EP2109226B1 - Dispositif de type émetteur et/ou récepteur de signaux radioélectriques. - Google Patents

Dispositif de type émetteur et/ou récepteur de signaux radioélectriques. Download PDF

Info

Publication number
EP2109226B1
EP2109226B1 EP09157422A EP09157422A EP2109226B1 EP 2109226 B1 EP2109226 B1 EP 2109226B1 EP 09157422 A EP09157422 A EP 09157422A EP 09157422 A EP09157422 A EP 09157422A EP 2109226 B1 EP2109226 B1 EP 2109226B1
Authority
EP
European Patent Office
Prior art keywords
radiofrequency
terminal
tuning circuit
conductor
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09157422A
Other languages
German (de)
English (en)
Other versions
EP2109226A2 (fr
EP2109226A3 (fr
Inventor
Michel Ramus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somfy SA
Original Assignee
Somfy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somfy SA filed Critical Somfy SA
Priority to PL09157422T priority Critical patent/PL2109226T3/pl
Publication of EP2109226A2 publication Critical patent/EP2109226A2/fr
Publication of EP2109226A3 publication Critical patent/EP2109226A3/fr
Application granted granted Critical
Publication of EP2109226B1 publication Critical patent/EP2109226B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines

Definitions

  • the invention relates to the field of radiofrequency remote control, that is to say via radioelectric signals, actuators controlling an electrical charge in a building, this electric charge being intended for thermal comfort, visual or light, to sun protection, closure or security of the building or its surroundings.
  • Such actuators comprise a radio frequency receiver provided with a receiving antenna, making it possible to increase the sensitivity thereof and therefore the transmission range between a radiofrequency radio transmitter, nomadic or fixed, and the radio frequency receiver.
  • the receiving antenna is a sensitive and fragile element.
  • the actuator is often placed in a metal casing which forces the antenna to be moved out of the envelope to preserve the sensitivity.
  • Licences US 2,581,983 and US 3,290,601 describe such coupling, with a connection point on each of the conductors of the mains cable located at a predetermined distance (1/8 to 1/4 wavelength) from an electrical ground of the receiver circuit. These patents also describe a frequency tuning circuit and a receiver power circuit from the mains. The two tuning and power circuits are completely separate.
  • the patent GB 702,525 describes an inductive coupling with the power supply cable of a television set, this cable being provided with coils on each end in order to strictly limit the antenna effect to the length of the cable.
  • the patent US 4,194,178 discloses a method of transmitting information using the mains cable, by carrier currents, in the case of monitoring an electric motor.
  • the two energy coupling and signal coupling circuits are totally separated.
  • a non-galvanic coupling is made between an antenna, preferably quarter wave, and the mains conductors, so as to allow simultaneous transmission by direct route and by mains coupling.
  • the coupling takes place in a rectilinear manner, which requires a length close to 10 cm in 433 MHz and can pose congestion problems.
  • radiofrequency radiator is used not the mains cable itself, but a portion of a continuous power cable included between an AC adapter, comprising a transformer-rectifier, and the base .
  • This portion of cable is insulated on both sides of the DC power supply cable by two circuit-plugs or isolation circuits that limit the propagation of guided waves on the single length of the DC power cable.
  • HF high-frequency signals are not transmitted over the mains (see column 5 lines 50 to 55).
  • the DC current flowing on the DC power cable passes through these isolation circuits, while a capacitive coupling allows the antenna link with the DC power cable.
  • the patent application EP 0 718 908 describes a nomadic radiofrequency transmitter in which the metal casing of the power cell is used as an antenna.
  • Each pole of the battery is connected to a power supply terminal of the transmitter by a conductor provided with an RF blocking inductance.
  • One of the poles of the battery is further connected to the RF output of the emitter circuit by an impedance matching circuit, promoting the maximum transfer of signal power between the RF output and the antenna constituted by the battery.
  • This adaptation circuit is not crossed by the supply current of the transmitter.
  • the device requires a large number of RF blocking inductors.
  • the devices of the prior art therefore often require intervention on a power cable, so as to allow to isolate a portion for the HF, or so as to allow a predetermined coupling in length (inductive coupling) or in position (capacitive coupling). This therefore forces the use of a specific power cable.
  • Other devices not described provide coupling with the earth cable when it exists, but the results are highly random.
  • a good sensitivity when listening to a simple receiver degrades when the actuator is activated following an order received. Such effects are not simply attributable to the interference created by the electric motor of the actuator when it operates.
  • the sensitivity of a motion command receiver degrades when the actuator is activated: the priority commands such as an emergency stop command may therefore be less well received than commands for setting up the command. movement.
  • the object of the invention is to provide a radiofrequency emission and / or reception device remedying these disadvantages and improving the radio frequency devices known from the prior art.
  • the invention proposes a device that dramatically overcomes the disadvantages of low sensitivity, especially when it is housed in a tubular-type actuator, comprising an electric motor for driving a mobile home element, and particularly when the The actuator is mounted in a metal tube surrounding it.
  • the invention notably proposes a radiofrequency device of very simple structure.
  • the radiofrequency device according to the invention is defined by claim 1.
  • the home automation device according to the invention is defined by claim 11.
  • the figure 1 represents a home automation system 10 comprising a command transmitter 1.
  • This command transmitter comprises a control keyboard 2 and a radio frequency device 3, such as a radiofrequency transmitter here represented by a symbol of an antenna.
  • the command transmitter communicates by radio frequency with an actuator 4, comprising a radiofrequency device 30 such as a radio frequency command receiver and a motor represented by its mechanical output 6 which is also the output member of the actuator.
  • the radio frequency device 30 receives the commands transmitted by the radio frequency transmitter and, if necessary, transforms them into motor control commands.
  • the radiofrequency device comprises a tuning circuit 17 and a radiofrequency unit 11.
  • the output of the actuator is connected to a mobile element 7 able to move in a first direction DIR1 or in a second direction DIR2 according to the command applied to the engine .
  • the movable element 7 is installed in a building or its surroundings, for example a shutter, a terrace awning, a garage door or a gate and moves in a space 8 of the building, for example in front of a bay.
  • the actuator is powered by the sector 9, that is to say the commercial AC network, for example 230 V, 50 Hz.
  • the control keypad includes control keys. According to the key pressed by the user, the radiofrequency transmitter emits: a movement command in the first direction, a movement command in the second direction, a stop command.
  • the actuator is provided with unrepresented electromechanical or electronic devices which make it possible to stop the motor automatically when the movable element reaches the end of its trajectory in the space 8, for example in high abutment and in low abutment if it is a rolling shutter.
  • the transmitter may alternatively be intended to control a lighting device, heating-air conditioning or ventilation, a siren alarm, a multimedia projection screen or any device ensuring comfort, energy management and / or security in a building or its surroundings (gate, garden lights, etc ).
  • the actuator is a lighting actuator, heating-air conditioning, alarm etc.
  • the command transmitter and the command receiver are of bidirectional type for exchanging information relating to the good reception or the proper execution of the orders received.
  • the installation may comprise several command transmitters and / or actuators communicating on the same radio frequency network using a common protocol and means of identification.
  • Sensors for weather detection or presence or air quality or alarm are also installable on the radio frequency network and are comparable here to issuers of orders, even if they transmit only measurement data.
  • the invention will be described in the case of an actuator powered on the sector, but it also applies to a transmitter or a sensor if it has a power supply on the sector, as shown on the figure 1 by a dotted line connecting sector 9 to the order transmitter 1.
  • the figure 2 represents an actuator 4 connected to the mains by a phase conductor 9a and by a neutral conductor 9b, also referenced AC-H and AC-N.
  • the cable comprises a protective conductor 9c connected to the ground and to the metal casing of the actuator. This protective conductor is useless in the case of a double insulated actuator.
  • the actuator 4 is equipped with a first embodiment of a radiofrequency device 30 according to the invention.
  • this radio frequency device allows a point connection with the sector, that is to say without positioning constraints on the mains power supply cable as a function of the wavelength and without insulation constraint. HF of a portion of the mains power cable relative to the rest of the mains.
  • the radiofrequency unit 11 is either purely receiver or bidirectional type, with an antenna input ANT and a control signal output OUT.
  • the radio frequency unit comprises elements known to those skilled in the art and not shown such as a power supply device, an amplifier-demodulator HF circuit, a microcontroller. As a result, the radio frequency unit is able to receive, decode control commands and possibly transmit information on the state of the actuator.
  • the control commands give rise to control signals transmitted by a control line 12 from the output of control signals OUT to an input IN of a switching unit 13 connected to an electric load 14, constituted by a motor MOT.
  • the switching unit is connected on the one hand to the electrical mains by an internal phase line 15, denoted P0, and by an internal neutral line 16, denoted N0, and is connected on the other hand to the motor whose output 6 drives the moving element when the motor is powered.
  • the switching unit may simply consist of relays for connecting the phase line.
  • internal P0 either at the first motor terminal P1 or at the second P2 motor terminal in the desired direction of movement, while connecting the third motor terminal N1 to the internal neutral line N0.
  • the switching unit comprises a rectifier followed for example by a three-phase inverter whose three outputs are connected to the three motor terminals.
  • the rectifier can also be disassociated from the switching unit.
  • the switching unit comprises a rectifier whose two output terminals are connected by relay either to the first motor terminal P1 and to the second motor terminal P2, or by inverting these two terminals, according to the desired direction of rotation.
  • the internal phase line P0 is directly connected to the phase conductor 9a, while the internal neutral line N0 is connected to the neutral conductor 9b via the tuning circuit 17.
  • the radiofrequency unit 11 comprises an electrical mass 18, denoted GND, which is connected, as close as possible to the tuning circuit, to the internal neutral line N0.
  • GND electrical mass 18, denoted GND.
  • An example of a closer connection is given in figure 5 .
  • the distance between the connection point and the tuning circuit is at least less, and preferably much lower, at a quarter of a wavelength.
  • the tuning circuit 17 comprises at least one coil L1 and a first capacitor C1, arranged in parallel and tuned to the RF frequency of the carrier used for the radio frequency transmission.
  • the tuning circuit comprises three terminals referenced 21-23 which are detailed in the description of the figure 6 .
  • the radio frequency unit is powered from the mains voltage by a power supply input PS connected to the internal phase line P0 and the GND electrical ground.
  • the internal power supply unit to the radio frequency unit transforms the alternating voltage 230 V 50 Hz into an internal voltage, for example continuous 3 V, which can be used for powering the various electronic components located in the radio frequency unit, and available between an internal VCC power line and the GND electrical ground.
  • the tuning circuit is traversed by the current I-ACT supplying the actuator, or actuator current.
  • This is a low-frequency alternating current (for example 50 Hz) whose intensity is variable according to the mode of activity of the actuator.
  • the radiofrequency component propagating on the mains cable is blocked by the parallel resonant circuit L1, C1 (or “circuit-cap") contained in the tuning circuit.
  • L1, C1 or "circuit-cap” contained in the tuning circuit.
  • the figure 3 describes a second embodiment of the radiofrequency device 30 '.
  • the tuning circuit 17 ' (denoted TUN *) comprises a third capacitor C3 and a fourth capacitor C4 arranged in series and replacing the capacitor C1.
  • the unit Radio frequency 11 comprises the GND electrical ground which is connected, as close as possible to the tuning circuit, to the internal neutral line N0.
  • This second configuration is easier to achieve because it has, in parallel capacitors C3 and C4, an inductance L2 constituted by a wire winding, avoiding inserting an intermediate socket.
  • tuning circuit Other configurations of the tuning circuit are conceivable within the scope of the invention, provided that it can be traversed directly by the actuator current I-ACT and that it blocks the passage of radiofrequency currents within the actuator current. .
  • the intensity of the current I-ACT is variable according to the mode of activity of the actuator. For example, three modes of activity are assumed depending on the state of the radio frequency unit and on the control signals that it applies to the switching unit.
  • a first mode MOD1 corresponds to a standby mode of the radio frequency unit, in which there is simply monitoring of the level sensed on the antenna input, for example at the output of a preamplifier comprising a signal level indicator, in order to activate the other elements of the RF unit if a certain RF signal threshold is exceeded.
  • a second mode MOD2 corresponds to a working mode of the radio frequency unit, in which all its elements are activated for reception, decoding or coding and interpretation of a radio frequency signal detected in the standby mode. All elements of the radio frequency unit are physically connected to, or powered through, the internal phase wire and the internal neutral wire, and the intensity I 2 of the I-ACT current is stronger than in the case previous, for example 5 times higher. It is the same for the CP2 value of the equivalent capacity presented by the activated components in this second mode of activity.
