EP2118994A1 - Current inverter - Google Patents

Current inverter

Info

Publication number
EP2118994A1
EP2118994A1 EP08707968A EP08707968A EP2118994A1 EP 2118994 A1 EP2118994 A1 EP 2118994A1 EP 08707968 A EP08707968 A EP 08707968A EP 08707968 A EP08707968 A EP 08707968A EP 2118994 A1 EP2118994 A1 EP 2118994A1
Authority
EP
European Patent Office
Prior art keywords
bridge circuit
voltage
inverter
switching elements
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08707968A
Other languages
German (de)
French (fr)
Inventor
Stefan Reschenauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG Oesterreich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG Oesterreich filed Critical Siemens AG Oesterreich
Publication of EP2118994A1 publication Critical patent/EP2118994A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Definitions

  • the invention relates to an inverter with a bridge circuit having four switching elements, in which two opposite terminals of the bridge circuit are connected to the DC voltage part of the inverter, and the other two terminals of the bridge circuit are connected to the AC voltage part of the inverter, wherein by suitable control of the switching elements Gleich - and AC voltage are interconvertible, according to the preamble of claim 1.
  • Inverters are widely used in electrical engineering, particularly in alternative power generation systems such as fuel cell systems and photovoltaic systems (so-called “dormant systems”), or wind turbines (so-called “rotating systems”).
  • dormant systems require an inverter that converts the resulting DC power into AC power and feeds it to the grid.
  • Rotating systems generate AC power, which is usually converted into DC power first and then converted back into AC power, on the one hand, to expand the working range (eg speed range) on the mechanical side of the generator on the other hand, but also to ensure the required for a grid feed quality of the AC voltage.
  • Inverters thereby enable a separation of the supply-side electrical parameters from those of the network-side parameters such as frequency and voltage, and thus represent the central link between the supply side and the network.
  • inverters are often used with a bridge circuit having four switching elements, in which two opposite connection terminals the bridge circuit are connected to the DC voltage part of the inverter, and the other two terminals of the bridge circuit are connected to the AC voltage part of the inverter, wherein DC and AC voltage can be converted into each other by suitable control of the switching elements.
  • expensive components are usually required for the switching elements of the bridge circuit, such as FRED (Fast Recovery Epitax Diode) FETs, since sometimes high switching frequencies must be ensured. This has a negative effect on the cost of conventional circuit arrangements, and also affects the efficiency of conventional inverters, since with each switching operation unavoidable switching losses are connected.
  • Inverter topology in conjunction with the real behavior of the components to achieve an increase in efficiency and power quality at a lower cost.
  • Claim 1 relates to an inverter with a bridge circuit comprising four switching elements, in which two opposite terminals of the bridge circuit are connected to the DC voltage part of the inverter, and the other two terminals of the bridge circuit are connected to the AC voltage part of the inverter, wherein by appropriate control of the Switching elements DC and AC voltage are interconvertible.
  • a first DC side switching element is coupled in the DC voltage part to the positive DC voltage terminal, to which an inductance connected in series between the first switching element and a first terminal of the bridge circuit and a diode are arranged.
  • Claim 2 provides an embodiment that is particularly advantageous when the input voltage on the DC side is less than the maximum value of the output side grid voltage.
  • Claim 2 provides for this purpose that in the series connection between the inductor and the diode on the one hand, and a second terminal of the bridge circuit on the other hand, a second, DC side switching element is connected, which connects the inductance with the second terminal of the bridge circuit in the closed state.
  • the DC voltage-side input voltage can be boosted by suitable switching of the second switching element.
  • the use of a single inductance allows further cost savings.
  • Claims 3 to 5 provide advantageous developments of the inventive changer.
  • an AC-side smoothing capacitor is connected, and in the DC voltage part a DC-side smoothing capacitor.
  • the DC-side switching elements are semiconductor switching elements, in particular a power MOSFET or IGBT.
  • FIG. 1 shows the basic circuit diagram of the inverter according to the invention in a first representation
  • Fig. 2 shows the basic circuit diagram of the inverter according to the invention in a second representation
  • Fig. 3 shows the time course of voltage and control signal for the switching elements in the energy flow in the AC voltage part of the inverter according to the invention.
  • the inverter according to the invention has a bridge circuit with four switching elements S3, S4, S5 and S6, in which two opposite terminals 1, 2 of the bridge circuit are connected to the DC voltage part of the inverter, and the two other terminal terminals 3, 4 of the bridge circuit the AC voltage part of the inverter.
  • the conversion of DC voltage into AC voltage is carried out via the four switching elements S3, S4, S5 and S6 in the bridge circuit, which represents a full bridge, in a conventional manner by suitable control of the switching elements S3, S4, S5 and S6 DC. and AC voltage are interconvertible.
  • a first, Gleichwoods wornes switching element Sl is coupled to the positive DC voltage terminal, to which a connected between the first switching element Sl and a first Anschlußklemnme 1 of the bridge circuit in series inductance Ll and a diode D2 are arranged downstream.
  • a second, Gleichwoods wornes switching element S2 is switched, which connects the inductance Ll with the second terminal 2 of the bridge circuit in the closed state.
  • the diode D2 is connected between the positive DC voltage terminal and the first terminal 1 of the bridge circuit in the forward direction.
  • the DC part is the DC voltage source U e .
  • AC voltage side smoothing capacitor C 0 In the AC voltage part is further connected an AC voltage side smoothing capacitor C 0 , and in
  • the switching elements S1, S2, S3, S4, S5 and S6 are preferably semiconductor switching elements, in particular a power MOSFET.
  • FIG. 2 shows the embodiment according to FIG. 1 in an alternative embodiment.
  • FIG. 3 firstly explains the switch-on phase of the switching sequence in the positive half-cycle in the case of the inventive inverter according to FIG. 1, the energy flowing from the DC voltage part into the AC voltage part.
  • the control of the switching elements and in particular their timing can be taken from the lower diagrams of FIG.
  • the switching elements S4 and S6 always remain closed, ie conductive, while the switching elements S3 and S5 always remain switched off, ie they are not conductive, in order to generate the positive half wave at the output terminals of the AC voltage part.
  • the duty cycle as can be seen in FIG.
  • the first, DC-side switching element S1 is closed with increasing duty cycle, and for the descending region of the positive half-wave with decreasing ON duration.
  • the first Heidelbergelemnt Sl clocked on the DC side via the inductance Ll and the diode D2 power into the network. If the mains voltage exceeds the same voltage-side input voltage, the latter is set by means of the second, DC-side switching element S2 high.
  • the first switching element Sl remains closed, that is conductive, while an increase in voltage is brought about by suitable timing of the second switching element S2.
  • a diode D1 which is connected between the second terminal 2 of the bridge circuit and the first DC side switching element S1, may be provided in the DC voltage part, the anode side being connected to the second terminal 2 of the bridge circuit, and the cathode side being connected to the first switching element S1 is.
  • the freewheeling of the inductance L1 is thus effected via the diode D2 connected to the first connection terminal 1 of the bridge circuit, the load on the AC side, and the diode D1 connected to the second connection terminal 2 of the bridge circuit.
  • the switching elements S3 and S5 are always closed, that is conductive, while the switching elements S4 and S6 always remain switched off, so are not conductive.
  • the duty cycle as shown in FIG. 3 can be seen, selected so that the first, DC-side switching element Sl is closed with increasing duty cycle, and for the rising range of the negative half-wave with decreasing duty cycle.
  • the first switching element S1 on the DC side clocks current into the network via the inductance L1 and the diode D2. If the mains voltage exceeds the DC voltage-side input voltage, the latter can in turn be boosted by means of the second, DC-side switching element S2.
  • the first switching element S1 remains closed, that is to say conductive, while an increase in voltage for generating the negative maximum value is brought about by suitable timing of the second switching element S2.
  • the switching elements S3, S4, S5 and S6 of the bridge circuit only have to be switched at zero crossing with the line frequency. Only the first, DC side switching element Sl is clocked to feed the current quickly, so that even at this switching element Sl significant switching losses.
  • the efficiency of the inverter according to the invention can thereby be significantly increased in any case, up to 98%. If the DC voltage-side input voltage is lower than the mains voltage, an additional, second switching element S2 can be used.
  • the switching elements S3, S4, S5 and S6 of the bridge circuit can also use less expensive components, whereby the cost of the overall circuit can be reduced.

