EP2102271A1 - Verfahren zur herstellung von dispersionen - Google Patents

Verfahren zur herstellung von dispersionen

Info

Publication number
EP2102271A1
EP2102271A1 EP07819836A EP07819836A EP2102271A1 EP 2102271 A1 EP2102271 A1 EP 2102271A1 EP 07819836 A EP07819836 A EP 07819836A EP 07819836 A EP07819836 A EP 07819836A EP 2102271 A1 EP2102271 A1 EP 2102271A1
Authority
EP
European Patent Office
Prior art keywords
oligomer
aqueous dispersion
polymer
inorganic particles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07819836A
Other languages
English (en)
French (fr)
Inventor
Gerhard Jonschker
Matthias Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP2102271A1 publication Critical patent/EP2102271A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a process for preparing an aqueous dispersion comprising at least one polymer and / or oligomer and inorganic surface-modified particles, wherein the
  • WO 2006/008120 discloses aqueous binder dispersions containing nanoparticles which contain nanoscale polymer particles dispersed in water or an aqueous colloidal solution, which envelop the nanoparticles.
  • the particles mentioned are produced by shearing the nanoparticles into an anhydrous polymer phase and incorporating the nanoparticle-containing polymer particles under shear in water.
  • the said production method has the disadvantage that high shear forces act on the nanoparticles and the polymer particles, which can lead to a detachment of the polymer shell from the nanoparticles.
  • the two-step process is very complex.
  • only nanoparticles in the form of dry powders or anhydrous dispersions are suitable for incorporation into the anhydrous polymer phase.
  • powdery nanoparticles are highly agglomerated and under normal conditions (shear forces) no longer completely deagglomerable. This applies in particular to pyrogenic silicas, as used in WO 2006/008120.
  • the preparation of anhydrous nanoparticle dispersions is very complicated and therefore expensive.
  • the nanoparticles must be compatibilized with the polymer and solvent phase. By introducing reactive nanoparticles into a solvent phase, the
  • the dispersion obtained should be applicable in the coating and coating technology as well as in adhesive applications by conventional methods such as rolling, spraying, brushing, casting or rolling.
  • This object is achieved by a process for producing an aqueous dispersion comprising at least one polymer and / or oligomer (B) and inorganic surface-modified particles, wherein the polymer and / or oligomer (B) envelopes the modified surface inorganic particles, and by the process dissolved dispersions dissolved.
  • the process for producing the dispersion according to the invention comprises the following steps: a) preparing a dispersion of inorganic particles in water or a water-solvent mixture and modifying the surface of the inorganic particles in the aqueous dispersion by adding a surface modifier b) preparing an oligomer (A) Polymerization of suitable monomers in a solvent or solvent mixture c) mixing the oligomer (A) from step b) with the aqueous dispersion from step a) and further polymerizing the oligomer (A) to obtain a polymer and / or oligomer (B).
  • step a) of the method according to the invention is first a
  • the dispersion may be prepared by dispersing inorganic particles in water or a water-solvent mixture.
  • the dispersion is preferably carried out by stirring.
  • Suitable solvents in the water-solvent mixture are, for example, alcohols, ketones or cyclic ethers, in particular ethanol, acetone, ethyl methyl ketone, THF or dioxane.
  • the proportion of the solvent in the water / solvent mixture can be up to 95% by weight, preferably up to 80% by weight, based on the mixture.
  • the dispersion can be carried out at temperatures between freezing and boiling point of the particular solvent used, preferably at room temperature.
  • the inorganic particles are prepared from suitable precursors directly in water or in the water-solvent mixture generated.
  • suitable precursors are reacted in water or a water-solvent mixture to form corresponding particles which are then dispersed in water or in the water / solvent mixture.
  • Corresponding processes are known to the person skilled in the art and are described, for example, in US Pat. No. 4,775,520 (Unger et al., Stöber Synthesis) or Her "The Chemistry of Silica” or Brinker / Scherer "The Sol-GeI Process". - A -
  • Suitable particles for the present invention are preferably selected from the group of oxides, mixed oxides, carbides, borides and nitrides of elements of II. To IV. Main group and / or elements of the I. to VIII. Subgroup of the Periodic Table including the lanthanides.
  • the inorganic particles are in particular preferably nanoparticles, in particular selected from the group consisting of hydrophilic and hydrophobic, in particular hydrophilic, nanoparticles based on oxides or hydroxides of silicon, titanium, zinc, aluminum, cerium, cobalt, chromium, nickel, Iron, yttrium and / or zirconium, or with oxides or hydroxides of silicon coated metals, such as Ag, Cu, Fe, Au, Pd, Pt or alloys.
  • the particles based on oxides or hydroxides of titanium, zinc, aluminum, cerium, cobalt, chromium, nickel, iron, yttrium and / or zirconium may optionally be coated with oxides or hydroxides of silicon.
  • the individual oxides can also be present as mixtures.
  • the inorganic particles preferably have an average particle size, determined by means of a Malvern ZETASIZER (dynamic light scattering) or transmission electron microscope, of from 3 to 200 nm, in particular from 5 to 80 nm and very particularly preferably from 10 to 50 nm. Particular preference is given to using nanoparticles, particularly preferably based on silicon dioxide, aluminum oxide, cerium oxide, zirconium oxide and / or titanium dioxide.
  • nanoparticles in the form of powders are silicon dioxides, eg. As pyrogenic silicic acids such as Aerosil 200, Aerosil TT 600, Aerosil OX 50 and Aerosil 7200 from. Degussa AG or nanoscale silica produced by plasma processes, such as. KADESIT040-100 from KDS NANO, titanium dioxides such as pyrogenic titanium dioxide P25 from Degussa AG, or Hombitec RM 300 from Sachtleben Chemie GmbH, aluminum oxides, eg. As pyrogenic alumina C from the company. Degussa AG or z. B.
  • NanoTek TM alumina produced by plasma processes PureNano TM alumina from NanoProducts Co ⁇ oration or NanoDur TM alumina from Nanophase Technologies Corporation, as well as other nanoscale metal oxides that have been prepared by means of physical-chemical processes, such as. As flame pyrolysis or plasma processes are prepared, for. As cerium oxides such as NanoTek
  • nanohektorites which are sold, for example, by the company S ⁇ dchemie under the brand Optigel® or by the company Laporte under the brand Laponite®, can also be used.
  • silica sols (SiO 2 in water) prepared from ion-exchanged waterglass are also particularly preferred.
  • the surface of the inorganic particles in the aqueous dispersion is modified by the addition of a surface modifier.
  • Modification of the surface in the sense of the present invention means that compounds are present under the covalent bond or bound by means of adsorptive interactions on the surface of the inorganic particles.
  • the modification of the surface of the inorganic particles preferably takes place by covalent bonding of corresponding compounds on the surface. In this way, a particularly stable system of particles and surface modifier is produced.
  • Suitable surface modifiers are in the broadest sense compounds of the general formula (I) [(S-) o L-] m M (R) n (H) p (I) wherein the indices and the variables have the following meaning:
  • L is at least divalent organic linking group; H hydrolyzable monovalent group or hydrolyzable atom;
  • M is a two to six valent main group and subgroup metal
  • R is a monovalent organic radical; o is an integer from 1 to 5; m + n + p is an integer from 2 to 6; p is an integer from 1 to 6; m and n are zero or an integer from 1 to 5.
  • the group S may for example be selected from the group of the amino, amide, carboxy, mercapto, isocyanato, hydroxy, alkoxy, alkoxycarbonyl, acryloyloxy, methacryloxy or epoxy groups.
  • Group L are usually alkyl, alkenyl, aryl, alkylaryl, arylalkyl, arylalkenyl, alkenylaryl radicals, preferably each having 1 to 12 and especially 1 to 8 carbon atoms, including cyclic forms.
  • the group H can be any group which hydrolyzes under basic or acidic conditions, for example from the class of alkoxy groups.
  • M is preferably Ti, Zr, Si or Al. For example, it may be isopropyl triisostearoyl titanate or
  • Neopentyl (diallyl) oxytrineodecanoylzirconate used as a surface modifier.
  • M Si
  • R is very particularly preferably selected from alkoxy groups.
  • Alkoxysilanes which are particularly preferred for the purposes of the present invention correspond to the general formula (II): RVxSi (OR) x (II) in which the radicals R are identical or different from one another, are preferably identical and represent optionally substituted, preferably unsubstituted hydrocarbon groups having 1 to 8, preferably 1 to 6 and particularly preferably 1 to 4 carbon atoms.
  • R is methyl or ethyl.
  • the radicals R 1 may be identical or different from each other, each represents an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, x in formula (II) is 1, 2 or 3.
  • radicals R 1 are alkyl, alkenyl, aryl, alkylaryl, arylalkyl, arylalkenyl, alkenylaryl radicals, preferably having in each case 1 to 12 and in particular 1 to 8 carbon atoms, cyclic forms being included ,
  • the radicals R 1 carry one or more substituents from the group of halogens and optionally substituted amino, amide, carboxy, mercapto, isocyanato, hydroxy, alkoxy, alkoxycarbonyl, acryloyloxy, methacryloxy or epoxy groups ,
  • Particularly preferred among the above alkoxysilanes of the general formula (II) is at least one in which at least one radical R 1 has a grouping which can undergo a polyaddition, polymerization or a polycondensation reaction.
  • Polyaddition or polycondensation reaction capable grouping is preferably an amino, diamino, polyamino, hydrazino, ketimino, hydroxy or epoxy group.
  • preferred organically modified alkoxysilanes of the general formula (II) for use as surface modifier in the present invention are those in which x is 2 or 3 and in particular 3 and one radical R 1 or the only radical R 1 for ⁇ -glycidyloxy C 2 - 6 alkyl.
  • the surface modifiers mentioned are reactive compounds that can react with the binder and / or binder precursors.
  • the radical R ' has an amino, diamino, polyamino, hydrazino or ketimino group. Be as
  • the said surface modifiers can react via the amino, diamino, polyamino, hydrazino or Ketimino phenomenon with the polymer and / or oligomer and in this way a particularly strong linkage of particles and polymer guarantee.