  • a third mode MOD3 corresponds to the previous working mode of the radio frequency unit, to which is added the activation of the switching unit and the power supply of the motor, or any other electrical load controlled by the switching unit.
  • the intensity I3 of the current I-ACT is this time at its nominal value, for example 1000 times higher than the previous case. It is the same for the CP3 value of the equivalent capacity presented by the activated components in this third mode of activity.
  • FIG 4 there is shown a simplified diagram equivalent to the operation of the invention according to the mode of activity. This diagram can explain the excellent performance of the topology used in the invention as regards its robustness vis-à-vis the very important modifications of the actuator supply conditions.
  • the tuning circuit shown is in its first TUN configuration.
  • the capacitor C1 is disturbed by the paralleling of a capacitive assembly constituted by the series connection of the parasitic capacitance of the sector CPM seen between phase conductors AC-H and neutral AC-N with the equivalent capacity CP1 or CP2 or CP3 of the activity mode considered.
  • the parasitic capacitance of the sector CPM depends in part on the wired structure of the cable leading the conductors AC-H and AC-N, but depends essentially on the implantation of the tracks AC-H and AC-N on the printed circuit as shown below. in figure 5 .
  • This parasitic capacity of the CPM sector is sometimes weak compared to the three equivalent capacities CP1 or CP2 or CP3.
  • the capacitive assembly becomes substantially equivalent to a single CPM capability. It is therefore sufficient that CPM is also low, before the capacitance value chosen by the designer for the first capacitor C1, so that the coupling with the sector becomes independent of it and the conditions of use of the actuator.
  • C1 4.7 pF (partially adjustable) is chosen. Although low, the capacitance of the first capacitor C1 remains high compared with the parasitic capacitance of the CPM network.
  • the capacitance value of the second capacitor C2 is determined, not only to ensure the HF connection 19, but also so as to adapt the impedance seen by the antenna input to the recommended value, for example 50 ohms.
  • C2 100 pF.
  • the role of the second capacitor C2 is then to allow an impedance matching, and not a decoupling of the potentials of the coupling point and the mass since the point of coupling is almost at the potential of the mass.
  • Certain choices of the assembly L1-C1 can avoid the second capacitor C2, the HF connection 19 being simply provided by a conducting wire.
  • the figure 5 is for illustration the case of an implementation of a radiofrequency device on a PCB double-sided printed circuit board, which we see the upper face.
  • This illustration shows the ratings of the figure 2 , but with the second embodiment of the radio frequency unit 30 ', comprising the second configuration TUN * of the tuning circuit.
  • the actuator is intended for the control of a single load, for example an electric light bulb.
  • the switching unit comprises only one unipolar REL relay and its activation transistor TR.
  • the main contacts of the relay are in the upper part, while the power contacts of its control coil are in the lower part.
  • the output cable is connected on the one hand to a track connected to the main relay output contact, equivalent to the line P1 of the figure 2 and it is directly connected on the other hand to the internal neutral line N0.
  • the radio frequency unit comprises a supply circuit REG and an RFX radiofrequency circuit, for example bidirectional, that is to say comprising all the elements necessary for receiving and transmitting radio frequency signals on an antenna input.
  • ANT As explained, this circuit also includes a microcontroller.
  • the power supply circuit comprises an internal supply line VCC which supplies the radio frequency circuit, and which also supplies the REL relay when the transistor TR is conducting.
  • the tuning circuit is that of the second configuration.
  • the inductor L2 is in the form of a winding with printed turns.
  • the number of turns is relatively high and corresponds to a frequency of the order of 100 MHz. We would have two to three times less turns for a frequency of 433 MHz.
  • a first end of the inductor L2 is connected to the neutral conductor AC-N of the mains cable.
  • the AC-H phase conductor of the mains cable is connected to a track connected to the supply circuit and to a main contact of the relay REL. This track is equivalent to the internal phase P0 of the figure 2 . Precautions are taken regarding the isolation distances between tracks respectively at the potentials of the two mains conductors.
  • the tuning circuit comprises the third capacitor C3 and the fourth capacitor C4, arranged in series with a common point to which is connected the second capacitor C2 also connected to the antenna input of the radio frequency circuit.
  • the inductance L2 is defined between the connection points of the printed turns with each free end of the third and fourth capacitors.
  • the GND electrical ground is taken immediately at the point of connection of the fourth capacitor C4 and the inductor L2. It is imperative that the electric ground of the radio frequency circuit and the power supply circuit are also connected at this point to obtain the best results, at least in this type of simplified configuration, without a ground plane. It is known that those skilled in the art use a ground plane for such printed circuits, generally having more than two layers.
  • the transistor TR enabling the power supply of the relay control coil has its collector (upper terminal) connected to the relay, its base (intermediate terminal) connected to an output OUT of the radio frequency circuit, and its emitter (lower terminal). directly connected to a track equivalent to the internal neutral line N0 of the figure 2 .
  • the base of the transistor TR is equivalent to the input IN of the switching unit of the figure 2 .
  • the width of the tracks constituting the inductor L2 is dimensioned such that the nominal intensity of the actuator current I-ACT, for example 2 amperes, can circulate without problem.
  • This dimensioning constraint is however beneficial in the as it requires to have a very low parasitic resistance, and therefore a very good quality coefficient for the resonant circuit. If the inductance L2 is made from a wire winding, it is likewise a wire diameter satisfying the same requirements.
  • the figure 6 generally describes the connection topology of the radiofrequency unit 11 with the tuning circuit 17, on the one hand by the HF link 19 connecting a radio frequency signal input or output 20, constituting its antenna input ANT, to a first terminal 21 of the tuning circuit 17.
  • the tuning circuit is connected by a second terminal 22 to one of the conductors 9b of the AC sector 9, connected by a third terminal 23 to an electrical ground (GND) of the radio frequency unit capable of blocking the conduction of radiofrequency signals between the second terminal and the third terminal and traversed between the second terminal and the third terminal by the alternating current (I-ACT) supplying the device.
  • the connection of the third terminal 23 to the electrical ground must be effective for the radio frequency signals, that is to say that it can be realized: either directly, by a conducting wire, or by a capacitive connection of impedance zero or very low at the frequency considered.
  • the different embodiments are therefore distinguished by the nature of the tuning circuit and the sampling of the signal on this tuning circuit and the nature of the connection to the ground of the latter, but all have in common that the circuit of agreement is traversed by the electric current supplying the electric charge controlled by the device.
  • the figure 7 thus describes a third embodiment of the invention in the case where a diode bridge rectifier D1-D4 is used in a power supply circuit of the radio frequency unit 11.
  • the common anodes of the diodes are connected to a first end of a C6 filter capacitor connected to ground by its second end and to the input of a regulator whose output is connected to a positive power supply terminal VCC of the radio frequency unit while the common terminal of the regulator is connected to the GND mass.
  • a tuning circuit 17 " identical to the tuning circuit 17 'of the figure 3 , comprises three terminals 21 "-23" respectively identical to the three terminals 21'-23 'of the latter.
  • a fifth capacitor C5 establishes a capacitive connection between the third terminal 23 "of the tuning circuit and the ground, For the radio frequency signals, this capacitive link is equivalent to a conducting wire.
  • the parasitic capacitance of the diode D1 can ensure the capacitive connection without the need to use a real capacitor.
  • the tuning circuit 17 is traversed, between the second terminal and the third terminal, by the alternating current flowing in the first conductor.
  • the rectifier 25 is also used to supply an electrical load such as a motor if the actuator contains an electric charge 14 'such as a brushless or collector type DC motor. The current of the load then flows in the tuning circuit.
  • a disadvantage of mounting the figure 7 is that the amplitude of the voltage on the third terminal reaches twice that of the AC sector. As the voltage amplitudes at the terminals of the tuning circuit components are very small, almost the same amplitude is found on the first terminal of the tuning circuit. It therefore requires the use of a second capacitor C2 adapted to withstand a high voltage, greater than 600V.
  • the capacitance value of the second capacitor C2 is set by the impedance matching constraint and requires some precision.
  • the fourth embodiment shown in figure 8 makes it possible to remedy this drawback by using a tuning circuit 17 "'(denoted TUN **) and still comprising a first terminal 21"' connected to a radio frequency signal input of the radio frequency unit by an HF link provided by the second capacitor C2, a second terminal 22 '' connected to the first AC-N conductor of the AC sector and a third terminal connected, by capacitive connection with a fifth capacitor C5, to the ground GND of the radio frequency circuit.
  • capacitor acts as a guide wire for radio frequency signals.
  • the tuning circuit comprises, between the second terminal and the third terminal, a seventh capacitor C7 in parallel with a third inductor L3. It is traversed between these terminals by the alternating current flowing in the first conductor and it blocks the conduction of signals radiofrequency between these two terminals, for the tuning frequency of the cap circuit constituted by the seventh capacitor C7 and the third inductor L3.
  • the winding of the third inductor L3 is coupled with that of a fourth inductor L4.
  • these two inductances are made vis-à-vis on both sides of a printed circuit, according to the same principle as the second inductor L2. All of these two coils is equivalent to a transformer.
  • the secondary circuit of the transformer comprises an eighth capacitor C8 in series with a ninth capacitor C9, the set being likewise tuned to the frequency of the signals.
  • the common point of these two capacitors serves as the first terminal 21 '' 'for the tuning circuit, this terminal being connected to the radio frequency signal input of the radio frequency unit.
  • the figure 9 is a schematic and partial sectional view of an implementation of the fourth PCB printed circuit embodiment.
  • the location of a first winding (concentric printed turns) forming the inductance L3, disposed on a first face of the printed circuit, and the location of a second winding forming the inductor L4 and arranged in the form of a hatch are shown in shaded form. on the opposite side of the printed circuit, vis-à-vis the first winding.
  • these coils are concentric. The two coils are thus coupled to form a transformer.
  • the invention remains at least twice as simple as the systems of the prior art, in particular by minimizing the number of inductors, these being always of delicate design and of large size. .
  • the worst case of figure 8 only two inductors are needed, but for the size of a single car disposed on either side of the printed circuit.
  • the rectifier 25 is also used to supply an electrical load such as a motor if the actuator contains an electric charge 14 'such as a brushless or collector type DC motor.
  • the current of the load then flows in the tuning circuit.
  • the invention has been shown distinguishing the neutral conductor and the phase conductor. Inversion of these two conductors has no effect on the proper functioning of the device.
  • the principle of the invention avoids and forbids the use, as is the case in prior art documents, of a capacitor of high value at the frequencies considered (for example with a capacitance greater than 500 pF) between the two points. input of neutral and phase conductors, so as to impose on them the same potential for radio frequencies.
  • the position of such a capacitor 24 (noted C15) has been shown in dashed line. Indeed, such a choice leads to replacing CPM by C15 in the figure 4 , which gives an equivalent capacitance brought back in parallel on C1 strongly dependent on the mode of activity and possibly large value before C1, thus strongly influencing the tuning frequency.
  • the invention is therefore directed to the case where radiofrequency radio signals are received or transmitted between the air medium and a radiofrequency unit powered by the alternating electric sector, the latter acting as a receiving or transmitting antenna of indeterminate length. It is particularly interesting in a frequency range above 100 MHz. It allows, for any order transmitter or order receiver connected to the sector, to receive or transmit orders transmitted by airwaves in aerial form by using as transmitting or receiving antenna an undetermined portion of the mains cable at the same time. neighborhood of the point of connection to the sector, this without being disturbed by the variability of the modes of activity of the issuer of orders or the order receiver.
  • the invention allows a gain in sensitivity of 30 to 50% and above all makes it possible to obtain a perfectly isotropic sensitivity diagram, even for different configurations of the device. power supply cable.
  • the space saving on the largest dimension of the printed circuit (fixed by the needs of an inductive coupling) is greater than 5 cm.
  • the invention finally has a significant advantage in terms of protection against parasitic overvoltages carried by the sector.
  • this coupling vehicle towards the radiofrequency unit all the energy parasites to high frequencies. This results in the need for protective components.
  • the tuning circuit 17 allows itself protection at high frequencies: the capacitor C1 bypassing the entire circuit in agreement, therefore also the common point between the RF link and the tuning circuit in the first TUN configuration, the capacitor C4 directly bypassing the common point between the RF link and the tuning circuit in the second TUN configuration * or the same for capacitor C9 in the third configuration TUN **.
  • the radio frequency unit is powered by the AC sector by a PS power input.
  • the radio frequency unit is powered separately, by a battery or by an accumulator or a super-capacitor connected for example to a photovoltaic panel.
  • This type of separate power supply may for example be advantageous when prohibiting any standby consumption on the alternative sector.

