EP2102476B1 - Système d'alimentation en carburant pour moteur à combustion interne et procédé de commande correspondant - Google Patents

Système d'alimentation en carburant pour moteur à combustion interne et procédé de commande correspondant Download PDF

Info

Publication number
EP2102476B1
EP2102476B1 EP07847762.7A EP07847762A EP2102476B1 EP 2102476 B1 EP2102476 B1 EP 2102476B1 EP 07847762 A EP07847762 A EP 07847762A EP 2102476 B1 EP2102476 B1 EP 2102476B1
Authority
EP
European Patent Office
Prior art keywords
actuator
pwm
pump
frequency
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07847762.7A
Other languages
German (de)
English (en)
Other versions
EP2102476A1 (fr
Inventor
Olivier Ponsonnaille
Bertrand Carre
Richard Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2102476A1 publication Critical patent/EP2102476A1/fr
Application granted granted Critical
Publication of EP2102476B1 publication Critical patent/EP2102476B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils

Definitions

  • the invention relates to the field of gasoline or diesel engines, with n cylinders, equipped with an injection system (also called fuel supply system), and in particular the injection systems involving at least one actuator (or regulator) the flow and / or the pressure of the fuel. More specifically, the invention relates to petrol direct injection systems or high pressure diesel, commonly called “common rail” (“Common Rail” injection systems).
  • the actuator is controlled to adjust the fuel flow through the pump (as part of a flow actuator) so that the measured pressure reaches the desired pressure.
  • the actuators are generally controlled using Pulse Width Modulated (PWM) type control signals.
  • PWM Pulse Width Modulated
  • a control signal may be a control current proportional to the electromotive force allowing the actuator to move.
  • reaction time of the actuator with respect to the control can be particularly long because, for example, microblocking of internal parts due to the misalignment of the internal parts of the actuator, or to the wear of the guide of these pieces.
  • n ° DE 4,020,654 a method for improving the properties, in particular dynamic properties, of this regulation of the flow (or pressure) of the fuel by modifying the control signal of the actuator.
  • this method requires, on the one hand, modifying the calculation unit of the control signal and, on the other hand, adding a device measuring the arrangement of the actuator member to be adjusted, which is particularly expensive and cumbersome.
  • An object of the invention is therefore to provide a fuel supply system, the or integrated actuators within the pump are particularly responsive to the control signal for regulating the flow (or pressure) of the fuel.
  • a first aspect of the invention relates to a fuel supply system for an internal combustion engine, comprising a pump system disposed between an injection rail and a fuel tank, with at least one actuator whose opening is controlled by a pulse modulation type signal, so as to make successive adjustments of the opening of said actuator with a control variable according to a cycle ratio setpoint.
  • This cycle report setpoint reflects the duration during which the control signal of the opening of the actuator is applied.
  • the power system also includes an electronic control unit.
  • said electronic control unit further comprises auxiliary means capable of increasing the amplitude of the oscillations of said control variable around an average value, if the value of said Cycle report setpoint is included in a given critical area.
  • the actuator is no longer maintained in a fixed position, but is continuously moving around an average position, which greatly reduces the reaction time of the actuator.
  • reaction time was particularly long when the control variable was weakly oscillating. This case corresponds to particularly high or particularly low values of opening duty cycle values.
  • the necessary variation (oscillations) of the electromotive force around its mean value to guarantee the displacement of the actuator is directly proportional to the variations of the control current which is the current flowing through the coil. of the actuator.
  • the cycle ratio setpoint is higher (90% on the figure 9 , curve referenced RCO90) or lower (10% on the figure 10 , curve referenced RCO10) at a certain threshold the amplitudes of the control currents (respectively referenced I PWM 90, and I PWM 10) are no longer sufficient.
  • the actuator is therefore at a standstill because the variations of the electromotive force (corresponding to the control current) around the average value are no longer sufficient to overcome the friction forces.
  • the invention thus makes it possible to prevent this situation from occurring, by causing under certain conditions the increase of the amplitude of the oscillations of the control signal of the actuator, and consequently the increase of the oscillation of the electro force. -motoring.
  • said auxiliary means are capable of increasing the amplitude of the oscillations of said control quantity by decreasing the frequency of the control signal.
  • the system may further comprise first storage means capable of storing the value of a lower limit of the frequency of the control signal, determined according to the characteristics of the fuel supply system of the engine.
  • the system may also comprise second storage means capable of storing the value of an upper limit of the frequency of the control signal, lower than the natural frequency of said actuator.
  • said pump system comprises an auxiliary pump called "low pressure" coupled between the actuator and said fuel tank.
  • Said auxiliary means can then be further adapted to adjust the frequency of the control signal of the actuator so that it is out of the vicinity of an integer value of the discharge frequency of said low pressure auxiliary pump.
  • said auxiliary means may also be able to adjust the frequency of the control signal of the actuator so that it or out of the vicinity of an integer value of the suction frequency of said high pressure auxiliary pump.
  • auxiliary means may also be able to adjust the frequency of the control signal of the actuator so that it is different from the natural frequency of the actuator relative to its environment (mechanical, hydraulic).
  • auxiliary means may then be able to adjust the frequency of the control signal of the actuator so that it is different from the natural frequency of said mechanical pressure limiter relative to its environment (mechanical, hydraulic).
  • the system may also comprise at least one fuel temperature sensor, said auxiliary means then being able to oscillate said quantity also if the value of the fuel temperature is lower than a predetermined critical value.
  • At least one of the actuators of the pump is a flow and / or pressure actuator.
  • a method of controlling a fuel supply system for an internal combustion engine comprising a pump system disposed between an injection rail and a fuel tank, said method comprising controlling the opening of at least one actuator of the pump system, by means of a pulse modulation type control variable, so as to perform successive adjustments of the opening of said actuator by function of a cycle report setpoint.
  • the amplitude of the oscillations around an average value of said control quantity is increased, if the value of said cycle ratio setpoint is included in a given critical zone.
  • FIG 1 is very schematically represented an internal combustion diesel engine referenced 1a, supplied with fuel via a feed system 1b (of course, the invention can also be applied to the gasoline engine).
  • the engine includes four cylinders.
  • the fuel supply system 1b of this engine comprises four injectors referenced 2, each connected by a high pressure hose 3 to the accumulator 4 called "the rail".
  • the fuel supply system 1b also comprises a pump 5, which draws fuel from the tank 6 of the vehicle via a low pressure circuit 7.
  • the function of the pump 5 is to compress the fuel taken from the tank 6 of the vehicle and push it back into the rail 4.
  • the pump 5 is composed of a low pressure part (transfer pump) and a high pressure part (high pressure pump). Note that the pump 5 is also connected to the tank 6 via a return circuit 8. This return circuit 8 serves to regulate the leakage rate of the high pressure part, as well as the lubrication and cooling rate.
  • a flow actuator 9 (or flow valve) is integrated with the low pressure side pump 5. This flow actuator 9 makes it possible to adjust the amount of fuel that will be sent to the rail 4, to which the pump 5 is connected via a connection 10.
  • the feed system 1b can also be equipped at the output of the pump 5 on the side of the connection 10, or directly on the rail 4, a pressure actuator also called discharge actuator. For simplification purposes, this pressure actuator is not shown.
  • This computer 11 comprises conventional components, such as microprocessors, EEPROM type hard memories and RAM type buffers.
  • connection 13 receives input information via a connection 13.
  • This information comes from different sensors placed on the engine 1a and its ancillary systems, such as the injection system, the air supply system, etc. .
  • the computer 11 then processes the input data 12 to define or calculate control levels 14 outputted from the computer 11 via a connection 15.
  • the control levels 14 are sent to the various actuators that participate in the control of the ancillary systems and therefore of the motor. More particularly, these control levels are transmitted via a connection 16 to the injectors 2, and a connection 17 to the actuator 9.
  • the information 12 transmitted to the computer 11, such as, for example, the engine coolant temperature, the engine speed, the engine oil temperature, the air temperature in the engine, the pressure turbocharger air, the position of the accelerator pedal, etc., are processed via functions or mappings stored in an EEPROM type memory, for example.
  • the value of the PCONS pressure setpoint is compared with the value of the effectively measured pressure PMES in the rail 4.
  • This value PMES is delivered via a connection 18 to the computer 11, in parallel with the information 12.
  • the controller 11 uses for example a software corrector of the PID (Proportional Integral Derivative) type, adjusts the control signal of the flow actuator 9 so that the measured pressure PMES reaches the pressure set PCONS. If the difference ⁇ P is positive, the controller 11 acts to increase the flow (in the case of a flow actuator). Conversely, if ⁇ P is negative, the controller acts to decrease the flow.
  • PID Proportional Integral Derivative
  • actuator control signals are Pulse Width Modulated (PWM) type.
  • the control signal is characterized by its nominal voltage U PWM and its frequency F PWM .