  • the rapid reaction between an amino group and a terminal isocyanate group preferably present in the oligomer (A) ensures that the growth process on the particles is faster than the reaction between the isocyanate group and water.
  • the particles can thus serve as growth centers for the polymers and are therefore structurally determining. This raises the possibility of particle size control of the polymer / nanoparticle dispersion. Furthermore, crosslinking of the polymer chains with each other is reduced, which lowers the viscosity of the entire system.
  • silanes are 3-glycidoxypropyltri (m) ethoxysilane, 3,4-epoxybutyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • Particularly suitable compounds are 3-aminopropyltriethoxysilane, N-ethyl-gamma-aminoisobutyltriethoxysilane, secondary aminosilanes (A-Link 15, Y9669, bis-gamma-triethoxysilylpropylamine, from GE Silicones) or N-butylaminopropyltrimethoxysilane, where 3-aminopropyltriethoxysilane and N-butylaminopropyltrimethoxysilane very particularly preferably be used as a surface modifier.
  • step b) of the process according to the invention an oligomer (A) by polymerization of suitable monomers in a solvent or
  • the oligomer (A) preferably has terminal isocyanate groups, epoxy groups and optionally radically polymerizable groups. Furthermore, the oligomer (A) obtained in step b) may contain radiation-curable groups. For this purpose, UV / VIS, ⁇ , ⁇ electron beams or other high-energy rays come into question. However, it is also possible that the aqueous dispersion is a non-radiation-curing, e.g. air-forced, forced or under Einbrennclaim contains drying polymer and / or oligomer, which can be used both in one-component and in multicomponent coating compositions and optionally
  • the oligomer (A) particularly preferably also has ionic groups, precursors of ionic groups, for example carboxylic acids, and / or amphiphilic groups.
  • the oligomers (A) typically consist of polyethers, polyesters,
  • the added oligomer (A) is selected from the class of terminal isocyanate-modified polyurethanes / polyureas, for example as polyurethane prepolymers, as capped prepolymers or as reacted polyurethanes in the form of a melt or solution / dispersion.
  • polyisocyanates and polyols are suitable as precursors for the oligomer (A).
  • common precursors which are suitable for the preparation of corresponding polyurethane polymers include, for example, HDI (hexamethylene diisocyanate), IPDI (isophorone diisocyanate), diols, 2,2 ' -
  • silanes into the polyurethane prepolymer, for example aminosilanes or hydroxy-functional silanes.
  • a preferred embodiment consists in that the polyurethane prepolymer also has UV-curable groups, for example by copolymerizing HEMA or maleic / fumaric acid derivatives into the prepolymer.
  • the preparation of the polymers and / or oligomers (A) can be carried out catalytically or thermally induced. In the simplest embodiment, the preparation of the oligomers (A) takes place catalytically.
  • Suitable catalysts are, for example, organic tin compounds, such as dibutyltin dilaurate or metal salts of
  • Ethylhexanoic acid such as: zinc ethylhexanoate.
  • All methods known to the person skilled in the art for the preparation of polyesters, polyethers, polyurethanes, polyureas or mixtures / blends can be used in the step according to the invention.
  • the reaction time of the preparation of the oligomers (A) according to step b) of the process according to the invention is usually from a few minutes to several hours.
  • step c) of the process according to the invention the oligomer (A) from step b) and the aqueous dispersion from step a) are mixed and the polymer and / or oligomer (B) are prepared by further polymerization of the oligomer (A).
  • the oligomer (A) obtained in step b) and the dispersion obtained from step a) are mixed. This is done in the simplest case by simply stirring the corresponding oligomer (A), for example by the use of shear forces.
  • the amount of oligomer (A) is chosen so that in the aqueous dispersion, the proportion of the oligomer (A) is 5 to 70 wt .-%.
  • the oligomer (A) on to the polymer and / or oligomer (B) are reacted.
  • all polymerization methods known to the person skilled in the art are suitable; the preparation of the polymer and / or oligomer (B) is preferably carried out by a polyaddition, polycondensation or by anionic polymerization in solution.
  • the precursors already used in the preparation of the oligomers (A) can be used for the preparation of the corresponding polymers and / or oligomers (B).
  • aqueous dispersions comprising at least one polymer and / or oligomer (B) and inorganic surface-modified particles, wherein the polymer and / or oligomer (B) envelops the inorganic surface-modified particles obtainable by a process according to the present invention
  • the surface modifiers are covalently bonded to the surface of the particles.
  • the surface-modified inorganic particles can be more consistently incorporated into the polymer and / or oligomer (B) to be produced in the last step of the process according to the invention, because the
  • dispersions of the invention have the advantage that water-based nanoparticle dispersions can be used and can be dispensed with the difficult transfer of the particles in solvent-based dispersions. Furthermore, the nanoparticles act as
  • Nucleating agents and structuring agent for the growing polymers This makes it possible to control the particle size of the dispersions. Since no deagglomeration of the particles is necessary, the dispersion can be prepared under milder conditions (lower shear forces). The viscosity is lower by using non-agglomerated or unaggregated particles. Pre-crosslinking of polymers and particles in the solvent phase is avoided. Furthermore, the formation of polymer droplets is favored, containing only a nanoparticle as a core. Due to the covalent attachment and the "burying" of the inorganic nanoparticles under the polymer shell
  • the polymer and / or oligomer (B) in the dispersion according to the invention preferably has a molecular weight of at least 500 g / mol, more preferably of at least 800 g / mol to max. 500,000 g / mol on.
  • the molecular weight is preferably between 5,000 and 50,000 g / mol,
  • Polymer particles preferably have an average particle diameter between 20 and 500 nm, more preferably between 30 and 200 nm.
  • the nanoparticles contained in the polymer particles since they are enveloped by the polymer of the polymer particle, must have a smaller particle diameter than the polymer particles themselves.
  • the aqueous dispersion according to the present invention preferably contains 5 to 70% by weight, preferably 5 to 60% by weight, of nanoparticle-containing polymer particles based on the entire composition.
  • the aqueous dispersion contains
  • Suitable emulsifiers are saturated and unsaturated fatty alcohol ethoxylates having 8 to 15 C atoms in the fatty alkyl radical, alkylphenol ethoxylates having 6 to 13 C atoms in the alkyl radical and 4 to 100 ethylene oxide units, preferably lauryl alcohol ethoxylates, isotridekanol ethoxylates and octyl and nonylphenol ethoxylates having from 6 to 50 ethylene oxide units.
  • emulsifiers of a hydrophilic and a hydrophobic component in the ratio 1: 5 to 5: 1, e.g. one part lauryl alcohol 4 EO and three parts lauryl alcohol 40 EO.
  • the emulsifiers are used in a total amount of 0 to 15% by volume of the dispersion, preferably 0.8 to 10% by volume of the dispersion.
  • esters and ethoxylated esters of sorbitan such as those offered under the trademarks Tween and Span.
  • Tween 20 and Span 60 in the weight% ratio 1: 1 to 1: 7. More preferably, 3 to 15% by weight of the hydrophobic
  • Emulsifier replaced by oleylsarcoside.
  • the resulting dispersions are storage stable, without sedimentation and without changing the particle size distribution.
  • the protective colloids and / or emulsifiers are preferably used in an amount of 0.1 to 10 wt .-%, based on the total dispersion.
  • additives and additives in the aqueous dispersion preference is given to catalysts, co-catalysts, free-radical formers, photoinitiators, photosensitizers, water repellents, matting agents, lubricants, defoamers, deaerators, wetting agents, leveling agents, thixotropic agents, thickeners, inorganic and organic
  • additives and additives are water-soluble monomers which are polymerizable thermally and / or with high-energy radiation, preferably (meth) acrylic acid, (meth) acrylamide,
  • esters of meth (acrylic acid) with branched and / or linear C 1 -C 6 -alkyl radicals are used as additives / additives.
  • the aqueous dispersion preferably has a viscosity in the range of 1 to 800 mPas at 20 ° C.
  • aqueous dispersions according to the invention are used as coating and coating compositions or as adhesives and sealants. They are preferably used for the production of scratch, abrasion and adhesion-resistant layers, layers with increased chemical or mechanical strength and / or barrier layers.
  • Nanoparticle-containing varnish of the present invention has improved gloss retention (Example 2) and is thus more scratch resistant.
  • Coating and coating compositions or adhesives and sealants containing dispersions according to the present invention are likewise provided by the present invention.
  • the subject matter according to the application is intended to be explained in more detail with reference to the following examples, without restricting it to the specific embodiments mentioned here.
  • Example 1a Preparation of a PU Dispersion as Reference:
  • the entire mixture is further mixed for 20 minutes under high shear forces.
  • the resulting PU dispersion is filtered through a 280 ⁇ m fast sieve and has a pH of 8.5 and a solids content of 41.5%.
  • the dispersion is knife-coated with a 200 micron doctor blade on a black / white paint cards and at 80 0 C for 30 min. dried.
  • Example 1b Preparation of a Nanoparticle Dispersion
  • the mixture is rapidly 13.14 g of triethylamine and 126 g of a 20% dispersion of aminopropyltrimethoxysilane-modified SiO 2 nanoparticles (with 2% by mass of aminosilane, based on the dry mass) supplied in deionized water.
  • deionized water supplied in deionized water.
  • 18 g of 2-methylpentamethylenediamine and 382 g of deionized water are mixed and added slowly to the mixture with constant stirring.
  • the entire mixture is further mixed for 20 minutes under high shear forces.
  • the resulting PU dispersion is filtered through a 280 ⁇ m fast sieve and has a pH of 8.5 and a solids content of 41.5%.
  • the dispersion is knife-coated with a 200 micron doctor blade on a black / white paint cards and at 80 0 C for 30 min. dried.
  • the paints were after application and drying on the color cards with a commercial Glossmeter (Byk-Gardner) at 20 °