Description

  • L'invention concerne le domaine de la commande à distance par radiofréquences, c'est-à-dire via des signaux radioélectriques, des actionneurs commandant une charge électrique dans un bâtiment, cette charge électrique étant destinée au confort thermique, visuel ou lumineux, à la protection solaire, à la fermeture ou à la sécurité du bâtiment ou de ses abords.
  • De tels actionneurs comprennent un récepteur radiofréquences muni d'une antenne réceptrice, permettant d'en augmenter la sensibilité et donc la portée de transmission entre un émetteur radiofréquences, nomade ou fixe, et le récepteur radiofréquences.
  • L'antenne réceptrice est un élément sensible et fragile. De plus, l'actionneur est souvent disposé dans une enveloppe métallique qui oblige à déporter l'antenne à l'extérieur de l'enveloppe pour préserver la sensibilité.
  • Il a été depuis longtemps imaginé d'utiliser le câble d'alimentation électrique de l'actionneur pour loger une partie de l'antenne, ou pour utiliser un conducteur de phase et/ou un conducteur de neutre comme antenne, soit par un couplage direct, soit par un couplage partiel.
  • Les brevets US 2,581,983 et US 3,290,601 décrivent un tel couplage, avec un point de connexion sur chacun des conducteurs du câble secteur situé à une distance prédéterminée (1/8 à 1/4 de longueur d'onde) d'une masse électrique du montage récepteur. Ces brevets décrivent également un circuit d'accord en fréquences et un circuit d'alimentation du récepteur à partir du secteur. Les deux circuits d'accord et d'alimentation sont totalement séparés.
  • Le brevet US 4,507,646 décrit également l'utilisation d'un couplage capacitif avec le secteur, cette fois pour un émetteur radiofréquences. Cette fois encore, les deux circuits d'accord et d'alimentation sont totalement séparés.
  • Le brevet GB 702,525 décrit un couplage inductif avec le câble d'alimentation secteur d'un téléviseur, ce câble étant muni de bobines sur chaque extrémité afin de limiter strictement l'effet d'antenne à la longueur du câble.
  • Le brevet US 4,194,178 décrit un procédé de transmission d'informations utilisant le câble secteur, par courants porteurs, dans le cas de la surveillance d'un moteur électrique. Les deux circuits de couplage en énergie et de couplage en signal sont totalement séparés.
  • Dans le brevet US 7,151,464 de la demanderesse, un couplage non galvanique est réalisé entre une antenne, de préférence quart d'onde, et les conducteurs secteur, de manière à permettre une transmission simultanée par voie directe et par couplage secteur. Préférentiellement, le couplage a lieu de manière rectiligne, ce qui nécessite une longueur voisine de 10 cm en 433 MHz et peut poser des problèmes d'encombrement.
  • Dans le brevet US 6,104,920 , relatif à un téléphone portable avec embase, on utilise comme radiateur radiofréquences non pas le câble secteur lui-même, mais une portion d'un câble d'alimentation continue comprise entre un adaptateur secteur, comprenant un transformateur-redresseur, et l'embase. Cette portion de câble est isolée de part et d'autre du câble d'alimentation continue par deux circuits-bouchons ou circuits d'isolation qui permettent de limiter la propagation d'ondes guidées sur la seule longueur du câble d'alimentation continue. Ainsi, les signaux hautes-fréquences HF ne sont pas transmis sur le secteur (voir colonne 5 lignes 50 à 55). Le courant continu circulant sur le câble d'alimentation continue passe à travers ces circuits d'isolation, tandis qu'un couplage capacitif permet la liaison d'antenne avec le câble d'alimentation continue.
  • La demande de brevet EP 0 718 908 décrit un émetteur radiofréquences nomade dans lequel le boîtier métallique de la pile d'alimentation est utilisé comme antenne. Chaque pôle de la pile est raccordé à une borne d'alimentation de l'émetteur par un conducteur muni d'une inductance de blocage HF. Un des pôles de la pile est de plus relié à la sortie HF du circuit d'émetteur par un circuit d'adaptation d'impédance, favorisant le transfert maximum de puissance de signal entre la sortie HF et l'antenne constituée par la pile. Ce circuit d'adaptation n'est pas traversé par le courant d'alimentation de l'émetteur. Le dispositif requiert un nombre important d'inductances de blocage HF.
  • Les dispositifs de l'art antérieur nécessitent donc souvent une intervention sur un câble d'alimentation, de manière à permettre d'en isoler une partie pour la HF, ou de manière à permettre un couplage prédéterminé en longueur (couplage inductif) ou en position (couplage capacitif). Cela contraint donc à l'usage d'un câble d'alimentation spécifique. D'autres dispositifs non décrits prévoient un couplage avec le câble de terre quand il existe, mais les résultats sont fortement aléatoires.
  • Malgré les progrès réalisés par le dispositif de la demanderesse décrit dans le brevet US 7,151,464 , il a été constaté que la sensibilité reste dépendante des conditions d'installation électrique, ce qui se comprend aisément, mais aussi que la sensibilité est dépendante des conditions d'utilisation de l'actionneur.
  • Par exemple, une bonne sensibilité lors d'une écoute simple du récepteur se dégrade lorsque l'actionneur est activé suite à un ordre reçu. De tels effets ne sont pas imputables simplement aux interférences créées par le moteur électrique de l'actionneur quand il fonctionne. II en résulte que la sensibilité d'un récepteur d'ordres de mouvement se dégrade lorsque l'actionneur est activé : les commandes prioritaires comme une commande d'arrêt d'urgence risquent donc d'être moins bien captées que des commandes de mise en mouvement.
  • Le but de l'invention est de fournir un dispositif radiofréquences d'émission et/ou de réception remédiant à ces inconvénients et améliorant les dispositifs radiofréquences connus de l'art antérieur. En particulier, l'invention propose un dispositif remédiant de manière spectaculaire aux inconvénients de faible sensibilité notamment lorsqu'il est logé dans un actionneur de type tubulaire, comprenant un moteur électrique pour l'entraînement d'un élément domotique mobile, et particulièrement lorsque l'actionneur est monté dans un tube métallique l'entourant. L'invention propose notamment un dispositif radiofréquences de structure très simple.
  • Le dispositif radiofréquences selon l'invention est défini par la revendication 1.
  • Différents modes de réalisation du dispositif radiofréquences selon l'invention sont définis par les revendications 2 à 10.
  • Le dispositif domotique selon l'invention est défini par la revendication 11.
  • Un autre mode de réalisation du dispositif domotique selon l'invention est défini par la revendication 12.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels :
    • la figure 1 est un schéma d'une installation domotique comprenant un dispositif radiofréquences selon l'invention ;
    • la figure 2 est un schéma d'un actionneur domotique comprenant un premier mode de réalisation d'un dispositif radiofréquences selon l'invention ;
    • la figure 3 est un schéma d'un deuxième mode de réalisation d'un dispositif radiofréquences selon l'invention ;
    • la figure 4 est un schéma expliquant pourquoi le dispositif radiofréquences selon l'invention est insensible à l'intensité du courant tiré sur le secteur ;
    • la figure 5 est une vue de dessus partielle d'une implantation sur circuit imprimé du deuxième mode de réalisation d'un dispositif radiofréquences selon l'invention ;
    • la figure 6 est un schéma présentant de manière générale la structure d'un dispositif radiofréquences selon l'invention ;
    • la figure 7 est un schéma électrique d'un troisième mode de réalisation ;
    • la figure 8 est un schéma électrique d'un quatrième mode de réalisation ;
    • la figure 9 est une vue en coupe schématique et partielle d'une implantation du quatrième mode de réalisation sur circuit imprimé.
  • La figure 1 représente une installation domotique 10 comprenant un émetteur d'ordres 1. Cet émetteur d'ordres comprend un clavier de commande 2 et un dispositif radiofréquences 3, comme un émetteur radiofréquences ici représenté par un symbole d'une antenne.
  • L'émetteur d'ordres communique par radiofréquences avec un actionneur 4, comprenant un dispositif radiofréquences 30 comme un récepteur d'ordres par radiofréquences et un moteur représenté par sa sortie mécanique 6 qui est aussi l'organe de sortie de l'actionneur. Le dispositif radiofréquences 30 reçoit les ordres émis par l'émetteur radiofréquences et les transforme s'il y lieu en ordres de commande du moteur. Comme représenté à la figure 2, le dispositif radiofréquence comprend un circuit d'accord 17 et une unité radiofréquences 11. La sortie de l'actionneur est connectée à un élément mobile 7 pouvant se déplacer selon une première direction DIR1 ou selon une deuxième direction DIR2 selon la commande appliquée au moteur. L'élément mobile 7 est installé dans un bâtiment ou à ses abords, par exemple un volet roulant, un store de terrasse, une porte de garage ou un portail et se déplace dans un espace 8 du bâtiment, par exemple devant une baie.
  • L'actionneur est alimenté par le secteur 9, c'est-à-dire le réseau alternatif commercial, par exemple 230 V, 50 Hz.
  • Le clavier de commande comprend des touches de commande. Selon la touche pressée par l'utilisateur, l'émetteur radiofréquences émet : un ordre de mouvement dans la première direction, un ordre de mouvement dans la deuxième direction, un ordre d'arrêt.
  • L'actionneur est muni de dispositifs électromécaniques ou électroniques non représentés qui permettent d'arrêter automatiquement le moteur quand l'élément mobile arrive en extrémité de sa trajectoire dans l'espace 8, par exemple en butée haute et en butée basse s'il s'agit d'un volet roulant.
