EP2115301B1 - Emetteur pour propulseur ionique - Google Patents

Emetteur pour propulseur ionique Download PDF

Info

Publication number
EP2115301B1
EP2115301B1 EP08762138.9A EP08762138A EP2115301B1 EP 2115301 B1 EP2115301 B1 EP 2115301B1 EP 08762138 A EP08762138 A EP 08762138A EP 2115301 B1 EP2115301 B1 EP 2115301B1
Authority
EP
European Patent Office
Prior art keywords
internal
emitter
external
emitter according
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08762138.9A
Other languages
German (de)
English (en)
Other versions
EP2115301A1 (fr
Inventor
Dominique Valentian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2115301A1 publication Critical patent/EP2115301A1/fr
Application granted granted Critical
Publication of EP2115301B1 publication Critical patent/EP2115301B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/005Electrostatic ion thrusters using field emission, e.g. Field Emission Electric Propulsion [FEEP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Definitions

  • the present invention relates to a transmitter for ionic propellant.
  • the invention relates to a field emitter for a field emission propellant or colloid propellant, comprising first and second portions delimiting an internal reservoir for supplying liquid metal or conductive ionic liquid and a slot communication between the inner tank and an outlet port.
  • FEEP Field Emission Electric Propulsion
  • ionic boosters are described in the following publication: Field emission electric propulsion development status ", C. Bartoli and D. Valentian, 17th IEPC Tokyo, May 1984 (IEPC International Electric Propulsion Conference ).
  • thrusters are characterized by great dynamics and are proposed for missions requiring a very precise relative positioning such as for example the LISA mission (Laser Interference Space Antenna), or a compensation of drag and external disturbances, such as for example the mission MICROSCOPE, whose object was to verify the principle of equivalence of general relativity.
  • LISA mission Laser Interference Space Antenna
  • mission MICROSCOPE whose object was to verify the principle of equivalence of general relativity.
  • the linear transmitter 10 comprises first and second superimposed portions 11, 12 which delimit between them a reservoir 16 (formed for example in the lower part 12) which is in communication with a linear slot 17 which opens out through a linear orifice extending over the entire width of the slot 17.
  • the superimposed portions 11 and 12 are joined by connecting means such as M2 screws passing through orifices 18 formed in the two parts 11 and 12.
  • the slot 17, which has a thickness of 1.5 microns, is obtained by vacuum deposition on the part 11, through a mask, a shim 19 for example pure nickel.
  • the U-shaped shim 19 extends on a rear branch and two side branches located on either side of the slot 17.
  • the minimum slit width is guaranteed by nickel studs 15 deposited on the part 11 across The mask ( Figure 3 ).
  • the Figure 4 is a sectional view which shows the cooperation of the transmitter 10 with an accelerating electrode 20 brought to a potential of -500 to -5 000 V, which makes it possible to establish an intense electric field on the tip of the transmitter 10 of which the potential is from + 5000 to + 10,000 V.
  • the liquid for example cesium
  • the liquid is introduced through a chimney 13 into the tank 16 and then expelled through the slot 17.
  • Operation requires perfect wetting by the liquid. This requires vacuum curing which can be achieved by a heating resistor (up to a temperature of the order of 200 ° C).
  • the linear emitter technology makes it easy to obtain thrusts less than 1 mN, but becomes more delicate for higher thrusts, of the order of 5 to 10 mN for example.
  • a high thrust is necessary for example to perform the drag compensation of satellites in low orbit or to perform planetary missions at high speed increments (more than 15 km / s).
  • the invention aims to remedy the aforementioned drawbacks, and in particular to make it possible to implement ionic thrusters having a thrust greater than 1 mN, typically of the order of 5 to 10 mN, while allowing a simplified and reliable manufacture, guaranteeing a great precision of realization.
  • the invention also aims at producing a transmitter capable of operating both on the ground in the horizontal or vertical firing position and in the space in microgravity.
  • a Field Emitter or Colloid Propellant Field Effect Transmitter comprising first and second portions having a symmetry of revolution and delimiting an internal supply tank of liquid metal or conductive ionic liquid. and a communication slot between the inner reservoir and an exit orifice, characterized in that the first portion constitutes an outer portion with a polished outer face and an inner face made by precision machining and having conical portions with a single slope determined between 5 and 8 °, in that the second part constitutes an internal part with an internal face and an outer face made by precision machining and having conical portions with a single slope of between 5 and 8 °, the inner face of the outer portion and the outer face of the inner portion delimiting said inner reservoir and said slot, in that metal studs are formed by deposition on the outer face of the inner part to define a thickness of said slot comprised between 1 and 2 micrometers, in that the outer part is maintained applied against the inner part by connecting means, and in that it further comprises a capillary supply channel having a thickness of between 10 and 15
  • the transmitter is characterized in that the exit orifice of the slot constitutes a circular orifice whose radius is between 5 and 50 mm and which is delimited by external and internal tips constituted by ends of the external and internal parts and whose alignment is adjustable by a sealing wedge interposed between bearing surfaces of the first and second parts which extend perpendicularly to the axis of symmetry of said first and second parts.
  • the conical surface of the inner face of the outer portion has three conical portions of the same slope but having progressive conical transitions between them, so as to define said capillary supply channel, said inner reservoir and said slot.
  • the transmitter further comprises a feed channel with a diameter of between 1 and 2 millimeters formed in the second part and opening into the internal reservoir to feed it from an external fluid source.
  • the particular structure recommended for the circular slot transmitter allows the precise realization of a circular slot of for example 1.5 micrometer over a diameter of 30 to 100 mm thanks to the geometry that allows self-centering and provides a possibility of adjustment, so as to obtain a precision that could not be obtained by simple machining.
  • the invention also relates to the application of the transmitter to a field emission thruster or to colloids, the transmitter being mounted in the vicinity of an accelerating electrode structure, itself surrounded by a screen connected to ground , isolation pads being interposed between the emitter and the accelerator electrode structure, and between the accelerator electrode structure and the screen connected to ground.
  • FIGS. 5 and 6 show the general structure of an example of a circular emitter 100 according to the invention, and the Figure 7 shows the incorporation of such a circular emitter 100 in an ion thruster.
  • the transmitter 100 comprises an inner part 120 having a symmetry of revolution about an axis O, with a base 190 and a protruding part of which an external face 122 ( Figure 1 ) cooperates with the inner face 112 of an outer part 110 which also has a symmetry of revolution about the axis O, is attached to the inner part 120 and is held against this inner part 120 by connecting means such as a nut 140.
  • the Figure 7 shows the incorporation of the circular emitter 100 into an ion thruster such as a field emission thruster or colloid.
  • the transmitter 100 is mounted in the vicinity of an accelerator electrode structure 200 which envelops the transmitter 100.
  • the accelerator electrode structure 200 is surrounded by a screen 300 connected to ground. Insulation pads 401, 402 are interposed between the emitter 100 and the accelerator electrode structure 200, as well as between the accelerator electrode structure 200 and the screen 300 connected to ground.
  • the base plate 190 of the inner part 120 has lights 400 ( Figure 6 ) to ensure the passage of the high voltage insulation pads, such as the pad 401, of the transmitter 100 as well as the pipes 185 ( Figure 5 ) supplying the internal reservoir with liquid, such as cesium.