Abstract

The invention relates to a current inverter comprising a bridge circuit equipped with four switch elements (S3, S4, S5, S6), wherein two opposite connector clamps (1, 2) of the bridge circuit are connected to the direct current part of the current inverter, and the other two connector clamps (3, 4) of the bridge circuit are connected to the alternating current part of the current inverter. Direct current and alternating current can be converted into each other when the switch elements (S3, S4, S5, S6) are controlled appropriately. According to the invention, in the direct current part, a first direct current sided switch element (SI) is coupled to the positive direct current clamp, an inductive resistance (LI) that is mounted in series between the first switch element (SI) and the first connector clamp (1) of the bridge circuit and a diode (D2) are arranged downstream from the first switch element (SI). A second direct current-sided switch element (S2) can be mounted in series between the inductive resistance (LI) and the diode (D2), and a second connector clamp (2) of the bridge circuit can be mounted such that in the closed state, the inductive resistance (Ll) connects to the second connector clamp (2) of the bridge circuit.

Description

Beschreibungdescription
Wechselrichterinverter
Die Erfindung betrifft einen Wechselrichter mit einer vier Schaltelemente aufweisenden Brückenschaltung, bei der zwei gegenüber liegende Anschlussklemmen der Brückenschaltung mit dem Gleichspannungsteil des Wechselrichters verbunden sind, und die beiden anderen Anschlussklemmen der Brückenschaltung mit dem Wechselspannungsteil des Wechselrichters verbunden sind, wobei durch geeignete Ansteuerung der Schaltelemente Gleich- und Wechselspannung ineinander umwandelbar sind, gemäß dem Oberbegriff von Anspruch 1.The invention relates to an inverter with a bridge circuit having four switching elements, in which two opposite terminals of the bridge circuit are connected to the DC voltage part of the inverter, and the other two terminals of the bridge circuit are connected to the AC voltage part of the inverter, wherein by suitable control of the switching elements Gleich - and AC voltage are interconvertible, according to the preamble of claim 1.
Wechselrichter finden in der Elektrotechnik breite Anwendung, insbesondere in alternativen Stromerzeugungssystemen wie etwa Brennstoffzellenanlangen und Photovoltaikanlagen (sogenannte „ruhende Systeme") , oder Windkraftanlagen (sogenannte „rotierende Systeme") . Ruhende Systeme benötigen zur Leistungsein- Speisung in ein Stromversorgungsnetz einen Wechselrichter, der die anfallende DC-Leistung in eine AC-Leistung umwandelt und netzkonform einspeist. Rotierende Systeme erzeugen AC- Leistung, die aber in der Regel zunächst in eine DC-Leistung umgewandelt wird, und anschließend in eine AC-Leistung rück- gewandelt wird, einerseits, um den Arbeitsbereich (z.B. Drehzahlbereich) auf der mechanischen Seite des Generators erweitern zu können, andererseits aber auch um die für eine Netzeinspeisung erforderliche Güte der Wechselspannung sicher zu stellen. Wechselrichter ermöglichen dabei eine Trennung der einspeiseseitigen elektrischen Parameter von jenen der netz- seitigen Parameter wie Frequenz und Spannung, und stellen somit das zentrale Bindeglied zwischen der Einspeiseseite und dem Netz dar.Inverters are widely used in electrical engineering, particularly in alternative power generation systems such as fuel cell systems and photovoltaic systems (so-called "dormant systems"), or wind turbines (so-called "rotating systems"). In order to feed power into a power supply system, dormant systems require an inverter that converts the resulting DC power into AC power and feeds it to the grid. Rotating systems generate AC power, which is usually converted into DC power first and then converted back into AC power, on the one hand, to expand the working range (eg speed range) on the mechanical side of the generator on the other hand, but also to ensure the required for a grid feed quality of the AC voltage. Inverters thereby enable a separation of the supply-side electrical parameters from those of the network-side parameters such as frequency and voltage, and thus represent the central link between the supply side and the network.
