (21) et le conduit à une section de séparation.
De même que pour une unité classique, un échangeur de chaleur (26) est placé en aval du premier réacteur (20) sur la ligne (23) afin de chauffer la charge Cp circulant dans la ligne (22), en amont du premier réacteur (20).
De préférence, l'unité diiydroraffinage selon l'invention comprend, en plus, un deuxième échangeur de chaleur (27) placé en aval du deuxième réacteur (21) sur la ligne (25), et chauffant également la charge Cp circulant dans la ligne (22) en amont du premier réacteur (20), ce deuxième échangeur (27) étant par exemple placé en amont du premier échangeur (26). En amont de ces échangeurs de chaleur (26) et (27), une ligne (28) raccordée sur la ligne (22), apporte à la charge Cp à traiter dans le premier réacteur à co-courant, un gaz riche en H2.
En aval des échangeurs de chaleur (26), (27) et en amont du premier réacteur (21), la charge d'origine pétrolière mélangée au gaz riche en H2 circulant dans la ligne (22) est chauffée par un four (29).
A la sortie du deuxième réacteur à contre-courant (21), on récupère l'effluant liquide qui est refroidi, puis séparé dans une section de séparation non représentée ici.
Le gaz en sortie du deuxième réacteur (21) est envoyé vers un séparateur (30) qui permet de séparer de l'effluent un gaz riche en hydrogène et contenant également du CO et du CO2. Ce gaz est amené dans une unité (31) de traitement et de séparation du CO2, par exemple un absorbeur aux aminés, puis dans une unité (32) de séparation et de traitement du CO, du type PSA. Le CO séparé dans cette unité (32), ainsi que les autres gaz séparés tels que CH4, C2H6 et C3H8, peuvent être avantageusement envoyés vers une unité SMR (33) pour la production d'hydrogène H2. Cet hydrogène peut alors être éventuellement renvoyé dans la ligne (28) ramenant le gaz de recycle dans le premier réacteur (20) à co-courant et dans la ligne (34) ramenant le gaz de recycle dans le deuxième réacteur (21) en contre- courant.
Cette unité permet ainsi d'effectuer lliydroraffinage des coupes pétrolières dans le premier réacteur (20) et d'effectuer une finition de ltrydroraffinage des coupes pétrolières dans le deuxième réacteur (21), ainsi que la déoxygénation des triglycérides de la charge d'origine biologique à contre-courant.
Il apparaît en outre clairement que le deuxième réacteur peut être facilement isolé du circuit au moyen de vannes, une conduite de dérivation amenant directement l'effluent liquide sortant du premier réacteur vers les dispositifs de séparation et de traitement. Ainsi, cette unité dTiydroraffinage peut être utilisée pour lTiydrotraitement d'une charge d'origine pétrolière avec ou sans ajout d'une charge d'origine biologique.
Les exemples suivants illustrent les avantages produits par le procédé selon l'invention.
Exemples
Charge étudiée
La charge à base de gazole étudiée est composée de 30 % de LCO (« Light Cycle OiI ») et de 70% de coupes de type gazole provenant de la distillation directe (ou straight-run (SR) selon la dénomination anglaise) d'un pétrole brut. Les caractéristiques de cette charge gazole ainsi que celles de l'huile de palme incorporée à environ 15 % poids sont reportées dans les tableaux 1 et 2 respectivement.
Tableau 1 : caractéristiques de la charge gazole
Tableau 2 : caractéristiques de l'huile de palme
Densité à 15°C 0,8956
Composition en acide
(pourcentages en poids)
Acide laurique 12 : 0 0,2
Acide myristique 14 : 0 1 , 1
Acide palmitique 16 : 0 45,7
Acide palmitoléique 16 : 1 0,2
Acide margarique 17 : 0 0, 1
17 : 1 <o,i
Acide stéarique 18 : 0 4,3
Acide oléique 18 : 1 37,7
Acide linoléique 18 : 2 9,8
Acide linolénique 18 : 3 0,2
Acide arachidique 20 : 0 0,4
Acide gondoïque 20 : 1 0, 1
GPC :
Acides gras libres 0,7
Monoglycérides <0, l
Diglycérides 7, 1
Triglycérides 92,0
Non indentifié 0,2
Teneur en éléments (ppm)
Phosphore 0,5
Calcium <0,2
Cuivre <0,08
Fer 0,04
Magnésium <0,02
Sodium <0, l
Installation et conditions opérationnelles
Dans l'exemple 1 , qui sert de référence, le traitement se fait sur une unité comportant un réacteur dTiydrotraitement fonctionnant à co- courant, dans lequel le volume de catalyseur est de 54,6 m3. L'alimentation simultanée d'huile de palme et de la charge à base de gazole se fait en tête de réacteur. La pression partielle d'hydrogène est de 63 bars, et la température moyenne de traitement est de 3620C. Cette température permet d'assurer une teneur en soufre de 10 ppm à partir de la charge traitée ici.