  • L'émetteur, peut alternativement être destiné à commander un dispositif d'éclairage, de chauffage-climatisation ou de ventilation, une sirène d'alarme, un écran de projection multimédia ou tout dispositif assurant le confort, la gestion d'énergie et/ou la sécurité dans un bâtiment ou à ses abords (portail, éclairages de jardin, etc...). Dans ce cas, l'actionneur est un actionneur d'éclairage, de chauffage-climatisation, d'alarme etc.
  • Préférentiellement, l'émetteur d'ordres et le récepteur d'ordres sont de type bidirectionnel pour échange d'informations relatives à la bonne réception ou à la bonne exécution des ordres reçus.
  • L'installation peut comprendre plusieurs émetteurs d'ordres et/ou actionneurs communiquant sur un même réseau radiofréquences avec utilisation d'un protocole commun et de moyens d'identification.
  • Des capteurs de détection météorologique ou de présence ou de qualité de l'air ou d'alarme sont également installables sur le réseau radiofréquences et sont assimilables ici à des émetteurs d'ordres, même s'ils ne transmettent que des données de mesures.
  • L'invention va être décrite dans le cas d'un actionneur alimenté sur le secteur, mais elle s'applique aussi à un émetteur d'ordres ou à un capteur si celui-ci dispose d'une alimentation sur le secteur, comme représenté sur la figure 1 par un trait pointillé raccordant le secteur 9 à l'émetteur d'ordres 1.
  • La figure 2 représente un actionneur 4 raccordé au secteur par un conducteur de phase 9a et par un conducteur de neutre 9b, également référencés AC-H et AC-N. Le câble comprend un conducteur de protection 9c relié à la terre et à l'enveloppe métallique de l'actionneur. Ce conducteur de protection est inutile dans le cas d'un actionneur à double isolation.
  • L'actionneur 4 est équipé d'un premier mode de réalisation d'un dispositif radiofréquences 30 selon l'invention. Comme il sera décrit plus bas, ce dispositif radiofréquences permet une liaison ponctuelle avec le secteur, c'est-à-dire sans contrainte de positionnement sur le câble d'alimentation secteur en fonction de la longueur d'onde et sans contrainte d'isolation HF d'une partie du câble d'alimentation secteur par rapport au reste du secteur.
  • L'unité radiofréquences 11, est soit purement réceptrice, soit de type bidirectionnel, avec une entrée d'antenne ANT et une sortie de signaux de commande OUT. L'unité radiofréquences comprend des éléments connus de l'homme du métier et non représentés tels qu'un dispositif d'alimentation, un circuit HF amplificateur-démodulateur, un micro-contrôleur. De ce fait, l'unité radiofréquences est à même de recevoir, décoder des ordres de commande et éventuellement d'émettre des informations sur l'état de l'actionneur.
  • Les ordres de commande donnent naissance à des signaux de commande transmis par une ligne de commande 12 depuis la sortie de signaux de commande OUT vers une entrée IN d'une unité de commutation 13 raccordée à une charge électrique 14, constituée par un moteur MOT. L'unité de commutation est raccordée d'une part au secteur électrique par une ligne de phase interne 15, notée P0, et par une ligne de neutre interne 16, notée N0, et est raccordée d'autre part au moteur dont la sortie 6 entraîne l'élément mobile quand le moteur est alimenté.
  • Dans le cas où le moteur est de type à induction monophasé, comprenant une première borne moteur P1, une deuxième borne moteur P2 et une troisième borne moteur N1, l'unité de commutation peut être simplement constituée de relais permettant de connecter la ligne de phase interne P0 soit à la première borne moteur P1 soit à la deuxième borne moteur P2 selon le sens de mouvement désiré, tout en connectant la troisième borne moteur N1 à la ligne de neutre interne N0.
  • Dans le cas où le moteur est de type synchrone auto-piloté ou brushless, l'unité de commutation comprend un redresseur suivi par exemple d'un onduleur triphasé dont les trois sorties sont raccordées aux trois bornes moteur. Le redresseur peut aussi être dissocié de l'unité de commutation.
  • Dans le cas où le moteur est de type à courant continu à collecteur, la troisième borne moteur n'existe pas. L'unité de commutation comprend un redresseur dont les deux bornes de sortie sont connectées par relais soit à la première borne moteur P1 et à la deuxième borne moteur P2, soit en inversant ces deux bornes, selon le sens de rotation désiré.
  • La ligne de phase interne P0 est directement raccordée au conducteur de phase 9a, tandis que la ligne de neutre interne N0 est raccordée au conducteur de neutre 9b par l'intermédiaire du circuit d'accord 17. L'unité radiofréquences 11 comprend une masse électrique 18, notée GND, qui est raccordée, au plus près du circuit d'accord, sur la ligne de neutre interne N0. Un exemple de raccordement au plus près est donné en figure 5. La distance entre le point de raccordement et le circuit d'accord est au moins inférieure, et préférentiellement très inférieure, à un quart de longueur d'onde.
  • Selon une première configuration, notée TUN, le circuit d'accord 17 comprend au moins un bobinage L1 et un premier condensateur C1, disposés en parallèle et accordés sur la fréquence HF de la porteuse utilisée pour la transmission radiofréquences.
  • Une liaison HF 19, réalisée avec un deuxième condensateur C2, permet de connecter l'entrée d'antenne ANT de l'unité radiofréquences 11 à un point du bobinage L1. Tout se passe comme si le bobinage L1 était divisé en deux bobinages couplés placés en série, la liaison HF étant raccordée à la borne commune des deux bobinages.
  • Le circuit d'accord comprend trois bornes référencées 21-23 qui sont détaillées dans la description de la figure 6.
  • L'unité radiofréquences est alimentée à partir de la tension secteur par une entrée d'alimentation PS raccordée à la ligne de phase interne P0 et par la masse électrique GND. Le dispositif d'alimentation interne à l'unité radiofréquences, non représenté, transforme la tension électrique alternative 230 V 50Hz en une tension interne, par exemple continue 3 V, utilisable pour l'alimentation des différents composants électroniques situés dans l'unité radiofréquences, et disponible entre une ligne d'alimentation interne VCC et la masse électrique GND.
  • On remarque donc que le circuit d'accord est parcouru par le courant I-ACT alimentant l'actionneur, ou courant actionneur. II s'agit d'un courant alternatif basse fréquence (par exemple 50 Hz) dont l'intensité est variable selon le mode d'activité de l'actionneur. La composante radiofréquences se propageant sur le câble secteur est bloquée par le circuit résonnant parallèle L1, C1 (ou « circuit-bouchon ») contenu dans le circuit d'accord. Inversement, du fait de cette topologie permettant l'alimentation alternative de l'actionneur à travers le circuit bouchon et plaçant la masse électrique GND comme indiqué, la composante radiofréquences HF prélevée sur le circuit résonnant parallèle n'est pas perturbée par la consommation de l'actionneur.
  • La figure 3 décrit un deuxième mode de réalisation du dispositif radiofréquences 30'. Dans ce deuxième mode, le circuit d'accord 17' (noté TUN*) comprend un troisième condensateur C3 et un quatrième condensateur C4 disposés en série et remplaçant le condensateur C1. Cette fois, c'est le point commun de ces deux condensateurs qui est utilisé pour la liaison HF 19, réalisée par le deuxième condensateur C2, vers l'entrée d'antenne ANT de l'unité radiofréquences 11. De nouveau, l'unité radiofréquences 11 comprend la masse électrique GND qui est raccordée, au plus près du circuit d'accord, sur la ligne de neutre interne N0. Cette deuxième configuration est plus facile à réaliser car on dispose, en parallèle des condensateurs C3 et C4, une inductance L2 constituée par un bobinage filaire, évitant d'insérer une prise intermédiaire.
  • D'autres configurations du circuit d'accord sont envisageables dans le cadre de l'invention, pourvu que celui-ci puisse être directement traversé par le courant actionneur I-ACT et qu'il bloque le passage de courants radiofréquences au sein du courant actionneur.
  • L'intensité du courant I-ACT est variable selon le mode d'activité de l'actionneur. On suppose par exemple trois modes d'activité selon l'état de l'unité radiofréquences et selon les signaux de commande qu'elle applique à l'unité de commutation.
  • Un premier mode MOD1 correspond à un mode de veille de l'unité radiofréquences, dans lequel il y a simplement surveillance du niveau capté sur l'entrée d'antenne, par exemple en sortie d'un préamplificateur comprenant un indicateur de niveau de signal, afin de pouvoir activer les autres éléments de l'unité radiofréquences si un certain seuil de signal H F est dépassé.
  • Dans ce premier mode de veille, seuls peu de composants sont physiquement connectés au fil de phase interne et au fil de neutre interne et l'intensité I1 du courant I-ACT est faible. On appelle CP1 la capacité équivalente présentée par les composants activés dans ce premier mode d'activité.
  • Un deuxième mode MOD2 correspond à un mode de travail de l'unité radiofréquences, dans lequel tous ses éléments sont activés pour la réception, le décodage ou codage et l'interprétation d'un signal radiofréquences détecté dans le mode de veille. Tous les éléments de l'unité radiofréquences sont physiquement connectés au fil de phase interne et au fil de neutre interne, ou alimentés par l'intermédiaire de ces derniers, et l'intensité I2 du courant I-ACT est plus forte que dans le cas précédent, par exemple 5 fois supérieure. II en est de même pour la valeur CP2 de la capacité équivalente présentée par les composants activés dans ce deuxième mode d'activité.
