EP2100036A2 - Differential gear on a wind power plant and method for changing or switching the power range of said differential gear - Google Patents

Differential gear on a wind power plant and method for changing or switching the power range of said differential gear

Info

Publication number
EP2100036A2
EP2100036A2 EP07815165A EP07815165A EP2100036A2 EP 2100036 A2 EP2100036 A2 EP 2100036A2 EP 07815165 A EP07815165 A EP 07815165A EP 07815165 A EP07815165 A EP 07815165A EP 2100036 A2 EP2100036 A2 EP 2100036A2
Authority
EP
European Patent Office
Prior art keywords
transmission
output
generator
continuously variable
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07815165A
Other languages
German (de)
French (fr)
Inventor
Gerald Hehenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMSC Windtec GmbH
Original Assignee
AMSC Windtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMSC Windtec GmbH filed Critical AMSC Windtec GmbH
Publication of EP2100036A2 publication Critical patent/EP2100036A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/1016Purpose of the control system in variable speed operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19555Varying speed ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1956Adjustable

Definitions

  • the invention relates to a differential gear for a wind power plant with a transmission having three drives and outputs, wherein a drive • is connected to the rotor of the wind turbine, the first output with a generator and the second output to the drive shaft of a continuously variable transmission whose output shaft is connected to the generator-side output of the transmission.
  • the invention further relates to a method for changing or switching the power range of a differential gear of a wind turbine with changing wind strength with a transmission with three drives or drives, wherein a drive is connected to the rotor of the wind turbine, the first output with a generator and the second output with the drive shaft of a continuously variable transmission.
  • Wind turbines of the latest technology are usually operated with variable rotor speed with active torque control of the drive train for control purposes.
  • the reason for this is that the variable rotor speed caused by the moment of inertia of the rotor attenuation of the speed changes of the drive train and thus the Rotorblattverstellsystem can be optimally designed.
  • the torque control of the drive train can reduce the load on the system and optimize the power quality of the energy fed into the grid.
  • the improved aerodynamic efficiency in the partial load range is another advantage of the variable rotor speed.
  • variable-speed drives predominantly used according to the prior art usually work with frequency converters which can achieve the required power quality only with a considerable, additional technical effort.
  • a major disadvantage of this solution is the complicated design of the multi-path differential in combination with a complex coupling system and only very complicated pumps, whereby both pumps are operated with variable speed.
  • the object of the invention is to reduce the above-described disadvantages of the known differential gears and at the same time to provide a simple, efficient and cost-effective concept.
  • This object is further achieved with a method for switching the power range of a differential gear of a wind turbine with changing wind strength with a transmission with three inputs or outputs, wherein a drive is connected to the rotor of the wind turbine, the first output with a Generator and the second output to the drive shaft of a continuously variable transmission, the output shaft is connected to the generator-side output of the transmission, which is characterized in that the drive of the transmission is regulated to a low to no drive torque and the generator is disconnected from the network the drive shaft of the continuously variable transmission is connected to the output shaft of the transmission connecting the transmission, then the speed of the first output of the transmission is adjusted until the synchronous speed is set again at the generator, whereupon the generator is switched back to the mains.
  • This object is finally achieved with a method for changing the power range of a differential gear of a wind turbine with changing wind strength with a transmission with three inputs or outputs, wherein a drive is connected to the rotor of the wind turbine, the first output with a Generator and the second output with the drive shaft of a continuously variable transmission whose output shaft is connected to the generator-side output of the transmission, which is characterized in that the ratio of a drive shaft of the continuously variable transmission with the output shaft of the transmission connecting continuously variable transmission is changed.
  • the speed range can be changed depending on the torque required by a ratio change in this adjustment, whereby the power range of the continuously variable transmission and subsequently the system costs and the Power loss of this transmission can be kept smaller.
  • the drawing shows in a schematically simplified manner a drive train 1 with a differential gear according to the invention.
  • the drive train comprises a drive shaft 2 connected to the rotor 3, possibly via an intermediate gearbox, which in the present case drives two gear stages which are arranged one after the other and designed as planetary stages 4 and 5.
  • the execution of the gear stages as planetary stages is not absolutely necessary, but can also be performed by other gear or omitted entirely.
  • the output shaft of the second gear stage 5 drives a spur gear 6, whereby an axial offset of the drive train is achieved.
  • This offset opens the one hand the ability to lead to the hub leading cables for power control of the system by means of a Blattverstellmechanismus by the transmission, and on the other hand the further possibility to accommodate the required means for signal transmission (slip ring body) from the rotating to the fixed part in the nacelle of the wind turbine and the ability to make the drive train in its overall length short and compact.
  • the output shaft 6a of the spur gear stage drives a planetary carrier 8 of a superposition gearing 7.
  • the torque distribution takes place to a generator 11 and to a hydraulic unit 12.
  • the generator 11 is to the ring gear 9 of the superposition gear 7 connected.
  • the sun gear 10 of the superposition gear 7 is connected to a 2-stage adjusting gear 15.
  • the gear stages of the variable transmission 15 are switched according to the rotor speed and the wind supply.
  • a first adjustable axial piston pump 13 in hydraulic communication with a second adjustable axial piston pump 14.
  • the shaft of the second axial piston pump 14 is coupled via a spur gear 16 to the shaft 11 of the generator.
  • the transmission ratio is continuously varied and adapted to the given power, while the speed of the drive shaft of the generator 11 remains constant.
  • the system Before reaching the limit speed at the hydraulic unit 12, the system is regulated by the electric pitch control system to a low to no drive torque.
  • the synchronous generator 11 is removed from the network during this switching phase.
  • the transmission 15 is switched to the smaller ratio in this power reduced phase.
  • the rotor speed is increased by the Blattverstellsystem again until the synchronous speed is reached at the generator 11 again.
  • the system reverts to normal production operation, but with higher performance.
  • the hydraulic units 12 it is now possible with the same power loss to control a much higher overall system performance.
  • the power flow turns over the superposition stage 7.
  • the excess power is passed from the sun gear 10 of the superposition stage 7 via the gear 15 to the hydraulic unit 12.
  • These generated by the coupling via the spur gear 16 to the generator shaft a braking torque, whereby the generator speed is still kept constant at synchronous speed. This moment is applied until the blade adjusting device has turned the rotor blades so far out of the wind until nominal power is reached again.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Retarders (AREA)
  • Structure Of Transmissions (AREA)