  • the percentage of the opening duty cycle (OCR) is between 0 and 100%. This translates the duration during which the voltage U PWM is applied over the period T PWM (T PWM is equal to 1 / F PWM ).
  • the intensity of the average current I PWM created by the control signal of the PWM type is then proportional to the percentage of the opening duty cycle RCO.
  • This electromagnetic force Fem is proportional to the percentage of the opening duty ratio RCO, which allows the displacement of an internal piston 20 (or needle) of the flow actuator 9.
  • the position of the piston 20 determines the passage section ( and therefore the flow rate) of the fuel entering the pump via inlets 21 and 22.
  • the fuel leaves through an opening referenced 23.
  • a friction force Ff opposes the electromagnetic force Fem. This friction force Ff results in example of a misalignment of parts or wear of the guidance of parts.
  • the percentage of the RCO opening duty cycle applied to the amplitude modulation control signal of the actuator makes it possible to establish a more or less significant average current I PWM .
  • the upper part of the figure 3 corresponds to an opening duty cycle of 30% and the lower part to an opening duty cycle of 90%.
  • FIG. figure 4a a simplified characteristic curve of a flow actuator is shown in FIG. figure 4a .
  • This characteristic corresponds to a given pump speed, knowing that the pump is rotated by the motor with a drive ratio R.
  • R the higher the flow demand (in liters / minute), the higher the duty cycle.
  • RCO opening for a fixed PWM amplitude modulation frequency
  • the average current I PWM corresponding to the U PWM voltage for a given RCO oscillates around an average position.
  • the opening duty cycle RCO is particularly high or particularly low, the average current stabilizes and the flow actuator will have a rather fixed position. This considerably increases the reaction time of the actuator during a change of operating point of the engine (by action of the driver on the accelerator pedal, for example) because of the difficulty in overcoming the friction force Ff.
  • the invention makes it possible to make the oscillating current with a sufficient amplitude of oscillation.
  • the electromagnetic force Fem generated is then also oscillating.
  • the position of the piston of the actuator is no longer maintained at a fixed position, but is set in motion around an average position.
  • the generation of these micromovements of the piston of the actuator by variation or adaptation of the frequency of the PWM type control signal in the flow zone or zones deemed critical (corresponding to a high or low opening ratio RCO), allows to greatly reduce the reaction time because of the increased facility to overcome the frictional force Ff.
  • the invention makes it possible to reduce the setpoint overruns of the pressure within the rail 4.
  • One embodiment of the actuator control method, implemented within the control unit 11, is represented on the figure 5 .
  • the control unit 11 stores a first mapping 30, called open loop mapping, for determining the positioning of the flow actuator according to a DC fuel flow setpoint and the engine speed. of the vehicle Nm respectively delivered at the input of the map 30 via connections 31 and 32.
  • the mapping 30 makes it possible to develop a nominal current setpoint CCN for the control of the flow actuator.
  • mapping 33 is able to develop the pressure set point of the rail PCONS as a function of the fuel flow setpoint DC delivered via a connection 34, and the engine speed Nm delivered via a connection 35 as well as the parameters 12 delivered. via the connection 13.
  • the instruction PCONS is delivered to a comparator 36 which also receives via the connection 18 the pressure PMES measured at the level of the rail 4.
  • the difference .DELTA.P between the two pressure values PCONS and PMES is delivered, via a connection 36a, to a corrector 37 (for example a corrector of the PID type) which generates a corrective current setpoint ICOR.
  • a corrector 37 for example a corrector of the PID type
  • This instruction ICOR is delivered to an adder 38 via a connection 39.
  • This adder 38 also receives on another input via a connection 40 the rated nominal current CCN.
  • the output of the adder 38 is connected via a connection 41 to auxiliary means 42 whose role is to determine the frequency F PWM of the control signal of the actuator and the percentage of the opening duty cycle. RCO, applied to this actuator.
  • the auxiliary means 42 also receives the engine speed Nm via a connection 43, the fuel temperature TC via a connection 44, and the value of the fuel flow DC via a connection 45.
  • the role of these variables TC and DC are explained in more detail below.
  • Auxiliary means 42 derives from all these variables the frequency-modulated control signal F PWM , and the opening duty cycle RCO. This control signal is transmitted to the actuator 9 via the connection 15.
  • the latter comprises a booster pump 50 or a low-pressure pump and a high-pressure pump 51.
  • the flow actuator 9 is disposed between these two pumps 50 and 51, to which it is respectively connected via connections 52 and 53.
  • a pressure actuator (not shown for simplification purposes) could be installed at the outlet of the high-pressure pump on the connection 10.
  • the pressure between the flow actuator 9 and the high pressure pump 51 is called P2.
  • the pressure between the booster pump 50 and the flow actuator 9 is called P1.
  • a mechanical pressure limiter referenced 54 is connected between the connection 8 and the node common to the booster pump 50 and the flow actuator 9.
  • the limiter 54 is connected to this common node via a connection 55. Note Q1 the flow delivered by the booster pump, Q2 the flow through the pressure limiter 54, Q3 the flow through the flow actuator 9 and Q4 the flow rate admitted by the high pressure pump 51.
  • the volume admitted by each element of the pump system 5 is directly determined by the flow rate Q4 admitted by the high-pressure pump 51 (considered throughout the duration of admission).
  • This flow Q4 is also directly related to the effective supply pressure P2, both from a static and dynamic point of view (mean value and oscillation frequency). Different interactions exist between the pressure P2 and the flow Q4. In order to identify them, we refer to the figure 7 which illustrates in more detail the high-pressure pump 51.
  • the high-pressure pump 51 receives as input the setpoint DPS corresponding to the displacement of the piston of the flow actuator 9.
  • This DPS instruction has a direct impact on the flow Q3 passing through the flow actuator 9 and thus on the effective supply pressure P2.
  • An intake valve 60 is connected to a pumping element 61 via a connection 62.
  • the output of the pumping element 61 is connected to another intake valve 63 via a connection 64.
  • the other intake valve 63 is connected to the rail 4 via the connection 10.
  • the flow rate, and therefore the volume admitted to each shot Q4 has a low frequency variation.
  • the value of this low harmonic frequency is directly related to the ratio between the two frequencies: we find this low frequency variation in the value of the pressure of the rail 4.
  • the oscillation frequency of the pressure P2 is particularly related to the oscillation frequency of the flow Q4, itself directly related to the number of elements that comprises the high-pressure pump 51 and at the speed of the pump system 5.
  • the oscillation frequencies of the pressure P2 are related to the oscillation frequency of the flow rate Q3 and the flowrate Q1.
  • the frequency of oscillation of the flow rate Q3 depends, of course, on the oscillations of the pressure difference across the flow actuator (P2-P1), but also on the oscillations at the passage section of the flow actuator, which are in turn directly related to the frequency of the pulse modulation type control signal.
  • the frequency of the oscillations of the flow Q1 is directly related to the number of elements of the low-pressure pump 50 and the speed of the pump system.
  • the value of the flow rate Q4 admitted by the high-pressure pump 51 also depends on the timing of the oscillations, that is to say the angular relationship existing between the periods of discharge between at least two outputs of the high-pressure pump. 51.
  • the invention makes it possible to determine a frequency F PWM of the pulse modulation type control signal, achieving the best compromise on all of these criteria.
  • One mode of implementation is detailed below.
  • the inventors have observed that it is highly advantageous to also take into account the fuel temperature conditions for varying the frequency F of the PWM of the actuator control signal, in particular in areas deemed critical flow rate, when the opening cycle ratio RCO is particularly high or particularly low.
  • the reaction time of the actuator is the longest and therefore the most harmful.
  • the invention makes it possible to modify the frequency of the control signal when the fuel temperature is particularly low.
  • the fuel temperature information TC is supplied to the auxiliary means 42 (see FIG. figure 1 ) by means of a sensor placed either at the inlet of the pump 5 or at the return circuit 8 between the vehicle tank 6 and the pump 5 (for the sake of simplification, these sensors are not shown).
  • Each map is associated with a function that makes it possible to determine the frequency of the control signal F PWM to be applied in engine speed function Nm.
  • mapping F2 The lower frequencies obtained from the mapping F2 will then allow the generation of micromovements of the piston of the actuator around a mean position. These micromovements play in favor of a strong reduction of overshoots of the rail pressure setpoint in the areas considered critical. To do this, the organization chart of the figure 8 can be implemented within the auxiliary means 42.
  • the flow of the DC fuel is compared with the critical values DCcr1 and DCcr2 and the fuel temperature TC is compared with the critical fuel temperature TCcr, step 101.
  • the frequency F of the PWM of the actuator control signal is developed from the mapping F2, step 102.
  • the frequency F PWM is developed from the mapping F1, step 103.
  • step 104 the process is terminated, step 105, otherwise, the steps 101 to 104 are repeated.
  • control of the actuator by varying the frequency F PWM of the control signal also applies to the pressure actuators that can be integrated into the fuel supply system.
  • the mimic diagram of the regulation loop represented on the figure 5 is adapted to the case of a pressure actuator: for example, the maps 30 and 33 are no longer dependent on the engine speed Nm and the fuel flow setpoint DC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