  • the screen 300 connected to ground prevents interactions between the external plasma created at the outlet of the orifice 171 of the circular slot delimited between the parts 110 and 120, and the electrodes under tension 200.
  • the external plasma results from the operation of the hollow cathode neutraliser located outside the screen in the vicinity of the outlet orifice 171 of the circular slot of the transmitter 100.
  • the accelerating electrode 200 and the screen 300 have annular openings 201, 301 facing the circular outlet orifice 171 of the slot of the transmitter 100 (FIG. Figure 7 ).
  • a heating resistor 195 ( Figures 5 and 7 ) can be arranged in the vicinity of the inner part 120, under the base 190, at the the vicinity of the liquid supply pipes 185 to provide a stoving of the emitter, which is then cooled, and then maintaining in the liquid state in the emitter itself composed of the parts 110 and 120.
  • the shoulder formed by the base 190 of the inner part 120 may have a reduced height and a separate plate 191 may be superimposed on this base 190 (variant shown on the right side of the Figure 6 ).
  • the potential of the accelerating electrode 200 is very negative (-1000 V to -5000 V) and attracts the plasma ions.
  • the accelerating electrode 200 is effectively protected from an excessive current of ions due to the ionospheric plasma and the neutralizer thanks to the screen 300 which in particular surrounds the central part of the accelerating electrode 200 inside the transmitter.
  • the inner part 120 has an inner face 121 whose surface state is not critical and an outer face 122 made by precision machining and polished, having conical portions with a single slope determined between 5 and 8 °.
  • the outer part 110 has a polished outer face 111 and an inner face 112 made by precision machining and having ionic portions with a single slope determined between 5 and 8 °.
  • the inner face 112 of the outer part 110 and the outer face 122 of the inner part 120 delimit an annular internal reservoir 160 and an annular slot 170 opening through a circular orifice 171.
  • Metal studs 123, 124, 125 are deposited under vacuum, for example by sputtering, on the part of the outer face 122 of the inner part 120, to determine the width of the slot 170.
  • the deposit Vacuum pads can be made using a split conical mask. When mounting the two conical parts the sliding of the pads on the opposite surface is for example only 160 microns for a clamping of 16 microns and a slope of 10% (6 °). This reduced friction stroke limits the risk of tearing pads.
  • the pads can be obtained by direct machining, with a tool lift of 1 to 2 microns.
  • Nozzles 116, 126 constituted by the ends of the outer and inner parts 110, 120 and delimiting the circular outlet orifice 171 can be aligned to within 1 micrometer for outlet port radii 171 which can be between 5 and 50 mm .
  • Vertical alignment of the beaks 116, 126 is adjustable by grinding a sealing shim 130 interposed between bearing surfaces 117, 127 of the outer and inner parts 110, 120 which extend perpendicular to the axis of symmetry O of these parts 110, 120.
  • the shim 130 is preferably made of nickel and also seals between the parts 110 and 120 to prevent leakage of liquid to the outside at the lower part of the outer part 110.
  • the closure between the parts 110 and 120 is provided by mechanical connection means such as screws or solder.
  • mechanical connection means such as screws or solder.
  • the mechanical connection between the parts 110 and 120 enclosing the shim 130 is provided preferably by a nut 140 with fine pitch.
  • the internal face 112 of the outer part 110 has three conical sections 112A, 112B, 112C of the same slope but not aligned and joined together by progressive conical transitions to prevent the meniscus of the liquid is blocked at a level of abrupt variation of the diameter, while the outer face 122 of the inner part 120 has in its upper part a single conical face to define on the one hand the inner tank 160, in cooperation with the section 112A and on the other hand, to the upper part provided with pads 123 to 125, the annular slot 170 in cooperation with the section 112C.
  • Intermediate section 112B and the corresponding slope of face 122 define a capillary supply channel 161 of diameter between 10 and 15 micrometers, which is interposed between internal reservoir 160 and slot 170 to allow a capillary rise of the liquid since the internal tank 160 to the narrow slot 170, regardless of the position of the transmitter.
  • the capillary supply channel 161 facilitates in all cases the feeding of the narrow slot 170 and also allows a shot in particular with a horizontal axis.
  • the small volume 160 delimited by the lower section 112A of the conical face 112 and the conical face 122 may for example correspond to a mean radius difference of the section 112A and the conical face 122 of the order of 1.5 to 2 mm and allows both to ensure a degassing of the transmitter and to constitute a buffer tank inside the transmitter for a liquid such as cesium intended to be propelled by the orifice 171.
  • the inner part 120 may have between the bottom surface of its base 190 and the orifice 171 a height H for example between 20 and 30 mm.
  • the inner tank 160 can be fed from the external pipes 185 ( figure 5 ) through a bore 150, for example of diameter between 1 and 2 millimeters, made in the base 190 of the inner part 120.
  • the slopes of the different sections 112A, 112B, 112C of the rectified internal face 112 of the outer part 110 are identical to each other. This facilitates machining and assembly.
  • the slope, between 5 and 8 °, is determined according to the machining constraints.
  • the inner part 120 is preferably designed to be much stiffer than the outer part 110. It can be seen for example on the figure 1 that the inner part 120 is more massive than the complementary part 110.
  • the inner and outer parts 120, 110 may be made for example of a nickel superalloy, or a hardened stainless steel.
  • the surfaces to be machined 112, 122 must be made on a hard substrate.
  • a nickel superalloy such as that known under the name INCONEL 718, or a hardened stainless steel coated with a layer of chemical nickel are thus well suited materials for constituting the parts 110, 120.
  • the polished faces of the parts 110, 120 are preferably obtained by direct diamond machining on a precision machine, according to the technique used for the realization of metal mirrors.
  • the aforementioned polished zones and in particular the surfaces delimiting the slot 170 and the external surface subjected to the electric field must preferably have a polish of 0.025 ⁇ m rms.
  • the straightness of the surfaces facing the slot 170 and at the beaks 116, 126 must be very good. On the other hand, defects in shape are tolerable on the outer surface 111, because on this surface the role of the polish is to avoid local discharges by micro-tips.
  • the non-critical areas of the surfaces of the parts 110 and 120 may have a surface state of the order of 0.2 micrometer.
  • the transmitter structure according to the invention makes it possible to obtain a circular slot 170 of small width, for example preferably between 1 and 1.8 micrometer, and an alignment of the beakers 116, 126 to within 1 micrometer, even for a slot 170 whose outlet orifice 171 has a radius R between 15 and 50 mm.
  • the invention provides a simplification of the construction of the transmitter 100 because for mounting the outer part 110 on the inner part 120 it is easier to give a conical slope to the contact surface 112 than to mount by differential expansion.
  • the mounting on cones used to build the transmitter 100 also allows several disassemblies which allows to align the nozzles 116, 126 by rotation of the outer part 110, to remedy the lack of parallelism of the beaks 116, 126 vis-à-vis the reference faces, and also by grinding the shim 130 located in the lower part of the outer part 110, to compensate for the difference in height between the outer and inner parts 110, 120.
  • the degassing of the emitter 100 can be ensured by the conductance of the slot 170 and a liquid filling chimney, similar to the chimney 13 of the linear emitter of the figure 4 , in a ground test configuration.
  • the degassing can be obtained by a dedicated orifice or by a "getter” degassing material incorporated in the cavity 160, 161 formed between the outer and inner parts 110, 120 and serving for the supply of Slot liquid 170.
  • the term "getter” is used to refer to a set of reactive metals used in vacuum tubes to improve vacuum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Particle Accelerators (AREA)
  • Plasma Technology (AREA)
  • X-Ray Techniques (AREA)

