EP2104839A1 - Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation - Google Patents

Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation

Info

Publication number
EP2104839A1
EP2104839A1 EP07857786A EP07857786A EP2104839A1 EP 2104839 A1 EP2104839 A1 EP 2104839A1 EP 07857786 A EP07857786 A EP 07857786A EP 07857786 A EP07857786 A EP 07857786A EP 2104839 A1 EP2104839 A1 EP 2104839A1
Authority
EP
European Patent Office
Prior art keywords
echo
signals
function
search algorithm
useful
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07857786A
Other languages
German (de)
English (en)
Inventor
Alexey Malinovskiy
Edgar Schmitt
Dietmar Spanke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP2104839A1 publication Critical patent/EP2104839A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves

Definitions

  • the present invention relates to a method for determining and
  • Level in a container are often used in the measuring instruments of automation and process control technology.
  • the Applicant produces and distributes such level gauges under the names Prosonic, Levelflex and Micropilot, which operate according to the transit time measurement method and serve to determine and / or monitor a level of a medium in a container.
  • These level gauges send a periodic transmission signal in the microwave or ultrasonic range by means of a transmitting / receiving element in the direction of the surface of a medium and receive the reflected echo signals after a distance-dependent transit time.
  • microwave level gauges can be basically divided into two classes; a first class in which the microwaves are sent by means of an antenna in the direction of the medium, reflected on the Medgutober Structure and then received again after a distance-dependent run time and a second class, in which the microwaves are guided along a waveguide in the direction of the medium at the Medgutober decoration be reflected due to the impedance jump existing there and the reflected waves along the waveguide are led back again.
  • Echo amplitudes formed as a function of the duration echo function representing each value of this echo function of the amplitude of a reflected at a certain distance from the transmitting element echo.
  • a true echo is determined, which is the Reflection of the transmission signal on the product surface corresponds. From the transit time of the useful echo, the distance between the product surface and the transmitter element results directly at a known propagation speed of the transmission signals.
  • the received raw signal of the pulse sequences are not used, but it is the envelope, the so-called envelope, determined.
  • the envelope is obtained, for example, by rectifying the raw signal of the pulse trains and then filtering them via a low-pass filter.
  • the useful echo which has a greater amplitude than the other echoes, is selected by a static echo search algorithm.
  • the echo in the envelope with the largest amplitude is determined as the true echo.
  • the useful echo is the first incoming echo in the envelope after the transmit pulse.
  • the first echo in the envelope is selected as the true echo.
  • the first echo factor is a given factor by which an echo must exceed a certain amplitude in order to be recognized as useful echo.
  • a delay-dependent echo threshold may be defined which must exceed an echo in order to be recognized as a true echo.
  • the level gauge is notified once the current level.
  • the level gauge can be based on the predetermined level identify the associated echo as a true echo and track eg by a suitable dynamic echo search algorithm. Such methods are called echo tracking.
  • maxima of the echo signal or the echo function are determined, for example, in each measurement cycle and the useful echo is determined on the basis of the knowledge of the fill level determined in the preceding measurement cycle and an application-specific maximum expected rate of change of the fill level. From a running time of the current useful echo thus determined, the new fill level results.
  • a fourth method is described in DE 102 60 962 A1.
  • the useful echo is determined based on previously stored in a memory data.
  • echo functions are derived from received echo signals which reproduce the amplitudes of the echo signals as a function of their transit time.
  • the echo functions are stored in a table, each column serving to record one echo function each.
  • the echo functions are stored in the columns in an order which corresponds to the fill level associated with the respective echo functions.
  • the wanted echo and the associated fill level are determined by means of the echo function of the current transmit signal with the aid of the table.
  • a fifth method is described in which periodically transmission signals are sent in the direction of the contents, whose echo signals are recorded and converted into an echo function, at least one echo property of the echo function is determined, and based on the echo properties at least a prediction is derived from a prediction of the echo properties expected in the current measurement.
  • the echo properties of the current measurement are determined using the prediction, and the actual fill level is determined on the basis of the echo properties. This method comes close to echo tracking in the broadest sense.
  • measurement problems occur if fittings are present in the container, which reflect the transmission signals better than the Gregutober Design.
  • the invention has for its object to provide an improved, adapted and self-learning method for evaluating useful echo signals in echo curves of the transit time measurement of measurement signals.
  • FIG. 2 shows an echo function with a valuation function determined by a static echo search algorithm
  • FIG. 3 shows an echo function with echo tracking determined by a dynamic echo search algorithm.
  • a working according to the transit time measurement method measuring device 1 for determining the level F of a medium 7 is shown, which is mounted on a container 5 to a nozzle.
  • the measuring device 1 shown is a transmitting / receiving element 6 radiating freely into the process space with a measuring transducer 9.
  • the measuring transducer 9 has at least one transmitting / receiving unit 3, which carries out the generation and the reception of the measuring signals, a control / Evaluation unit 4, which enables the signal processing of the measurement signals and for controlling the measuring device 1, and also a communication unit 2, which controls and regulates the communication via a bus system and the power supply of the measuring device 1 on.
  • a memory element is integrated, in which the measurement parameters and echo parameters are stored and stored in the measurement factors and echo factors.