Dabei werden gemäß dem Stand der Technik oft Wechselrichter mit einer vier Schaltelemente aufweisenden Brückenschaltung verwendet, bei der zwei gegenüber liegende Anschlussklemmen der Brückenschaltung mit dem Gleichspannungsteil des Wechselrichters verbunden sind, und die beiden anderen Anschlussklemmen der Brückenschaltung mit dem Wechselspannungsteil des Wechselrichters verbunden sind, wobei durch geeignete Ansteu- erung der Schaltelemente Gleich- und Wechselspannung ineinander umwandelbar sind. Dabei sind aber für die Schaltelemente der Brückenschaltung in der Regel teure Bauelemente erforderlich, etwa FRED (Fast Recovery Epitax. Diode) -FETs, da mitunter hohe Schaltfrequenzen sicher zu stellen sind. Das wirkt sich negativ auf die Kosten herkömmlicher Schaltungsanordnungen aus, und beeinträchtigt außerdem den Wirkungsgrad der üblichen Wechselrichter, da mit jedem Schaltvorgang unvermeidliche Schaltverluste verbunden sind.In this case, according to the prior art, inverters are often used with a bridge circuit having four switching elements, in which two opposite connection terminals the bridge circuit are connected to the DC voltage part of the inverter, and the other two terminals of the bridge circuit are connected to the AC voltage part of the inverter, wherein DC and AC voltage can be converted into each other by suitable control of the switching elements. In this case, expensive components are usually required for the switching elements of the bridge circuit, such as FRED (Fast Recovery Epitax Diode) FETs, since sometimes high switching frequencies must be ensured. This has a negative effect on the cost of conventional circuit arrangements, and also affects the efficiency of conventional inverters, since with each switching operation unavoidable switching losses are connected.
Es ist somit das Ziel der Erfindung, durch Optimierung derIt is thus the aim of the invention to optimize by optimizing
Wechselrichtertopologie in Verbindung mit dem realen Verhalten der Bauelemente eine Steigerung an Wirkungsgrad und Stromqualität bei geringeren Kosten zu erzielen.Inverter topology in conjunction with the real behavior of the components to achieve an increase in efficiency and power quality at a lower cost.
Dieses Ziel wird durch die Merkmale von Anspruch 1 erreicht. Anspruch 1 bezieht sich auf einen Wechselrichter mit einer vier Schaltelemente aufweisenden Brückenschaltung, bei der zwei gegenüber liegende Anschlussklemmen der Brückenschaltung mit dem Gleichspannungsteil des Wechselrichters verbunden sind, und die beiden anderen Anschlussklemmen der Brückenschaltung mit dem Wechselspannungsteil des Wechselrichters verbunden sind, wobei durch geeignete Ansteuerung der Schaltelemente Gleich- und Wechselspannung ineinander umwandelbar sind. Erfindungsgemäß ist hierbei vorgesehen, dass im Gleich- spannungsteil an der positiven Gleichspannungsklemme ein erstes, gleichspannungsseitiges Schaltelement angekoppelt ist, dem eine zwischen dem ersten Schaltelement und einer ersten Anschlussklemnme der Brückenschaltung in Serie geschaltete Induktivität und eine Diode nachgeordnet sind. Wie noch näher ausgeführt werden wird, ermöglicht eine solche Schaltungsanordnung einen höheren Wirkungsgrad, da die Schaltelemente der Brückenschaltung nur mit der Netzfrequenz geschaltet werden müssen, während der einzuspeisende Strom mit dem schnell getakteten Schaltelemente im Gleichspannungsteil geregelt werden kann. Somit ergeben sich nur an einem Schaltelement Schaltverluste, was den Wirkungsgrad des erfindungsgemäßen Wechselrichters erheblich steigert.This object is achieved by the features of claim 1. Claim 1 relates to an inverter with a bridge circuit comprising four switching elements, in which two opposite terminals of the bridge circuit are connected to the DC voltage part of the inverter, and the other two terminals of the bridge circuit are connected to the AC voltage part of the inverter, wherein by appropriate control of the Switching elements DC and AC voltage are interconvertible. According to the invention, it is provided that a first DC side switching element is coupled in the DC voltage part to the positive DC voltage terminal, to which an inductance connected in series between the first switching element and a first terminal of the bridge circuit and a diode are arranged. As will be explained in more detail, such a circuit allows a higher efficiency, since the switching elements of the bridge circuit are switched only with the mains frequency have to be regulated while the current to be fed with the fast clocked switching elements in the DC part. Thus, switching losses occur only at one switching element, which considerably increases the efficiency of the inverter according to the invention.
Anspruch 2 sieht eine Ausführungsform vor, die insbesondere dann vorteilhaft ist, wenn die Eingangsspannung auf der Gleichspannungsseite kleiner als der Maximalwert der aus- gangsseitigen Netzapannung ist. Anspruch 2 sieht hierfür vor, dass in der Reihenschaltung zwischen der Induktivität und der Diode einerseits, sowie einer zweiten Anschlussklemme der Brückenschaltung andererseits ein zweites, gleichspannungs- seitiges Schaltelement geschalten ist, das im geschlossenen Zustand die Induktivität mit der zweiten Anschlussklemme der Brückenschaltung verbindet. Dadurch kann die gleichspannungs- seitige Eingangsspannung durch geeignetes Schalten des zweiten Schaltelements hochgesetzt werden. Des Weiteren erlaubt die Verwendung einer einzelnen Induktivität eine weitere Kos- tenersparnis .Claim 2 provides an embodiment that is particularly advantageous when the input voltage on the DC side is less than the maximum value of the output side grid voltage. Claim 2 provides for this purpose that in the series connection between the inductor and the diode on the one hand, and a second terminal of the bridge circuit on the other hand, a second, DC side switching element is connected, which connects the inductance with the second terminal of the bridge circuit in the closed state. As a result, the DC voltage-side input voltage can be boosted by suitable switching of the second switching element. Furthermore, the use of a single inductance allows further cost savings.