Description

    Domaine de l'invention
  • La présente invention a pour objet un émetteur pour propulseur ionique.
  • De façon plus particulière, l'invention concerne un émetteur à effet de champ pour propulseur à émission de champ ou propulseur à colloïdes, comprenant des première et deuxième parties délimitant un réservoir interne d'alimentation en métal liquide ou en liquide ionique conducteur et une fente de communication entre le réservoir interne et un orifice de sortie.
  • Art antérieur
  • Les propulseurs à émission de champ sont connus depuis les années soixante-dix et sont désignés par l'acronyme FEEP (Field Emission Electric Propulsion).
  • Ces propulseurs sont alimentés soit en césium liquide (qui présente une température de fusion de 28,5°C), soit en indium liquide.
  • Plus récemment, il a été proposé d'utiliser de nouveaux liquides conducteurs d'électricité dans le cadre de propulseurs à colloïdes qui utilisent une géométrie analogue à celle des propulseurs à émission de champ.
  • Des exemples de propulseurs ioniques sont décrits dans la publication suivante : "Field émission electric propulsion development status", C. Bartoli and D. Valentian, 17th IEPC Tokyo, May 1984 (IEPC International Electric Propulsion Conference).
  • Ces propulseurs sont caractérisés par une grande dynamique et sont proposés pour des missions demandant un positionnement relatif très précis telle que par exemple la mission LISA (Laser Interference Space Antenna), ou une compensation de traînée et de perturbations externes, telle que par exemple la mission MICROSCOPE, qui avait pour objet de vérifier le principe d'équivalence de la relativité générale.
  • On a déjà proposé, comme par exemple dans le brevet US 4 328 667 (Valentian et al ), de réaliser un propulseur ionique à applications spatiales mettant en oeuvre un émetteur à effet de champ de type linéaire.
  • On a représenté sur les Figures 2 à 4 un exemple d'un tel émetteur linéaire connu.
  • L'émetteur linéaire 10 comprend des première et deuxième parties superposées 11, 12 qui délimitent entre elles un réservoir 16 (formé par exemple dans la partie inférieure 12) qui est en communication avec une fente linéaire 17 qui débouche à l'extérieur à travers un orifice linéaire s'étendant sur toute la largeur de la fente 17.
  • Les parties 11 et 12 superposées sont réunies par des moyens de liaison tels que des vis M2 passant à travers des orifices 18 ménagés dans les deux parties 11 et 12.
  • La fente 17, qui présente une épaisseur de 1,5 micromètre, est obtenue par dépôt sous vide sur la partie 11, à travers un masque, d'une cale 19 par exemple en nickel pur. La cale 19 en forme de U s'étend sur une branche arrière et deux branches latérales situées de part et d'autre de la fente 17. La largeur minimum de fente est garantie par des plots 15 en nickel déposés sur la partie 11 à travers le masque (Figure 3).
  • La Figure 4 est une vue en coupe qui montre la coopération de l'émetteur 10 avec une électrode accélératrice 20 portée à un potentiel de - 500 à - 5 000 V, qui permet d'établir un champ électrique intense sur la pointe de l'émetteur 10 dont le potentiel est de + 5000 à + 10 000 V.
  • Le liquide (par exemple du césium) est introduit par une cheminée 13 dans le réservoir 16 puis est expulsé à travers la fente 17.
  • Le ménisque de liquide se déforme sous l'effet des forces électrostatiques en cônes de Taylor. Le champ à la pointe du cône permet d'extraire directement les ions de la surface du liquide. Les effets de bord sont limités par l'arrondi en extrémité d'émetteur.
  • Le fonctionnement exige un mouillage parfait par le liquide. Cela nécessite un étuvage sous vide qui peut être obtenu par une résistance de chauffage (jusqu'à une température de l'ordre de 200°C).
  • Après refroidissement, le césium ou autre liquide est introduit dans l'émetteur.
  • Il est toutefois très difficile de réaliser des émetteurs plans, tels que celui des Figures 2 à 4, avec une longueur de fente dépassant 70 mm, avec une rectitude et une planéité inférieures à 1 micromètre, et un état de surface de 0,05µm rms ou meilleur.
  • La technologie d'émetteur linéaire permet sans difficulté d'obtenir des poussées inférieures à 1 mN, mais devient plus délicate pour des poussées supérieures, de l'ordre de 5 à 10 mN par exemple.
  • Or, une poussée élevée est nécessaire par exemple pour effectuer la compensation de traînée de satellites en orbite basse ou pour effectuer des missions planétaires à fort incrément de vitesse (plus de 15 km/s).
  • On a par ailleurs déjà proposé, notamment dans les documents de brevet FR-A-2 510 304 et US-A-4 328 667 et dans la publication "Development of an annular slit source ion source for field emission electric propulsion" de M. Andrenucci, G. Genuini, D. Laurini et C. Bartoli; AIAA 85-2069, 18th International Electric Propulsion Conference, Alexandria, Virginia, une conception d'émetteur circulaire en vue d'éliminer le problème des effets de bord.
  • Cependant à ce jour ce type d'émetteur s'est heurté à des difficultés de réalisation et n'a pas permis d'obtenir un fonctionnement satisfaisant.
  • Objet et description succincte de l'invention
  • L'invention vise à remédier aux inconvénients précités, et notamment à permettre de mettre en oeuvre des propulseurs ioniques présentant une poussée supérieure à 1 mN, typiquement de l'ordre de 5 à 10 mN, tout en autorisant une fabrication simplifiée et fiable, garantissant une grande précision de réalisation.
  • L'invention vise encore à réaliser un émetteur capable de fonctionner aussi bien au sol en position de tir horizontale ou verticale que dans l'espace en microgravité.