  • Un troisième mode MOD3 correspond au mode de travail précédent de l'unité radiofréquences, auquel s'ajoute l'activation de l'unité de commutation et l'alimentation du moteur, ou de toute autre charge électrique pilotée par l'unité de commutation. L'intensité I3 du courant I-ACT est cette fois à sa valeur nominale, par exemple 1000 fois supérieure au cas prédédent. II en est de même pour la valeur CP3 de la capacité équivalente présentée par les composants activés dans ce troisième mode d'activité.
  • Dans la figure 4, on a représenté un schéma simplifié équivalent au fonctionnement de l'invention selon le mode d'activité. Ce schéma peut expliquer l'excellente performance de la topologie utilisée dans l'invention en ce qui concerne sa robustesse vis-à-vis des modifications très importantes des conditions d'alimentation de l'actionneur. Le circuit d'accord représenté est dans sa première configuration TUN.
  • On constate que, selon le mode d'activité, le condensateur C1 est perturbé par la mise en parallèle d'un ensemble capacitif constitué par la mise en série de la capacité parasite du secteur CPM vue entre conducteurs de phase AC-H et de neutre AC-N avec la capacité équivalente CP1 ou CP2 ou CP3 du mode d'activité considéré.
  • La capacité parasite du secteur CPM dépend en partie de la structure filaire du câble amenant les conducteurs AC-H et AC-N, mais dépend essentiellement de l'implantation des pistes AC-H et AC-N sur le circuit imprimé comme représenté plus bas en figure 5.
  • Cette capacité parasite du secteur CPM est parfois faible devant les trois capacités équivalentes CP1 ou CP2 ou CP3. L'ensemble capacitif devient sensiblement équivalent à une seule capacité CPM. II suffit donc que CPM soit également faible, devant la valeur de capacité choisie par le concepteur pour le premier condensateur C1, pour que le couplage avec le secteur devienne indépendant de celui-ci et des conditions d'utilisation de l'actionneur.
  • A titre d'exemple, on choisit C1 = 4.7 pF (partiellement ajustable). Bien que faible, la capacité du premier condensateur C1 reste élevée devant la capacité parasite du réseau CPM. Le concepteur en déduit la valeur d'inductance L1 permettant au circuit L1-C1 de résonner dans la gamme de fréquence choisie, par exemple L1 = 47 nH pour travailler dans une gamme 400 MHz. La valeur de capacité du deuxième condensateur C2 est déterminée, non seulement pour assurer la liaison HF 19, mais aussi de manière à adapter l'impédance vue par l'entrée d'antenne à la valeur préconisée, par exemple 50 ohms. On prend par exemple C2 = 100 pF. II faut noter que le rôle du deuxième condensateur C2 est alors de permettre une adaptation d'impédance, et non un découplage des potentiels du point de couplage et de la masse puisque le point de couplage est presque au potentiel de la masse. Certains choix de l'ensemble L1-C1 peuvent éviter le deuxième condensateur C2, la liaison HF 19 étant simplement assurée par un fil conducteur.
  • Un choix de capacité très supérieure pour le premier condensateur C1 semblerait bénéfique en ce qu'il garantit mieux encore l'insensibilité du montage par rapport aux variations possibles de la capacité parasite du réseau CPM. Cependant, il conduit à une valeur encore plus faible de l'inductance L1 pour une fréquence déterminée. De ce fait, la réalisation de L1 risque d'être mal maîtrisée. Il a été constaté par l'inventeur que les valeurs indiquées ici donnent d'excellents résultats pour une fréquence de 433 MHz. Pour une fréquence plus élevée, par exemple 868 MHz des valeurs telles que 2 pF et 22 nH donnent également d'excellents résultats.
  • La figure 5 représente pour illustration le cas d'une implantation d'un dispositif radiofréquences sur une carte imprimée double face PCB, dont on voit la face supérieure.
  • Cette illustration reprend les notations de la figure 2, mais avec le deuxième mode de réalisation de l'unité radiofréquences 30', comprenant la deuxième configuration TUN* du circuit d'accord.
  • Dans cette illustration simplifiée, on a supposé que l'actionneur est destiné à la commande d'une charge simple, par exemple une ampoule d'éclairage électrique. De ce fait, l'unité de commutation ne comprend qu'un relais REL unipolaire et son transistor d'activation TR. Les contacts principaux du relais sont dans la partie supérieure, tandis que les contacts d'alimentation de sa bobine de commande sont dans la partie basse.
  • Le câble de sortie, non représenté, est connecté d'une part à une piste raccordée au contact principal de sortie du relais, équivalente à la ligne P1 de la figure 2, et il est directement connecté d'autre part à la ligne de neutre interne N0.
  • L'unité radiofréquences comprend un circuit d'alimentation REG et un circuit radiofréquences RFX, par exemple bidirectionnel, c'est-à-dire comprenant tous les éléments nécessaires à la réception et à l'émission de signaux radiofréquences sur une entrée d'antenne ANT. Comme expliqué, ce circuit comprend aussi un micro-contrôleur. Le circuit d'alimentation comprend une ligne d'alimentation interne VCC qui alimente le circuit radiofréquences, et qui alimente aussi le relais REL quand le transistor TR est conducteur.
  • Le circuit d'accord est celui de la deuxième configuration. L'inductance L2 est réalisée sous forme de bobinage avec spires imprimées. Sur la figure 5, le nombre de spires est relativement élevé et correspond à une fréquence de l'ordre de 100 MHz. On aurait deux à trois fois moins de spires pour une fréquence de 433 MHz.
  • Une première extrémité de l'inductance L2 est raccordée au conducteur de neutre AC-N du câble secteur. Le conducteur de phase AC-H du câble secteur est relié à une piste raccordée au circuit d'alimentation et à un contact principal du relais REL. Cette piste est équivalente à la phase interne P0 de la figure 2. Des précautions sont prises en ce qui concerne les distances d'isolement entre pistes respectivement aux potentiels des deux conducteurs secteur.
  • Le circuit d'accord comprend le troisième condensateur C3 et le quatrième condensateur C4, disposés en série avec un point commun auquel est raccordé le deuxième condensateur C2 également raccordé à l'entrée d'antenne du circuit radiofréquences.
  • L'inductance L2 est définie entre les points de connexion des spires imprimées avec chaque extrémité libre des troisième et quatrième condensateurs.
  • La masse électrique GND est prise immédiatement au point de connexion du quatrième condensateur C4 et de l'inductance L2. II est impératif que la masse électrique du circuit radiofréquences et du circuit d'alimentation soient également connectés en ce point pour obtenir les meilleurs résultats, du moins dans ce type de configuration simplifiée, sans plan de masse. II est connu que l'homme du métier a recours à un plan de masse pour de tels circuits imprimés, comportant généralement plus de deux couches.
  • Par contre, en restant dans le cas de la figure 5, d'autres composants non critiques au niveau des radiofréquences peuvent être raccordés en d'autres points à toute piste connectée à la masse électrique GND. Par exemple, le transistor TR permettant l'alimentation de la bobine de commande du relais a son collecteur (borne supérieure) relié au relais, sa base (borne intermédiaire) reliée à une sortie OUT du circuit radiofréquences, et son émetteur (borne inférieure) directement relié à une piste équivalente à la ligne de neutre interne N0 de la figure 2. La base du transistor TR est équivalente à l'entrée IN de l'unité de commutation de la figure 2.
  • Bien évidemment, la largeur des pistes constituant l'inductance L2 est dimensionnée de manière telle que l'intensité nominale du courant actionneur I-ACT, par exemple 2 ampères, peut y circuler sans problème. Cette contrainte de dimensionnement est cependant bénéfique dans la mesure où elle oblige à avoir une très faible résistance parasite, et donc un très bon coefficient de qualité pour le circuit résonnant. Si l'inductance L2 est réalisée à partir d'un bobinage filaire, on prend de même un diamètre de fil satisfaisant les mêmes exigences.
  • La figure 6 décrit en toute généralité la topologie de liaison de l'unité radiofréquences 11 avec le circuit d'accord 17, d'une part par la liaison HF 19 raccordant une entrée ou sortie de signal radiofréquences 20, constituant son entrée d'antenne ANT, à une première borne 21 du circuit d'accord 17. Le circuit d'accord est connecté par une deuxième borne 22 à l'un des conducteurs 9b du secteur alternatif 9, connecté par une troisième borne 23 à une masse électrique (GND) de l'unité radiofréquences apte à bloquer la conduction de signaux radiofréquences entre la deuxième borne et la troisième borne et parcouru entre la deuxième borne et la troisième borne par le courant alternatif (I-ACT) alimentant le dispositif. La connexion de la troisième borne 23 à la masse électrique doit être effective pour les signaux radiofréquences, c'est-à-dire qu'elle peut être réalisée : soit de manière directe, par un fil conducteur, soit par une liaison capacitive d'impédance nulle ou très faible à la fréquence considérée.
  • Les différents modes de réalisation se distinguent donc par la nature du circuit d'accord et du prélèvement du signal sur ce circuit d'accord et par la nature de la connexion à la masse de ce dernier, mais présentent tous en commun que le circuit d'accord est parcouru par le courant électrique alimentant la charge électrique commandée par le dispositif.