Abstract

A differential gear for a wind power plant, comprises a gearbox (7) with three inputs and outputs, wherein one input is connected to the rotor (3) of the wind power plant, the first output is connected to a generator (11) and the second output is connected to the input shaft of a continuously variable gearbox (12), the output shaft of which is connected to the generator side output of the gearbox (7). The input shaft of the continuously variable gearbox (12) is connected to the output shaft of the gearbox (7) by means of a variable gearbox (15).

Description

_ _ _ _ _ _
Ausgleichsgetriebe einer Windkraftanlage und Verfahren zum Ändern oder Umschalten des Leistungsbereichs dieses AusgleichsgetriebesDifferential gear of a wind turbine and method for changing or switching the power range of this differential gear
Die Erfindung betrifft ein Ausgleichsgetriebe für eine Wind- kraftanlage mit einem Getriebe mit drei An- bzw. Abtrieben, wobei ein Antrieb mit dem Rotor der Windkraftanlage verbunden ist, der erste Abtrieb mit einem Generator und der zweite Abtrieb mit der Antriebswelle eines stufenlos regelbaren Getriebes, dessen Abtriebswelle mit dem generatorseitigen Abtrieb des Getriebes verbunden ist. Die Erfindung betrifft des Weiteren ein Verfahren zum Ändern oder Umschalten des Leistungsbereiches eines Ausgleichsgetriebes einer Windkraftanlage bei sich ändernder Windstärke mit einem Getriebe mit drei An- bzw. Abtrieben, wobei ein Antrieb mit dem Rotor der Windkraftanlage verbunden ist, der erste Abtrieb mit einem Generator und der zweite Abtrieb mit der Antriebswelle eines stufenlos regelbaren Getriebes.The invention relates to a differential gear for a wind power plant with a transmission having three drives and outputs, wherein a drive is connected to the rotor of the wind turbine, the first output with a generator and the second output to the drive shaft of a continuously variable transmission whose output shaft is connected to the generator-side output of the transmission. The invention further relates to a method for changing or switching the power range of a differential gear of a wind turbine with changing wind strength with a transmission with three drives or drives, wherein a drive is connected to the rotor of the wind turbine, the first output with a generator and the second output with the drive shaft of a continuously variable transmission.
Windkraftanlagen neuester Technologie werden zu Regelungs- zwecken meist mit variabler Rotordrehzahl mit aktiver Drehmomentregelung des Triebstranges betrieben. Der Grund hierfür ist, dass die variable Rotordrehzahl durch das Massenträgheitsmoment des Rotors eine Dämpfung der Drehzahländerungen des Triebstranges bewirkt und somit das Rotorblattverstellsystem optimal ausgelegt werden kann. Weiters können durch die Drehmomentregelung des Triebstranges die Belastungen auf die Anlage reduziert und die Stromqua- lität der ins Netz eingespeisten Energie optimiert werden. Der verbesserte aerodynamische Wirkungsgrad im Teillastbereich ist ein weiterer Vorteil der variablen Rotordrehzahl.Wind turbines of the latest technology are usually operated with variable rotor speed with active torque control of the drive train for control purposes. The reason for this is that the variable rotor speed caused by the moment of inertia of the rotor attenuation of the speed changes of the drive train and thus the Rotorblattverstellsystem can be optimally designed. Furthermore, the torque control of the drive train can reduce the load on the system and optimize the power quality of the energy fed into the grid. The improved aerodynamic efficiency in the partial load range is another advantage of the variable rotor speed.
Nachteilig wirkt sich die meist variable Drehzahl des Generators mit den damit zusammenhängenden, überlagerten Beschleunigungs- momenten vor allem für das Getriebe aus, welches dadurch stärker ausgelegt werden muss. Erschwerend kommt hinzu, dass die gemäß dem Stand der Technik vorwiegend verwendeten drehzahlvariablen Antriebe meist mit Frequenzumrichtern arbeiten, welche nur mit einem erheblichen, technischen Zusatzaufwand die geforderte Stromqualität errei- chen können.A disadvantage is the usually variable speed of the generator with the associated, superimposed acceleration torque, especially for the transmission, which must be designed stronger. To make matters worse, that the variable-speed drives predominantly used according to the prior art usually work with frequency converters which can achieve the required power quality only with a considerable, additional technical effort.