  • Ces buts sont atteints grâce à un émetteur à effet de champ pour propulseur à émission de champ ou propulseur à colloïdes, comprenant des première et deuxième parties présentant une symétrie de révolution et délimitant un réservoir interne d'alimentation en métal liquide ou en liquide ionique conducteur et une fente de communication entre le réservoir interne et un orifice de sortie, caractérisé en ce que la première partie constitue une partie externe avec une face externe polie et une face interne réalisée par usinage de précision et présentant des portions coniques avec une pente unique déterminée comprise entre 5 et 8°, en ce que la deuxième partie constitue une partie interne avec une face interne et une face externe réalisée par usinage de précision et présentant des portions coniques avec une pente unique comprise entre 5 et 8°, la face interne de la partie externe et la face externe de la partie interne délimitant ledit réservoir interne et ladite fente, en ce que des plots métalliques sont formés par dépôt sur la face externe de la partie interne pour définir une épaisseur de ladite fente comprise entre 1 et 2 micromètres, en ce que la partie externe est maintenue appliquée contre la partie interne par des moyens de liaison, et en ce qu'il comprend en outre un canal d'alimentation capillaire ayant une épaisseur comprise entre 10 et 15 micromètres, ménagé entre le réservoir interne et la fente et délimité par des surfaces coniques respectivement de la face interne de la partie externe et de la face externe de la partie interne, pour alimenter cette fente par capillarité à partir du réservoir.
  • De façon plus particulière, l'émetteur est caractérisé en ce que l'orifice de sortie de la fente constitue un orifice circulaire dont le rayon est compris entre 5 et 50 mm et qui est délimité par des becs externe et interne constitués par des extrémités des parties externe et interne et dont l'alignement est ajustable par une cale d'étanchéité interposée entre des surfaces d'appui des première et deuxième parties qui s'étendent perpendiculairement à l'axe de symétrie desdites première et deuxième parties.
  • Avantageusement, la surface conique de la face interne de la partie externe présente trois portions coniques de même pente mais présentant des transitions coniques progressives entre elles, de manière à délimiter ledit canal d'alimentation capillaire, ledit réservoir interne et ladite fente.
  • Selon une caractéristique particulière, l'émetteur comprend en outre un canal d'alimentation de diamètre compris entre 1 et 2 millimètres ménagé dans la deuxième partie et débouchant dans le réservoir interne pour alimenter celui-ci à partir d'une source de fluide extérieure.
  • La réalisation d'un émetteur à fente circulaire permet intrinsèquement une protection contre les effets de bord (surintensité aux extrémités).
  • La structure particulière préconisée pour l'émetteur à fente circulaire permet la réalisation précise d'une fente circulaire de par exemple 1,5 micromètre sur un diamètre de 30 à 100 mm grâce à la géométrie qui permet un autocentrage et assure une possibilité de réglage, de manière à obtenir une précision qui ne pourrait être obtenue par un simple usinage.
  • L'invention concerne également l'application de l'émetteur à un propulseur à émission de champ ou à colloïdes, l'émetteur étant monté au voisinage d'une structure d'électrode accélératrice, elle-même entourée par un écran relié à la masse, des plots d'isolation étant interposés entre l'émetteur et la structure d'électrode accélératrice, ainsi qu'entre la structure d'électrode accélératrice et l'écran relié à la masse.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples, en référence aux dessins annexés, sur lesquels :
    • la Figure 1 est une vue en demi-coupe axiale des pièces principales d'un exemple d'émetteur circulaire selon l'invention ;
    • la Figure 2 est une vue en élévation d'un exemple d'émetteur connu à fente linéaire ;
    • la Figure 3 est une vue de dessus d'un exemple de cale déposée sous vide sur la partie inférieure d'un émetteur à fente linéaire tel que celui de la Figure 2 ;
    • la Figure 4 est une vue en coupe d'un propulseur ionique incorporant un émetteur à fente linéaire tel que celui de la Figure 2 ;
    • la Figure 5 est une vue en demi-coupe axiale de l'ensemble d'un émetteur circulaire selon l'invention ;
    • la Figure 6 est une vue de face de l'émetteur de la Figure 5 ; et
    • la Figure 7 est une vue en demi-coupe axiale d'un exemple de propulseur ionique incorporant un émetteur circulaire selon l'invention.
    Description détaillée de modes particuliers de réalisation de l'invention
  • Les figures 5 et 6 montrent la structure générale d'un exemple d'émetteur circulaire 100 selon l'invention, et la Figure 7 montre l'incorporation d'un tel émetteur circulaire 100 dans un propulseur ionique.
  • L'émetteur 100 comprend une pièce interne 120 présentant une symétrie de révolution autour d'un axe O, avec une base 190 et une partie en saillie dont une face externe 122 (Figure 1) coopère avec la face interne 112 d'une pièce externe 110 qui présente également une symétrie de révolution autour de l'axe O, est rapportée sur la pièce interne 120 et est maintenue appliquée contre cette pièce interne 120 par des moyens de liaison tels qu'un écrou 140.
  • Un réservoir interne et une fente circulaire, non représentés sur les Figures 5 à 7, sont définis entre les pièces interne 120 et externe 110, comme cela sera exposé plus loin en référence à la Figure 1.
  • La Figure 7 montre l'incorporation de l'émetteur circulaire 100 dans un propulseur ionique tel qu'un propulseur à émission de champ ou à colloïdes.
  • L'émetteur 100 est monté au voisinage d'une structure d'électrode accélératrice 200 qui enveloppe l'émetteur 100.