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer wässrigen Dispersion umfassend mindestens ein Polymer und/oder Oligomer sowie anorganische oberflächenmodifizierte Partikel, wobei das Polymer und/oder Oligomer die anorganischen Partikel mit modifizierter Oberfläche umhüllt, mit dem Verfahren hergestellte Dispersionen und deren Verwendung in Lack- oder Beschichtungssystemen sowie als Kleb- oder Dichtstoffe.

Description

Verfahren zur Herstellung von Dispersionen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer wässrigen Dispersion umfassend mindestens ein Polymer und/oder Oligomer sowie anorganische oberflächenmodifizierte Partikel, wobei das
Polymer und/oder Oligomer die anorganischen Partikel mit modifizierter Oberfläche umhüllt, mit dem Verfahren hergestellte Dispersionen und deren Verwendung in Lack- oder Beschichtungssystemen sowie als Kleb- oder Dichtstoffe.
Aus der WO 2006/008120 sind wässrige Bindemitteldisperionen mit Nanopartikeln bekannt, die in Wasser oder einer wässrigen kolloidalen Lösung dispergierte, nanoskalige Polymerpartikel, die die Nanopartikel umhüllen, enthält. Die genannten Partikel werden hergestellt, in dem die Nanopartikel unter Scherung in eine wasserfreie Polymerphase eingearbeitet werden und die erhaltenen Nanopartikel enthaltenden Polymerpartikel unter Scherung in Wasser eingearbeitet werden. Das genannte Herstellverfahren hat den Nachteil, dass hohe Scherkräfte auf die Nanopartikel und die Polymerpartikel einwirken, die zu einer Ablösung der Polymerhülle von den Nanopartikeln führen kann. Weiterhin ist der zweistufige Prozess sehr aufwändig. Darüber hinaus sind für die Einarbeitung in die wasserfreie Polymerphase nur Nanoteilchen in Form trockener Pulver oder wasserfreier Dispersionen geeignet. Pulverförmige Nanoteilchen sind allerdings stark agglomeriert und unter üblichen Bedingungen (Scherkräfte) nicht mehr vollständig deagglomerierbar. Dies gilt insbesondere für pyrogene Kieselsäuren, wie sie in WO 2006/008120 verwendet werden. Die Herstellung wasserfreier Nanoteilchendispersionen ist sehr aufwändig und daher teuer. Die Nanoteilchen müssen mit der Polymer- und Lösemittelphase kompatibilisiert werden. Durch das Einbringen reaktiver Nanoteilchen in eine Lösemittelphase wird das
Entstehen von Agglomeraten und vernetzten Aggregaten mit den darin enthaltenen Oligomeren begünstigt. Bei der nachfolgenden Überführung in eine wässrige Phase ist es wahrscheinlich, dass ein Oligomertröpfchen mehr als ein Nanoteilchen enthält. Man kann daher keine definierten Kern/Hülle-Partikel mit diesem Verfahren erzeugen sondern erhält Zusammenballungen aus mehreren Nanoteilchen und Polymer.
Es besteht also ein Bedarf an alternativen Verfahren zur Herstellung entsprechender Dispersionen.
Ausgehend hiervon war es Aufgabe der vorliegenden Erfindung, alternative Verfahren zur Herstellung von Dispersionen sowie entsprechende Dispersionen bereitzustellen, die einfacher durchzuführen sind bzw. verbesserte Eigenschaften gegenüber Dispersionen aus dem Stand der Technik haben. Gleichzeitig soll die erhaltene Dispersion in der Lackier- und Beschichtungstechnik sowie in Klebstoffanwendungen mit herkömmlichen Methoden wie Walzen, Spritzen, Streichen, Gießen oder Rollen applizierbar sein.
Diese Aufgabe wird durch ein Verfahren zur Herstellung einer wässrigen Dispersion umfassend mindestens ein Polymer und/oder Oligomer (B) und anorganische oberflächenmodifizierte Partikel, wobei das Polymer und/oder Oligomer (B) die anorganischen Partikel mit modifizierter Oberfläche umhüllt, sowie durch mit dem Verfahren hergestellte Dispersionen gelöst.
Das Verfahren zur Herstellung der erfindungsgemäßen Dispersion umfasst dabei folgende Schritte: a) Herstellen einer Dispersion anorganischer Partikel in Wasser oder einem Wasser-Lösemittelgemisch und Modifizieren der Oberfläche der anorganischen Partikel in der wässrigen Dispersion durch Zusatz eines Oberflächenmodifikators b) Herstellen eines Oligomers (A) durch Polymerisation geeigneter Monomere in einem Lösemittel oder Lösemittelgemisch c) Mischen des Oligomers (A) aus Schritt b) mit der wässrigen Dispersion aus Schritt a) und weitere Polymerisation des Oligomers (A) unter Erhalt eines Polymers und/oder Oligomers (B).
Gemäß Schritt a) des erfindungsgemäßen Verfahrens wird zunächst eine
Dispersion anorganischer Partikel in Wasser oder einem Wasser- Lösemittelgemisch hergestellt.
In einer Ausführungsform der vorliegenden Erfindung kann die Herstellung der Dispersion durch Dispergieren anorganischer Partikel in Wasser oder einem Wasser-Lösemittelgemisch erfolgen. Das Dispergieren erfolgt vorzugsweise durch Rühren. Als Lösemittel im Wasser-Lösemittelgemisch eignen sich beispielsweise Alkohole, Ketone oder zyklische Ether, insbesondere Ethanol, Aceton, Ethylmethylketon, THF oder Dioxan. Der Anteil des Lösemittels in dem Wasser-Lösemittelgemisch kann bis zu 95 Gew.-%, vorzugsweise bis zu 80 Gew.-%, bezogen auf die Mischung, betragen. Die Dispergierung kann bei Temperaturen zwischen Gefrier- und Siedepunkt des jeweils eingesetzten Lösemittels erfolgen, vorzugsweise bei Raumtemperatur.
Es ist darüber hinaus in einer weiteren Ausführungsform der vorliegenden Erfindung auch möglich, entsprechende anorganische Partikel in Wasser oder einem Wasser-Lösemittelgemisch herzustellen und die somit erhaltene Dispersion direkt einzusetzen, das heißt die anorganischen Partikel werden aus geeigneten Vorstufen direkt in Wasser oder dem Wasser-Lösemittelgemisch erzeugt. Zur Erzeugung der Partikel werden geeignete Vorstufen in Wasser oder einem Wasser-Lösemittelgemisch unter Ausbildung entsprechender Partikel, die dann dispergiert in Wasser oder dem Wasser-Lösemittelgemisch vorliegen, zur Reaktion gebracht. Entsprechende Verfahren sind dem Fachmann bekannt und beispielsweise in US 4,775,520 (Unger et al.; Stöber Synthese) oder Her „The Chemistry of Silica" oder Brinker/Scherer „The SoI-GeI Process" beschrieben. - A -
Für die vorliegende Erfindung geeignete Partikel sind vorzugsweise ausgewählt aus der Gruppe der Oxide, Mischoxide, Karbide, Boride und Nitride von Elementen der II. bis IV. Hauptgruppe und/oder Elementen der I. bis VIII. Nebengruppe des Periodensystems einschließlich der Lanthaniden. Bei den anorganischen Partikeln handelt es sich insbesondere bevorzugt um Nanopartikel, insbesondere ausgewählt aus der Gruppe umfassend hydrophile und hydrophobe, insbesondere hydrophile Nanopartikel auf der Basis von Oxiden bzw. Hydroxiden von Silizium, Titan, Zink, Aluminium, Cer, Cobalt, Chrom, Nickel, Eisen, Yttrium und/oder Zirkonium, oder mit Oxiden bzw. Hydroxiden von Silizium beschichteten Metallen, wie beispielsweise Ag, Cu, Fe, Au, Pd, Pt oder Legierungen. Die Partikel auf Basis von Oxiden bzw. Hydroxiden von Titan, Zink, Aluminium, Cer, Cobalt, Chrom, Nickel, Eisen, Yttrium und/oder Zirkonium können optional mit Oxiden bzw. Hydroxiden von Silizium beschichtet sein. Die einzelnen Oxide können auch als Gemische vorliegen.
Vorzugsweise weisen die anorganischen Partikel eine mittlere Teilchengröße, bestimmt mittels eines Malvern ZETASIZER (dynamischer Lichtstreuung) bzw. Transmissionselektronenmikroskop, von 3 bis 200 nm, insbesondere von 5 bis 80 nm und ganz besonders bevorzugt von 10 bis 50 nm auf. Besonders bevorzugt werden Nanopartikel, insbesondere bevorzugt auf der Basis von Siliziumdioxid, Aluminiumoxid, Ceroxid, Zirkonoxid und/oder Titandioxid verwendet.