Aus der WO 2004/088132 A ist eine Vorrichtung bekannt, welche mittels eines Ausgleichsgetriebes und eines hydrodynamischen Drehmomentwandlers oben genannte Nachteile vermeidet. Als Nachteil dieser Lösung ergibt sich jedoch ein erheblicher Aufwand für das Getriebe und die Hydrodynamik, welche für relativ große Leistungen ausgelegt werden muss. Vor allem die damit verbundenen hohen Hydraulikverluste sind insbesondere bei großen Drehzahlbereichen erheblich, was große Verluste im Teillastbereich der Anlage und hohe Anschaffungskosten verursacht. Diese Nachteile werden durch das aus der WO 2004/109157 A bekannte Getriebe weitgehend vermieden. Hier wird eine Hydraulik eingesetzt, welche durch ein Mehrwege-Ausgleichsgetriebe die im Teillastbereich über die Hydraulik gelenkte Leistung relativ gering hält. Ein wesentlicher Nachteil dieser Lösung ist jedoch das kom- pliziert aufgebaute, mehr-pfadige Ausgleichsgetriebe in Kombination mit einem komplexen Kupplungssystem und nur sehr aufwändig regelbaren Pumpen, wobei beide Pumpen drehzahlvariabel betrieben werden. Aufgabe der Erfindung ist es, oben beschriebene Nachteile der bekannten Ausgleichsgetriebe zu reduzieren und ein zugleich ein- faches, effizientes und kostengünstiges Konzept zur Verfügung zu stellen.From WO 2004/088132 A a device is known, which avoids the above-mentioned disadvantages by means of a differential gear and a hydrodynamic torque converter. As a disadvantage of this solution, however, results in a considerable effort for the transmission and hydrodynamics, which for relatively high power must be interpreted. Above all, the associated high hydraulic losses are considerable, especially at high speed ranges, which causes large losses in the partial load range of the system and high initial costs. These disadvantages are largely avoided by the known from WO 2004/109157 A transmission. Here, a hydraulic system is used which, by means of a multi-way differential, keeps the power directed by the hydraulics in the partial load range relatively low. A major disadvantage of this solution, however, is the complicated design of the multi-path differential in combination with a complex coupling system and only very complicated pumps, whereby both pumps are operated with variable speed. The object of the invention is to reduce the above-described disadvantages of the known differential gears and at the same time to provide a simple, efficient and cost-effective concept.
Gelöst wird diese Aufgabe bei einem gattungsgemäßen Getriebe dadurch, dass die Antriebswelle des stufenlos regelbaren Getriebes über ein Verstellgetriebe mit der Abtriebswelle des Getriebes ver- bunden ist.This problem is solved in a generic transmission in that the drive shaft of the continuously variable transmission is connected via an adjusting mechanism to the output shaft of the transmission.
Diese Aufgabe wird des Weiteren gelöst mit einem Verfahren zum Umschalten des Leistungsbereiches eines Ausgleichsgetriebes einer Windkraftanlage bei sich ändernder Windstärke mit einem Getriebe mit drei An- bzw. Abtrieben, wobei ein Antrieb mit dem Rotor der Wind- kraftanlage verbunden ist, der erste Abtrieb mit einem Generator und der zweite Abtrieb mit der Antriebswelle eines stufenlos regelbaren Getriebes, dessen Abtriebswelle mit dem generatorseitigen Abtrieb des Getriebes verbunden ist, das dadurch gekennzeichnet ist, dass der Antrieb des Getriebes auf ein geringes bis kein Antriebsmoment geregelt und der Generator vom Netz genommen wird, ein die Antriebswelle des stufenlos regelbaren Getriebes mit der Abtriebswelle des Getriebes verbindendes Schaltgetriebe geschaltet wird, danach die Drehzahl des ersten Abtriebs des Getriebes angepasst wird, bis am Generator wieder die Synchrondrehzahl eingestellt ist worauf der Generator wieder auf das Netz geschaltet wird.This object is further achieved with a method for switching the power range of a differential gear of a wind turbine with changing wind strength with a transmission with three inputs or outputs, wherein a drive is connected to the rotor of the wind turbine, the first output with a Generator and the second output to the drive shaft of a continuously variable transmission, the output shaft is connected to the generator-side output of the transmission, which is characterized in that the drive of the transmission is regulated to a low to no drive torque and the generator is disconnected from the network the drive shaft of the continuously variable transmission is connected to the output shaft of the transmission connecting the transmission, then the speed of the first output of the transmission is adjusted until the synchronous speed is set again at the generator, whereupon the generator is switched back to the mains.
Diese Aufgabe wird schließlich auch gelöst mit einem Verfahren zum Ändern des Leistungsbereiches eines Ausgleichsgetriebes einer Windkraftanlage bei sich ändernder Windstärke mit einem Getriebe mit drei An- bzw. Abtrieben, wobei ein Antrieb mit dem Rotor der Wind- kraftanlage verbunden ist, der erste Abtrieb mit einem Generator und der zweite Abtrieb mit der Antriebswelle eines stufenlos regelbaren Getriebes, dessen Abtriebswelle mit dem generatorseitigen Abtrieb des Getriebes verbunden ist, das dadurch gekennzeichnet ist, dass die Übersetzung eines die Antriebswelle des stufenlos regelbaren Getriebes mit der Abtriebswelle des Getriebes verbindendes stufenlosen Getriebes verändert wird.This object is finally achieved with a method for changing the power range of a differential gear of a wind turbine with changing wind strength with a transmission with three inputs or outputs, wherein a drive is connected to the rotor of the wind turbine, the first output with a Generator and the second output with the drive shaft of a continuously variable transmission whose output shaft is connected to the generator-side output of the transmission, which is characterized in that the ratio of a drive shaft of the continuously variable transmission with the output shaft of the transmission connecting continuously variable transmission is changed.