Dans l'exemple 2, selon l'invention, le traitement se fait sur une unité comportant un réacteur dtiydrotraitement fonctionnant à contre- courant. La charge à base de gazole et la charge à base d'huile de palme sont incorporées en tête de réacteur. Le volume global de catalyseur dans l'unité est de 54,6 m3 (identique à celui de l'exemple 1). La température moyenne de réaction est de 3500C, ce qui permet d'assurer une teneur en soufre de 10 ppm à partir de la charge traitée ici.
Dans l'exemple 3, selon l'invention, le traitement se fait également sur une unité comportant un réacteur dtiydro traitement fonctionnant à contre-courant. La charge à base de gazole ainsi que la charge à base d'huile de palme sont incorporées en tête de réacteur. Le volume global de catalyseur de 33,3 m3. La température moyenne de réaction dans le premier réacteur est de 362°C (identique à celle de l'exemple 1), ce qui permet à l'unité (ensemble des deux réacteurs en série) d'assurer une teneur en soufre de 10 ppm à partir de la charge traitée ici.
Les réacteurs contiennent un catalyseur commercial dtiydrodésulfuration connu par l'homme du métier, constitué d'alumine poreuse sur laquelle sont déposés des oxydes de nickel et de molybdène. Ce catalyseur se présente sous la forme d'extrudés de 1 à 2 mm de diamètre de forme trilobé. La densité de chargement est de 950 kg/ m3 de catalyseur chargé dans l'unité.
La pression partielle d'hydrogène à l'entrée du réacteur est de 63 bars. La couverture d'hydrogène utilisée pour les exemples exposés est de 350 Nl/1 (c'est-à-dire la quantité de Normaux-litres d'hydrogène par litre de charge).
Une section de strippage de l'effluent liquide est présente à la sortie du réacteur afin d'éliminer les gaz tels que H2S, NH3, CO, CO2 lorsque ces composés sont présents dans l'effluent. Le tableau 3 résume les conditions opératoires de l'unité utilisée. Tableau 3: Conditions Opératoires pour l'obtention d'un gazole à 10 ppm de soufre
La comparaison des exemples 1 et 2, montre qu'en utilisant le même volume catalytique (54,6 m3), la mise en oeuvre de l'invention permet de faire fonctionner le premier réacteur à la température de
3500C, au lieu de 362°C dans le cas de l'exemple 1. Cette différence de
12°C a pour conséquence de réaliser un gain énergétique considérable.
De plus, les conditions étant moins sévères, la durée de cycle s'en trouve allongée. Dans ce cas, on peut s'attendre à avoir une durée de cycle allongée d'au moins 1 an.
La comparaison des exemples 1 et 3, montre qu'à une température réactionnelle moyenne du réacteur dtiydro traitement de 362°C, le volume catalytique nécessaire pour obtenir un gazole à 10 ppm en sortie, est moins élevé lorsqu'est mise en oeuvre l'invention. En effet, le gain est de 21 ,3 m3 de volume de catalyseur, ce qui implique une baisse d'environ 49 % du volume total de catalyseur pour l'unité.
Qualité des produits
Le tableau 4 regroupe les résultats d'une analyse détaillée de l'effluent obtenu pour les exemples 1 , 2 et 3. L'incorporation d'huile de palme en charge d'une unité d'hydrodésulfuration comprenant un réacteur fonctionnant à contre-courant, a pour conséquence d'ajouter des normales paraffines dans le produit final, et les caractéristiques des produits obtenus s'en trouvent favorablement affectées. En particulier, on constate que le point de trouble des effluents est de -2 °C, alors qu'on aurait pu s'attendre, avec l'incorporation de 15 % d'huile de palme à la charge gazole, à un plus grand impact sur le point de trouble. De plus, on constate également que la teneur en composés aromatiques des effluents issus de la mise en œuvre de l'invention (exemples 2 et 3) dans lesquels le traitement se fait sur une unité comportant un réacteur diiydrotraitement fonctionnant à contre- courant, est nettement inférieur à celle obtenue dans l'exemple 1 dans lequel le traitement se fait sur une unité comportant un réacteur dTiydro traitement fonctionnant à co-courant. Par ailleurs, l'indice de 0 cétane est sensiblement amélioré par la mise en œuvre de l'invention
Tableau 4 : caractéristiques des effluents des exemples 2 et 3