Die Ansprüche 3 bis 5 sehen vorteilhafte Weiterbildungen des erfindungsgemäßen Wechslerichters dar. Hierbei ist im Wechselspannungsteil jeweils ein wechselspannungsseitiger Glät- tungskondensator geschalten, und im Gleichspannungsteil ein gleichspannungsseitiger Glättungskondensator . Des Weiteren wird vorgeschlagen, dass es sich bei den gleichspannungssei- tigen Schaltelementen um Halbleiter-Schaltelemente, insbesondere um Leistungs-MOSFET oder IGBT, handelt.Claims 3 to 5 provide advantageous developments of the inventive changer. Here, in the AC voltage part, in each case an AC-side smoothing capacitor is connected, and in the DC voltage part a DC-side smoothing capacitor. Furthermore, it is proposed that the DC-side switching elements are semiconductor switching elements, in particular a power MOSFET or IGBT.
Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen näher erläutert. Hierbei zeigen dieThe invention will be explained in more detail below with reference to the accompanying drawings. This show the
Fig. 1 den prinzipiellen Schaltplan des erfindungsgemäßen Wechselrichters in einer ersten Darstellungsweise, Fig. 2 den prinzipiellen Schaltplan des erfindungsgemäßen Wechselrichters in einer zweiten Darstellungsweise, und1 shows the basic circuit diagram of the inverter according to the invention in a first representation, Fig. 2 shows the basic circuit diagram of the inverter according to the invention in a second representation, and
Fig. 3 den zeitlichen Verlauf von Spannung und Steuersignal für die Schaltelemente beim Energiefluss in den Wechselspannungsteil des erfindungsgemäßen Wechselrichters.Fig. 3 shows the time course of voltage and control signal for the switching elements in the energy flow in the AC voltage part of the inverter according to the invention.
Der prinzipielle Schaltplan einer Ausführungsform des erfindungsgemäßen Wechselrichters wird zunächst anhand der Fig. 1 bzw. 2 erläutert. Der erfindungsgemäße Wechselrichter weist eine Brückenschaltung mit vier Schaltelementen S3, S4, S5 und S6 auf, bei der zwei gegenüber liegende Anschlussklemmen 1, 2 der Brückenschaltung mit dem Gleichspannungsteil des Wechselrichters verbunden sind, und die beiden anderen Anschluss- klemmen 3, 4 der Brückenschaltung mit dem Wechselspannungsteil des Wechselrichters. Die Umwandlung von Gleichspannung in Wechselspannung erfolgt dabei über die vier Schaltelemente S3, S4, S5 und S6 in der Brückenschaltung, die eine Vollbrücke darstellt, wobei in an sich bekannter Weise durch geeig- nete Ansteuerung der Schaltelemente S3, S4, S5 und S6 Gleich- und Wechselspannung ineinander umwandelbar sind.The basic circuit diagram of an embodiment of the inverter according to the invention is first explained with reference to FIGS. 1 and 2. The inverter according to the invention has a bridge circuit with four switching elements S3, S4, S5 and S6, in which two opposite terminals 1, 2 of the bridge circuit are connected to the DC voltage part of the inverter, and the two other terminal terminals 3, 4 of the bridge circuit the AC voltage part of the inverter. The conversion of DC voltage into AC voltage is carried out via the four switching elements S3, S4, S5 and S6 in the bridge circuit, which represents a full bridge, in a conventional manner by suitable control of the switching elements S3, S4, S5 and S6 DC. and AC voltage are interconvertible.
Im Gleichspannungsteil ist an der positiven Gleichspannungsklemme ein erstes, gleichspannungsseitiges Schaltelement Sl angekoppelt, dem eine zwischen dem ersten Schaltelement Sl und einer ersten Anschlussklemnme 1 der Brückenschaltung in Serie geschaltete Induktivität Ll und eine Diode D2 nachgeordnet sind. In der Reihenschaltung zwischen der Induktivität Ll und der Diode D2 einerseits, sowie einer zweiten An- schlussklemme 2 der Brückenschaltung andererseits ist ein zweites, gleichspannungsseitiges Schaltelement S2 geschalten, das im geschlossenen Zustand die Induktivität Ll mit der zweiten Anschlussklemme 2 der Brückenschaltung verbindet. Die Diode D2 ist dabei zwischen der positiven Gleichspannungs- klemme und der ersten Anschlussklemme 1 der Brückenschaltung in Durchlassrichtung geschalten. Im Gleichspannungsteil befindet sich die Gleichspannungsquelle Ue . Im Wechselspannungsteil befindet sich die