  • the transmitting / receiving element 6 is embodied in this embodiment, for example, as a horn antenna, but can be configured as a transmitting / receiving element 6 any known antenna form, such as rod or planar antenna.
  • a measuring signal is generated for example in the form of a high-frequency transmission signal S and emitted via the transmitting / receiving element 6 in a predetermined emission characteristic in the direction of medium 7.
  • the transmission signals S reflected at the boundary surface 8 of the medium 7 are received again as a reflection signal R by the transmission / reception element 6 and the transmission / reception unit 3.
  • the downstream control / evaluation unit 2 determines from the reflection signals R an echo function 10 which determines the amplitudes of the Echo signals 14 of these reflection signals R as a function of the distance covered x or the corresponding transit time t represents.
  • an analog / digital conversion of the analog echo function 10 or the echo curve 10 a digitized envelope 11 is generated.
  • the term of the echo function 10 is used, whereby this term also implies the terms of the echo curve 10, the envelope function or the envelope 11.
  • An echo function 10 depicting the measurement situation in the container 5 is shown as being proportional to the running distance x of the transmission signal S.
  • reference lines are associated with the corresponding echo signals 18 in the echo function 10, so that the cause-and-effect principle can be detected at a glance.
  • the Abkling or the so-called ringing is seen, which can arise due to multiple reflections or by accumulation in the transmitting / receiving element 6 or the nozzle.
  • the inventive method is not only alone, as shown explicitly in Fig. 1, implemented in free radiating microwave measuring devices 1, but an application of the method according to the invention is in other transit time measurement systems, such as TDR measuring devices or ultrasonic measuring devices executable.
  • FIG. 2 A static approach to determine the level is shown in the echo function 10 in Fig. 2.
  • the echo function 10 of FIG. 1 is enlarged and shown rotated in the horizontal.
  • the required transit time t or the travel path x of the measurement signal in the container 5 is plotted on the abscissa axis, and the ordinate axis contains the amplitude values Amp of the echo function 10.
  • a weighting curve B is presented, which is determined by means of a static echo search algorithm, for example a mathematical filter function in the form of a sliding averaging, from the respective echo function 10 or an echo function 10 determined during commissioning in the empty container 5.
  • This evaluation curve B is used to determine the useful echo signals 15 in the echo function 10.
  • this evaluation curve B is used as a reference or abort criterion for the static echo search algorithm 12 of useful echo signals 15 in the echo function 10.
  • the static echo search algorithm 12 of useful echo signals 15 in the echo function 10.
  • a Ausblendkurve D is shown, based on the interference signals R and noise signals N, which may arise, for example, by interference reflections on internals in the container, by multipath propagation and by multimode propagation, by foam and accumulation of the medium and by turbulent media surfaces are hidden.
  • the parameters also include information about the geometry of the container 5 used, an empty distance at which the level gauge 1 is to recognize that a container filled with the medium 7 is empty, and an upper level limit at which the level gauge 1 is to recognize that the Container 5 is full.
  • Selection rules for determining the useful echo signal 15 also play an important role. These static selection rules are often referred to in industry as the first echo factor.
  • such static selection rules may specify that the echo with the shortest transit time is to be selected as the wanted echo, that the echo having the greatest amplitude is to be selected as the wanted echo, or that the wanted echo is selected by means of a weighting function which determines the transit times and amplitudes of the echo Echo signals taken into account.
  • Fig. 3 a slightly enlarged view of the echo function of FIG. 2 with a combination of the static echo search algorithm 12 and the dynamic echo search algorithm 13 according to the invention shown. Due to the changing of measuring conditions or changes to the measuring device 1, the determined echo function changes 10.
  • the current echo function 10 is represented by a continuous line and the old echo function 10 is shown as a dotted line.
  • the direct comparison makes it possible to determine position changes dx of the position X 1 and amplitude changes dA of the amplitude A 1 in the echo signals 14 and the wanted echo signal 15.
  • echo tracking of the echo signals 14 and the useful echo signal 15 is performed by means of a dynamic echo tracking algorithm 13.
  • Either the position X 1 of the useful echo signal 15 is determined for this purpose before a first measuring cycle by means of a static echo search algorithm 12 or the position X 1 of the useful echo signal 15 is selected by the operator of the measuring device 1 from the illustrated echo function 10 or envelope 11 or entered as a corresponding parameter ,
  • a search window 19 is placed by the dynamic echo search algorithm 13.
  • Be the search window 19 has a predetermined width and height and is arranged such that, starting from the position X 1 by a change in position dx in both opposite directions by the echo signal 14 or wanted the useful echo signal 15 can.
  • the vertex or a defined point in the region of the echo signal 14 or the wanted echo signal 15 is used.
  • the width and height of the search windows can also be adapted to the height and pulse width of the echo signal 14 and the useful echo signal 15, for example. From the change in position dx and the change in amplitude dA conclusions can be made on changes in the Ausblendkurve D, the evaluation curve B and the echo parameters E. The evaluation curve B and the Ausblendkurve D are recalculated or adjusted based on the new position data of the echo signals 14 and the useful echo signals 15. By this method according to the invention, the static echo search algorithm 12 due to the changes in the determination parameters, such. B. the Ausblendkurve D, the evaluation curve B and the echo parameters E, adapted to the changing measurement conditions.
  • the change history of the blanking curve D, the evaluation curve B and the echo parameters E are stored in what is known as a drag pointer 20, which records a minimum and maximum state. Based on the above-described first echo factor, the range between the minimum state and the maximum state of the first echo factor in the slave pointer 20 indicates the range in which a determination of the wanted echo signal 15 is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