  • L'invention porte sur le domaine des moteurs à essence ou Diesel, à n cylindres, équipés d'un système d'injection (encore appelé système d'alimentation en carburant), et notamment les systèmes d'injection faisant intervenir au moins un actuateur (ou régulateur) du débit et/ou de la pression du carburant. Plus précisément, l'invention concerne les systèmes d'injection directe essence ou Diesel à haute pression, communément appelés « systèmes d'injection à rampe commune » (« Common Rail », en langue anglaise).
  • Classiquement, s'il existe un écart entre la pression du rail d'alimentation souhaitée et la pression effectivement mesurée, l'actuateur est commandé de façon à ajuster le débit du carburant traversant la pompe (dans le cadre d'un actuateur de débit), pour que la pression mesurée rejoigne la pression désirée.
  • Pour ce faire, les actuateurs sont généralement commandés à l'aide de signaux de commande de type à modulation d'impulsion (PWM, « Pulse Width Modulated », en langue anglaise).
  • Un signal de commande peut être un courant de commande proportionnel à la force électro-motrice permettant le déplacement de l'actuateur.
  • Cependant, le temps de réaction de l'actuateur par rapport à la commande peut être particulièrement long du fait, par exemple, de microblocage de pièces internes lié au mauvais alignement des pièces internes de l'actuateur, ou encore à l'usure du guidage de ces pièces.
  • On connaît, par le document n° DE 4 020 654 un procédé d'amélioration des propriétés, notamment dynamiques, de cette régulation du débit (ou de la pression) du carburant en modifiant le signal de commande de l'actuateur. Toutefois, ce procédé nécessite d'une part de modifier l'unité de calcul du signal de commande et d'autre part d'ajouter un dispositif mesurant la disposition de l'organe de l'actuateur à régler, ce qui est particulièrement coûteux et encombrant.
  • Un autre exemple de l'art antérieur est donné par le document EP 1 298 307 . L'invention vise à apporter une solution à ce problème.
  • Un but de l'invention est donc de proposer un système d'alimentation en carburant, dont le ou les actuateurs intégrés au sein de la pompe sont particulièrement réactifs au signal de commande pour la régulation du débit (ou de la pression) du carburant.
  • A cet effet, un premier aspect de l'invention a pour objet un système d'alimentation en carburant pour moteur à combustion interne, comprenant un système de pompe disposé entre une rampe d'injection et un réservoir de carburant, avec au moins un actuateur dont l'ouverture est commandée par un signal de type à modulation d'impulsion, de façon à effectuer des ajustements successifs de l'ouverture dudit actuateur à l'aide d'une grandeur de commande fonction d'une consigne de rapport de cycle.
  • Cette consigne de rapport de cycle traduit la durée pendant laquelle est appliquée le signal de commande de l'ouverture de l'actuateur.
  • Le système d'alimentation comprend également une unité de commande électronique.
  • Selon une caractéristique générale de ce premier aspect de l'invention, ladite unité de commande électronique comprend en outre des moyens auxiliaires capables d'augmenter l'amplitude des oscillations de ladite grandeur de commande autour d'une valeur moyenne, si la valeur de ladite consigne de rapport de cycle est comprise dans une zone critique donnée.
  • En d'autres termes, si la consigne de rapport de cycle atteint des valeurs trop importantes ou trop faibles, on augmente l'amplitude de l'oscillation de la grandeur de commande de l'actuateur. Ainsi, l'actuateur n'est plus maintenu dans une position fixe, mais est continuellement en mouvement autour d'une position moyenne, ce qui réduit fortement le temps de réaction de l'actuateur.
  • En effet, les inventeurs ont observé que le temps de réaction était particulièrement long lorsque la grandeur de commande était faiblement oscillante. Ce cas correspond à des valeurs de rapport cyclique d'ouverture particulièrement élevées ou au contraire particulièrement faibles.
  • Plus précisément, comme mentionné ci-avant, la variation (oscillations) nécessaire de la force électro-motrice autour de sa valeur moyenne pour garantir le déplacement de l'actuateur est directement proportionnelle aux variations du courant de commande qui est le courant traversant la bobine de l'actuateur.
  • En effet, la relation entre la force électro-motrice et le courant traversant la bobine de l'actuateur s'écrit : Fem = kI PWM,
    Figure imgb0001
    avec :
    • Fem : la force électro-motrice,
    • k : un coefficient de proportionnalité,
    • IPWM : le courant traversant la bobine de l'actuateur.
  • Pour que l'actuateur se déplace, les oscillations de la force électro-motrice doivent être supérieures à différentes forces de frottement (frottement sec ou effet Stribeck).
  • Pour ce faire le courant dans la bobine doit avoir des variations d'amplitude (ou des oscillations) suffisamment grandes. Si ce n'est pas le cas la force électro-motrice ne parvient pas à "lutter" contre les frottements et le temps de réponse de l'actuateur augmente. Cette situation est illustrée sur les figures 9 et 10. Sur ces figures, on constate que pour une consigne de rapport de cycle de 50% (courbes référencées RCO501 et RCO502), l'amplitude du courant de commande (courbes référencées IPWM501 et IPWM502), qui est proportionnel à la force électro-motrice correspondante, est suffisante pour provoquer un déplacement en continu de l'actuateur autour d'une position moyenne. Les forces contraires (forces de frottement) sont donc vaincues en permanence et si la consigne de l'actuateur change, il atteindra rapidement la valeur correspondant à la nouvelle valeur de consigne.
  • Par contre si la consigne de rapport de cycle est supérieure (90% sur la figure 9, courbe référencée RCO90) ou inférieure (10% sur la figure 10, courbe référencée RCO10) à un certain seuil les amplitudes des courants de commande (respectivement référencés IPWM90, et IPWM10) ne sont plus suffisantes. L'actuateur est donc à l'arrêt car les variations de la force électro-motrice (correspondant au courant de commande) autour de la valeur moyenne ne suffisent plus à vaincre les forces de frottement.
  • Dans cette situation si la consigne de déplacement de l'actuateur change, il devra d'abord vaincre de nouveau les forces de frottement avant d'atteindre cette nouvelle consigne. Le temps de réponse de l'actuateur est donc considérablement augmenté.
  • L'invention permet donc d'éviter que cette situation ne se produise , en provoquant dans certaines conditions l'augmentation de l'amplitude des oscillations du signal de commande de l'actuateur, et par conséquent l'augmentation des oscillation de la force électro-motrice correspondante.
  • Selon un mode de réalisation préféré, lesdits moyens auxiliaires sont capables d'augmenter l'amplitude des oscillations de ladite grandeur de commande en diminuant la fréquence du signal de commande.
  • Dans ce cas, le système peut comprendre en outre des premiers moyens de stockage aptes à mémoriser la valeur d'une limite inférieure de la fréquence du signal de commande, déterminée en fonction des caractéristiques du système d'alimentation en carburant du moteur.
  • Le système peut également comprendre des deuxièmes moyens de stockage aptes à mémoriser la valeur d'une limite supérieure de la fréquence du signal de commande, inférieure à la fréquence propre dudit actuateur.
  • Selon un mode de réalisation, où ledit système de pompe comprend une pompe auxiliaire dite « basse pression » couplée entre l'actuateur et ledit réservoir de carburant. Lesdits moyens auxiliaires peuvent alors être aptes en outre à ajuster la fréquence du signal de commande de l'actuateur de façon qu'elle soit hors du voisinage d'une valeur entière de la fréquence de refoulement de ladite pompe auxiliaire basse pression.
  • Lorsque ledit système de pompe comprend une pompe auxiliaire dite « haute pression » couplée entre l'actuateur et la rampe d'injection, lesdits moyens auxiliaires peuvent également être aptes à ajuster la fréquence du signal de commande de l'actuateur de façon qu'elle soit hors du voisinage d'une valeur entière de la fréquence d'aspiration de ladite pompe auxiliaire haute pression.
  • Par ailleurs, lesdits moyens auxiliaires peuvent être également aptes à ajuster la fréquence du signal de commande de l'actuateur de façon qu'elle soit différente de la fréquence propre de l'actuateur par rapport à son environnement (mécanique, hydraulique).
  • Dans le cas où la pompe est couplée audit réservoir de carburant via une boucle de retour comprenant un limitateur de pression mécanique. Lesdits moyens auxiliaires peuvent alors être aptes en outre à ajuster la fréquence du signal de commande de l'actuateur de façon qu'elle soit différente de la fréquence propre dudit limitateur de pression mécanique par rapport à son environnement (mécanique, hydraulique).