Claims

REVENDICATIONS
1. Procédé d'hydrotraitement catalytique d'une charge d'origine pétrolière de type gazole et d'une charge d'origine biologique à base d'huiles végétales et/ ou graisses animales dans une unité d'hydrotraitement, caractérisé en ce que ladite unité d'hydrotraitement comprend au moins un réacteur d'hydrotraitement en lit fixe fonctionnant à contre-courant.
2. Procédé d'hydrotraitement selon la revendication 1 , caractérisé en ce que l'unité d'hydrotraitement comprend un unique réacteur fonctionnant à contre-courant dans lequel les charges d'origine pétrolière et biologique sont injectées.
3. Procédé d'hydrotraitement selon la revendication 1 , caractérisé en ce que l'unité d'hydrotraitement comprend deux réacteurs distincts, un premier réacteur fonctionnant à co-courant et un deuxième réacteur fonctionnant à contre-courant recevant l'effluent liquide sortant du premier réacteur, et en ce que la charge d'origine pétrolière est injectée dans le premier réacteur à co-courant, et la charge d'origine biologique est injectée dans le premier réacteur à co- courant et/ ou dans le deuxième réacteur à contre-courant en mélange avec l'effluent liquide sortant du premier réacteur.
4. Procédé d'hydrotraitement selon l'une des revendications précédentes, dans lequel la charge d'origine pétrolière de type gazole est choisie parmi les coupes gazole provenant de la distillation d'un pétrole brut et/ ou d'un brut synthétique issu du traitement des schistes bitumineux ou de pétroles bruts lourds et extra-lourds ou de l'effluent du procédé Fischer Tropsch, les coupes gazoles issues de différents procédés de conversion, en particulier, celles issues du craquage catalytique et/ ou thermique (FCC, cokéfaction, viscoréduction).
5. Procédé d'hydrotraitement selon l'une des revendications précédentes, dans lequel le taux de la charge d'origine biologique à base d'huiles végétales et/ou de graisses animales est jusqu'à 30% en masse, et plus préférentiellement inférieur ou égal à 15 % en masse.
6. Procédé d'hydrotraitement selon l'une des revendications précédentes, dans lequel les huiles végétales contenues dans la charge d'origine biologique sont choisies parmi l'huile de palme, l'huile de soja, l'huile de colza, l'huile de tournesol, l'huile de lin, l'huile de son de riz, 5 l'huile de maïs, l'huile d'olive, l'huile de ricin, l'huile de sésame, l'huile de pin, l'huile d'arachide, l'huile de palmiste, l'huile de coco, l'huile de babasu, l'huile issue des algues, de préférence l'huile de palme, ou un mélange de deux ou plusieurs de ces huiles.
10 7. Procédé d'hydrotraitement selon l'une des revendications précédentes, dans lequel on injecte la charge d'origine biologique au niveau d'une zone catalytique comprenant une première couche de catalyseur piège à métaux.
15 8. Procédé d'hydrotraitement selon l'une des revendications précédentes, dans lequel la quantité d'hydrogène introduite dans le réacteur à contre-courant est de 50 à 2000 Normaux-litres de H2 par litre de charge, préférentiellement de 100 à 1500 Normaux-litres de H2 par litre de charge, et encore plus préférentiellement de 120 à 500
,20 Normaux-litres de H2 par litre de charge.
9. Procédé d'hydrotraitement catalytique selon l'une des revendications précédentes, dans lequel la température de traitement de la charge dans le réacteur à contre-courant est de 250 à 4200C, de
25 préférence de 280 à 4000C.
10. Procédé d'hydrotraitement catalytique selon l'une des revendications précédentes, dans lequel la charge est traitée à une pression de 25 à 150 bars, de préférence de 30 à 70 bars.
30
11. Procédé d'hydrotraitement catalytique selon l'une des revendications précédentes, dans lequel la WH de la charge dans le réacteur à contre-courant est de 0,3 à 10, de préférence de 0,6 à 5.
35 12. Procédé d'hydrotraitement catalytique selon l'une des revendications précédentes, dans lequel, la charge d'origine biologique traverse au moins un lit catalytique dans l'unité d'hydrotraitement, le lit catalytique contenant au moins un catalyseur à base d'oxydes métalliques choisis parmi les oxydes des métaux du groupe VI-B (Mo, W) et VIII-B (Co, Ni, Ru, Rh) et/ou de métaux nobles tels que Pt et Pd, supportés sur un support choisi parmi l'alumine, silice, silice alumine, zéolithe, ferrierite, alumine phosphatée, silice alumine phosphatée, mordénite, mazite.