  • La figure 7 décrit ainsi un troisième mode de réalisation de l'invention dans le cas où un redresseur 25 à pont de diodes D1-D4 est utilisé dans un circuit d'alimentation de l'unité radiofréquences 11. Les anodes communes des diodes sont raccordées à une première extrémité d'un condensateur de filtrage C6 raccordé à la masse par sa deuxième extrémité et à l'entrée d'un régulateur dont la sortie est raccordée à une borne d'alimentation positive VCC de l'unité radiofréquences tandis que la borne commune du régulateur est raccordée à la masse GND. Un circuit d'accord 17", identique au circuit d'accord 17' de la figure 3, comprend trois bornes 21 "-23" respectivement identiques aux trois bornes 21'-23' de ce dernier.
  • Dans ce troisième mode de réalisation, un cinquième condensateur C5 établit une liaison capacitive entre la troisième borne 23" du circuit d'accord et la masse. Pour les signaux radiofréquences, cette liaison capacitive est équivalente à un fil conducteur.
  • Alternativement, et ceci d'autant plus que la fréquence des signaux est élevée, la capacité parasite de la diode D1 peut assurer la liaison capacitive sans qu'il soit nécessaire d'utiliser un véritable condensateur.
  • Le circuit d'accord 17" est parcouru, entre la deuxième borne et la troisième borne, par le courant alternatif circulant dans le premier conducteur.
  • Le redresseur 25 est également utilisé pour alimenter une charge électrique telle qu'un moteur si l'actionneur contient une charge électrique 14' telle qu'un moteur de type brushless ou de type DC à collecteur. Le courant de la charge circule alors dans le circuit d'accord.
  • Un inconvénient du montage de la figure 7 est que l'amplitude de la tension sur la troisième borne atteint deux fois celle du secteur alternatif. Les amplitudes de tension aux bornes des composants du circuit d'accord étant très faibles, on retrouve quasiment cette même amplitude sur la première borne du circuit d'accord. Cela impose donc d'utiliser un deuxième condensateur C2 apte à supporter une tension élevée, supérieure à 600V.
  • Cette contrainte en tension est la même pour le cinquième condensateur C5. II existe cependant une différence importante entre le deuxième condensateur C2 et le cinquième condensateur C5.
  • En effet, la valeur exacte de capacité importe peu pour ce dernier, pourvu qu'elle soit suffisamment grande pour être assimilable à un court-circuit. Inversement, la valeur de la capacité du deuxième condensateur C2 est fixée par la contrainte d'adaptation d'impédance et nécessite une certaine précision. Or on ne trouve qu'un très faible choix standard de condensateurs haute tension pour de très faibles valeurs de capacité (quelques dizaines de picofarads). Le choix très limité de valeurs existantes empêche alors une bonne adaptation à un coût raisonnable.
  • Le quatrième mode de réalisation représenté en figure 8 permet de remédier à cet inconvénient en utilisant un circuit d'accord 17"' (noté TUN**) et comprenant toujours une première borne 21 "' raccordée à une entrée de signal radiofréquences de l'unité radiofréquences par une liaison HF assurée par le deuxième condensateur C2, une deuxième borne 22'" connectée au premier conducteur AC-N du secteur alternatif et une troisième borne reliée, par liaison capacitive à l'aide d'un cinquième condensateur C5, à la masse GND du circuit radiofréquences. Le cinquième condensateur agit comme un fil conducteur pour les signaux radiofréquences.
  • Le circuit d'accord comprend, entre la deuxième borne et la troisième borne, un septième condensateur C7 en parallèle avec une troisième inductance L3. II est parcouru entre ces bornes par le courant alternatif circulant dans le premier conducteur et il bloque la conduction de signaux radiofréquences entre ces deux bornes, pour la fréquence d'accord du circuit bouchon constitué par le septième condensateur C7 et la troisième inductance L3.
  • Le bobinage de la troisième inductance L3 est couplé avec celui d'une quatrième inductance L4. Préférentiellement, ces deux inductances sont réalisées en vis-à-vis sur les deux faces d'un circuit imprimé, selon le même principe que la deuxième inductance L2. L'ensemble de ces deux bobinages est donc équivalent à un transformateur. Le circuit secondaire du transformateur comprend un huitième condensateur C8 en série avec un neuvième condensateur C9, l'ensemble étant de même accordé à la fréquence des signaux. Le point commun de ces deux condensateurs sert de première borne 21''' pour le circuit d'accord, cette borne étant raccordée à l'entrée de signal radiofréquences de l'unité radiofréquences.
  • La figure 9 est une vue en coupe schématique et partielle d'une implantation du quatrième mode de réalisation sur circuit imprimé PCB'. On a représenté sous forme hachurée l'emplacement d'un premier bobinage (spires imprimées concentriques) formant l'inductance L3, disposé sur une première face du circuit imprimé, et l'emplacement d'un deuxième bobinage formant l'inductance L4 et disposé sur la face opposée du circuit imprimé, en vis-à-vis du premier bobinage. Préférentiellement ces bobinages sont concentriques. Les deux bobinages sont ainsi couplés de manière à former un transformateur.
  • Même dans ce mode de réalisation, l'invention reste au moins deux fois plus simple de réalisation que les systèmes de l'art antérieur, notamment en minimisant le nombre d'inductances, celles-ci étant toujours de réalisation délicate et d'encombrement important. Dans le pire cas de la figure 8, deux inductances seulement sont nécessaires, mais pour l'encombrement d'une seule car disposées de part et d'autre du circuit imprimé.
  • Comme dans le cas de la figure 7, le redresseur 25 est également utilisé pour alimenter une charge électrique telle qu'un moteur si l'actionneur contient une charge électrique 14' telle qu'un moteur de type brushless ou de type DC à collecteur. Le courant de la charge circule alors dans le circuit d'accord.
  • Dans le cas où la capacité parasite du réseau CPM est relativement importante, il peut cependant être avantageux de disposer également un circuit de blocage supplémentaire 40, de type circuit bouchon LC parallèle) sur le deuxième conducteur secteur AC-H, comme représenté sur les figures 7 et 8.
  • L'invention a été représentée en distinguant le conducteur de neutre et le conducteur de phase. Une inversion de ces deux conducteurs est sans effet sur le bon fonctionnement du dispositif. Par contre, le principe de l'invention évite et interdit de disposer, comme on le rencontre dans les documents de l'art antérieur, un condensateur de forte valeur aux fréquences considérées (par exemple de capacité supérieure à 500 pF) entre les deux points d'entrée des conducteurs de neutre et de phase, de manière à leur imposer un même potentiel pour les radiofréquences. Sur la figure 2, la position d'un tel condensateur 24 (noté C15) a été représentée en trait pointillé. En effet, un tel choix conduit à remplacer CPM par C15 dans la figure 4, ce qui donne une capacité équivalente ramenée en parallèle sur C1 dépendant fortement du mode d'activité et de valeur éventuellement grande devant C1, donc influençant fortement la fréquence d'accord.
  • L'invention s'adresse donc au cas où des signaux hertziens radiofréquences sont reçus ou émis entre le milieu aérien et une unité radiofréquences alimentée par le secteur électrique alternatif, celui-ci jouant le rôle d'antenne réceptrice ou émettrice de longueur indéterminée. Elle est particulièrement intéressante dans une gamme de fréquences supérieures à 100 MHz. Elle permet, pour tout émetteur d'ordres ou récepteur d'ordres raccordé au secteur, de recevoir ou d'émettre des ordres transmis par ondes hertziennes sous forme aérienne en utilisant comme antenne d'émission ou de réception une partie indéterminée de câble secteur au voisinage du point de raccordement au secteur, ceci sans être perturbé par la variabilité des modes d'activité de l'émetteur d'ordres ou du récepteur d'ordres.
  • Comparée au montage de couplage secteur précédemment utilisé par la demanderesse et décrit dans l'art antérieur, l'invention permet un gain en sensibilité de 30 à 50 % et permet surtout d'obtenir un diagramme de sensibilité parfaitement isotrope, même pour différentes configurations du câble secteur d'alimentation. De plus, le gain de place sur la plus grande dimension du circuit imprimé (fixée par les besoins d'un couplage inductif) est supérieur à 5 cm.
  • L'invention présente enfin un avantage important en termes de protection contre les surtensions parasites véhiculées par le secteur. Lorsqu'il y a couplage capacitif direct de l'entrée d'antenne d'une unité radiofréquences avec un conducteur secteur, comme dans certains dispositifs de l'art antérieur, ce couplage véhicule vers l'unité radiofréquences l'intégralité de parasites énergétiques à fréquences élevées. II en résulte le besoin de composants de protection.
  • Le circuit d'accord 17 permet de lui-même la protection aux fréquences élevées : le condensateur C1 court-circuitant l'ensemble du circuit d'accord, donc également le point commun entre liaison HF et circuit d'accord dans la première configuration TUN, le condensateur C4 court-circuitant directement le point commun entre liaison HF et circuit d'accord dans la deuxième configuration TUN* ou de même pour le condensateur C9 dans la troisième configuration TUN**.
  • L'invention s'applique de manière naturelle au cas où l'unité radiofréquences est alimentée par le secteur alternatif par une entrée d'alimentation PS. Alternativement, l'unité radiofréquences est alimentée de manière séparée, par une pile ou encore par un accumulateur ou un super-condensateur raccordé par exemple à un panneau photovoltaïque. Ce type d'alimentation séparée peut par exemple être avantageux lorsqu'on prohibe toute consommation en veille sur le secteur alternatif.