  • Selon un autre mode de réalisation, le système peut comprendre également au moins un capteur de la température du carburant, lesdits moyens auxiliaires étant alors aptes à faire osciller ladite grandeur également si la valeur de la température du carburant est inférieure à une valeur critique prédéterminée.
  • Par exemple, au moins un des actuateurs de la pompe est un actuateur de débit et/ou de pression.
  • Selon un deuxième aspect de l'invention, il est proposé un procédé de commande d'un système d'alimentation en carburant pour moteur à combustion interne comprenant un système de pompe disposé entre une rampe d'injection et un réservoir de carburant, ledit procédé comprenant une commande de l'ouverture d'au moins un actuateur du système de pompe, à l'aide d'une grandeur de commande de type à modulation d'impulsion, de façon à effectuer des ajustements successifs de l'ouverture dudit actuateur en fonction d'une consigne de rapport de cycle.
  • Selon une caractéristique générale de ce deuxième aspect de l'invention, l'amplitude des oscillations autour d'une valeur moyenne de ladite grandeur de commande est augmentée, si la valeur de ladite consigne de rapport de cycle est comprise dans une zone critique donnée.
  • D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en oeuvre et d'un mode de réalisation nullement limitatif, et des dessins annexés, sur lesquels :
    • la figure 1 illustre schématiquement un moteur Diesel à combustion interne ;
    • la figure 2 illustre schématiquement le piston de l'actuateur du système d'alimentation en carburant associé au moteur représenté sur la figure 1 ;
    • la figure 3 illustre l'évolution du courant de commande du piston selon le rapport cyclique d'ouverture ;
    • la figure 4a illustre un exemple de courbe caractéristique simplifiée d'un actuateur de débit pour un régime de pompe donné ;
    • la figure 4b illustre un exemple de courbe caractéristique inverse simplifiée d'un actuateur de débit pour un régime de pompe donné ;
    • la figure 5 illustre l'élaboration de la commande du piston de l'actuateur selon l'invention ;
    • la figure 6 illustre plus précisément le système de pompe inséré au sein du système d'alimentation en carburant du moteur Diesel ;
    • la figure 7 illustre plus en détail les éléments haute pression de la pompe représentée sur la figure 6 ;
    • la figure 8 illustre un mode de mise en oeuvre du procédé selon l'invention ; et
    • les figures 9 et 10 illustrent les variations du courant de commande de l'actuateur selon l'art antérieur.
  • Sur la figure 1, est représenté très schématiquement un moteur Diesel à combustion interne référencé 1a, alimenté en carburant via un système d'alimentation 1b (bien entendu, l'invention peut également s'appliquer au moteur à essence). Dans cet exemple, le moteur la comprend quatre cylindres. Le système d'alimentation en carburant 1b de ce moteur la comprend quatre injecteurs référencés 2, reliés chacun par un tuyau haute pression 3 à l'accumulateur 4 dénommé « le rail ».
  • Le système d'alimentation en carburant 1b comprend également une pompe 5, qui puise le carburant dans le réservoir 6 du véhicule par l'intermédiaire d'un circuit basse pression 7. La pompe 5 a pour fonction de comprimer le carburant prélevé dans le réservoir 6 du véhicule et de le refouler dans le rail 4.
  • Comme on le verra plus en détail ci-après, la pompe 5 est composée d'une partie basse pression (pompe de transfert) et d'une partie haute pression (pompe haute pression). On note que la pompe 5 est également reliée au réservoir 6 via un circuit de retour 8. Ce circuit de retour 8 sert à réguler le débit de fuite de la partie haute pression, ainsi que le débit de lubrification et de refroidissement.
  • Un actuateur de débit 9 (ou vanne de débit) est intégré à la pompe 5 côté basse pression. Cet actuateur de débit 9 permet d'ajuster la quantité de carburant qui sera envoyée vers le rail 4, auquel est connectée la pompe 5 via une connexion 10.
  • En outre, le système d'alimentation 1b peut également être équipé en sortie de la pompe 5 du côté de la connexion 10, ou directement sur le rail 4, d'un actuateur de pression également appelé actuateur de décharge. A des fins de simplification, cet actuateur de pression n'est pas représenté.
  • Enfin, le moteur la et son système d'alimentation 1b sont contrôlés par une unité de commande électronique ou calculateur 11. Ce calculateur 11 comprend des composants classiques, tels que des microprocesseurs, des mémoires dures de type EEPROM et des mémoires tampons de type RAM.
  • Par ailleurs, il reçoit des informations 12 d'entrée via une connexion 13. Ces informations 12 proviennent de différents capteurs placés sur le moteur la et ses systèmes annexes, tels que le système d'injection, le système d'alimentation en air, etc.
  • Le calculateur 11 traite ensuite les données d'entrée 12 pour définir ou calculer des niveaux de commande 14 délivrés en sortie du calculateur 11 via une connexion 15. Les niveaux de commande 14 sont envoyés aux différents actionneurs qui participent au contrôle des systèmes annexes et donc du moteur. Plus particulièrement, ces niveaux de commande sont transmis via une connexion 16 aux injecteurs 2, et une connexion 17 à l'actuateur 9.
  • Plus précisément, les informations 12 transmises au calculateur 11, comme par exemple la température du liquide de refroidissement du moteur, le régime du moteur, la température de l'huile du moteur, la température de l'air au sein du moteur, la pression de l'air du turbocompresseur, la position de la pédale d'accélération, etc., sont traitées via des fonctions ou des cartographies mémorisées dans une mémoire de type EEPROM, par exemple.
  • Ces cartographies permettent de définir la valeur de la pression PCONS souhaitée dans le rail 4. Les niveaux de commande 14 sont alors calculés en fonction de cette valeur de pression PCONS.
  • Classiquement, la valeur de la consigne de pression PCONS est comparée à la valeur de la pression effectivement mesurée PMES dans le rail 4. Cette valeur PMES est délivrée via une connexion 18 au calculateur 11, parallèlement aux informations 12.
  • Selon l'écart de pression ΔP identifié (avec ΔP =PCONS-PMES), le contrôleur 11 à l'aide par exemple d'un correcteur logiciel de type PID (Proportionnel Intégrale Dérivée), ajuste le signal de commande de l'actuateur de débit 9 pour que la pression mesurée PMES rejoigne la consigne de pression PCONS. Si l'écart ΔP est positif, le contrôleur 11 agit pour augmenter le débit (dans le cas d'un actuateur de débit). A l'inverse, si ΔP est négatif, le contrôleur agit pour diminuer le débit.
  • Généralement, les signaux de commande des actuateurs sont de type à modulation d'impulsion (PWM pour « Pulse Width Modulated » en langue anglaise). Le signal de commande est caractérisé par sa tension nominale UPWM et sa fréquence FPWM. Le pourcentage du rapport cyclique d'ouverture (RCO) est compris entre 0 et 100%. Celui-ci traduit la durée pendant laquelle est appliquée la tension UPWM sur la période TPWM (TPWM est égale à 1/FPWM). L'intensité du courant moyen IPWM créé par le signal de commande de type PWM est alors proportionnelle au pourcentage du rapport cyclique d'ouverture RCO.
  • De façon simplifiée, comme déjà mentionné ci-avant on peut dire que le courant moyen IPWM créé par le signal de commande engendre une force électromagnétique Fem comme représenté sur la figure 2.
  • Cette force électromagnétique Fem est proportionnelle au pourcentage du rapport cyclique d'ouverture RCO, ce qui permet le déplacement d'un piston interne 20 (ou aiguille) de l'actuateur de débit 9. La position du piston 20 détermine la section de passage (et par conséquent le débit) du carburant entrant dans la pompe via des arrivées 21 et 22.
  • Le carburant sort par une ouverture référencée 23.
  • Une force de frottement Ff s'oppose à la force électromagnétique Fem. Cette force de frottement Ff résulte par exemple d'un mauvais alignement des pièces ou encore de l'usure du guidage des pièces.
  • Comme représenté sur la partie haute de la figure 3, le pourcentage du rapport cyclique d'ouverture RCO appliqué au signal de commande en modulation d'amplitude de l'actuateur permet d'établir un courant moyen IPWM plus ou moins important.
  • La partie haute de la figure 3 correspond à un rapport cyclique d'ouverture de 30% et la partie basse à un rapport cyclique d'ouverture de 90%.
  • A ce courant moyen IPWM correspond la force électromagnétique moyenne Fem, qui permet de contrôler le déplacement et la position du piston de l'actuateur, fixant ainsi la section de passage souhaitée pour l'écoulement du carburant (débit plus ou moins important).