La présente invention concerne un procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient au moyen d'un appareil de terrain selon un procédé de mesure du temps de propagation. Selon l'invention, des signaux émis sont émis et des signaux réfléchis sont reçus, les signaux réfléchis reçus sont détectés sous la forme de signaux d'écho dans une fonction d'écho, une courbe de masquage, des courbes d'évaluation et/ou des paramètres d'écho des signaux d'écho sont déterminés ou prédéfinis dans la fonction d'écho dans un premier cycle de mesure puis enregistrés, la position et/ou l'amplitude d'au moins un signal d'écho utile sont déterminées au moyen d'un algorithme de recherche d'écho statique par le biais de la courbe de masquage, la courbe d'évaluation, les paramètres d'écho, un suivi continu de l'écho des changements de position et/ou des changements d'amplitude des signaux d'écho individuels et/ou du signal d'écho utile étant réalisé dans la fonction d'écho au moyen d'un algorithme de recherche d'écho dynamique, et la courbe de masquage, la courbe d'évaluation et/ou les paramètres d'écho de l'algorithme de recherche d'écho statique sont adaptés de manière correspondante au moyen des changements de position et/ou des changements d'amplitude des signaux d'écho utiles individuels.
EP07857786A 2006-12-29 2007-12-19 Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation Ceased EP2104839A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006062606A DE102006062606A1 (de) 2006-12-29 2006-12-29 Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitverfahren
PCT/EP2007/064163 WO2008080840A1 (fr) 2006-12-29 2007-12-19 Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation

Publications (1)

Publication Number Publication Date
EP2104839A1 true EP2104839A1 (fr) 2009-09-30

Family

ID=39232843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07857786A Ceased EP2104839A1 (fr) 2006-12-29 2007-12-19 Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation

Country Status (5)