13. Procédé d'hydro traitement catalytique selon l'une des revendications précédentes, dans lequel on traite la charge d'origine biologique introduite dans l'unité d'hydrotraitement sur au moins un lit catalytique contenant au moins pour partie un catalyseur avec une fonction isomérisante, à base d'oxydes métalliques ou de métaux nobles tels que Pt et Pd, sur un support acide tel que silice alumine amorphe, zéolithe, ferrierite, alumine phosphatée, silice alumine phosphatée
14. Procédé d'hydrotraitement catalytique selon l'une des revendications précédentes, dans lequel on injecte de l'eau dans l'unité d'hydrotraitement dans la zone de traitement de la charge d'origine biologique.
15. Procédé d'hydrotraitement catalytique selon l'une des revendications précédentes, comprenant un traitement de gaz de recycle issu de l'unité d'hydrotraitement avant sa réinjection dans ladite unité, dans lequel on effectue un traitement supplémentaire du monoxyde de carbone présent dans ledit gaz de recycle.
16. Procédé d'hydrotraitement catalytique selon la revendication
15, dans lequel on traite le monoxyde de carbone au moyen d'une unité de conversion de CO utilisant la réaction de « CO shift ».
17. Procédé d'hydrotraitement catalytique selon la revendication 15 ou 16, dans lequel on sépare le monoxyde de carbone CO, et éventuellement le méthane CH4, l'éthane C2H6, le propane C3H8, au moyen d'une unité de traitement PSA.
18. Procédé d'hydrotraitement catalytique selon la revendication 17, dans lequel le monoxyde de carbone CO séparé, et éventuellement le méthane CH4, l'éthane C2H6, le propane C3H8, séparés sont utilisés dans un vaporéformeur, tel qu'un vaporéformeur de méthane (SMR).
19. Procédé d'hydro traitement catalytique selon l'une des revendications précédentes, comprenant un traitement de gaz de recycle issu de l'unité d'hydrotraitement avant sa réinjection dans ladite unité, dans lequel on effectue en outre un traitement au cours duquel on sépare et on traite le dioxyde de carbone (CO2) et l'hydrogène sulfuré (H2S) présents dans ledit gaz de recycle.
20. Procédé d'hydrotraitement catalytique selon l'une des revendications précédentes, dans lequel on contrôle l'exothermicité de l'hydrotraitement de la charge d'origine biologique au moyen de systèmes de régulation thermique, de préférence par l'ajout d'un liquide en aval de la zone de traitement de la charge d'origine biologique et/ ou par la récupération de la chaleur de l'effluent sortant du premier réacteur afin d'abaisser sa température avant son injection dans le deuxième réacteur.
21. Unité dliydroraffinage comprenant au moins une unité d'hydrotraitement catalytique pour la mise en œuvre du procédé selon l'une quelconque des revendications précédentes, ladite unité d'hydrotraitement comprenant au moins un réacteur d'hydrotraitement en lit fixe fonctionnant à contre-courant, l'unité dliydroraffinage comprenant un système de traitement des gaz de recycle issus de l'unité d'hydrotraitement avant leur réinjection dans ladite unité, ce système de traitement comprenant un dispositif de séparation et de traitement du monoxyde de carbone de manière à éliminer le monoxyde de carbone présent dans ledit gaz de recycle.
22. Unité dTiydroraffinage selon la revendication 21 , caractérisée en ce que l'unité d'hydrotraitement comprend un unique réacteur fonctionnant à contre-courant.
23. Unité diiydroraffinage selon la revendication 21 , caractérisée en ce que l'unité d'hydrotraitement comprend deux réacteurs distincts, un premier réacteur fonctionnant à co-courant et un deuxième réacteur fonctionnant à contre-courant recevant l'effluent liquide sortant du premier réacteur.
EP08761875A 2007-02-27 2008-02-12 Procede d' hydrotraitement d' une charge gazole, unite d' hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante Withdrawn EP2126000A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0701394A FR2913024B1 (fr) 2007-02-27 2007-02-27 Procede d'hydrotraitement d'une charge gazole, unite d'hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante
PCT/FR2008/000176 WO2008119895A2 (fr) 2007-02-27 2008-02-12 Procede d' hydrotraitement d' une charge gazole, unite d' hydrotraitement pour la mise en œuvre dudit procede, et unite d'hydroraffinage correspondante