Last UNetzIn the DC voltage part, a first, Gleichspannungsseitiges switching element Sl is coupled to the positive DC voltage terminal, to which a connected between the first switching element Sl and a first Anschlußklemnme 1 of the bridge circuit in series inductance Ll and a diode D2 are arranged downstream. In the series connection between the inductance Ll and the diode D2 on the one hand, and a second connection terminal 2 of the bridge circuit on the other hand, a second, Gleichspannungsseitiges switching element S2 is switched, which connects the inductance Ll with the second terminal 2 of the bridge circuit in the closed state. The diode D2 is connected between the positive DC voltage terminal and the first terminal 1 of the bridge circuit in the forward direction. In the DC part is the DC voltage source U e . In the AC voltage part is the load U Netz
Im Wechselspannungsteil ist des Weiteren ein wechselspan- nungsseitiger Glättungskondensator C0 geschalten, und imIn the AC voltage part is further connected an AC voltage side smoothing capacitor C 0 , and in
Gleichspannungsteil ein gleichspannungsseitiger Glättungskondensator C1. Bei den Schaltelementen Sl, S2, S3, S4, S5 und S6 handelt es sich vorzugsweise um Halbleiter-Schaltelemente, insbesondere um Leistungs-MOSFET .DC part DC side smoothing capacitor C 1 . The switching elements S1, S2, S3, S4, S5 and S6 are preferably semiconductor switching elements, in particular a power MOSFET.
Die Fig. 2 zeigt die Ausführungsform gemäß Fig. 1 in einer alternativen Darstellungsweise.FIG. 2 shows the embodiment according to FIG. 1 in an alternative embodiment.
Im Folgenden wird nun anhand der Fig. 3 die Schaltsequenz zur Ansteuerung der Schaltelemente Sl, S2, S3, S4, S5 und S6 bei einem Energiefluss vom Gleichspannungsteil in den Wechselspannungsteil erläutert.The switching sequence for driving the switching elements S1, S2, S3, S4, S5 and S6 in the case of an energy flow from the DC voltage part into the AC voltage part will now be explained below with reference to FIG.
Die Fig. 3 erläutert zunächst die Einschaltphase der Schalt- sequenz bei der positiven Halbwelle beim erfindungsgemäßen Wechselrichter gemäß Fig. 1, wobei der Energiefluss vom Gleichspannungsteil in den Wechselspannungsteil erfolgt. Die Ansteuerung der Schaltelemente und insbesondere deren Taktung kann dabei den unteren Diagrammen der Fig. 3 entnommen wer- den. Wie aus der Fig. 3 ersichtlich ist, bleiben zur Erzeugung der positiven Halbwelle an den Ausgangsklemmen des Wechselspannungsteils die Schaltelemente S4 und S6 stets geschlossen, also leitend, während die Schaltelemente S3 und S5 stets ausgeschaltet bleiben, also nicht leitend sind. Für den ansteigenden Bereich der positiven Halbwelle ist das Tastverhältnis, wie aus der Fig. 3 ersichtlich ist, so gewählt, dass das erste, gleichspannungsseitige Schaltelement Sl mit zunehmender Einschaltdauer geschlossen wird, und für den absteigenden Bereich der positiven Halbwelle mit abnehmender Ein- schaltdauer. Somit taktet das erste Schaltelemnt Sl auf der Gleichspannungsseite über die Induktivität Ll und die Diode D2 Strom ins Netz. Übersteigt die Netzspannung die gleich- spannungsseitige Eingangsspannung, wird letztere mithilfe des zweiten, gleichspannungsseitigen Schaltelements S2 hochgesetzt. Hierzu bleibt das erste Schaltelement Sl geschlossen, also leitend, während durch geeignete Taktung des zweiten Schaltelements S2 eine Spannungserhöhung herbei geführt wird.FIG. 3 firstly explains the switch-on phase of the switching sequence in the positive half-cycle in the case of the inventive inverter according to FIG. 1, the energy flowing from the DC voltage part into the AC voltage part. The control of the switching elements and in particular their timing can be taken from the lower diagrams of FIG. As can be seen from FIG. 3, the switching elements S4 and S6 always remain closed, ie conductive, while the switching elements S3 and S5 always remain switched off, ie they are not conductive, in order to generate the positive half wave at the output terminals of the AC voltage part. For the rising range of the positive half-cycle, the duty cycle, as can be seen in FIG. 3, is chosen such that the first, DC-side switching element S1 is closed with increasing duty cycle, and for the descending region of the positive half-wave with decreasing ON duration. Thus, the first Schaltelemnt Sl clocked on the DC side via the inductance Ll and the diode D2 power into the network. If the mains voltage exceeds the same voltage-side input voltage, the latter is set by means of the second, DC-side switching element S2 high. For this purpose, the first switching element Sl remains closed, that is conductive, while an increase in voltage is brought about by suitable timing of the second switching element S2.