Durch das Verstellgetriebe, das ein gestuftes Getriebe oder ein stufenloses Getriebe sein kann, kann durch eine Übersetzungsänderung in diesem Verstellgetriebe der Drehzahlbereich in Abhängig- keit des notwendigen Drehmomentes verändert werden, wodurch der Leistungsbereich des stufenlos regelbaren Getriebes und in der Folge die Anlagekosten und auch die Verlustleistung dieses Getriebes kleiner gehalten werden können.Through the variator, which may be a stepped transmission or a continuously variable transmission, the speed range can be changed depending on the torque required by a ratio change in this adjustment, whereby the power range of the continuously variable transmission and subsequently the system costs and the Power loss of this transmission can be kept smaller.
Bevorzugte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.Preferred embodiments of the invention are subject of the dependent claims.
Nachfolgend wird eine bevorzugte Ausführungsform der Erfindung unter Bezugnahme auf die angeschlossene Zeichnung näher beschrieben.Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
Die Zeichnung zeigt in schematisch vereinfachter Art und Weise einen Antriebsstrang 1 mit einem erfindungsgemäßen Ausgleichsgetrie- be . Der Antriebsstrang umfasst eine mit dem Rotor 3, gegebenenfalls über ein Zwischengetriebe, verbundene Antriebswelle 2, die im vorliegenden Fall zwei nacheinander angeordnete, als Planetenstufen 4 und 5 ausgeführte Getriebestufen antreibt. Die Ausführung der Getriebestufen als Planetenstufen ist nicht zwingend erforderlich, sondern kann auch durch andere Getriebe ausgeführt werden oder auch ganz entfallen.The drawing shows in a schematically simplified manner a drive train 1 with a differential gear according to the invention. The drive train comprises a drive shaft 2 connected to the rotor 3, possibly via an intermediate gearbox, which in the present case drives two gear stages which are arranged one after the other and designed as planetary stages 4 and 5. The execution of the gear stages as planetary stages is not absolutely necessary, but can also be performed by other gear or omitted entirely.
Die Abtriebswelle der zweiten Getriebestufe 5 treibt eine Stirnradstufe 6, wodurch ein axialer Versatz des Antriebsstrangs erreicht wird. Dieser Versatz eröffnet einerseits die Möglichkeit, zur Nabe führende Kabel zur Leistungsregelung der Anlage mit Hilfe eines Blattverstellmechanismus durch das Getriebe zu führen, und andererseits die weitere Möglichkeit, die erforderlichen Einrichtungen zur Signalübertragung (Schleifringkörper) vom rotierenden zum feststehendem Teil in der Gondel der Windkraftanlage unterzubringen und die Möglichkeit den Antriebsstrang in seiner Gesamtlänge kurz und kompakt zu gestalten.The output shaft of the second gear stage 5 drives a spur gear 6, whereby an axial offset of the drive train is achieved. This offset opens the one hand the ability to lead to the hub leading cables for power control of the system by means of a Blattverstellmechanismus by the transmission, and on the other hand the further possibility to accommodate the required means for signal transmission (slip ring body) from the rotating to the fixed part in the nacelle of the wind turbine and the ability to make the drive train in its overall length short and compact.
Die Abtriebswelle 6a der Stirnradstufe treibt einen Planetenträger 8 eines Überlagerungsgetriebes 7. Im Überlagerungsgetriebe 7 findet die Momentenaufteilung an einen Generator 11 und an eine Hydraulikeinheit 12 statt. Der Generator 11 ist dazu mit dem Hohlrad 9 des Überlagerungsgetriebes 7 verbunden. Das Sonnenrad 10 des Überlagerungsgetriebes 7 ist mit einem 2-stufigen Verstellgetriebe 15 verbunden. Die Getriebestufen des Verstellgetriebes 15 werden entsprechend der Rotordrehzahl und dem Windangebot geschalten. Am Abtrieb des 2-stufigen Getriebes 15 sitzt eine erste verstellbare Axialkolbenpumpe 13 in hydraulischer Verbindung mit einer zweiten verstellbaren Axialkolbenpumpe 14. Die Welle der zweiten Axialkolbenpumpe 14 ist über eine Stirnradstufe 16 an die Welle 11 des Generator gekoppelt. Im unteren Leistungs- und Drehzahlbereich der Windkraftanlage wird durch Verstellung der Axialkolbenpumpen 13,14 die erforderliche Synchrondrehzahl am Generator 11 eingestellt. Der Leistungsfluss im Überlagerungsgetriebe 7 führt von der antreibenden Stirnradstufe 