  • La structure d'électrode accélératrice 200 est entourée par un écran 300 relié à la masse. Des plots d'isolation 401, 402 sont interposés entre l'émetteur 100 et la structure d'électrode accélératrice 200, ainsi qu'entre la structure d'électrode accélératrice 200 et l'écran 300 relié à la masse. La plaque de base 190 de la pièce interne 120 comporte des lumières 400 (Figure 6) pour assurer le passage des plots d'isolation haute tension, tels que le plot 401, de l'émetteur 100 ainsi que des canalisations 185 (Figure 5) d'alimentation du réservoir interne en liquide, tel que du césium.
  • L'écran 300 relié à la masse empêche les interactions entre le plasma externe créé à la sortie de l'orifice 171 de la fente circulaire délimitée entre les pièces 110 et 120, et les électrodes sous tension 200.
  • Dans un fonctionnement au sol, le plasma externe résulte du fonctionnement du neutraliseur à cathode creuse situé à l'extérieur de l'écran au voisinage de l'orifice de sortie 171 de la fente circulaire de l'émetteur 100.
  • L'électrode accélératrice 200 et l'écran 300 présentent des ouvertures annulaires 201, 301 en regard de l'orifice de sortie circulaire 171 de la fente de l'émetteur 100 (Figure 7).
  • Une résistance chauffante 195 (Figures 5 et 7) peut être disposée au voisinage de la pièce interne 120, sous la base 190, au voisinage des canalisations 185 d'alimentation en liquide pour assurer un étuvage de l'émetteur, qui est ensuite refroidi, puis le maintien à l'état liquide dans l'émetteur proprement dit composé des pièces 110 et 120.
  • Selon un mode de réalisation particulier, l'épaulement formé par la base 190 de la pièce interne 120 peut présenter une hauteur réduite et une platine distincte 191 peut être superposée à cette base 190 (variante représentée sur la partie droite de la Figure 6).
  • Le potentiel de l'électrode accélératrice 200 est très négatif (- 1000 V à - 5000 V) et attire les ions de plasma. L'électrode accélératrice 200 est efficacement protégée d'un courant d'ions trop important dû au plasma ionosphérique et au neutralisateur grâce à l'écran 300 qui en particulier entoure la partie centrale de l'électrode accélératrice 200 à l'intérieur de l'émetteur.
  • La structure particulière de l'émetteur circulaire 100 selon l'invention sera maintenant décrite en référence à la Figure 1 qui fait apparaître plus de détails que les Figures 5 à 7 qui sont des vues d'ensemble simplifiées.
  • La pièce interne 120 présente une face interne 121 dont l'état de surface n'est pas critique et une face externe 122 réalisée par usinage de précision et polie, présentant des portions coniques avec une pente unique déterminée comprise entre 5 et 8°.
  • La pièce externe 110 présente une face externe 111 polie et une face interne 112 réalisée par usinage de précision et présentant des portions ioniques avec une pente unique déterminée comprise entre 5 et 8°.
  • La face interne 112 de la pièce externe 110 et la face externe 122 de la pièce interne 120 délimitent un réservoir interne annulaire 160 et une fente annulaire 170 débouchant par un orifice circulaire 171.
  • Des plots métalliques 123, 124, 125, par exemple en nickel, sont déposés sous vide, par exemple par pulvérisation cathodique, sur la partie de la face externe 122 de la pièce interne 120, pour déterminer la largeur de la fente 170. Le dépôt des plots sous vide peut s'effectuer en utilisant un masque conique fendu. Lors du montage des deux parties coniques le glissement des plots sur la surface opposée n'est par exemple que de 160 µm pour un serrage de 16 µm et une pente de 10 % (6°). Cette course de frottement réduite limite le risque d'arrachement des plots. Selon un autre mode de réalisation possible, les plots peuvent être obtenus par usinage direct, avec une levée d'outil de 1 à 2 µm.
  • La géométrie proposée avec une réalisation telle que celle de la Figure 1 permet d'obtenir une fente d'épaisseur comprise entre 1 et 2 micromètres, suivant l'impédance fluide recherchée, typiquement une épaisseur de 1,5 micromètre. Des becs 116, 126 constitués par les extrémités des pièces externe et interne 110, 120 et délimitant l'orifice circulaire de sortie 171 peuvent être alignés à 1 micromètre près pour des rayons d'orifice de sortie 171 pouvant être compris entre 5 et 50 mm.
  • L'alignement vertical des becs 116, 126 est ajustable par rectification d'une cale d'étanchéité 130 interposée entre des surfaces d'appui 117, 127 des pièces externe et interne 110, 120 qui s'étendent perpendiculairement à l'axe de symétrie O de ces pièces 110, 120.
  • La cale 130 est de préférence en nickel et assure aussi l'étanchéité entre les parties 110 et 120 pour empêcher toute fuite de liquide vers l'extérieur au niveau de la partie inférieure de la pièce externe 110.
  • La fermeture entre les pièces 110 et 120 est assurée par des moyens de liaison mécaniques tels que des vis ou une brasure. Dans l'exemple représenté sur la Figure 1, la liaison mécanique entre les pièces 110 et 120 enserrant la cale 130 est assurée de façon préférentielle par un écrou 140 à pas fins.
  • A titre de variante, il est possible d'assurer une liaison mécanique à l'aide d'une bride associée à une série de vis M3, ce qui suppose que le défaut de parallélisme peut être atténué par une rotation discrétisée et non continue.
  • Comme on peut le voir sur la figure 1, la face interne 112 de la pièce externe 110 présente trois tronçons coniques 112A, 112B, 112C de même pente mais non alignés et réunis entre eux par des transitions coniques progressives afin d'éviter que le ménisque du liquide soit bloqué au niveau d'une variation brutale du diamètre, tandis que la face externe 122 de la pièce interne 120 présente dans sa partie supérieure une seule face conique pour délimiter d'une part le réservoir interne 160, en coopération avec le tronçon 112A et d'autre part, à la partie supérieure munie de plots 123 à 125, la fente annulaire 170 en coopération avec le tronçon 112C.