Country Link
US (1) US8276444B2 (fr)
EP (1) EP2104839A1 (fr)
CN (1) CN101573596B (fr)
DE (1) DE102006062606A1 (fr)
WO (1) WO2008080840A1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850098B1 (fr) * 2006-04-27 2013-01-30 Hugh Corum Sintes Capteur de niveau de liquide ultrasonique
DE102007042042B4 (de) * 2007-09-05 2020-03-26 Endress+Hauser SE+Co. KG Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
EP2116819B1 (fr) 2008-05-09 2016-04-20 Siemens Aktiengesellschaft Procédé basé sur un radar pour mesurer le niveau de matériau dans un récipient
US8224594B2 (en) * 2008-09-18 2012-07-17 Enraf B.V. Apparatus and method for dynamic peak detection, identification, and tracking in level gauging applications
DE102009001010B4 (de) * 2008-12-30 2023-06-15 Endress+Hauser SE+Co. KG Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
EP2372318B1 (fr) * 2010-03-26 2020-03-18 VEGA Grieshaber KG Accumulation d'écho parasite dans des bruits de récipients
DE102010031276A1 (de) * 2010-07-13 2012-01-19 Endress + Hauser Gmbh + Co. Kg Füllstandsmessgerät zur Ermittlung und Überwachung eines Füllstandes eines im Prozessraum eines Behälters befindlichen Mediums mittels einem Mikrowellen-Laufzeitmessverfahren
DE102010042525A1 (de) * 2010-10-15 2012-04-19 Endress + Hauser Gmbh + Co. Kg Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter mittels eines Füllstandsmessgeräts nach einem Laufzeitmessverfahren
EP2527801B1 (fr) * 2011-05-27 2019-12-11 VEGA Grieshaber KG Dispositif et procédé de détermination de caractéristiques de milieux et de récipients
DE102012104858A1 (de) * 2012-06-05 2013-12-05 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE102012107146A1 (de) * 2012-08-03 2014-02-20 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und/oder Überwachung des Füllstands eines Mediums in einem Behälter
EP2911800A4 (fr) * 2012-10-25 2016-08-03 Graco Minnesota Inc Capteur de niveau de matière fondue chaude et logement pour capteur
US9217660B2 (en) 2013-01-30 2015-12-22 A.P.M. Automation Solutions Ltd. Surface mapping by virtual array processing via separate transmissions
DE102013103532A1 (de) * 2013-04-09 2014-10-09 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE102013107847A1 (de) * 2013-07-23 2015-01-29 Endress + Hauser Gmbh + Co. Kg Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
DE102014113993A1 (de) * 2014-09-26 2016-03-31 Endress + Hauser Gmbh + Co. Kg Verfahren zum Herstellen eines Behältnisses für ein Medium
DE102015100415A1 (de) * 2015-01-13 2016-07-14 Krohne Messtechnik Gmbh Vorrichtung zur Bestimmung des Füllstands eines Mediums
US9618612B2 (en) * 2015-02-13 2017-04-11 Honeywell International Inc. Marking tank obstructions using an electronic level gauge
EP3115779B1 (fr) * 2015-07-06 2023-07-26 ABB Schweiz AG Système et procédé pour mesurer une vitesse de propagation de signaux dans un milieu liquide ou gazeux
CN105067082A (zh) * 2015-07-31 2015-11-18 广州华凌制冷设备有限公司 一种除湿机及其水位检测方法和装置
DE102015120736B4 (de) * 2015-11-30 2022-07-14 Endress+Hauser SE+Co. KG Verfahren und Füllstandsmessgerät zur Bestimmung des Füllstands eines in einem Behälter befindlichen Füllgutes
US10145939B2 (en) * 2016-02-25 2018-12-04 Honeywell International Inc. Recursive multi-model echo curve simulation
DE102016217614B4 (de) * 2016-09-15 2023-12-14 Vega Grieshaber Kg Antennenanordnung
CN106443646B (zh) * 2016-11-21 2019-03-22 重庆兆洲科技发展有限公司 一种超声波测距系统、回波处理方法及装置
DE102016124364A1 (de) * 2016-12-14 2018-06-14 Endress+Hauser SE+Co. KG Grenzstandschalter mit Ausfallsicherheit
DE102017109316A1 (de) 2017-05-02 2018-11-08 Endress+Hauser SE+Co. KG Verfahren zur Bestimmung und/oder Überwachung des Füllstands
EP3418700A1 (fr) 2017-06-21 2018-12-26 VEGA Grieshaber KG Appareil de radiodétection de niveau de remplissage à adaptation automatique de la fréquence
DE102017123529A1 (de) * 2017-10-10 2019-04-11 Endress+Hauser SE+Co. KG Verfahren zur Ermittlung des Füllstandes eines in einem Behälter befindlichen Füllgutes
DE102018123432A1 (de) * 2018-09-24 2020-03-26 Endress+Hauser SE+Co. KG Detektion von Ereignis-abhängigen Zuständen bei Füllstandsmessung
CN110108797B (zh) * 2019-04-30 2021-07-30 天津大学 利用声阻抗变化信息的介质分界面超声检测方法
CN115683284B (zh) * 2022-12-29 2023-05-26 浙江和达科技股份有限公司 一种抑制虚假回波的方法及液位测量系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1214858A (fr) * 1984-09-27 1986-12-02 Stanley Panton Systeme de telemetrie acoustique
US4992998A (en) * 1986-10-03 1991-02-12 Federal Industries Industrial Group Inc. Acoustic range finding system
US4831565A (en) * 1986-10-03 1989-05-16 Canadian Corporate Management Company Limited Process control equipment for adverse environments
GB2242023B (en) * 1990-03-14 1993-09-08 Federal Ind Ind Group Inc Improvements in acoustic ranging systems
US5131271A (en) * 1990-04-16 1992-07-21 Magnetrol International, Inc. Ultrasonic level detector
US5335545A (en) * 1990-09-04 1994-08-09 Magnetrol International, Inc. Ultrasonic detector with frequency matching
GB2342995B (en) * 1998-10-21 2003-02-19 Federal Ind Ind Group Inc Improvements in pulse-echo measurement systems
US6460412B1 (en) * 2000-10-27 2002-10-08 Union Carbide Chemicals & Plastics Technology Corporation Detection of dynamic fluidized bed level in a fluidized bed polymerization reactor using ultrasonic waves or microwaves
CN100357714C (zh) * 2002-07-19 2007-12-26 Vega格里沙贝两合公司 确定填充高度回波和错误回波的期望范围的方法和设备
DE10260962A1 (de) 2002-12-20 2004-07-01 Endress + Hauser Gmbh + Co. Kg Füllstandsmeßgerät und Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE10360710A1 (de) 2003-12-19 2005-10-06 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE102004052110B4 (de) 2004-10-26 2018-08-23 Endress+Hauser SE+Co. KG Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE102004055551A1 (de) * 2004-11-17 2006-05-18 Endress + Hauser Gmbh + Co. Kg Verfahren zur Auswertung und Korrektur von Gesamtmesssignalen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2008080840A1 *