  • A titre d'exemple, une courbe caractéristique simplifiée d'un actuateur de débit est représentée sur la figure 4a. Cette caractéristique correspond à un régime de pompe donné, sachant que la pompe est entraînée en rotation par le moteur avec un rapport d'entraînement R. Ainsi, plus la demande de débit (en litre/minute) est importante, plus le rapport cyclique d'ouverture RCO (pour une fréquence de modulation d'amplitude PWM fixe) à appliquer sera important.
  • Il existe des caractéristiques dites inverses, telle que celle représentée sur la figure 4b, où contrairement à celle représentée sur la figure 4a, plus la demande de débit est faible, plus le rapport cyclique d'ouverture RCO à appliquer est important.
  • Ainsi, comme illustré sur la figure 3, lorsque le RCO est faible (dans cet exemple 30%), le courant moyen IPWM correspondant à la tension UPWM pour un RCO donné, oscille autour d'une position moyenne.
  • Comme expliqué précédemment, dans le cas général, si le rapport cyclique d'ouverture RCO est particulièrement élevé ou particulièrement faible, le courant moyen se stabilise et l'actuateur de débit aura une position plutôt figée. Cela augmente considérablement le temps de réaction de l'actuateur lors d'un changement de point de fonctionnement du moteur (par action du conducteur sur la pédale d'accélération, par exemple) en raison de la difficulté à vaincre la force de frottement Ff.
  • Par conséquent, lorsque le rapport cyclique d'ouverture RCO atteint une valeur élevée (dans cet exemple 90%) ou faible (dans cet exemple 10%), l'invention permet de rendre le courant oscillant, avec une amplitude d'oscillation suffisante.
  • Une solution, particulièrement avantageuse pour un signal de type PWM, est d'augmenter la période TPWM du signal de commande de type PWM (comme illustré sur la partie basse de la figure 3 pour RCO=90%), ce qui par conséquent rend le courant moyen IPWM de nouveau oscillant.
  • La force électromagnétique Fem générée est alors également oscillante. Ainsi, la position du piston de l'actuateur n'est plus maintenue à une position fixe, mais est mise en mouvement autour d'une position moyenne. La génération de ces micromouvements du piston de l'actuateur par variation ou adaptation de la fréquence du signal de commande de type PWM dans la ou les zones de débit jugées critiques (correspondant à un rapport cyclique d'ouverture RCO élevé ou faible), permet de réduire fortement le temps de réaction en raison de la facilité accrue pour vaincre la force de frottement Ff.
  • L'invention permet de réduire les dépassements de consigne de la pression au sein du rail 4.
  • Un mode de mise en oeuvre du procédé de commande de l'actuateur, implémenté au sein de l'unité de commande 11 est représenté sur la figure 5.
  • Tout d'abord, l'unité de commande 11 mémorise une première cartographie 30, dite cartographie en boucle ouverte, permettant de déterminer le positionnement de l'actuateur de débit en fonction d'une consigne de débit de carburant DC et du régime du moteur du véhicule Nm délivré respectivement en entrée de la cartographie 30 via des connexions 31 et 32. La cartographie 30 permet d'élaborer une consigne de courant nominale CCN pour la commande de l'actuateur de débit.
  • Par ailleurs, une autre cartographie 33 est apte à élaborer la consigne de pression du rail PCONS en fonction de la consigne de débit du carburant DC délivrée via une connexion 34, et du régime moteur Nm délivré via une connexion 35 ainsi que les paramètres 12 délivrés via la connexion 13.
  • La consigne PCONS est délivrée à un comparateur 36 qui reçoit également via la connexion 18 la pression PMES mesurée au niveau du rail 4.
  • L'écart ΔP entre les deux valeurs de pression PCONS et PMES, est délivré, via une connexion 36a, à un correcteur 37 (par exemple un correcteur de type PID) qui élabore une consigne de courant corrective ICOR.
  • Cette consigne ICOR est délivrée à un additionneur 38 via une connexion 39. Cet additionneur 38 reçoit également sur une autre entrée via une connexion 40 la consigne de courant nominale CCN.
  • La sortie de l'additionneur 38 est connectée par l'intermédiaire d'une connexion 41 à des moyens auxiliaires 42 dont le rôle est de déterminer la fréquence FPWM du signal de commande de l'actuateur et le pourcentage du rapport cyclique d'ouverture RCO, appliqué à cet actuateur.
  • Pour ce faire, les moyens auxiliaires 42 reçoit également le régime moteur Nm via une connexion 43, la température du carburant TC via une connexion 44, et la valeur du débit du carburant DC via une connexion 45. Le rôle de ces variables TC et DC sont expliqué plus en détail ci-après.
  • Les moyens auxiliaires 42 élabore à partir de l'ensemble de ces variables le signal de commande à modulation d'impulsion de fréquence FPWM, et le rapport cyclique d'ouverture RCO. Ce signal de commande est transmis à l'actuateur 9 via la connexion 15.
  • Toutefois, lorsque la fréquence du signal de commande FPWM est modifiée, notamment pour un pourcentage élevé ou faible de RCO, le choix de la fréquence doit tenir compte des caractéristiques propres des composants du système, pour éviter de créer une instabilité de la pression dans le rail 4.
  • En effet, contrairement à ce qui a été décrit dans le document n° DE 1 033 04665 , les inventeurs ont observé que la présence d'oscillations au niveau de la pression du rail 4 ne s'explique pas uniquement du fait de l'impact de la fréquence du débit du carburant sortant du rail, mais également du fait de l'impact de la fréquence du débit entrant dans le rail, sur lequel influe directement l'actuateur 9, de part la fréquence FPWM de son signal de commande.
  • Pour comprendre ce phénomène, on se réfère à la figure 6 qui illustre plus précisément le système de pompe 5.
  • Ce dernier comprend une pompe de gavage 50 ou pompe basse-pression et une pompe haute-pression 51. L'actuateur de débit 9 est disposé entre ces deux pompes 50 et 51, auxquelles il est respectivement connecté via des connexions 52 et 53.
  • En option, un actuateur de pression (non représenté à des fins de simplification) pourrait être installé en sortie de la pompe haute-pression sur la connexion 10.
  • La pression entre l'actuateur de débit 9 et la pompe haute pression 51 est appelée P2. La pression entre la pompe de gavage 50 et l'actuateur de débit 9 est appelée P1.
  • Un limitateur de pression mécanique référencé 54 est connecté entre la connexion 8 et le noeud commun à la pompe de gavage 50 et l'actuateur de débit 9.
  • Le limitateur 54 est relié à ce noeud commun via une connexion 55. On note Q1 le débit refoulé par la pompe de gavage, Q2 le débit traversant le limitateur de pression 54, Q3 le débit traversant l'actuateur de débit 9 et Q4 le débit admis par la pompe haute pression 51.
  • Pour un régime de pompe donné, le volume admis par chaque élément du système de pompe 5 est directement déterminé par le débit Q4 admis par la pompe haute-pression 51 (considéré sur toute la durée de l'admission). Ce débit Q4 est également directement lié à la pression d'alimentation effective P2, aussi bien d'un point de vue statique que dynamique (valeur moyenne et fréquence d'oscillation). Différentes interactions existent entre la pression P2 et le débit Q4. De façon à les identifier, on se réfère à la figure 7 qui illustre plus en détail la pompe haute-pression 51.
  • La pompe haute-pression 51 reçoit en entrée la consigne DPS correspondant au déplacement du piston de l'actuateur de débit 9. Cette consigne DPS a un impact direct sur le débit Q3 traversant l'actuateur de débit 9 et donc sur la pression d'alimentation effective P2. Un clapet d'admission 60 est connecté à un élément de pompage 61, via une connexion 62.
  • La sortie de l'élément de pompage 61 est reliée à un autre clapet d'admission 63 via une connexion 64.
  • L'autre clapet d'admission 63 est relié au rail 4 via la connexion 10.
  • Différentes interactions existent entre la pression d'alimentation effective P2 et le débit admis Q4 par l'élément de pompage haute-pression 51.
  • Lorsque la fréquence d'oscillation de la pression d'alimentation P2 et la fréquence de pompage (donnée par la multiplication entre le nombre d'éléments contenus dans le système de pompe haute-pression 51 et le régime de ce même système de pompe haute-pression 51) sont égales (ou lorsqu'elles sont des valeurs entières l'une de l'autre), les débits, et donc le volume admis à chaque coup du système de pompe 5, sont stables ou répétables. La valeur moyenne de la pression du rail (à l'échelle du cycle élémentaire de refoulement de pression) est donc stable. Le volume admis à chaque coup, dépend alors du phasage entre les variations de la pression et du cycle de pompage. En effet, les ouvertures/fermetures de clapets interviennent à des instants différents dans le cycle d'oscillation de la pression d'alimentation effective P2.