Claims (12)

  1. Dispositif radiofréquences (30 ; 30' ; 30" ; 30"') contrôlant des moyens pour alimenter au moins une charge électrique (14, 14') et comprenant une unité radiofréquences (11) de type émetteur et/ou récepteur de signaux radiofréquences et raccordé par un premier conducteur (9b) au secteur alternatif (9), caractérisé en ce que l'unité radiofréquences comprend une sortie et/ou une entrée de signal radiofréquences (20) raccordée par une liaison HF (19) à une première borne (21) d'un circuit d'accord (17 ; 17') du dispositif radiofréquences, ce circuit d'accord étant :
    - connecté par une deuxième borne (22) au premier conducteur,
    - connecté par une troisième borne (23) à une masse électrique (GND) de l'unité radiofréquences,
    - muni de moyens (L1, C1 ; L2, C3, C4) de blocage de la conduction de signaux radiofréquences sur le premier conducteur entre la deuxième borne et la troisième borne, et
    - parcouru entre la deuxième borne et la troisième borne par le courant alternatif (I-ACT) circulant dans le premier conducteur et alimentant ladite charge électrique.
  2. Dispositif radiofréquences selon la revendication 1, caractérisé en ce que le circuit d'accord est connecté par la troisième borne à la masse électrique (GND) par liaison directe (18).
  3. Dispositif radiofréquences selon la revendication 1, caractérisé en ce que le circuit d'accord est connecté par la troisième borne à la masse électrique (GND) par liaison capacitive (C5).
  4. Dispositif radiofréquences selon l'une des revendications 2 ou 3, caractérisé en ce que les moyens de blocage de la conduction de signaux radiofréquences comprennent, entre les deuxième et troisième bornes, un premier bobinage (L1, L3) monté en parallèle avec un condensateur (C1, C7).
  5. Dispositif radiofréquences selon la revendication 4, caractérisé en ce que la première borne est connectée : soit directement entre les deux extrémités du premier bobinage (L1), soit à la borne commune de deux condensateurs (C8, C9) disposés en série avec un deuxième bobinage (L4) couplé au premier bobinage (L3) de manière à former un transformateur.
  6. Dispositif radiofréquences selon l'une des revendications 2 ou 3, caractérisé en ce que les moyens de blocage de la conduction de signaux radiofréquences comprennent, entre les deuxième et troisième bornes, un bobinage (L2) monté en parallèle avec deux condensateurs (C3, C4) en série, la première borne étant connectée à la borne commune aux deux condensateurs.
  7. Dispositif radiofréquences selon l'une des revendications précédentes, caractérisé en ce que le circuit d'accord comprend un bobinage réalisé sous forme de spires imprimées.
  8. Dispositif radiofréquences selon l'une des revendications précédentes, caractérisé en ce que les signaux radiofréquences ont une fréquence supérieure à 100 MHz.
  9. Dispositif radiofréquences selon l'une des revendications précédentes, caractérisé en ce que l'unité radiofréquences est raccordée à un deuxième conducteur (9a) du réseau alternatif et alimentée par le réseau alternatif.
  10. Dispositif radiofréquences selon l'une des revendications précédentes, caractérisé en ce que le premier et/ou le deuxième conducteur du secteur alternatif constitue une antenne réceptrice ou émettrice de longueur indéterminée pour les signaux radiofréquences, ceux-ci étant de type hertzien et reçus et/ou émis entre le milieu aérien et l'unité radiofréquences via cette antenne.
  11. Dispositif domotique (1 ; 4) comprenant au moins une charge électrique (14, 14') et assurant une fonction de confort, de gestion d'énergie et/ou de sécurité dans un bâtiment ou à ses abords, caractérisé en ce qu'il comprend un dispositif radiofréquences selon l'une des revendications précédentes, alimenté par les premier et deuxième conducteurs et que ladite charge électrique est alimentée par un courant d'alimentation traversant le circuit d'accord entre les deuxième et troisième bornes.
  12. Dispositif domotique (1 ; 4) selon la revendication précédente, caractérisé en ce qu'il comprend plusieurs modes d'activité (MOD1, MOD2, MOD3), le courant d'alimentation traversant le circuit d'accord entre les deuxième et troisième bornes dépendant du mode d'activité.
EP09157422A 2008-04-10 2009-04-06 Dispositif de type émetteur et/ou récepteur de signaux radioélectriques. Active EP2109226B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09157422T PL2109226T3 (pl) 2008-04-10 2009-04-06 Urządzenie typu nadajnika i/lub odbiornika sygnałów radioelektrycznych

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0801971A FR2930093A1 (fr) 2008-04-10 2008-04-10 Dispositif de type emetteur et/ou recepteur de signaux radioelectriques

Publications (3)

Publication Number Publication Date
EP2109226A2 EP2109226A2 (fr) 2009-10-14
EP2109226A3 EP2109226A3 (fr) 2010-08-25
EP2109226B1 true EP2109226B1 (fr) 2012-08-29

Family

ID=39811755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09157422A Active EP2109226B1 (fr) 2008-04-10 2009-04-06 Dispositif de type émetteur et/ou récepteur de signaux radioélectriques.