Also Published As

Publication number Publication date
US8276444B2 (en) 2012-10-02
CN101573596B (zh) 2013-09-11
DE102006062606A1 (de) 2008-07-03
WO2008080840A1 (fr) 2008-07-10
US20100162811A1 (en) 2010-07-01
CN101573596A (zh) 2009-11-04

Similar Documents

Publication Publication Date Title
WO2008080840A1 (fr) Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation
DE102009001010B4 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
DE102007042042B4 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
EP2856086B1 (fr) Procédé de mesure de niveau de remplissage d'après le principe du temps de vol
DE102007060579B4 (de) Verfahren zur Ermittlung und/oder zur Beurteilung des Befüllzustands eines mit zumindest einem Medium gefüllten Behälters
EP3025128B1 (fr) Procédé pour déterminer et surveiller le niveau d'un fluide dans un récipient selon un procédé de mesure du temps de propagation
EP2527805B1 (fr) Dispositif d'évaluation et procédé de détermination d'une grandeur caractéristique pour la position d'une surface limite dans un récipient
WO2006063933A2 (fr) Limnimetre fonctionnant selon le principe du temps de propagation et procede pour sa mise en service
DE102010042525A1 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter mittels eines Füllstandsmessgeräts nach einem Laufzeitmessverfahren
WO2011076478A2 (fr) Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation
EP1412710A1 (fr) Procede pour evaluer les signaux de mesure d'un appareil de mesure fonctionnant selon le principe du temps de propagation
EP1819992A1 (fr) Procede d'analyse et de correction de signaux de mesure d'un appareil de mesure de niveau de remplissage fonctionnant selon le procede du temps de fonctionnement
EP2418465A1 (fr) Profilage d'amplitude dans des appareils de mesure du niveau de remplissage
DE102010044182A1 (de) Verfahren zum Einstellen eines Messgeräts
WO2007077079A1 (fr) Procedes de determination et de controle du niveau de remplissage d'un fluide dans un contenant selon le principe de la duree de parcours
DE102004052110A1 (de) Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE10260959A1 (de) Füllstandsmeßgerät und Verfahren zur Füllstandsmessung
EP2739945B1 (fr) Appareil de mesure du niveau de remplissage et procédé de détermination d'un rapport fonctionnel entre différentes pistes
EP3695197B1 (fr) Procédé de détermination du niveau de remplissage d'un produit contenu dans un récipient
DE102017126734A1 (de) Verfahren zur Erstellung einer Ausblendkurve für ein Füllstandsmessgerät
DE102011089427B4 (de) Verfahren zum Abgleich eines Füllstandsmessgeräts
EP4177578A1 (fr) Procédé de mise en service d'un appareil de mesure de niveau de remplissage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MALINOVSKIY, ALEXEY

Inventor name: SPANKE, DIETMAR

Inventor name: SCHMITT, EDGAR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140409

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS+HAUSER SE+CO. KG

R17C First examination report despatched (corrected)

Effective date: 20140409

R17C First examination report despatched (corrected)

Effective date: 20140409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBX Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2E

APBZ Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4E

APAQ Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2E

APBH Information on receipt of observation in appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDOBA4E

APBZ Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4E

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20181023