6 auf den Planeten 8, weiter auf das Hohlrad 9 und auf den Generator 11. Über die Stirnradstufe 16 auf der Generatorwelle wird die zweite Axialkolbenpumpe 14 angetrieben, die den erforderlichen Druck im Hydraulikkreis erzeugt. Die Energie im Hydraulikkreis wird mittels der ersten Axialkolbenpumpe 13 wieder in Rotationsenergie umgeformt und treibt das Sonnenrad 10 der Überlagerungsstufe 7. Dadurch wird das Übersetzungsverhältnis kontinuierlich variiert und an die gegebene Leistung angepasst, wobei gleichzeitig die Drehzahl der Antriebswelle des Generators 11 konstant bleibt.The output shaft 6a of the spur gear stage drives a planetary carrier 8 of a superposition gearing 7. In the superposition gearing 7, the torque distribution takes place to a generator 11 and to a hydraulic unit 12. The generator 11 is to the ring gear 9 of the superposition gear 7 connected. The sun gear 10 of the superposition gear 7 is connected to a 2-stage adjusting gear 15. The gear stages of the variable transmission 15 are switched according to the rotor speed and the wind supply. At the output of the 2-stage transmission 15 sits a first adjustable axial piston pump 13 in hydraulic communication with a second adjustable axial piston pump 14. The shaft of the second axial piston pump 14 is coupled via a spur gear 16 to the shaft 11 of the generator. In the lower power and speed range of the wind turbine is adjusted by adjusting the axial piston pumps 13,14 the required synchronous speed at the generator 11. The power flow in the superposition gearing 7 leads from the driving spur gear 6 to the planet 8, further to the ring gear 9 and to the generator 11. Via the spur gear 16 on the generator shaft, the second axial piston pump 14 is driven, which generates the required pressure in the hydraulic circuit. The energy in the hydraulic circuit is converted back into rotational energy by means of the first axial piston pump 13 and drives the sun gear 10 of the superposition stage 7. Thus, the transmission ratio is continuously varied and adapted to the given power, while the speed of the drive shaft of the generator 11 remains constant.
Mit steigendem Windangebot erhöht sich auch die Leistung der Anlage und damit die Drehzahl an der Hydraulikeinheit 12. Vor Errei- chen der Grenzdrehzahl an der Hydraulikeinheit 12 wird die Anlage durch das elektrische Blattverstellsystem auf ein geringes bis kein Antriebsmoment geregelt. Der Synchrongenerator 11 wird während dieser Umschaltphase vom Netz genommen. Das Getriebe 15 wird in dieser leistungsreduzierten Phase auf die kleinere Übersetzung geschaltet. Danach wird die Rotordrehzahl durch das Blattverstellsystem wieder erhöht, bis am Generator 11 wieder die Synchrondrehzahl erreicht ist. Nach diesem Synchronisationsvorgang und der NetzaufSchaltung geht das System wieder in den normalen Produktionsbetrieb über, jedoch bei höherer Leistung. Mit den Hydraulikeinhei- ten 12 ist es nun möglich bei gleicher Verlustleistung eine wesentlich höhere Gesamtsystemleistung zu regeln.As the supply of wind increases, so does the performance of the system and thus the speed at the hydraulic unit 12. Before reaching the limit speed at the hydraulic unit 12, the system is regulated by the electric pitch control system to a low to no drive torque. The synchronous generator 11 is removed from the network during this switching phase. The transmission 15 is switched to the smaller ratio in this power reduced phase. Thereafter, the rotor speed is increased by the Blattverstellsystem again until the synchronous speed is reached at the generator 11 again. After this synchronization process and the mains connection, the system reverts to normal production operation, but with higher performance. With the hydraulic units 12, it is now possible with the same power loss to control a much higher overall system performance.
Im Nennbetrieb und im zulässigen Bereich über der Nennleistung dreht sich der Leistungsfluss über die Überlagerungsstufe 7 um. Der Leistungsüberschuss wird vom Sonnenrad 10 der Überlagerungsstufe 7 über das Getriebe 15 an die Hydraulikeinheit 12 weitergegeben. Diese erzeugt durch die Ankopplung über die Stirnradstufe 16 an der Generatorwelle ein bremsendes Moment, womit die Generatordrehzahl weiterhin konstant auf Synchrondrehzahl gehalten wird. Dieses Moment wird solange aufgebracht, bis die Blattverstelleinrichtung die Rotorblätter soweit aus dem Wind gedreht hat, bis wieder Nennleistung erreicht ist. In rated operation and in the permissible range above the rated power, the power flow turns over the superposition stage 7. The excess power is passed from the sun gear 10 of the superposition stage 7 via the gear 15 to the hydraulic unit 12. These generated by the coupling via the spur gear 16 to the generator shaft a braking torque, whereby the generator speed is still kept constant at synchronous speed. This moment is applied until the blade adjusting device has turned the rotor blades so far out of the wind until nominal power is reached again.