  • Le tronçon intermédiaire 112B et la pente correspondante de la face 122 délimitent un canal 161 d'alimentation capillaire de diamètre compris entre 10 et 15 micromètres, qui est interposé entre le réservoir interne 160 et la fente 170 pour permettre une ascension capillaire du liquide depuis le réservoir interne 160 jusqu'à la fente étroite 170, quelle que soit la position de l'émetteur. Le canal 161 d'alimentation capillaire facilite dans tous les cas l'alimentation de la fente étroite 170 et autorise aussi un tir notamment avec un axe horizontal.
  • Le petit volume 160 délimité par le tronçon inférieur 112A de la face conique 112 et la face conique 122 peut par exemple correspondre à une différence de rayon moyenne du tronçon 112A et de la face conique 122 de l'ordre de 1,5 à 2 mm et permet à la fois d'assurer un dégazage de l'émetteur et de constituer un réservoir tampon à l'intérieur de l'émetteur pour un liquide tel que le césium destiné à être propulsé par l'orifice 171.
  • La pièce interne 120 peut présenter entre la surface inférieure de sa base 190 et l'orifice 171 une hauteur H par exemple comprise entre 20 et 30 mm.
  • Le réservoir interne 160 peut être alimenté à partir des canalisations externes 185 (figure 5) à travers un perçage 150, par exemple de diamètre compris entre 1 et 2 millimètres, réalisé dans la base 190 de la pièce interne 120.
  • De préférence, les pentes des différents tronçons 112A, 112B, 112C de la face interne rectifiée 112 de la pièce externe 110 sont identiques les unes aux autres. Ceci permet de faciliter l'usinage et le montage. La pente, comprise entre 5 et 8°, est déterminée en fonction des contraintes d'usinage.
  • La pièce interne 120 est de préférence conçue de manière à être beaucoup plus rigide que la pièce externe 110. On voit par exemple sur la figure 1 que la pièce interne 120 est plus massive que la pièce complémentaire 110.
  • Les pièces interne et externe 120, 110 peuvent être réalisées par exemple en un superalliage de nickel, ou encore en un acier inoxydable trempé.
  • D'une manière générale, les surfaces à usiner 112, 122 doivent être réalisées sur un substrat dur. Un superalliage de nickel tel que celui connu sous la dénomination INCONEL 718, ou un acier inoxydable trempé recouvert d'une couche de nickel chimique sont ainsi des matériaux bien adaptés pour constituer les pièces 110, 120.
  • Les faces polies des pièces 110, 120, telles que les faces externe et interne 111, 112 de la pièce externe 110, la face externe de la pièce interne 120, ou les parties terminales définissant les becs 116, 126 avec des faces externes présentant une inclinaison de l'ordre de 30° par rapport à la verticale (selon la configuration de la figure 1), sont de préférence obtenues par usinage direct au diamant sur une machine de précision, selon la technique utilisée pour la réalisation de miroirs métalliques.
  • Les zones polies précitées et notamment les surfaces délimitant la fente 170 et la surface externe soumise au champ électrique doivent de préférence présenter un poli de 0,025 µm rms.
  • La rectitude des surfaces en regard de la fente 170 et au niveau des becs 116, 126 doit être très bonne. En revanche, des défauts de forme sont tolérables sur la surface externe 111, car sur cette surface le rôle du poli est d'éviter des décharges locales par micro-pointes.
  • Les zones non critiques des surfaces des pièces 110 et 120 peuvent avoir un état de surface de l'ordre de 0,2 micromètre.
  • La structure d'émetteur selon l'invention permet d'obtenir une fente circulaire 170 de faible largeur, par exemple de préférence entre 1 et 1,8 micromètre, et un alignement des becs 116, 126 à 1 micromètre près, même pour une fente 170 dont l'orifice de sortie 171 présente un rayon R compris entre 15 et 50 mm.
  • Ceci est possible grâce au fait que la géométrie de l'émetteur permet un auto-centrage et une possibilité de réglage, de sorte qu'il n'est plus nécessaire d'obtenir la précision requise au moyen des seules opérations d'usinage.
  • L'invention procure une simplification de construction de l'émetteur 100 du fait que pour le montage de la pièce externe 110 sur la pièce interne 120 il est plus facile de donner une pente conique à la surface de contact 112 que d'effectuer le montage par dilatation différentielle.
  • Le montage sur cônes utilisé pour construire l'émetteur 100 permet aussi plusieurs démontages ce qui permet d'aligner les becs 116, 126 par rotation de la pièce externe 110, pour remédier au défaut de parallélisme des becs 116, 126 vis-à-vis des faces de référence, et aussi par rectification de la cale 130 située en partie inférieure de la pièce externe 110, pour compenser la différence de hauteur entre les pièces externe et interne 110, 120.
  • Le dégazage de l'émetteur 100 peut être assuré par la conductance de la fente 170 et d'une cheminée de remplissage en liquide, analogue à la cheminée 13 de l'émetteur linéaire de la figure 4, dans une configuration pour essai au sol. En revanche, dans l'espace, le dégazage peut être obtenu par un orifice dédié ou par un matériau "getter" de dégazage incorporé à la cavité 160, 161 ménagée entre les pièces externe et interne 110, 120 et servant à l'alimentation en liquide de la fente 170. Le terme "getter" est utilisé pour désigner un ensemble de métaux réactifs utilisés dans les tubes à vide pour améliorer le vide.