  • Lorsque la fréquence d'oscillation de la pression d'alimentation P2 et la fréquence de pompage sont très voisines (ou lorsqu'elles sont presque des valeurs entières l'une de l'autre), le débit, et donc le volume admis à chaque coup Q4, présente une variation basse fréquence. La valeur de cette harmonique basse fréquence est directement liée au rapport entre les deux fréquences : on retrouve cette variation basse fréquence dans la valeur de la pression du rail 4.
  • Lorsque la fréquence d'oscillation de la pression d'alimentation P2 et la fréquence de pompage ne sont pas des valeurs entières l'une de l'autre, les valeurs prises par le débit admis Q4 à chaque coup sont assez dispersées. Cependant, la valeur moyenne est stable sur un nombre de cycle beaucoup plus faible que dans le cas précédent.
  • Au vu de ce qui précède, il apparaît que la fréquence d'oscillation de la pression P2 est particulièrement liée à la fréquence d'oscillation du débit Q4, elle-même directement liée au nombre d'éléments que comporte la pompe haute-pression 51 et au régime du système de pompe 5.
  • En outre, les fréquences d'oscillation de la pression P2 sont liées à la fréquence d'oscillation du débit Q3 et du débit Q1.
  • La fréquence d'oscillation du débit Q3 dépend bien sûr des oscillations de la différence de pression aux bornes de l'actuateur de débit (P2-P1), mais aussi des oscillations au niveau de la section de passage de l'actuateur de débit, qui sont quant à elles directement liées à la fréquence du signal de commande de type à modulation d'impulsion.
  • Enfin, la fréquence des oscillations du débit Q1 est directement liée au nombre d'éléments de la pompe basse-pression 50 et au régime du système de pompe.
  • Par conséquent, il vient des observations précitées des inventeurs, que les oscillations de la pression du rail 4 sont dues entre autres :
    • aux harmoniques des oscillations liées au refoulement effectué par la pompe basse-pression 50 (liées au nombre d'éléments de refoulement que comporte la pompe basse pression et au régime du système de pompe 5) ;
    • aux harmoniques des oscillations du pompage effectué par la pompe haute-pression 51 (liées au nombre d'éléments que comporte la pompe haute pression et du régime de pompage) ;
    • à la fréquence FPWM du signal de commande de type à modulation d'impulsion de l'actuateur 9.
  • Une plus grande stabilité est obtenue lorsque toutes ces fréquences sont des valeurs entières l'une de l'autre.
  • Néanmoins, la valeur du débit Q4 admis par la pompe haute-pression 51 dépend également du phasage des oscillations, c'est-à-dire de la relation angulaire existant parmi les périodes de refoulement entre au moins deux sorties de la pompe haute-pression 51.
  • Le choix de la fréquence FPWM du signal de commande de type à modulation d'impulsion en fonction du régime du système de pompe 5 devra donc remplir les conditions suivantes :
    • la fréquence FPWM n'est pas trop élevée, c'est-à-dire inférieure à la fréquence propre de l'actuateur de débit, pour garantir le mouvement de ce dernier,
    • la fréquence FPWM ne doit pas être trop lente (la limite inférieure étant déterminée d'après des caractéristiques du système d'alimentation en carburant du moteur), pour qu'il n'y ait pas de répercussion au niveau de la pression du rail ;
    • la fréquence FPWM ne se situe pas au voisinage d'une valeur entière de la fréquence d'aspiration de la pompe haute-pression (en tenant compte du régime de la pompe) ;
    • la fréquence FPWM ne doit pas se trouver au voisinage d'une valeur entière de la fréquence de refoulement de la pompe basse pression (en tenant compte du régime de la pompe).
  • De plus, pour des raisons de stabilité des composants et donc du comportement du système de pompe 5, on ajoute que la fréquence FPWM du signal de commande à modulation d'impulsion en fonction du régime de la pompe devra également garantir :
    • de ne pas être égale aux fréquences propres de l'actuateur de débit (ni au voisinage), de façon à maîtriser l'amplitude des oscillations de débit ;
    • de ne pas être égale aux fréquences propres du limitateur de pression 54 (ni au voisinage), de façon à maîtriser l'amplitude des oscillations de la pression en amont de l'actuateur de débit 9.
  • L'invention permet de déterminer une fréquence FPWM du signal de commande de type à modulation d'impulsion, réalisant le meilleur compromis sur l'ensemble de ces critères. Un mode de mise en oeuvre est détaillé ci-après.
  • D'autre part, les inventeurs ont observé qu'il est très avantageux de prendre également en compte les conditions de température du carburant pour modifier la fréquence FPWM du signal de commande de l'actuateur, notamment dans les zones de débit jugées critiques, lorsque le rapport de cycle d'ouverture RCO est particulièrement élevé ou particulièrement faible.
  • En effet, c'est lorsque la température du carburant est particulièrement basse que le temps de réaction de l'actuateur est le plus long et donc le plus néfaste. Ainsi, dans le but de minimiser les usures qui sont engendrées par la génération des micromouvements des pistons de l'actuateur, l'invention permet de modifier la fréquence du signal de commande lorsque la température du carburant est particulièrement basse.
  • Pour ce faire, l'information de la température du carburant TC est fournie aux moyens auxiliaires 42 (voir figure 1) à l'aide d'un capteur placé soit en entrée de la pompe 5, soit sur le circuit de retour 8 entre le réservoir du véhicule 6 et la pompe 5 (à des fins de simplification, ces capteurs ne sont pas représentés).
  • De façon à mettre en oeuvre ce qui a été énoncé ci-dessus, deux cartographies F1 et F2 sont mémorisées au sein du calculateur 11. Chaque cartographie est associée à une fonction qui permet de déterminer la fréquence du signal de commande FPWM à appliquer en fonction du régime moteur Nm.
  • La fonction associée à la cartographie F1 donne les fréquences FPWM prédéterminées (telles que FPWM = F1 (Nm)), en tenant compte des caractéristiques propres des composants du système d'injection afin de limiter les oscillations de pression dans le rail, selon les différentes conditions énoncées ci-avant.
  • La fonction associée à la cartographie F2 donne les fréquences FPWM prédéterminées, (telles que FPWM = F2 (Nm)) plus faibles que celles fournies par la fonction associée à la cartographie F1 et utilisées lorsque :
    • la consigne du débit carburant DC est au-dessus d'un seuil critique calibrable DCcr2 (par exemple 90%) correspondant à des zones de fort débit dans le cas d'actuateurs à caractéristique « normale » (correspondant à des zones de faible débit dans le cas d'actuateurs à caractéristique dite « inverse »),
    • la consigne du débit carburant DC est au-dessous d'un seuil critique calibrable DCcr1 (par exemple 10%) correspondant à des zones de faible débit dans le cas d'actuateurs à caractéristique « normale » (correspondant à des zones de fort débit dans le cas d'actuateurs à caractéristique dite « inverse »), et
    • lorsque la température du carburant TC est inférieure à un seuil critique calibrable TCcr (dans le cas où le système d'alimentation en carburant du moteur comprend des capteurs de température du carburant.
  • Les fréquences plus faibles obtenues à partir de la cartographie F2 permettront alors la génération de micromouvements du piston de l'actuateur autour d'une position moyenne. Ces micromouvements jouant en faveur d'une forte réduction des dépassements de la consigne de la pression du rail dans les zones jugées critiques. Pour ce faire, l'organigramme de la figure 8 peut être implémenté au sein des moyens auxiliaires 42.
  • Au démarrage 100 du véhicule, le débit du carburant DC est comparé avec les valeurs critiques DCcr1 et DCcr2 et la température du carburant TC est comparée à la température critique TCcr du carburant, étape 101.
  • Si le débit du carburant est supérieur à la valeur critique associée DCcr2 ou inférieur à la valeur critique associée DCcr1, et si la température du carburant est inférieure à la valeur critique associée et si la température du carburant est inférieure à la valeur critique associée, la fréquence FPWM du signal de commande de l'actuateur est élaborée à partir de la cartographie F2, étape 102.
  • Sinon, la fréquence FPWM est élaborée à partir de la cartographie F1, étape 103.
  • Une fois l'élaboration de la fréquence FPWM effectuée, si le moteur est arrêté, étape 104, on met fin au procédé, étape 105, sinon, on réitère les étapes 101 à 104.
  • Bien entendu, l'invention n'est pas limitée aux modes de mise en oeuvre et de réalisation présentés ci-avant.
  • Par exemple, le pilotage de l'actuateur en faisant varier la fréquence FPWM du signal de commande s'applique également aux actuateurs de pression qui peuvent être intégrés au système d'alimentation en carburant. Dans ce cas, le synoptique de la boucle de régulation représenté sur la figure 5 est adapté au cas d'un actuateur en pression : par exemple, les cartographies 30 et 33 ne sont plus dépendantes du régime moteur Nm et de la consigne de débit du carburant DC.