Beispiele für Nanopartikel in Form von Pulvern sind Siliziumdioxide, z. B. pyrogene Kieselsäuren wie Aerosil 200, Aerosil TT 600, Aerosil OX 50 und Aerosil 7200 der Fa. Degussa AG oder mittels Plasmaverfahren hergestellte nanoskalige Siliziumdioxide, wie z. B. KADESIT040-100 der Fa. KDS NANO, Titandioxide wie pyrogenes Titandioxid P25 der Fa. Degussa AG, oder Hombitec RM 300 der Fa. Sachtleben Chemie GmbH, Aluminiumoxide, z. B. pyrogenes Aluminiumoxid C der Fa. Degussa AG oder z. B. mittels Plasmaverfahren hergestelltes PureNano™ Aluminiumoxid der Fa. NanoProducts Coφoration oder NanoDur™ Aluminiumoxid der Fa. Nanophase Technologies Corporation, zudem weitere nanoskalige Metalloxide, die mittels physikalisch-chemischer Verfahren, wie z. B. Flammenpyrolyse oder Plasmaprozessen, hergestellt werden, z. B. Ceroxide wie NanoTek
Ceroxid der Fa. Nanophase Technologies Corporation, Zirkonoxide der Fa. inocermic GmbH oder NanoGard Zinkoxid der Fa. Nanophase Technologies Corporation, nanoskalige Bariumsulfate, z. B. Sachtoperse® HU-N der Fa. Sachtleben Chemie GmbH, Schichtsilikate, z. B. Nanofil® 15 der Fa. Sid-Chemie AG und nanoskalige Bohmite, z. B. Disperal der Fa. Sasol Chemical Industries Ltd.
Weiterhin können auch Nanohektorite, die beispielsweise von der Firma Sϋdchemie unter der Marke Optigel ® oder von der Firma Laporte unter der Marke Laponite ® vertrieben werden, verwendet werden. Weiterhin sind auch Kieselsole (Siθ2 in Wasser), hergestellt aus ionengetauschtem Wasserglas, besonders bevorzugt.
Zusätzlich wird gemäß Schritt a) des erfindungsgemäßen Verfahrens die Oberfläche der anorganischen Partikel in der wässrigen Dispersion durch Zusatz eines Oberflächenmodifikators modifiziert. Modifizierung der Oberfläche im Sinne der vorliegenden Erfindung bedeutet, dass auf der Oberfläche der anorganischen Partikel Verbindungen unter kovalenter Bindung oder mittels adsorptiver Wechselwirkungen gebunden vorliegen. Vorzugsweise erfolgt die Modifizierung der Oberfläche der anorganischen Partikel durch kovalente Anbindung entsprechender Verbindungen auf der Oberfläche. Auf diese Weise wird ein besonders stabiles System aus Partikel und Oberflächenmodifikator erzeugt.
Geeignete Oberflächenmodifikatoren sind im weitesten Sinne Verbindungen der allgemeinen Formel (I) [(S-)o-L-]mM(R)n(H)p (I) worin die Indizes und die Variablen die folgende Bedeutung haben:
S reaktive funktionelle Gruppe;
L mindestens zweibindige organische verknüpfende Gruppe; H hydrolysierbare einbindige Gruppe oder hydrolisierbares Atom;
M zwei- bis sechswertiges Hauptgruppen- und Nebengruppen-Metall;
R einbindiger organischer Rest; o eine ganze Zahl von 1 bis 5; m+n+p eine ganze Zahl von 2 bis 6; p eine ganze Zahl von 1 bis 6; m und n Null oder eine ganze Zahl von 1 bis 5.
Die Gruppe S kann beispielsweise ausgewählt sein aus der Gruppe der Amino-, Amid-, Carboxy-, Mercapto-, Isocyanato-, Hydroxy-, Alkoxy-, Alkoxycarbonyl-, Acryloxy-, Methacryloxy- oder Epoxygruppen. Bei der
Gruppe L handelt es sich üblicherweise um Alkyl-, Alkenyl, Aryl-, Alkylaryl-, Arylalkyl, Arylalkenyl-, Alkenylaryl-Reste, vorzugsweise mit jeweils 1 bis 12 und insbesondere 1 bis 8 Kohlenstoffatomen, wobei cyclische Formen eingeschlossen sind. Die genannten Reste können durch Sauerstoff-, Schwefel-, Stickstoffatome oder die Gruppe NR" mit R" = Wasserstoff oder Ci-4-Alkyl unterbrochen sein. Die Gruppe H kann jede Gruppe sein, die unter basischen oder sauren Bedingungen hydrolysiert, beispielsweise aus der Klasse der Alkoxygruppen. M ist vorzugsweise Ti, Zr, Si oder AI. Beispielsweise kann es Isopropyltriisostearoyltitanat oder
Neopentyl(diallyl)oxytrineodecanoylzirkonat, als Oberflächenmodifikator eingesetzt werden.
Vorzugsweise ist M = Si, das heißt die Oberflächenmodifikatoren sind ausgewählt aus der Gruppe der Silane. In diesem Falle ist R ganz besonders bevorzugt ausgewählt aus Alkoxygruppen. Im Sinne der vorliegenden Erfindung besonders bevorzugte Alkoxysilane entsprechen der allgemeinen Formel (II): RVxSi(OR)x (II) in welcher die Reste R gleich oder verschieden voneinander sind, vorzugsweise gleich sind und gegebenenfalls substituierte, vorzugsweise unsubstituierte Kohlenwasserstoffgruppen mit 1 bis 8, bevorzugt 1 bis 6 und besonders bevorzugt 1 bis 4 Kohlenstoffatomen, darstellen.
Insbesondere bevorzugt bedeutet R Methyl oder Ethyl. Die Reste R1 können gleich oder verschieden voneinander sein, jeweils eine gegebenenfalls substituierte Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenstoffatomen darstellen, x in Formel (II) ist 1 ,2 oder 3.
Beispiele für Reste R1 gemäß obiger Formel (II) sind Alkyl-, Alkenyl, Aryl-, Alkylaryl-, Arylalkyl, Arylalkenyl-, Alkenylaryl-Reste, vorzugsweise mit jeweils 1 bis 12 und insbesondere 1 bis 8 Kohlenstoffatomen, wobei cyclische Formen eingeschlossen sind. Die genannten Reste können durch Sauerstoff-, Schwefel-, Stickstoffatome oder die Gruppe NR" mit R" = Wasserstoff oder Ci-4-Alkyl unterbrochen sein.
Vorzugsweise tragen die Reste R1 einen oder mehrere Substituenten aus der Gruppe der Halogene und der gegebenenfalls substituierten Amino-, Amid-, Carboxy-, Mercapto-, Isocyanato-, Hydroxy-, Alkoxy-, Alkoxycarbonyl-, Acryloxy-, Methacryloxy- oder Epoxygruppen.
Besonders bevorzugt befindet sich unter den obigen Alkoxysilanen der allgemeinen Formel (II) mindestens eines, in welchem mindestens ein Rest R1 über eine Gruppierung verfügt, die eine Polyadditions-, Polymerisations- oder eine Polykondensationsreaktion eingehen kann. Bei dieser zur
Polyadditions- oder Polykondensationsreaktion befähigten Gruppierung handelt es sich vorzugsweise um eine Amino-, Diamino-, Polyamino-, Hydrazino-, Ketimino-, Hydroxy- oder Epoxygruppe. Demgemäß sind beispielsweise bevorzugte organisch modifizierte Alkoxysilane der allgemeinen Formel (II) zur Verwendung als Oberflächenmodifikator in der vorliegenden Erfindung solche, in denen x 2 oder 3 und insbesondere 3 ist und ein Rest R1 bzw. der einzige Rest R1 für ω-Glycidyloxy-C2-6-alkyl steht. Bei den genannten Oberflächenmodifikatoren handelt es sich um reaktive Verbindungen, die mit dem Bindemittel und/oder den Bindemittelvorstufen reagieren können. In besonderer Weise bevorzugt verfügt der Rest R' über eine Amino-, Diamino-, Polyamino-, Hydrazino- oder Ketiminogruppe. Werden als
Polymer und/oder Oligomer in der wässrigen Dispersion Polyurethane eingesetzt, so können die genannten Oberflächenmodifikatoren über die Amino-, Diamino-, Polyamino-, Hydrazino- oder Ketiminogruppen mit dem Polymer und/oder Oligomer reagieren und auf diese Weise eine besonders feste Verknüpfung von Partikel und Polymer gewährleisten.
Die schnelle Reaktion zwischen einer Aminogruppe und einer in dem Oligomer (A) vorzugsweise vorhandenen, endständigen Isocyanatgruppe sorgt dafür, dass der Aufwachsprozess auf den Partikeln schneller ist, als die Reaktion zwischen der Isocyanatgruppe und Wasser. Die Partikel können somit als Wachstumszentren für die Polymere dienen und sind daher strukturbestimmend. Dadurch erwächst die Möglichkeit der Teilchengrößensteuerung der Polymer/Nanoteilchendispersion. Ferner wird ein Vernetzen der Polymerketten untereinander verringert, was die Viskosität des gesamten Systems senkt.
Konkrete Beispiele für geeignete Silane sind 3-Glycidoxypropyltri- (m)ethoxysilan, 3,4-Epoxybutyltrimethoxysilan und 2-(3,4-Epoxy- cyclohexyl)ethyltrimethoxysilan. Weitere Beispiele für geeignete Verbindungen mit x = 1 oder 2 sind 3-Glycidoxypropyldimethyl- (m)ethoxysilan, 3-Glycidoxypropylmethyldi(m)ethoxysilan oder 3- Mercaptopropyltrimethoxysilan.