Claims (16)

  1. Emetteur à effet de champ pour propulseur à émission de champ ou propulseur à colloïdes, comprenant des première et deuxième parties (110, 120) présentant une symétrie de révolution et délimitant un réservoir interne (160) d'alimentation en métal liquide ou en liquide ionique conducteur et une fente (170) de communication entre le réservoir interne (160) et un orifice de sortie (171),
    dans lequel la première partie (110) constitue une partie externe avec une face externe (111) polie et une face interne (112) réalisée par usinage de précision et présentant des portions coniques avec une pente unique déterminée comprise entre 5 et 8°, la deuxième partie (120) constitue une partie interne avec une face interne (121) et une face externe (122) réalisée par usinage de précision et présentant des portions coniques avec une pente unique comprise entre 5 et 8°, la face interne (112) de la partie externe (110) et la face externe (122) de la partie interne (120) délimitant ledit réservoir interne (160) et ladite fente (170), des plots métalliques (123, 124, 125) sont formés par dépôt sur la face externe (122) de la partie interne (120) pour définir une épaisseur de ladite fente (170) comprise entre 1 et 2 micromètres, la partie externe (110) est maintenue appliquée contre la partie interne (120) par des moyens de liaison (140), et comprenant en outre un canal (161) d'alimentation capillaire ayant une épaisseur comprise entre 10 et 15 micromètres, ménagé entre le réservoir interne (160) et la fente (170) et délimité par des surfaces coniques respectivement de la face interne (112) de la partie externe (110) et de la face externe (122) de la partie interne (120), pour alimenter cette fente (170) par capillarité à partir du réservoir (160).
  2. Emetteur selon la revendication 1, caractérisé en ce que l'orifice de sortie (171) de la fente (170) constitue un orifice circulaire dont le rayon est compris entre 5 et 50 mm et qui est délimité par des becs externe et interne (116, 126) constitués par des extrémités des parties externe et interne (110, 120) et dont l'alignement est ajustable par une cale d'étanchéité (130) interposée entre des surfaces d'appui (117, 127) des première et deuxième parties (110, 120) qui s'étendent perpendiculairement à l'axe de symétrie desdites première et deuxième parties (110, 120).
  3. Emetteur selon la revendication 1 ou la revendication 2, caractérisé en ce que la surface conique de la face interne (112) de la partie externe (110) présente trois portions coniques de même pente mais présentant des transitions coniques progressives entre elles, de manière à délimiter ledit canal (161) d'alimentation capillaire, ledit réservoir interne (160) et ladite fente (170).
  4. Emetteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend en outre un canal d'alimentation (150) de diamètre compris entre 1 et 2 millimètres ménagé dans la deuxième partie (120) et débouchant dans le réservoir interne (160) pour alimenter celui-ci à partir d'une source de fluide extérieure.
  5. Emetteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens de liaison mécanique comprennent un écrou (140).
  6. Emetteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens de liaison mécanique comprennent des vis.
  7. Emetteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens de liaison mécanique comprennent une liaison par brasure.
  8. Emetteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les première et deuxième parties (110, 120) sont réalisées en un superalliage de nickel.
  9. Emetteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les première et deuxième parties (110, 120) sont réalisées en un acier inoxydable trempé.
  10. Emetteur selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend un matériau getter de dégazage incorporé à la cavité ménagée entre les première et deuxième parties (110, 120).
  11. Emetteur selon l'une quelconque des revendications 1 à 10, caractérisé en ce que lesdits plots métalliques (123, 124, 125) sont en nickel.
  12. Emetteur selon l'une quelconque des revendications 1 à 10, caractérisé en ce que lesdits plots métalliques (123, 124, 125) sont réalisés par usinage direct.
  13. Emetteur selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la deuxième partie (120) est plus rigide que la première partie (110).
  14. Emetteur selon la revendication 2, caractérisé en ce que la cale d'étanchéité (130) est en nickel.
  15. Emetteur selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend en outre une résistance chauffante (195) disposée au voisinage de la deuxième partie (120).
  16. Propulseur à émission de champ ou à colloïdes,
    caractérisé en ce qu'il comprend un émetteur selon l'une quelconque des revendications 1 à 15, lequel émetteur est monté au voisinage d'une structure d'électrode accélératrice (200), elle-même entourée par un écran (300) relié à la masse, des plots d'isolation (401, 402) étant interposés entre l'émetteur (100) et la structure d'électrode accélératrice (200), ainsi qu'entre la structure d'électrode accélératrice (200) et l'écran (300) relié à la masse.
EP08762138.9A 2007-02-21 2008-02-21 Emetteur pour propulseur ionique Active EP2115301B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0753407A FR2912836B1 (fr) 2007-02-21 2007-02-21 Emetteur pour propulseur ionique.
PCT/FR2008/050292 WO2008113942A1 (fr) 2007-02-21 2008-02-21 Emetteur pour propulseur ionique

Publications (2)

Publication Number Publication Date
EP2115301A1 EP2115301A1 (fr) 2009-11-11
EP2115301B1 true EP2115301B1 (fr) 2017-07-05