Claims

Ansprüche : Claims :
1. Ausgleichsgetriebe für eine Windkraftanlage mit einem Getriebe (7) mit drei An- bzw. Abtrieben, wobei ein Antrieb mit dem Rotor (3) der Windkraftanlage verbunden ist, der erste Abtrieb mit einem Generator (11) und der zweite Abtrieb mit der Antriebswelle eines stufenlos regelbaren Getriebes (12), dessen Abtriebswelle mit dem generatorseitigen Abtrieb des Getriebes (7) verbunden ist, dadurch gekennzeichnet, dass die Antriebswelle des stufenlos regelbaren Getriebes (12) über ein Verstellgetriebe (15) mit der Abtriebswelle des Getriebes (7) verbunden ist.1. differential gear for a wind turbine with a transmission (7) with three inputs or outputs, wherein a drive to the rotor (3) of the wind turbine is connected, the first output with a generator (11) and the second output to the drive shaft a continuously variable transmission (12) whose output shaft is connected to the generator-side output of the transmission (7), characterized in that the drive shaft of the continuously variable transmission (12) via an adjusting gear (15) connected to the output shaft of the transmission (7) is.
2. Ausgleichsgetriebe nach Anspruch 1, dadurch gekennzeichnet, dass Verstellgetriebe (15) ein gestuftes Getriebe ist.2. Differential according to claim 1, characterized in that the adjusting mechanism (15) is a stepped transmission.
3. Ausgleichsgetriebe nach Anspruch 2, dadurch gekennzeichnet, dass das Verstellgetriebe (15) ein zweistufiges Getriebe ist.3. Differential according to claim 2, characterized in that the adjusting mechanism (15) is a two-stage transmission.
4. Ausgleichsgetriebe nach Anspruch 3, dadurch gekennzeichnet, dass das Verstellgetriebe (15) ein Stirnradgetriebe ist.4. Differential according to claim 3, characterized in that the adjusting mechanism (15) is a spur gear.
5. Ausgleichsgetriebe nach Anspruch 1, dadurch gekennzeichnet, dass das Verstellgetriebe (15) ein stufenloses Getriebe ist. 5. Differential according to claim 1, characterized in that the adjusting mechanism (15) is a continuously variable transmission.
6. Ausgleichsgetriebe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Getriebe (7) ein Planetengetriebe ist und dass der Antrieb des Planetengetriebes mit dem Planetenträger (8), der erste Abtrieb mit dem Sonnenrad (10) und der zweite Abtrieb mit dem Generator (11) verbunden ist. 6. differential according to one of claims 1 to 5, characterized in that the transmission (7) is a planetary gear and that the drive of the planetary gear with the planet carrier (8), the first output with the sun gear (10) and the second output with the generator (11) is connected.
7. Ausgleichsgetriebe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das stufenlos regelbare Getriebe (12) ein hydraulisches Getriebe ist.7. Differential according to one of claims 1 to 6, characterized in that the continuously variable transmission (12) is a hydraulic transmission.