Besonders geeignete Verbindungen sind 3-Aminopropyltriethoxysilan, N- ethyl-gamma-Aminoisobutyltriethoxysilan, sekundäre Aminosilane (A-Link 15, Y9669, Bis-gamma-triethoxysilylpropylamin, von GE Silicones) oder N- Butylaminopropyltrimethoxysilan, wobei 3-Aminopropyltriethoxysilan und N-Butylaminopropyltrimethoxysilan ganz besonders bevorzugt als Oberflächenmodifikator eingesetzt werden.
In Schritt b) des erfindungsgemäßen Verfahrens wird ein Oligomer (A) durch Polymerisation geeigneter Monomere in einem Lösemittel oder
Lösemittelgemisch hergestellt. Das Oligomer (A) weist vorzugsweise endständige Isocyanatgruppen, Epoxygruppen und gegebenenfalls radikalisch polymerisierbare Gruppen auf. Weiterhin kann das in Schritt b) erhaltene Oligomer (A) strahlenhärtbare Gruppen enthalten. Hierfür kommen UV/VIS-, α-, γ-Elektronenstrahlen oder und andere energiereiche Strahlen in Frage. Es ist aber auch möglich, dass die wässrige Dispersion ein nicht strahlenhärtendes, z.B. luft-, forciert oder unter Einbrennbedingungen trocknendes Polymer und/oder Oligomer enthält, welches sowohl in einkomponentigen als auch in mehrkomponentigen Beschichtungsmitteln zum Einsatz kommen kann und gegebenenfalls
Lösemittel enthalten kann. Das Oligomer (A) weist besonders bevorzugt auch ionische Gruppen, Vorstufen ionischer Gruppen, beispielsweise Carbonsäuren, und/oder amphiphile Gruppen auf.
Die Oligomere (A) bestehen typischerweise aus Polyethem, Polyestern,
Polyhamstoffen oder Polyurethanen. Es sind auch Polyacrylate möglich. In bevorzugter Weise ist das zugesetzte Oligomer (A) ausgewählt aus der Klasse der endständig isocyanat-modifizierten Polyurethane/Polyharnstoffe, beispielsweise als Polyurethanprepolymere, als verkappte Prepolymere oder als ausreagierte Polyurethane in Form einer Schmelze oder Lösung/Dispersion. In diesem Falle eignen sich beispielsweise Polyisocyanate und Polyole als Vorstufen für das Oligomer (A). Beispiele für gängige Vorstufen, die zur Herstellung entsprechender Polyurethanpolymere geeignet sind, umfassen beispielsweise HDI (Hexamethylendiisocyanat), IPDI (Isophorondiisocyanat), Diole, 2,2'-
Dimethylolpropionsäure, Aminosulfonate, Hydroxysulfonate, HEMA ((2- Hydroxyethyl)methacrylat). Zusätzlich zu diesen bekannten Komponenten können auch Silane mit in das Polyurethanpräpolymer eingebaut werden, wie z.B. Aminosilane oder hydroxyfunktionelle Silane. Eine bevorzugte Ausführungsform besteht darin, dass das Polyurethanpräpolymer auch UV-härtbare Gruppen aufweist, beispielsweise durch Einpolymerisieren von HEMA oder Malein/Fumarsäurederivaten in das Präpolymer.
Die Herstellung der Polymere und/oder Oligomere (A) kann katalytisch oder thermisch induziert durchgeführt werden. In der einfachsten Ausführungsform erfolgt die Herstellung der Oligomere (A) katalytisch. Geeignete Katalysatoren sind beispielsweise organische Zinnverbindungen, wie Dibutylzinndilaurat oder Metallsalze der
Ethylhexansäure, wie z.B: Zinkethylhexanoat. Alle dem Fachmann bekannten Methoden zur Herstellung von Polyestern, Polyethern, Polyurethanen, Polyharnstoffen, bzw. Gemischen/Blends können in dem erfindungsgemäßen Schritt eingesetzt werden. Die Reaktionszeit der Herstellung der Oligomere (A) gemäß Schritt b) des erfindungsgemäßen Verfahrens beträgt üblicherweise einige Minuten bis zu mehreren Stunden.
Gemäß Schritt c) des erfindungsgemäßen Verfahrens werden das Oligomer (A) aus Schritt b) und die wässrige Dispersion aus Schritt a) gemischt und durch weitere Polymerisation des Oligomers (A) das Polymer und/oder Oligomer (B) hergestellt.
In der einfachsten Ausführungsform des erfindungsgemäßen Verfahrens werden das in Schritt b) erhaltene Oligomer (A) und die aus Schritt a) erhaltene Dispersion gemischt. Dies erfolgt im einfachsten Falle durch einfaches Einrühren des entsprechenden Oligomers (A), beispielsweise durch Einsatz von Scherkräften. Die Menge an Oligomer (A) wird dabei so gewählt, dass in der wässrigen Dispersion der Anteil des Oligomers (A) 5 bis 70 Gew.-% beträgt. Eventuell zeitlich vorher, nachher oder gleichzeitig kann die Zugabe von pH-Wert einstellenden Mitteln und weiteren geeigneten Reaktionspartnern für das Oligomer (A) erfolgen. Insbesondere durch die Zugabe weiterer Reaktionspartner kann das Oligomer (A) weiter zu dem Polymer und/oder Oligomer (B) umgesetzt werden. Dadurch bildet sich ein Polymer/Oligomer (B), welches dann durch UV-Strahlung weiter vernetzen kann. Grundsätzlich eignen sich alle dem Fachmann bekannten Polymerisationsarten, vorzugsweise erfolgt die Herstellung des Polymers und/oder Oligomers (B) durch eine Polyaddition, Polykondensation oder durch anionische Polymerisation in Lösung.
Bei den erfindungsgemäß bevorzugt eingesetzten Polyurethanen können die bereits bei der Herstellung der Oligomere (A) eingesetzten Vorstufen zur Herstellung derentsprechenden Polymere und/oder Oligomere (B) eingesetzt werden.
In weiteren Ausführungsformen des erfindungsgemäßen Verfahrens ist es möglich durch gegebenenfalls erfolgendes Entfernen der restlichen Lösemittel aus dem Reaktionsgemisch und vorherige, nachfolgende oder gleichzeitige Wasserzugabe den Feststoffgehalt einzustellen. Abschließend können gegebenenfalls eine Endeinstellung des pH-Wertes und gegebenenfalls eine Filtration (Abtrennen evtl. aufgetretener Agglomerate) erfolgen.
Ebenfalls Gegenstand der vorliegenden Erfindung sind wässrige Dispersionen umfassend mindestens ein Polymer und/oder Oligomer (B) und anorganische oberflächenmodifizierte Partikel, wobei das Polymer und/oder Oligomer (B) die anorganischen oberflächenmodifizierte Partikel umhüllt, erhältlich nach einem Verfahren gemäß der vorliegenden
Erfindung. Vorzugsweise sind die Oberflächenmodifikatoren kovalent auf der Oberfläche der Partikel gebunden. Auf diese Weise können die oberflächenmodifizierten anorganischen Partikel beständiger in das im letzten Schritt des erfindungsgemäßen Verfahrens herzustellende Polymer und/oder Oligomer (B) eingebunden werden, weil die im
Oberflächenmodifikator befindlichen reaktiven Gruppen mit den Polymer- und/oder Oligomervorstufen reagieren können. Gegenüber den gemäß WO 2006/008120 hergestellten Dispersionen haben die erfindungsgemäßen Dispersionen den Vorteil, dass wasserbasierende Nanoteilchendispersionen eingesetzt werden können und auf die schwierige Überführung der Teilchen in lösemittelbasierende Dispersionen verzichtet werden kann. Ferner wirken die Nanoteilchen als
Keimbildner und Strukturgeber für die aufwachsenden Polymere. Dadurch ist eine Steuerung der Teilchengröße der Dispersionen möglich. Da keine Deagglomeration der Teilchen notwendig ist, kann die Dispersion unter milderen Bedingungen hergestellt werden (geringere Scherkräfte). Die Viskosität ist durch Verwendung nicht agglomerierter oder nicht aggregierter Teilchen niedriger. Die Vorvernetzung von Polymeren und Teilchen in der Lösemittelphase wird vermieden. Weiterhin wird die Ausbildung von Polymertröpfchen begünstigt, die nur ein Nanoteilchen als Kern enthalten. Durch die kovalente Anbindung und das „Begraben" der anorganischen Nanoteilchen unter der Polymerhülle werden
Kompatibilitätsprobleme vermieden und die Nanoteilchen effektiv gegen weitere Agglomeration geschützt.