Claims (12)

  1. Système d'alimentation en carburant pour moteur à combustion interne comprenant un système de pompe (5) disposé entre une rampe d'injection (4) et un réservoir de carburant (6), avec au moins un actuateur (9) dont l'ouverture est provoquée par une grandeur de commande (IPWM) déterminée par une consigne de rapport de cycle (RCO) d'un signal de commande (UPWM) de type à modulation d'impulsion émis par une unité de commande électronique (11), de façon à effectuer des ajustements successifs de l'ouverture dudit actuateur , caractérisé en ce que ladite unité de commande électronique comprend des moyens auxiliaires (42) capables d'augmenter l'amplitude des oscillations de ladite grandeur de commande (IPWM) autour d'une valeur moyenne, si la valeur de ladite consigne de rapport de cycle (RCO) est comprise dans une plage de valeur prédéfinie.
  2. Système selon la revendication 1, dans lequel lesdits moyens auxiliaires sont configurés pour augmenter l'amplitude des oscillations de ladite grandeur de commande (IPWM) en diminuant la fréquence (FPWM) du signal de commande (UPWM) tout en lui conservant la même consigne de rapport de cycle (RCO).
  3. Système selon les revendications 1 à 2, dans lequel lesdits moyens auxiliaires sont configurés pour augmenter l'amplitude des oscillations de ladite grandeur de commande (IPWM) si la consigne de rapport de cycle est inférieure à un premier seuil prédéfini.
  4. Système selon l'une des revendications 1 à 3, dans lequel lesdits moyens auxiliaires sont configurés pour augmenter l'amplitude des oscillations de ladite grandeur de commande (IPWM) si la consigne de rapport de cycle est supérieure à un deuxième seuil prédéfini.
  5. Système selon l'une des revendications 1 à 4, comprenant en outre au moins un capteur de température de carburant, et dans lequel lesdits moyens auxiliaires sont en outre configurés pour augmenter l'amplitude des oscillations de ladite grandeur de commande (IPWM) si la valeur de la température du carburant est inférieure à une valeur critique prédéterminée.
  6. Système suivant l'une des revendications 1 à 5, dans lequel les moyens auxiliaires comprennent deux cartographies (F1, F2) reliant chacune les fréquence de rotation du moteur, et des valeurs de fréquence de signal (FPWM), les valeurs de fréquence de signal (FPWM) de l'une des cartographies étant systématiquement inférieures aux valeurs de fréquence de signal de l'autre cartographie.
  7. Système selon l'une des revendications 1 à 6, où ledit système de pompe comprend une pompe auxiliaire dite basse-pression (50) couplée entre l'actuateur (9) et ledit réservoir de carburant (6), lesdits moyens auxiliaires (42) étant aptes en outre à ajuster la fréquence du signal de commande de l'actuateur de façon qu'elle soit hors du voisinage d'une valeur entière de la fréquence de refoulement de ladite pompe auxiliaire basse-pression.
  8. Système selon l'une des revendications 1 à 7, où ledit système de pompe comprend une pompe auxiliaire dite haute-pression (51) couplée entre l'actuateur (9) et la rampe d'injection (4), lesdits moyens auxiliaires (42) étant aptes en outre à ajuster la fréquence du signal de commande de l'actuateur (9) de façon qu'elle soit hors du voisinage d'une valeur entière de la fréquence d'aspiration de ladite pompe auxiliaire haute-pression.
  9. Système selon l'une des revendications 1 à 8, dans lequel lesdits moyens auxiliaires (42) sont aptes en outre à ajuster la fréquence du signal de commande de l'actuateur de façon qu'elle soit différente de la fréquence propre de l'actuateur (9) par rapport à son environnement.
  10. Système selon l'une des revendications 1 à 9, où la pompe est couplée audit réservoir de carburant via une boucle de retour comprenant un limitateur de pression mécanique (54), et dans lequel lesdits moyens auxiliaires (42) sont aptes en outre à ajuster la fréquence du signal de commande de l'actuateur de façon qu'elle soit différente de la fréquence propre dudit limitateur de pression mécanique (54) par rapport à son environnement.
  11. Système selon l'une des revendications 2 à 9, dans lequel au moins un des actuateurs de la pompe est un actuateur de débit ou de pression.
  12. Procédé de commande d'un système d'alimentation en carburant pour moteur à combustion interne comprenant un système de pompe disposé entre une rampe d'injection et un réservoir de carburant, dans lequel on utilise une grandeur de commande (IPWM) déterminée par une consigne de rapport de cycle (RCO) d'un signal de commande (UPWM) de type à modulation d'impulsion, pour effectuer des ajustements successifs de l'ouverture d'un actuateur du système de pompe, caractérisé par le fait que l'on augmente l'amplitude des oscillations de ladite grandeur de commande (IPWM) autour d'une valeur moyenne, si la valeur de ladite consigne de rapport de cycle (RCO) est comprise dans une plage de valeur prédéfinie.
EP07847762.7A 2006-12-12 2007-12-04 Système d'alimentation en carburant pour moteur à combustion interne et procédé de commande correspondant Active EP2102476B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655433A FR2909724B1 (fr) 2006-12-12 2006-12-12 Systeme d'alimentation en carburant pour moteur a combustion interne et procede de commande correspondant
PCT/EP2007/063258 WO2008071597A1 (fr) 2006-12-12 2007-12-04 Systeme d'alimentation en carburant pour moteur a combustion interne et procede de commande correspondant