Im Gleichspannungsteil kann des Weiteren eine Diode Dl vorgesehen sein, die zwischen der zweiten Anschlussklemme 2 der Brückenschaltung und dem ersten, gleichspannungsseitigen Schaltelement Sl geschalten ist, wobei sie anodenseitig mit der zweiten Anschlussklemme 2 der Brückenschaltung, und ka- thodenseitig mit dem ersten Schaltelement Sl verbunden ist. Der Freilauf der Induktivität Ll erfolgt somit über die mit der ersten Anschlussklemme 1 der Brückenschaltung verbundenen Diode D2, der wechselspannungsseitigen Last, und der mit der zweiten Anschlussklemme 2 der Brückenschaltung verbundenen Diode Dl.In addition, a diode D1, which is connected between the second terminal 2 of the bridge circuit and the first DC side switching element S1, may be provided in the DC voltage part, the anode side being connected to the second terminal 2 of the bridge circuit, and the cathode side being connected to the first switching element S1 is. The freewheeling of the inductance L1 is thus effected via the diode D2 connected to the first connection terminal 1 of the bridge circuit, the load on the AC side, and the diode D1 connected to the second connection terminal 2 of the bridge circuit.
Zur Erzeugung der negativen Halbwelle an den Ausgangsklemmen des Wechselspannungsteils sind die Schaltelemente S3 und S5 stets geschlossen, also leitend, während die Schaltelemente S4 und S6 stets ausgeschaltet bleiben, also nicht leitend sind. Für den abfallenden Bereich der negativen Halbwelle wird das Tastverhältnis, wie aus der Fig. 3 ersichtlich ist, so gewählt, dass das erste, gleichspannungsseitige Schaltelement Sl mit zunehmender Einschaltdauer geschlossen wird, und für den aufsteigenden Bereich der negativen Halbwelle mit abnehmender Einschaltdauer. Wiederum taktet das erste Schalte- lemnt Sl auf der Gleichspannungsseite über die Induktivität Ll und die Diode D2 Strom ins Netz. Übersteigt die Netzspannung die gleichspannungsseitige Eingangsspannung, kann letztere wiederum mithilfe des zweiten, gleichspannungsseitigen Schaltelements S2 hochgesetzt werden. Hierzu bleibt das erste Schaltelement Sl geschlossen, also leitend, während durch ge- eignete Taktung des zweiten Schaltelements S2 eine Spannungserhöhung zur Erzeugung des negativen Maximalwerts herbei geführt wird. Aus der Fig. 3 ist insbesondere ersichtlich, dass in der erfindungsgemäßen Wechselrichtertopologie die Schaltelemente S3, S4, S5 und S6 der Brückenschaltung nur mit der Netzfre- quenz im Nulldurchgang geschalten werden müssen. Lediglich das erste, gleichspannungsseitige Schaltelement Sl ist zur Einspeisung des Stroms schnell zu takten, sodass auch nur an diesem Schaltelement Sl nennenswerte Schaltverluste entstehen. Der Wirkungsgrad des erfindungsgemäßen Wechselrichters kann dadurch jedenfalls entscheidend erhöht werden, und zwar bis zu 98%. Sollte die gleichspannungsseitige Eingangsspannung kleiner als die Netzspannung sein, kann ein zusätzliches, zweites Schaltelement S2 eingesetzt werden. Des Weiteren können aufgrund der niedrigeren Anforderungen an die Schaltelemente S3, S4, S5 und S6 der Brückenschaltung auch kostengünstigere Bauelemente verwenden, wodurch die Kosten der Gesamtschaltung gesenkt werden können. To generate the negative half-wave at the output terminals of the AC voltage part, the switching elements S3 and S5 are always closed, that is conductive, while the switching elements S4 and S6 always remain switched off, so are not conductive. For the falling range of the negative half cycle, the duty cycle, as shown in FIG. 3 can be seen, selected so that the first, DC-side switching element Sl is closed with increasing duty cycle, and for the rising range of the negative half-wave with decreasing duty cycle. In turn, the first switching element S1 on the DC side clocks current into the network via the inductance L1 and the diode D2. If the mains voltage exceeds the DC voltage-side input voltage, the latter can in turn be boosted by means of the second, DC-side switching element S2. For this purpose, the first switching element S1 remains closed, that is to say conductive, while an increase in voltage for generating the negative maximum value is brought about by suitable timing of the second switching element S2. It can be seen in particular from FIG. 3 that in the inverter topology according to the invention, the switching elements S3, S4, S5 and S6 of the bridge circuit only have to be switched at zero crossing with the line frequency. Only the first, DC side switching element Sl is clocked to feed the current quickly, so that even at this switching element Sl significant switching losses. The efficiency of the inverter according to the invention can thereby be significantly increased in any case, up to 98%. If the DC voltage-side input voltage is lower than the mains voltage, an additional, second switching element S2 can be used. Furthermore, due to the lower requirements on the switching elements S3, S4, S5 and S6 of the bridge circuit can also use less expensive components, whereby the cost of the overall circuit can be reduced.