Das Polymer und/oder Oligomer (B) weist in der erfindungsgemäßen Dispersion bevorzugt ein Molekulargewicht von mindestens 500 g/mol, besonders bevorzugt von mindestens 800 g/mol bis max. 500.000 g/mol auf. Für den Fall, dass das Polymer/Oligomer (B) ein Polyurethan ist, liegt das Molekulargewicht bevorzugt zwischen 5.000 und 50.000 g/mol,
Bei den erfindungsgemäßen wässrigen Dispersionen weisen die
Polymerpartikel bevorzugt einen mittleren Teilchendurchmesser zwischen 20 und 500 nm, besonders bevorzugt zwischen 30 und 200 nm, auf. Die Nanopartikel, die in den Polymerpartikeln enthalten sind, müssen, da sie von dem Polymer des Polymerpartikels umhüllt sind, einen geringeren Partikeldurchmesser aufweisen als die Polymerpartikel selbst. Die wässrige Dispersion gemäß der vorliegenden Erfindung enthält bevorzugt 5 bis 70 Gew.-%, vorzugsweise 5 bis 60 Gew.-%, Nanopartikel enthaltende Polymerpartikel, bezogen auf die gesamte Zusammensetzung.
In einer bevorzugten Ausführungsform enthält die wässrige Dispersion als
Zusatzstoffe und Additive, Schutzkolloide und/oder Emulgatoren, insbesondere Tenside, Amphiphile oder Säuren bzw. Basen, beispielsweise tert. Amine, Aminoalkohole oder Ammoniak, als entsprechende Gegenionen für die Emulgierung ionischer Polymere oder Oligomere. Geeignete Emulgatoren sind gesättigte und ungesättigte Fettalkoholethoxylate mit 8 bis 15 C-Atomen im Fettalkylrest, Alkylphenolethoxylate mit 6 bis 13 C-Atomen im Alkylrest und 4 bis 100 Ethylenoxideinheiten, vorzugsweise Laurylalkoholethoxylate, Isotridekanolethoxylate sowie Octyl- und Nonylphenolethoxylate mit 6 bis 50 Ethylenoxideinheiten.
Gut geeignet sind auch Gemische solcher Emulgatoren aus einer hydrophilen und einer hydrophoben Komponente im Verhältnis 1 :5 bis 5:1 , z.B. aus einem Teil Laurylalkohol 4 EO und drei Teilen Laurylalkohol 40 EO. Die Emulgatoren werden in einer Gesamtmenge von 0 bis 15 Vol-% der Dispersion, vorzugsweise 0,8 bis 10 Vol-% der Dispersion eingesetzt. Gut geeignet als Emulgatoren sind auch Ester und ethoxylierte Ester des Sorbitans wie sie unter den Marken Tween und Span angeboten werden. Vorzugsweise Tween 20 und Span 60 im Gew.-%-Verhältnis 1 :1 bis 1 :7. Besonders vorzugsweise werden 3 bis 15 Gew.-% des hydrophoben
Emulgators durch Oleylsarcosid ersetzt. Die erhaltenen Dispersionen sind lagerstabil, ohne Sedimentation und ohne Veränderung der Teilchengrößenverteilung. Die Schutzkolloide und/oder Emulgatoren werden dabei bevorzugt in einer Menge von 0,1 bis 10 Gew.-%, bezogen auf die gesamte Dispersion, eingesetzt. Vorzugsweise sind als Zusatzstoffe und Additive in der wässrigen Dispersion Katalysatoren, Co-Katalysatoren, Radikalbildner, Photoinitiatoren, Photosensibilisatoren, Hydrophobierungsmittel, Mattierungsmittel, Gleitmittel, Entschäumer, Entlüfter, Netzmittel, Verlaufsmittel, Thixotropiermittel, Verdicker, anorganische und organische
Pigmente, Füllstoffe, Haftvermittler, Korrosionsinhibitoren, UV- Stabilisatoren, Radikalfänger, Antistatika und/oder Netzmittel enthalten. Als Zusatzstoffe und Additive werden zusätzlich bevorzugt wasserlösliche, thermisch und/oder mit energiereicher Strahlung polymerisierbare Monomere, vorzugsweise (Meth)acrylsaure, (Meth)acrylamid,
Hydroxyethyl(meth)acrylat, Vinylphosphonsaure und Vinylsulfonsaure eingesetzt.
Bevorzugt ist es weiterhin, wenn als Zusatzstoffe/Additive Ester der Meth(acrylsaure) mit verzweigten und/oder linearen Ci-Ci6-Alkylresten eingesetzt werden.
Die wässrige Dispersion weist vorzugsweise eine Viskosität im Bereich von 1 bis 800 mPas bei 20° C auf.
Die erfindungsgemäßen wässrigen Dispersionen finden Verwendung als Lack- und Beschichtungszusammensetzung oder als Kleb- und Dichtstoffe. Bevorzugt werden sie dabei zur Herstellung von kratz-, abrieb- und haftfesten Schichten, Schichten mit erhöhter chemischer oder mechanischer Belastbarkeit und/oder Barriereschichten eingesetzt.
Nanopartikel-enthaltender Lack der vorliegenden Erfindung weist eine verbesserte Glanzhaltung auf (Beispiel 2) und ist damit kratzbeständiger. Lack- und Beschichtungszusammensetzungen oder Kleb- und Dichtstoffe enthaltend Dispersionen gemäß der vorliegenden Erfindung sind ebenfalls Gegenstand der vorliegenden Erfindung. Anhand der folgenden Beispiele soll der anmeldungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier genannten speziellen Ausführungsformen zu beschränken.
Beispiele:
Beispiel 1a: Herstellung einer PU-Dispersion als Referenz:
In einen mit Inertgas gespülten 4-Halskolben werden 131 ,3 g Oxyester T 1136, 20,52 g Dimethylolpropionsäure, 17,48 g, 1 ,4-Cyclohexandimethanol, 149 g N-Methylpyrrolidon und 0,03 g Dibutylzinndilaurat eingefüllt und unter Rühren auf 85°C erwärmt. Zu der Mischung werden langsam 162,11 g Desmodur W (Fa. Bayer, Deutschland) getropft und anschließend noch 4 h weiter gerührt. Die auf 50-600C abgekühlte Präpolymerlösung wird in ein Edelstahl-Dissolvergefäß überführt und unter hohen Scherkräften gerührt. Anschließend wird dem Gemisch rasch 13,14 g Triethylamin und 105 g VE Wasser zugeführt.
In einem separaten Gefäß werden 18,53 g 2-Methylpentamethylendiamin und 382 g VE Wasser gemischt und dem Gemisch langsam unter ständigem Rühren zugegeben.
Die gesamte Mischung wird 20 Minuten unter hohen Scherkräften weiter durchmischt. Die entstandene PU-Dispersion wird über ein 280 μm Schnellsieb filtriert und weist einen pH Wert von 8,5 und einen Feststoffgehalt von 41 ,5 % auf. Die Dispersion wird mit einem 200 μm Rakel auf schwarz/weiße Lackkarten aufgerakelt und bei 800C für 30 min. getrocknet.
Beispiel 1b: Herstellung einer Nanoteilchen-Dispersion
100 g Kieselsol Levasil 200 S werden unter gutem Rühren mit 3 g Dynasilan 1151 (Aminosilan-Hydrolysat, wässrig, Produkt der Firma Degussa) versetzt und der pH-Wert mit Ameisensäure auf ca. 3 eingestellt. Beispiel 2: Synthese einer Nanopartikel-modifizierten PU-Dispersion
In einen mit Inertgas gespülten 4-Halskolben werden 131 ,3 g Oxyester T 1136, 20,52 g Dimethylolpropionsäure, 17,48 g, 1 ,4-Cyclohexandimethanol,
149 g N-Methylpyrrolidon und 0,03 g Dibutylzinndilaurat eingefüllt und unter Rühren auf 85°C erwärmt. Zu der Mischung werden langsam 162,11 g Desmodur W (Fa. Bayer, Deutschland) getropft und anschließend noch 4 h weiter gerührt. Die auf 50-600C abgekühlte Präpolymerlösung wird in ein Edelstahl-Dissolvergefäß überführt und unter hohen Scherkräften gerührt. Anschließend wird dem Gemisch rasch 13,14 g Triethylamin und 126 g einer 20%igen Dispersion von Aminopropyltrimethoxysilan-modifizierten SiO2-Nanoteilchen (mit 2 Masse-% Aminosilan, bezogen auf die Trockenmasse) in VE Wasser zugeführt. In einem separaten Gefäß werden 18 g 2-Methylpentamethylendiamin und 382 g VE Wasser gemischt und dem Gemisch langsam unter ständigem Rühren zugegeben.
Die gesamte Mischung wird 20 Minuten unter hohen Scherkräften weiter durchmischt. Die entstandene PU-Dispersion wird über ein 280 μm Schnellsieb filtriert und weist einen pH Wert von 8,5 und einen Feststoffgehalt von 41 ,5 % auf.
Die Dispersion wird mit einem 200 μm Rakel auf schwarz/weiße Lackkarten aufgerakelt und bei 800C für 30 min. getrocknet. Die Lacke wurden nach dem Aufbringen und Trocknen auf den Farbkarten mit einem handelsüblichen Glossmeter (Fa. Byk-Gardner) bei 20°
Glanzwinkel vermessen und anschließend einem Kratztest unterzogen. Dazu wurde Schleifpapier mit 9 μm Körnung (Fa. 3M) auf den Finger eines Crockmeters aufgezogen und 10 Doppelhübe bei einer Belastung von 9N appliziert. Daraufhin wurde der Glanz nach Verkratzen erneut gemessen. 0% 5% 10% Nanoteilchen
Vorher 83 82 81 Glanzeinheiten
Nachher 11 21 28 Glanzeinheiten