Publications (2)

Publication Number Publication Date
EP2102476A1 EP2102476A1 (fr) 2009-09-23
EP2102476B1 true EP2102476B1 (fr) 2018-08-29

Family

ID=38289998

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07847762.7A Active EP2102476B1 (fr) 2006-12-12 2007-12-04 Système d'alimentation en carburant pour moteur à combustion interne et procédé de commande correspondant

Country Status (3)

Country Link
EP (1) EP2102476B1 (fr)
FR (1) FR2909724B1 (fr)
WO (1) WO2008071597A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900010059A1 (it) * 2019-06-25 2020-12-25 Bosch Gmbh Robert Sistema e metodo di controllo di una elettrovalvola di dosaggio in un gruppo di pompaggio per alimentare combustibile ad un motore a combustione interna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4020654C2 (de) * 1990-06-29 1999-12-16 Bosch Gmbh Robert Regelverfahren in Verbindung mit einer Brennkraftmaschine und/oder einem Kraftfahrzeug und Regelvorrichtung zur Durchführung des Regelverfahrens
EP0671557B1 (fr) * 1992-03-26 1998-09-02 Zexel Corporation Dispositif d'injection de carburant
JP4841772B2 (ja) * 2001-09-28 2011-12-21 いすゞ自動車株式会社 コモンレール式燃料噴射制御装置

Also Published As

Publication number Publication date
WO2008071597A1 (fr) 2008-06-19
EP2102476A1 (fr) 2009-09-23
FR2909724A1 (fr) 2008-06-13
FR2909724B1 (fr) 2009-02-27

Similar Documents

Publication Publication Date Title
CA2597939C (fr) Dispositif d'alimentation en carburant d'un moteur a turbine a gaz avec debit de carburant regule
FR2883040A1 (fr) Moteur a combustion interne et procede de gestion de celui-ci
EP2925987A1 (fr) Procédé de commande d'un moteur thermique équipé d'une double suralimentation
FR2771450A1 (fr) Commande de la pression d'alimentation d'un moteur a combustion interne suralimente et utilisation de cette commande
CA2597938A1 (fr) Alimentation en carburant d'un moteur d'aeronef
FR3068114A1 (fr) Systeme d'alimentation en fluide pour turbomachine, comprenant une pompe a cylindree variable suivie d'un doseur de fluide
EP1155229B1 (fr) Procede et systeme de controle de la pression d'une pompe a carburant a haute pression pour l'alimentation d'un moteur a combustion interne
FR2967469A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
EP2102476B1 (fr) Système d'alimentation en carburant pour moteur à combustion interne et procédé de commande correspondant
FR2879662A1 (fr) Procede de gestion d'un moteur a combustion interne
FR2754310A1 (fr) Groupe motopropulseur pour avion et son procede de commande
FR2959032A1 (fr) Procede et dispositif de gestion d'un actionneur de volet pour commander un debit massique
FR2988774A1 (fr) Systeme de commande des ailettes d'une turbine a geometrie variable a apprentissage et linearisation
EP3475547B1 (fr) Circuit et procédé de dosage de carburant à compensation de variabilité de la densité du carburant
WO2016051044A1 (fr) Moteur a combustion de véhicule automobile a pilotage de richesse améliore
FR2801344A1 (fr) Procede et dispositif de reglage d'un moteur a combustion interne a commande variable des soupapes
FR2818313A1 (fr) Procede pour la regulation d'un dispositif de chargement pour un moteur a combustion interne
EP2042222A1 (fr) Dispositif et procédé de détection de l'encrassement d'un filtre à carburant d'un système d'alimentation en carburant d'un moteur à combustion interne
FR2914699A1 (fr) Systeme et procede d'alimentation en carburant pour moteur a combustion interne
EP2452060B1 (fr) Procede de controle d'un debit d'air injecte dans un moteur, ensemble comprenant un calculateur mettant en uvre le procede et un vehicule comprenant l'ensemble
FR2885388A1 (fr) Procede de commande d'un moteur de vehicule comprenant un compresseur electrique
FR2997995A1 (fr) Procede de commande de pompe a huile a dilution reduite
FR2862092A1 (fr) Procede de gestion d'un moteur a combustion interne
FR3087494A1 (fr) Procédé et système de contrôle d’un régime moteur de véhicule
FR2617908A1 (fr) Systeme d'injection de carburant pour moteurs a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100202

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180405

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1035411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007055969

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1035411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007055969

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181204

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211222

Year of fee payment: 15

Ref country code: DE

Payment date: 20211210

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007055969

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221204

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 17