8. Verfahren zum Ändern oder Umschalten des Leistungsbereiches eines Ausgleichsgetriebes (1) einer Windkraftanlage bei sich ändernder Windstärke mit einem Getriebe (7) mit drei An- bzw. Abtrieben, wobei ein Antrieb mit dem Rotor (3) der Windkraftanlage verbunden ist, der erste Abtrieb mit einem Generator (11) und der zweite Abtrieb mit der Antriebswelle eines stufenlos regelbaren Getriebes (12) , dessen Abtriebswelle mit dem generatorseitigen Abtrieb des Getriebes (7) verbunden ist, dadurch gekennzeichnet, dass der Antrieb des Getriebes (7) auf ein geringes bis kein Antriebsmoment geregelt und der Generator (11) vom Netz genommen wird, ein die Antriebswelle des stufenlos regelbaren Getriebes mit der Abtriebswelle des Getriebes (12) verbindendes Schaltgetriebe geschaltet wird, danach die Dreh- zahl des ersten Abtriebs des Getriebes (7) angepasst wird, bis am Generator (11) wieder die Synchrondrehzahl eingestellt ist worauf der Generator (11) wieder auf das Netz geschaltet wird. 8. A method for changing or switching the power range of a differential gear (1) of a wind turbine with changing wind speed with a transmission (7) with three inputs or outputs, wherein a drive is connected to the rotor (3) of the wind turbine, the first Output with a generator (11) and the second output with the drive shaft of a continuously variable transmission (12) whose output shaft is connected to the generator-side output of the transmission (7), characterized in that the drive of the transmission (7) to a low until no drive torque is controlled and the generator (11) is disconnected from the mains, a transmission connecting the drive shaft of the continuously variable transmission to the output shaft of the transmission (12) is engaged, then the speed of the first output of the transmission (7) is adjusted , until the Generator (11) is again set the synchronous speed, whereupon the generator (11) is switched back to the mains.
9. Verfahren zum Ändern des Leistungsbereiches eines Ausgleichsgetriebes (1) einer Windkraftanlage bei sich ändernder Windstärke mit einem Getriebe (7) mit drei An- bzw. Abtrieben, wobei ein Antrieb mit dem Rotor (3) der Windkraftanlage verbunden ist, der erste Abtrieb mit einem Generator (11) und der zweite Abtrieb mit der Antriebswelle eines stufenlos regelbaren Getriebes (12), dessen Abtriebswelle mit dem generatorseitigen Abtrieb des Getriebes (7) verbunden ist, dadurch gekennzeichnet, dass die Übersetzung eines die Antriebswelle des stufenlos regelbaren Getriebes (12) mit der Abtriebswelle des Getriebes (7) verbindenden stufenlosen Getriebes verändert wird. 9. A method for changing the power range of a differential gear (1) of a wind turbine with changing wind strength with a transmission (7) with three inputs or outputs, wherein a drive is connected to the rotor (3) of the wind turbine, the first output with a generator (11) and the second output with the drive shaft of a continuously variable transmission (12) whose output shaft is connected to the generator-side output of the transmission (7), characterized in that the ratio of the drive shaft of the continuously variable transmission (12) with the output shaft of the transmission (7) connecting continuously variable transmission is changed.
EP07815165A 2006-11-21 2007-11-05 Differential gear on a wind power plant and method for changing or switching the power range of said differential gear Withdrawn EP2100036A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0192906A AT504395B1 (en) 2006-11-21 2006-11-21 COMPENSATION GEAR OF A WIND POWER PLANT AND METHOD FOR MODIFYING OR SWITCHING THE PERFORMANCE OF THIS BALANCE TRANSMISSION
PCT/AT2007/000498 WO2008061263A2 (en) 2006-11-21 2007-11-05 Differential gear on a wind power plant and method for changing or switching the power range of said differential gear