Claims

Patentansprüche
1. Verfahren zur Herstellung einer wässrigen Dispersion enthaltend mindestens ein Polymer und/oder Oligomer (B) sowie anorganische 5 oberflächenmodifizierte Partikel, umfassend die Verfahrensschritte a) Herstellen einer Dispersion anorganischer Partikel in Wasser oder einem Wasser-Lösemittelgemisch und Modifizieren der Oberfläche der anorganischen Partikel in der wässrigen Dispersion durch Zusatz eines Oberflächenmodifikators b) Herstellen eines Oligomers (A) durch Polymerisation geeigneter Monomere in einem Lösemittel oder Lösemittelgemisch c) Mischen des Oligomers (A) aus Schritt b) mit der wässrigen Dispersion aus Schritt a) und weitere Polymerisation des Oligomers (A) unter Erhalt eines Polymers und/oder Oligomers (B), wobei das Polymer und/oder Oligomer (B) die in Schritt a) hergestellten anorganischen Partikel mit modifizierter Oberfläche umhüllt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt a) __ die Dispersion anorganischer Partikel in Wasser oder einem Wasser- Lösemittelgemisch durch Dispergieren anorganischer Partikel in Wasser oder einem Wasser-Lösemittelgemisch erfolgt.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt a) 25 die anorganischen Partikel aus geeigneten Vorstufen direkt in Wasser oder dem Wasser-Lösemittelgemisch erzeugt werden.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Polymer und/oder Oligomer (B) aus Schritt c)
30 durch Zusatz geeigneter Polymer- und/oder Oligomervorstufen zu der in Schritt c) erhaltenen Mischung aus oberflächenmodifizierten Partikeln und Oligomer (A) hergestellt wird.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Herstellung des Oligomers (A) und des Polymers und/oder Oligomers (B) durch anionische Polymerisation, Polykondensation oder Polyaddition erfolgt.
10 6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Oligomer (A) ausgewählt ist aus der Klasse der Polyurethane, Polyharnstoffe, Polyester oder Polyether.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch 15 gekennzeichnet, dass gegebenenfalls restliche Lösemittel aus dem
Reaktionsgemisch entfernt werden, durch vorherige, nachfolgende oder gleichzeitige Wasserzugabe der Feststoffgehalt eingestellt wird, der pH- Wert der Dispersion eingestellt wird und/oder gegebenenfalls filtriert wird. 20
8. Wässrige Dispersion enthaltend mindestens ein Polymer und/oder Oligomer (B) sowie anorganische oberflächenmodifizierte Partikel, wobei das Polymer und/oder Oligomer (B) die anorganischen oberflächenmodifizierten Partikel umhüllt, erhältlich nach einem Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 7.
9. Wässrige Dispersion gemäß Anspruch 8, dadurch gekennzeichnet, dass das Polymer und/oder Oligomer (B) ein Molekulargewicht von mindestens 500 g/mol bis max. 500.000 g/mol aufweist. oU lO.Wässrige Dispersion gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Polymer und/oder Oligomer (B) ein Polyurethan, Polyester oder Polyether ist, dessen Molekulargewicht zwischen 5.000 und 50.000 g/mol liegt. 5
11. Wässrige Dispersion gemäß einem oder mehreren der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die anorganischen Partikel ausgewählt sind aus der Gruppe der Oxide, Mischoxide, Karbide, Boride und Nitride von Elementen der II. bis IV. Hauptgruppe und/oder
10 Elementen der I. bis VIII. Nebengruppe des Periodensystems, einschließlich der Lanthaniden.
12. Wässrige Dispersion gemäß einem oder mehreren der Ansprüche 8 bis * 5 11 , dadurch gekennzeichnet, dass die anorganischen Partikel ausgewählt sind aus der Gruppe umfassend hydrophile und hydrophobe Partikel auf der Basis von Oxiden bzw. Hydroxiden von Silizium, Titan, Zink, Aluminium, Cer, Cobalt, Chrom, Nickel, Eisen, Yttrium und/oder Zirkonium, oder mit Oxiden bzw. Hydroxiden von Silizium beschichteten 20 Metallen.
13. Wässrige Dispersion gemäß Anspruch 12, dadurch gekennzeichnet, dass die anorganischen Partikel auf Basis von Oxiden bzw. Hydroxiden von Titan, Zink, Aluminium, Cer, Cobalt, Chrom, Nickel, Eisen, Yttrium
25 und/oder Zirkonium mit Oxiden bzw. Hydroxiden von Silizium beschichtet sind.
14. Wässrige Dispersion gemäß einem oder mehreren der Ansprüche 8 bis
13, dadurch gekennzeichnet, dass die anorganischen Partikel eine 0 mittlere Teilchengröße, bestimmt mittels eines Malvern ZETASIZER (dynamischer Lichtstreuung) bzw. Transmissionselektronenmikroskop, von 3 bis 200 nm aufweisen.
15.Wässrige Dispersion gemäß einem oder mehreren der Ansprüche 8 bis
14, dadurch gekennzeichnet, dass die anorganischen Partikel
Nanopartikel auf der Basis von Siliziumdioxid, Aluminiumoxid, Ceroxid, Zirkonoxid und/oder Titandioxid sind. Q 16.Wässrige Dispersion gemäß einem oder mehreren der Ansprüche 8 bis
15, dadurch gekennzeichnet, dass die anorganischen Partikel mit Verbindungen der allgemeinen Formel (I) [(S-)o-L-]mM(R)n(H)p (I) oberflächenmodifiziert sind, (. worin die Indizes und die Variablen die folgende Bedeutung haben:
S reaktive funktionelle Gruppe;
L mindestens zweibindige organische verknüpfende Gruppe;
H hydrolysierbare einbindige Gruppe oder hydrolysierbares Atom;
M zwei- bis sechswertiges Hauptgruppen- und Nebengruppen-Metall;0 R einbindiger organischer Rest; o eine ganze Zahl von 1 bis 5; m+n+p eine ganze Zahl von 2 bis 6; p eine ganze Zahl von 1 bis 6; m und n Null oder eine ganze Zahl von 1 bis 5. 5
17.Wässrige Dispersion gemäß einem oder mehreren der Ansprüche 8 bis
16, dadurch gekennzeichnet, dass die anorganischen Partikel mit Verbindungen der allgemeinen Formel (II)
RVxSi(OR)x (II) 0 oberflächenmodifiziert sind, in welcher die Reste R gleich oder verschieden voneinander sind und substituierte oder unsubstituierte Kohlenwasserstoffgruppen mit 1 bis 8 Kohlenstoffatomen darstellen und R' Alkyl-, Alkenyl, Aryl-, Alkylaryl-, Arylalkyl, Arylalkenyl-, Alkenylaryl-Reste mit jeweils 1 bis 12 Kohlenstoffatomen bedeutet, wobei cyclische Formen eingeschlossen sind, und worin x = 1 , 2 oder 3 ist. 5
18.Wässrige Dispersion gemäß Anspruch 17, dadurch gekennzeichnet, dass die Reste R1 einen oder mehrere Substituenten aus der Gruppe der Halogene und der Amino-, Amid-, Carboxy-, Mercapto-, Isocyanato-, Hydroxy-, Alkoxy-, Alkoxycarbonyl-, Acryloxy-, Methacryloxy- oder Epoxygruppen aufweisen.
19. Wässrige Dispersion gemäß einem oder mehreren der Ansprüche 8 bis 18, dadurch gekennzeichnet, dass die Dispersion Katalysatoren, Co-
1 K Katalysatoren, Radikalbildner, Photoinitiatoren, Photosensibilisatoren,
Hydrophobierungsmittel, Mattierungsmittel, Gleitmittel, Entschäumer, Entlüfter, Netzmittel, Verlaufsmittel, Thixotropiermittel, Verdicker, anorganische und organische Pigmente, Füllstoffe, Haftvermittler, Korrosionsinhibitoren, UV-Stabilisatoren, Radikalfänger, Antistatika
„_ und/oder Netzmittel enthält.
20. Verwendung einer wässrigen Dispersion gemäß einem oder mehreren der Ansprüche 8 bis 19 in Lack- und Beschichtungszusammensetzungen oder als Kleb- und Dichtstoffe.
25
21. Verwendung einer wässrigen Dispersion gemäß einem oder mehreren der Ansprüche 8 bis 19 zur Herstellung von kratz-, abrieb- und haftfesten Schichten, Schichten mit erhöhter chemischer oder mechanischer Belastbarkeit und/oder erhöhter UV-Licht- und/oder Witterungs-
Beständigkeit und/oder Barriereschichten.
22. Lack- und Beschichtungszusammensetzungen oder Kleb- und Dichtstoffe enthaltend wässrige Dispersionen, gemäß einem oder mehreren der Ansprüche 8 bis 19.
EP07819836A 2006-12-11 2007-11-16 Verfahren zur herstellung von dispersionen Withdrawn EP2102271A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006058202A DE102006058202A1 (de) 2006-12-11 2006-12-11 Verfahren zur Herstellung von Dispersionen
PCT/EP2007/009935 WO2008071285A1 (de) 2006-12-11 2007-11-16 Verfahren zur herstellung von dispersionen