Publications (1)

Publication Number Publication Date
EP2126000A2 true EP2126000A2 (fr) 2009-12-02

Family

ID=38512230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08761875A Withdrawn EP2126000A2 (fr) 2007-02-27 2008-02-12 Procede d' hydrotraitement d' une charge gazole, unite d' hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante

Country Status (5)

Country Link
US (1) US8541636B2 (fr)
EP (1) EP2126000A2 (fr)
BR (1) BRPI0807580A2 (fr)
FR (1) FR2913024B1 (fr)
WO (1) WO2008119895A2 (fr)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982075B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999143B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7915460B2 (en) 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
US8193399B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8324438B2 (en) 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329967B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8329968B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
NZ588357A (en) 2008-04-06 2012-02-24 Uop Llc Fuel and fuel blending components from biomass derived pyrolysis oil
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8304592B2 (en) 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
WO2010049075A2 (fr) * 2008-10-31 2010-05-06 Haldor Topsøe A/S Hydrotraitement amélioré de matière organique renouvelable
CA2742820C (fr) 2008-11-06 2017-06-20 Exxonmobil Research And Engineering Company Hydrotraitement de biocarburants diesels et de melanges
US8921627B2 (en) 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
US8471079B2 (en) 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US8283506B2 (en) 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
FR2940314B1 (fr) 2008-12-23 2011-11-18 Total Raffinage Marketing Carburant de type gazole pour moteur diesel a fortes teneurs en carbone d'origine renouvelable et en oxygene
US8377288B2 (en) 2009-09-22 2013-02-19 Bp Corporation North America Inc. Methods and units for mitigation of carbon oxides during hydrotreating
EP2496667A4 (fr) * 2009-11-04 2015-01-07 Exxonmobil Res & Eng Co Hydrotraitement de matières premières contenant une matière lipidique pour produire un carburant de transport
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
FI125931B (fi) 2010-05-25 2016-04-15 Upm Kymmene Corp Menetelmä ja laitteisto hiilivetyjen valmistamiseksi
FI20106252A0 (fi) 2010-11-26 2010-11-26 Upm Kymmene Corp Menetelmä ja systeemi polttoainekomponenttien valmistamiseksi
US20120157742A1 (en) * 2010-12-20 2012-06-21 Conocophillips Company Production of renewable fuels
WO2012091905A1 (fr) * 2010-12-30 2012-07-05 Bp Corporation North America Inc. Dérivation et conversion d'huiles naturelles avec des compositions chimiques pour l'hydrotraitement en carburants pour les transports