Country Status (8)

Country Link
US (1) US8044630B2 (fr)
EP (1) EP2109226B1 (fr)
JP (1) JP5204027B2 (fr)
CN (1) CN101557032B (fr)
ES (1) ES2394747T3 (fr)
FR (1) FR2930093A1 (fr)
PL (1) PL2109226T3 (fr)
RU (1) RU2488923C2 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0810784D0 (en) * 2008-06-12 2008-07-23 Cooper Fire Ltd Brake arrangement
US9194179B2 (en) 2010-02-23 2015-11-24 Qmotion Incorporated Motorized shade with the transmission wire passing through the support shaft
US9249623B2 (en) 2010-02-23 2016-02-02 Qmotion Incorporated Low-power architectural covering
US8659246B2 (en) 2010-02-23 2014-02-25 Homerun Holdings Corporation High efficiency roller shade
US8575872B2 (en) 2010-02-23 2013-11-05 Homerun Holdings Corporation High efficiency roller shade and method for setting artificial stops
US9209324B2 (en) 2010-04-28 2015-12-08 Nokia Technologies Oy Photovoltaic cell arrangements
KR101730406B1 (ko) * 2010-09-15 2017-04-26 삼성전자주식회사 무선 전력 전송 및 수신 장치
US8351879B2 (en) * 2010-12-28 2013-01-08 Lockheed Martin Corporation Safe area voltage and current interface
US8960260B2 (en) 2011-11-01 2015-02-24 Homerun Holdings Corporation Motorized roller shade or blind having an antenna and antenna cable connection
FR3028693B1 (fr) * 2014-11-18 2016-11-18 Somfy Sas Dispositif de commande par signaux radiofrequences d'un appareil electrique domestique, appareil electrique domestique associe et installation domotique comprenant un tel appareil
CN104682992B (zh) * 2015-01-22 2017-06-20 络达科技股份有限公司 无线收发芯片的电路
CN104617970B (zh) * 2015-02-10 2017-02-22 东南大学 一种全集成抗阻塞射频接收前端架构
CN105115049B (zh) * 2015-07-31 2018-06-26 深圳市鼎信科技有限公司 空气净化器及其控制方法
FR3061340B1 (fr) * 2016-12-26 2019-05-31 Somfy Sas Dispositif multifrequence, dispositif de commande et/ou de controle, equipement domotique et systeme multifrequence associe
FR3092944A1 (fr) * 2019-02-15 2020-08-21 Schneider Electric Industries Sas Ligne de transmission radiofréquence, dispositif comportant une telle ligne de transmission et système de surveillance d’une installation comportant un tel dispositif
US11716108B2 (en) 2019-05-08 2023-08-01 Telefonaktiebolaget Lm Ericsson (Publ) Multi-band equalizers
RU208387U1 (ru) * 2021-01-25 2021-12-16 Владимир Дмитриевич Купцов Устройство накопления энергии для питания датчиков и индикаторов, имеющих контакт с шинами переменного напряжения от 6 кВ и выше

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2581983A (en) 1947-05-01 1952-01-08 Philco Corp Line-cord antenna
GB702525A (en) 1950-04-29 1954-01-20 Emi Ltd Improvements relating to radio antennas
US3290601A (en) 1963-06-07 1966-12-06 Philco Corp Line cord and monopole antenna system
US4194178A (en) 1975-02-07 1980-03-18 Rexnord Inc. Electric motor with internal wireless load monitor
SE428338B (sv) 1981-11-16 1983-06-20 Mobiltelefonservice Ab Anordning for radiokommunikation i atminstone en riktning inom en storre byggnad eller liknande
US4918690A (en) * 1987-11-10 1990-04-17 Echelon Systems Corp. Network and intelligent cell for providing sensing, bidirectional communications and control
GB2280043B (en) * 1993-07-13 1997-10-01 Wai Chau Ho Electrically controlled curtains
DE69428904T2 (de) * 1994-12-22 2002-06-20 Texas Instruments Deutschland Schaltungsanordnung für die Übertragung eines Hochfrequenzsignals
US6414587B1 (en) * 1998-03-13 2002-07-02 The Chamberlain Group, Inc. Code learning system for a movable barrier operator
TW407394B (en) * 1997-10-16 2000-10-01 Toshiba Corp Frequency converter to output electric driving power to motor and filter installed on it
US6104920A (en) * 1998-03-26 2000-08-15 Nortel Networks Corporation Radio communication device antenna arrangements
US6998962B2 (en) * 2000-04-14 2006-02-14 Current Technologies, Llc Power line communication apparatus and method of using the same
FR2825498B1 (fr) 2001-06-01 2003-09-26 Somfy Dispositif d'entrainement a commande par radiofrequence
JP4206668B2 (ja) * 2002-01-08 2009-01-14 ダイキン工業株式会社 ノイズフィルタ、室外機及び空気調和機
FR2844125B1 (fr) * 2002-09-03 2004-12-17 Inventel Systemes Base centrale pour reseau local de radiocommunication prive et dispositif de radiocommunication incluant une telle base.
JP2006054502A (ja) * 2004-08-09 2006-02-23 Sony Ericsson Mobilecommunications Japan Inc 携帯通信端末及び携帯端末システム
US7286026B2 (en) * 2004-09-02 2007-10-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Serial signal injection using capacitive and transformer couplings for power line communications
JP4578946B2 (ja) * 2004-11-19 2010-11-10 関西電力株式会社 電力線搬送通信用伝送特性調整装置、電力線搬送通信装置及びコンセント
EP1949348B1 (fr) * 2005-10-19 2012-08-15 Somfy SAS Procede de commande d'un actionneur de volet roulant
JP4569449B2 (ja) * 2005-11-22 2010-10-27 ソニー株式会社 受信機
CN101449424A (zh) * 2006-05-29 2009-06-03 松下电器产业株式会社 Ac适配器及便携式终端设备
US7957166B2 (en) * 2007-10-30 2011-06-07 Johnson Controls Technology Company Variable speed drive
US8174853B2 (en) * 2007-10-30 2012-05-08 Johnson Controls Technology Company Variable speed drive
CN101939789B (zh) * 2008-01-04 2013-07-31 Cue声学公司 带集成的开关式电源的音频设备
US8194381B2 (en) * 2008-08-06 2012-06-05 Advanced Integrated Technologies Electrical ground transient eliminator assembly
US8755204B2 (en) * 2009-10-21 2014-06-17 Lam Research Corporation RF isolation for power circuitry
US8576022B2 (en) * 2009-12-02 2013-11-05 International Business Machines Corporation Tuning a programmable power line filter

Also Published As

Publication number Publication date
ES2394747T3 (es) 2013-02-05
US8044630B2 (en) 2011-10-25
CN101557032A (zh) 2009-10-14
FR2930093A1 (fr) 2009-10-16
PL2109226T3 (pl) 2013-04-30
RU2488923C2 (ru) 2013-07-27
US20090258606A1 (en) 2009-10-15
JP5204027B2 (ja) 2013-06-05
RU2009113417A (ru) 2010-10-20
EP2109226A2 (fr) 2009-10-14
EP2109226A3 (fr) 2010-08-25
JP2009253989A (ja) 2009-10-29
CN101557032B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
EP2109226B1 (fr) Dispositif de type émetteur et/ou récepteur de signaux radioélectriques.
EP3559924B1 (fr) Dispositif multifréquence, dispositif de commande et/ou de contrôle, équipement domotique et système multifréquence associé
EP1397576B1 (fr) Dispositif d'entrainement a commande par radiofrequence
EP3221970B1 (fr) Dispositif de commande par signaux radiofréquences d'un appareil électrique domestique, appareil électrique domestique associé et installation domotique comprenant un tel appareil
WO2018211220A1 (fr) Dispositif de détection d'approche et de communication en champ proche
EP1050839A1 (fr) Contrôle de la puissance rayonnée d'un lecteur de carte à circuit intégré de proximité
FR3069009A1 (fr) Dispositif radiofrequence pour une installation domotique de fermeture ou de protection et installation domotique associee
EP3640909B1 (fr) Dispositif de commande à distance
EP3147676A1 (fr) Dispositif de controle d'un conducteur electrique et installation electrique comportant un tel dispositif
EP2454116B1 (fr) Dispositif d'isolement haute tension de moyens d'alimentation d'un dispositif électrique connecté à un potentiel haute tension
EP0891597A1 (fr) Objet electronique portatif pour l'echange d'informations a distance
EP2246932B1 (fr) Dispositif d'émission/réception de signaux radiofréquences pour un appareil domestique alimenté par un réseau électrique
AU9731601A (en) Improvements in data transmission
EP2897241A1 (fr) Ligne électrique à haute tension enterrée
EP1497788B1 (fr) Dispositif de commande a distance
EP4222870A1 (fr) Dispositif de commande par signaux radiofréquences d'un appareil électrique domestique, appareil électrique domestique et dispositif d'occultation associés
FR3130311A1 (fr) Dispositif d’entraînement motorisé d’un dispositif d’occultation et dispositif d’occultation associé
FR3067518A1 (fr) Module photovoltaique integrant une antenne et dispositif domotique associe
WO2003019989A1 (fr) Reseau d'eclairage utilisant le courant d'alimentation pour l'echange des messages de controle des lampes d'eclairage
EP1244070A1 (fr) Dispositif d'émission d'informations d'un véhicule vers un object portatif
FR2882177A1 (fr) Lecteur et tete de lecture de cles a transpondeur et systeme de controle d'acces incorporant ces lecteur et tete de lecture
FR2980931A1 (fr) Dispositif de commande d'un interrupteur d'alimentation electrique et appareil electrique associe.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/44 20060101AFI20100720BHEP

Ipc: H04B 5/00 20060101ALI20100720BHEP

17P Request for examination filed

Effective date: 20101202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009009200

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04B0005000000

Ipc: H01Q0001460000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 5/00 20060101ALI20120323BHEP

Ipc: H01Q 1/46 20060101AFI20120323BHEP

Ipc: H01Q 1/44 20060101ALI20120323BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 573481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009009200

Country of ref document: DE

Representative=s name: BROYDE, MARC, CONSEIL EN PROPRIETE INDUSTRIELL, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009009200

Country of ref document: DE

Representative=s name: MARC BROYDE, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009009200

Country of ref document: DE

Representative=s name: BROYDE, MARC, CPI, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009009200

Country of ref document: DE

Effective date: 20121025

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A., CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 573481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2394747

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121129

26N No opposition filed

Effective date: 20130530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009009200

Country of ref document: DE

Effective date: 20130530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130406

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090406

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009009200

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009009200

Country of ref document: DE

Owner name: SOMFY ACTIVITES SA, FR

Free format text: FORMER OWNER: SOMFY SAS, CLUSES, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230322

Year of fee payment: 15

Ref country code: PL

Payment date: 20230321

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 15

Ref country code: FR

Payment date: 20230428

Year of fee payment: 15

Ref country code: ES

Payment date: 20230504

Year of fee payment: 15

Ref country code: DE

Payment date: 20230328

Year of fee payment: 15

Ref country code: CH

Payment date: 20230502

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230424

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240325

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240326

Year of fee payment: 16