Publications (1)

Publication Number Publication Date
EP2102271A1 true EP2102271A1 (de) 2009-09-23

Family

ID=39086137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07819836A Withdrawn EP2102271A1 (de) 2006-12-11 2007-11-16 Verfahren zur herstellung von dispersionen

Country Status (4)

Country Link
US (1) US20100029807A1 (de)
EP (1) EP2102271A1 (de)
DE (1) DE102006058202A1 (de)
WO (1) WO2008071285A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006942A1 (de) 2009-01-30 2010-08-05 Philipps-Universität Marburg Verfahren zur Herstellung von mit Polymeren umhüllten metallhaltigen Nanopartikeln und daraus erhältliche Partikel
DE102009010670A1 (de) 2009-02-27 2010-09-30 Philipps-Universität Marburg Verfahren zur Herstellung von mit polymeren umhüllten metallhaltigen Nanopartikeln und daraus erhältliche Partikel
JP5585957B2 (ja) * 2010-08-12 2014-09-10 東海カーボン株式会社 ポリウレタン樹脂付加顔料、ポリウレタン樹脂付加顔料の製造方法、顔料分散組成物およびインクジェットインク組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512427A1 (de) * 1995-04-03 1996-10-10 Inst Neue Mat Gemein Gmbh Kompositklebstoff für optische und optoelektronische Anwendungen
AU9628501A (en) * 2000-09-22 2002-04-02 Ppg Ind Ohio Inc Curable polyurethanes, coatings prepared therefrom, and method of making the same
KR100848345B1 (ko) * 2002-01-31 2008-07-25 디아이씨 가부시끼가이샤 스티렌 수지 조성물 및 그 제조방법
DE10221007B4 (de) * 2002-05-11 2016-10-13 Basf Coatings Gmbh Wässrige Dispersion von anorganischen Nanopartikeln, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10226932A1 (de) * 2002-06-17 2003-12-24 Bayer Ag Strahlenhärtende Beschichtungsmittel
US7045573B2 (en) * 2003-04-21 2006-05-16 Bayer Materialscience Llc Polyurethane dispersion (PUD) with improved isopropanol resistance, flexibility and softness
DE102004002526A1 (de) * 2004-01-16 2005-08-04 Bayer Materialscience Ag Thermovergilbungsstabile Polyurethan-Polyharnstoff Dispersionen
DE102004013259A1 (de) * 2004-03-18 2005-09-29 Bayer Materialscience Ag Wässrige PUR-Dispersionen mit verbesserter Haftung
US20060014880A1 (en) * 2004-07-14 2006-01-19 Qiping Zhong Nano-talc polymer composites
ATE414120T1 (de) * 2004-07-16 2008-11-15 Alberdingk Boley Gmbh Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung
US7709053B2 (en) * 2004-07-29 2010-05-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of manufacturing of polymer-coated particles for chemical mechanical polishing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008071285A1 *

Also Published As

Publication number Publication date
US20100029807A1 (en) 2010-02-04
DE102006058202A1 (de) 2008-06-12
WO2008071285A1 (de) 2008-06-19

Similar Documents

Publication Publication Date Title
EP1773919B1 (de) Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung
DE102005039436B4 (de) Beschichtungsmassen enthaltend mit Silanen modifizierte Nanopartikel
EP1690902B1 (de) Oberflächenmodifizierte Nanopartikel, Verfahren zu ihrer Herstellung und ihrer Verwendung
EP1922368B1 (de) Beschichtungsmassen enthaltend mischoxid-nanopartikel bestehend aus 50-99,9 gew% al2o3 und 0,1-50 gew% oxiden von elementen der i. oder ii. hauptgruppe des periodensystems
EP2049603B1 (de) Mit polysiloxan oberflächenmodifizierte partikel und herstellungsverfahren
EP1910461B1 (de) Lacke enthaltend partikel
EP2144968B1 (de) Dispergierbare nanopartikel
DE10241510A1 (de) Nanokomposite, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2006018144A1 (de) Partikel mit geschützten isocyanatgruppen
DE102013224206A1 (de) Oberflächenmodifizierte partikuläre Metalloxide
EP2638114B1 (de) Hydrophobierte siliciumdioxidpartikel enthaltende dispersion und lackzubereitung
DE102007030285A1 (de) Oberflächenmodifizierte Partikel und Herstellungsverfahren
EP2102271A1 (de) Verfahren zur herstellung von dispersionen
EP1846525A1 (de) Lacke enthaltend partikel mit geschützten isocyanatgruppen
EP2087036A2 (de) Zusammensetzungen enthaltend phosphonat-funktionelle partikel
EP2089479A2 (de) Dispergierbare nanopartikel
DE102006054013A1 (de) Beschichtungsmassen enthaltend reaktive Esterwachse und Mischoxid-Nanopartikel
DE102006021705B3 (de) Verwendung von Mischoxid-Nanopartikeln in Beschichtungsmassen
DE102009040488A1 (de) Verfahren zur Herstellung von Dispersionen mit nanoskaligen Siliziumdioxid-Partikeln aus pyrogenen Kieselsäuren
DE102007003435A1 (de) Druckfarbenbeschichtungsmassen enthaltend Mischoxid-Nanopartikel
DE102005026699A1 (de) Lacke enthaltend Partikel mit geschützten Isocyanatgruppen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091012

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110308