ES2626658T5 (es) 2011-01-18 2021-01-26 Neste Oyj Método y disposición para alimentar materiales sensibles al calor a reactores de lecho fijo
US9096804B2 (en) 2011-01-19 2015-08-04 P.D. Technology Development, Llc Process for hydroprocessing of non-petroleum feedstocks
EP2489720A1 (fr) 2011-02-15 2012-08-22 Neste Oil Oyj Utilisation d'huile renouvelable dans un procédé d'hydrotraitement
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
US9006501B2 (en) 2011-05-04 2015-04-14 Chevron U.S.A. Inc. Low pour point renewable fuel blend
US8884086B2 (en) 2011-09-14 2014-11-11 Bp Corporation North America Inc. Renewable diesel refinery strategy
US20140256999A1 (en) * 2011-10-28 2014-09-11 Sapphire Energy, Inc. Processes for upgrading algae oils and products thereof
US8911514B2 (en) * 2011-12-15 2014-12-16 Uop Llc Hydrotreating methods and hydrotreating systems
FI127206B2 (en) * 2012-04-18 2021-08-31 Upm Kymmene Corp Method for producing biofuel or biofuel components
US9758728B2 (en) * 2012-06-08 2017-09-12 Battelle Memorial Institute Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks
US20140097123A1 (en) * 2012-10-09 2014-04-10 George ARMISTEAD Integrated hydroprocessing
US9527054B2 (en) 2014-05-09 2016-12-27 Uop Llc Apparatuses and methods for cracking hydrocarbons
TW201602336A (zh) 2014-06-09 2016-01-16 W R 康格雷氏公司 天然油及脂之催化脫氧方法
CN104386648B (zh) * 2014-11-17 2017-02-22 华南理工大学 一种固体热载体油页岩炼制集成干馏气制氢系统及工艺
US10577547B2 (en) * 2018-02-27 2020-03-03 Uop Llc Process for producing fuels from a blended biorenewable feed
EP3666857A4 (fr) * 2018-10-30 2020-12-23 Revo International Inc. Procédé de production de combustible hydrocarboné liquide
KR20220153618A (ko) 2020-03-13 2022-11-18 토프쉐 에이/에스 감소된 co2 발자국 및 개선된 수소 통합을 갖는 탄화수소를 생성하기 위한 과정 및 플랜트
CN112808273B (zh) * 2021-02-04 2021-11-26 福州大学 MgFe水滑石基催化剂及其在悬浮床加氢脱氧生产生物柴油中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106430A2 (fr) * 2006-12-22 2009-10-07 Ifp Procédés d'hydrotraitement d'un mélange constitué d'huiles d'origine animale ou végétale et de coupes pétrolières avec stripage intermédiaire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
DE3823457A1 (de) * 1988-07-11 1990-01-18 Henkel Kgaa Verfahren zum hydrieren von fettsaeureestern, fetten, fettsaeuren und vorrichtung zum durchfuehren des verfahrens
FR2818283B1 (fr) * 2000-12-20 2003-02-14 Inst Francais Du Petrole Procede de traitement d'une charge hydrocarbonee comprenant une etape d'hydrotraitement en lit fixe a contre-courant
EP1396531B2 (fr) * 2002-09-06 2016-11-30 Neste Oil Oyj Procédé de préparation d' un composé hydrocarburé d' origine biologique.
BRPI0500591A (pt) * 2005-02-18 2006-10-03 Petroleo Brasileiro Sa processo para a hidroconversão de óleos vegetais