Claims

Patentansprüche claims
1. Wechselrichter mit einer vier Schaltelemente (S3, S4, S5, S6) aufweisenden Brückenschaltung, bei der zwei gegenüber liegende Anschlussklemmen (1, 2) der Brückenschaltung mit dem Gleichspannungsteil des Wechselrichters verbunden sind, und die beiden anderen Anschlussklemmen (3, 4) der Brückenschaltung mit dem Wechselspannungsteil des Wechselrichters verbunden sind, wobei durch geeignete Ansteuerung der Schaltelemen- te (S3, S4, S5, S6) Gleich- und Wechselspannung ineinander umwandelbar sind, d a d u r c h g e k e n n z e i c h n e t, dass im Gleichspannungsteil an der positiven Gleichspannungsklemme ein erstes, gleichspannungsseitiges Schaltelement (Sl) angekoppelt ist, dem eine zwischen dem ersten Schaltelement (Sl) und einer ersten Anschlussklemnme (1) der Brückenschaltung in Serie geschaltete Induktivität (Ll) und eine Diode (D2) nachgeordnet sind.Inverter comprising a bridge circuit having four switching elements (S3, S4, S5, S6), in which two opposite connection terminals (1, 2) of the bridge circuit are connected to the direct voltage part of the inverter, and the other two connection terminals (3, 4) the bridge circuit are connected to the AC voltage part of the inverter, whereby DC and AC voltage can be converted into one another by suitable control of the switching elements (S3, S4, S5, S6), characterized in that in the DC voltage part at the positive DC voltage terminal a first, DC-side switching element ( Sl) is coupled to the one between the first switching element (Sl) and a first Anschlußklemnme (1) of the bridge circuit connected in series inductor (Ll) and a diode (D2) are arranged downstream.
2. Wechselrichter nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass in der Reihenschaltung zwischen der Induktivität (Ll) und der Diode (D2) einerseits, sowie einer zweiten Anschlussklemme (2) der Brückenschaltung andererseits ein zweites, gleichspannungs- seitiges Schaltelement (S2) geschalten ist, das im geschlossenen Zustand die Induktivität (Ll) mit der zweiten Anschlussklemme (2) der Brückenschaltung verbindet.2. The inverter according to claim 1, characterized in that in the series connection between the inductor (Ll) and the diode (D2) on the one hand, and a second terminal (2) of the bridge circuit on the other hand, a second DC side switching element (S2) is switched in the closed state, the inductance (Ll) connects to the second terminal (2) of the bridge circuit.
3. Wechselrichter nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass im Wechselspannungsteil ein wechselspannungsseitiger Glättungskondensator (C0) geschalten ist .3. Inverter according to claim 1 or 2, characterized in that in the AC voltage part of an AC side smoothing capacitor (C 0 ) is connected.
4. Wechselrichter nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass im Gleichspannungsteil ein gleichspannungsseitiger Glättungskondensator (C1) geschalten ist. 4. Inverter according to one of claims 1 to 3, characterized in that in the DC voltage part of a DC-side smoothing capacitor (C 1 ) is connected.
5. Wechselrichter nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, dass es sich bei den gleichspannungsseitigen Schaltelementen (Sl, S2) um HaIb- leiter-Schaltelemente, insbesondere um Leistungs-MOSFET oder IGBT, handelt. 5. The inverter according to claim 1, wherein the DC-side switching elements (S1, S2) are semiconductor switching elements, in particular a power MOSFET or IGBT.
EP08707968A 2007-02-16 2008-01-17 Current inverter Withdrawn EP2118994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0024707A AT504944B1 (en) 2007-02-16 2007-02-16 INVERTER
PCT/EP2008/050521 WO2008098812A1 (en) 2007-02-16 2008-01-17 Current inverter

Publications (1)

Publication Number Publication Date
EP2118994A1 true EP2118994A1 (en) 2009-11-18

Family

ID=39512710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08707968A Withdrawn EP2118994A1 (en) 2007-02-16 2008-01-17 Current inverter

Country Status (7)

Country Link
US (1) US20100118575A1 (en)
EP (1) EP2118994A1 (en)
JP (1) JP2010518806A (en)
KR (1) KR20090108668A (en)
CN (1) CN101669276A (en)
AT (1) AT504944B1 (en)
WO (1) WO2008098812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222568A1 (en) * 2016-06-23 2017-12-28 Cirrus Logic International Semiconductor, Ltd. Multi-mode switching power converter