Family

ID=38519776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08762138.9A Active EP2115301B1 (fr) 2007-02-21 2008-02-21 Emetteur pour propulseur ionique

Country Status (5)

Country Link
US (1) US8365512B2 (fr)
EP (1) EP2115301B1 (fr)
JP (1) JP2010519456A (fr)
FR (1) FR2912836B1 (fr)
WO (1) WO2008113942A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950115B1 (fr) * 2009-09-17 2012-11-16 Snecma Propulseur plasmique a effet hall
AT512617B1 (de) * 2012-03-13 2016-04-15 Fotec Forschungs Und Technologietransfer Gmbh Ionenquelle
CN102678501A (zh) * 2012-05-24 2012-09-19 中国科学院力学研究所 镓离子场发射微推进器
CN103244310B (zh) * 2013-05-07 2015-07-29 中国科学院力学研究所 一种用于液态金属离子推进器的推进剂管理系统
FI127307B (en) 2017-01-27 2018-03-15 Neste Oyj Fuel compositions with improved boiling properties and processes for their preparation
FR3066557B1 (fr) * 2017-05-16 2019-05-10 Safran Aircraft Engines Dispositif de regulation de debit de fluide propulsif pour propulseur electrique
CN110360073B (zh) * 2019-07-19 2020-05-05 北京航空航天大学 一种电推力器阳极气体分配器
KR102569007B1 (ko) * 2022-11-25 2023-08-22 서울대학교산학협력단 전계방출 추력기 원주형슬릿에미터장치
KR102623630B1 (ko) * 2022-12-09 2024-01-11 서울대학교산학협력단 전계방출 추력시스템
KR102623628B1 (ko) * 2022-12-09 2024-01-11 서울대학교산학협력단 전계방출 추진장치
KR102623629B1 (ko) * 2022-12-09 2024-01-11 서울대학교산학협력단 전계방출 추력기 프리웨팅장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328667A (en) * 1979-03-30 1982-05-11 The European Space Research Organisation Field-emission ion source and ion thruster apparatus comprising such sources
US4318028A (en) * 1979-07-20 1982-03-02 Phrasor Scientific, Inc. Ion generator
JPS57205953A (en) * 1981-06-12 1982-12-17 Jeol Ltd Ion source
FR2510304A1 (fr) * 1981-07-24 1983-01-28 Europ Agence Spatiale Source ionique a emission de champ, notamment pour propulseur ionique a applications spatiales
JPS6043620B2 (ja) * 1982-11-25 1985-09-28 日新ハイボルテージ株式会社 マイクロ波イオン源
US6516604B2 (en) * 2000-03-27 2003-02-11 California Institute Of Technology Micro-colloid thruster system
CN1983504B (zh) * 2005-12-14 2010-05-26 鸿富锦精密工业(深圳)有限公司 离子源及使用所述离子源的模具抛光装置
US7827779B1 (en) * 2007-09-10 2010-11-09 Alameda Applied Sciences Corp. Liquid metal ion thruster array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2115301A1 (fr) 2009-11-11
US8365512B2 (en) 2013-02-05
US20100018185A1 (en) 2010-01-28
JP2010519456A (ja) 2010-06-03
FR2912836B1 (fr) 2012-11-30
WO2008113942A1 (fr) 2008-09-25
FR2912836A1 (fr) 2008-08-22

Similar Documents

Publication Publication Date Title
EP2115301B1 (fr) Emetteur pour propulseur ionique
EP0656239B1 (fr) Procédé d'usinage de pièces en titane ou alliage de titane et bride d'arrosage pour un tel usinage
EP3737837B1 (fr) Ensemble d'anneau de turbine
EP2398624B1 (fr) Canon de projection de liquide a tres haute pression pour machine de projection de liquide a tres haute pression et son procede de fabrication
EP1950392B1 (fr) Dispositif d'assemblage de deux ensembles, par exemple pour stator de turbomachine
EP3870807B1 (fr) Ensemble d'anneau de turbine à appuis rectilignes bombés
FR3018322A1 (fr) Organe de liaison rotule a lubrification permanente
EP3880556B1 (fr) Procédé de fixation d'un équipement dissipatif, mur de véhicule spatial et véhicule spatial
CH702314B1 (fr) Palier pour pièce d'horlogerie.
FR3018316A1 (fr) Propulseur plasmique a effet hall
EP3207294B1 (fr) Assemblage de mise en compression de siège de vanne à boule
FR2934713A1 (fr) Substrat de type semi-conducteur sur isolant a couches de diamant intrinseque et dope
FR3104044A1 (fr) Molette de soudage à bague amovible.
FR3076602A1 (fr) Creuset froid et collecteur de refroidissement associe pour dispositif de chauffage par induction
FR3079903A1 (fr) Assemblage d'etancheite metallique pour l'etancheite entre un arbre tournant et un bati fixe
EP3533080B1 (fr) Procede de fabrication d'une heterostructure comprenant une structure conductrice et une structure semi-conductrice et comportant une etape de decoupe par electro-erosion
FR2809782A1 (fr) Palier fluide hydrostatique alveole et son procede de fabrication
EP3820627A1 (fr) Turbine, dispositif de projection de fluide, installation et procédé de fabrication associés
FR2996792A1 (fr) Torche de coupage a plasma d'arc a assemblage ameliore
EP1499505A2 (fr) Poussoir pour bille pour une pointe d'applicateur et ensemble formant pointe incorporant un tel poussoir
FR3132411A1 (fr) Torche de coupage plasma munie d'un empilement de consommables
FR2830678A1 (fr) Tube pour pomper un espace compris entre deux dalles, notamment un panneau a plasma
FR3104045A1 (fr) Molette de soudage.
FR3132410A1 (fr) Tuyère aval pour une torche de coupage plasma
EP2960921A1 (fr) Ensemble autocentré pour ampoule à vide et ampoule à vide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 906800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008050972

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 906800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170705

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008050972

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

26N No opposition filed

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230119

Year of fee payment: 16

Ref country code: IT

Payment date: 20230120

Year of fee payment: 16

Ref country code: GB

Payment date: 20230121

Year of fee payment: 16

Ref country code: DE

Payment date: 20230119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 17