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106430A2 (fr) * 2006-12-22 2009-10-07 Ifp Procédés d'hydrotraitement d'un mélange constitué d'huiles d'origine animale ou végétale et de coupes pétrolières avec stripage intermédiaire

Also Published As

Publication number Publication date
FR2913024A1 (fr) 2008-08-29
US8541636B2 (en) 2013-09-24
FR2913024B1 (fr) 2012-07-27
WO2008119895A2 (fr) 2008-10-09
WO2008119895A3 (fr) 2008-11-27
BRPI0807580A2 (pt) 2014-06-10
US20100038284A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
EP2104723B9 (fr) Procede d&#39;hydrotraitement d&#39;une charge gazole
EP2126000A2 (fr) Procede d&#39; hydrotraitement d&#39; une charge gazole, unite d&#39; hydrotraitement pour la mise en oeuvre dudit procede, et unite d&#39;hydroraffinage correspondante
EP2046917B1 (fr) Procede d&#39;hydrotraitement d&#39;une charge gazole
EP2106430B1 (fr) Procédés d&#39;hydrotraitement d&#39;un mélange constitué d&#39;huiles d&#39;origine animale ou végétale et de coupes pétrolières avec stripage intermédiaire
EP2473274B1 (fr) Procede de conversion de charges issues de sources renouvelables en co-traitement avec une charge petroliere mettant en oeuvre un catalyseur a base de nickel et de molybdene
EP2468838B1 (fr) Production de carburants paraffiniques à partir de matières renouvelables par un procédé d&#39;hydrotraitement en continu
EP2346962B1 (fr) Procede d&#39;obtention de biokerosene
EP2592062B1 (fr) Production de carburants paraffiniques à partir de matières renouvelables par un procédé d&#39;hydrotraitement en continu comprenant une étape de prétraitement sous hydrogene
EP2610236A1 (fr) Production de carburants paraffiniques à partir de matières renouvelables par un procédé d&#39;hydrotraitement en continu comprenant une étape de prétraitement
EP2316910B1 (fr) Procédé d&#39;hydrotraitement de charges issues de sources renouvelables avec chauffe indirecte mettant en oeuvre un catalyseur à base de nickel et de molybdene presentant un rapport atomique particulier
EP2316908A1 (fr) Procédé d&#39;hydrotraitement de charges issues de sources renouvelables avec chauffe indirecte
WO2011027044A1 (fr) Procede de conversion de charges issues de sources renouvelables en co-traitement avec une charge petroliere mettant en oeuvre un catalyseur a base de molybdene
JP2012530805A (ja) バイオ成分供給原料を処理するための沸騰床方法
EP2143777A1 (fr) Procédé d&#39;hydrocraquage permettant l&#39;incorporation d&#39;un biocarburant dans un carburant
FR2935982A1 (fr) Procede de pretraitement de fcc par hydrocraquage doux incluant une dilution de la charge par une charge d&#39;origine biologique
WO2023099304A1 (fr) Procede de traitement d&#39;huiles de pyrolyse de plastiques incluant une etape d&#39;hydrogenation et une separation a chaud
WO2024126788A1 (fr) Procédé de traitement d&#39;une charge issue de source renouvelable pour la production d&#39;oléfines biosourcées
EP4334411A1 (fr) Procede integre de traitement d&#39;huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090903

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100412

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140902