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394357B1 (en) * 2009-02-09 2018-05-02 General Electric Technology GmbH Converter
WO2011013233A1 (en) * 2009-07-30 2011-02-03 三菱電機株式会社 Utility interactive inverter device
EP2360826B1 (en) 2010-02-12 2015-09-09 Nxp B.V. A dc-dc converter arrangement
DE102011017601A1 (en) * 2011-04-27 2012-10-31 Robert Bosch Gmbh Control method for an inverter and inverter arrangement, in particular solar cell inverter
EP2730018B1 (en) * 2011-07-08 2019-11-20 SMA Solar Technology AG Integrated boost / 3-level inverter for grid coupling of dc sources, power generation plant and operating method
CN102751893A (en) * 2012-06-29 2012-10-24 徐下兵 Inverter circuit
US20140268927A1 (en) * 2013-03-14 2014-09-18 Vanner, Inc. Voltage converter systems
UA104964C2 (en) * 2013-03-18 2014-03-25 Володимир Олексійович Кльосов Power supply source of electric heating system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668515B2 (en) * 1994-11-12 2005-07-06 ニッタ株式会社 AC power supply
JPH11332286A (en) * 1998-05-14 1999-11-30 Matsushita Seiko Co Ltd Control device of air conditioning equipment
JP2001069768A (en) * 1999-08-31 2001-03-16 Yuasa Corp Half-bridge inverter circuit
JP2002305875A (en) * 2001-04-04 2002-10-18 Toyota Motor Corp Voltage changer
JP4172235B2 (en) * 2002-09-12 2008-10-29 松下電器産業株式会社 Grid-connected inverter device
JP3816449B2 (en) * 2003-02-05 2006-08-30 本田技研工業株式会社 Motor drive device
US7009347B2 (en) * 2004-01-20 2006-03-07 Nicollet Technologies Corporation Multiple discharge load electronic ballast system
US7333349B2 (en) * 2004-03-31 2008-02-19 University Of New Brunswick Single-stage buck-boost inverter
WO2005109614A2 (en) * 2004-05-03 2005-11-17 Siemens Ag Österreich Method for the operation of a dc/ac converter, and arrangement for carrying out said method
JP4476730B2 (en) * 2004-07-28 2010-06-09 三菱電機株式会社 Discharge lamp lighting device
AT500919B1 (en) * 2004-09-23 2009-04-15 Siemens Ag Isterreich METHOD FOR OPERATING AN INVERTER AND ARRANGEMENT FOR IMPLEMENTING THE PROCESS
US7586762B2 (en) * 2006-12-12 2009-09-08 O2Micro International Limited Power supply circuit for LCD backlight and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008098812A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222568A1 (en) * 2016-06-23 2017-12-28 Cirrus Logic International Semiconductor, Ltd. Multi-mode switching power converter

Also Published As

Publication number Publication date
WO2008098812A1 (en) 2008-08-21
JP2010518806A (en) 2010-05-27
CN101669276A (en) 2010-03-10
AT504944B1 (en) 2012-03-15
KR20090108668A (en) 2009-10-15
US20100118575A1 (en) 2010-05-13
AT504944A1 (en) 2008-09-15

Similar Documents

Publication Publication Date Title
AT504944B1 (en) INVERTER
EP1971019B1 (en) Switching device for transformerless conversion of an electric direct current into an AC voltage with two DC/DC converters and a DC/AC converter
EP3496259B1 (en) Electrical converter system
EP2451064B1 (en) Boost converter
EP2476194A1 (en) Dc-ac inverter assembly, in particular solar cell inverter
EP2325993A2 (en) Method for operating an inverter and inverter
EP2702680B1 (en) Control method for an inverter, and inverter, particularly for solar cells
EP2309639A1 (en) Reactive power-capable inverter
DE112009004627T5 (en) Power conversion device
DE102010023601A1 (en) Circuit topology for a phase connection of an inverter
EP2191562A2 (en) Method for operating an electronically controlled inverter
DE102011011330B4 (en) Buck converter
EP1766767B1 (en) Method for operating an inverter, and arrangement for carrying out said method
EP2992595A1 (en) Converter assembly having multi-step converters connected in parallel and method for controlling said multi-step converters
DE102013005070A1 (en) Boost converter
EP1754305B1 (en) Method for operating an electronically controlled inverter and arrangement for carrying out said method
DE102010060687A1 (en) Power electronic converter stage
DE102014101571B4 (en) INVERTER AND PROCESS FOR OPERATING AN INVERTER
WO2009098093A2 (en) Inverter arrangement for feeding photovoltaically generated power into a public network
DE10225020A1 (en) Circuit arrangement for converting direct to alternating current has power compensation so power or current fed to inverter in one direct voltage branch is equal to that drawn from other branch
EP2826124A1 (en) Circuit arrangement and method for converting and adapting a dc voltage, photovoltaic installation
WO2016091300A1 (en) Bidirectional dc/dc controller with a divided intermediate circuit
DE102020127328A1 (en) Multilevel converter for converting electrical energy
AT10919U1 (en) INVERTER CIRCUIT
WO2013189668A2 (en) Feeding of solar energy into an energy supply network by means of a solar inverter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120425