Publications (1)

Publication Number Publication Date
EP2100036A2 true EP2100036A2 (en) 2009-09-16

Family

ID=39367323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07815165A Withdrawn EP2100036A2 (en) 2006-11-21 2007-11-05 Differential gear on a wind power plant and method for changing or switching the power range of said differential gear

Country Status (10)

Country Link
US (1) US8206262B2 (en)
EP (1) EP2100036A2 (en)
JP (1) JP5244813B2 (en)
KR (1) KR20090083468A (en)
CN (1) CN101583794B (en)
AT (1) AT504395B1 (en)
AU (1) AU2007324315B2 (en)
BR (1) BRPI0721387A2 (en)
CA (1) CA2670013A1 (en)
WO (1) WO2008061263A2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0714777D0 (en) * 2007-07-30 2007-09-12 Orbital 2 Ltd Improvements in and relating to electrical power generation from fluid flow
EP2107238A1 (en) * 2008-03-31 2009-10-07 AMSC Windtec GmbH Variable ratio gear
AT507393B1 (en) * 2008-10-09 2012-11-15 Gerald Dipl Ing Hehenberger WIND TURBINE
AT507394B1 (en) * 2008-10-09 2012-06-15 Gerald Dipl Ing Hehenberger WIND TURBINE
WO2010105692A1 (en) * 2009-03-20 2010-09-23 Amsc Windtec Gmbh Method for operating a wind energy converter, control device for a wind energy converter, and wind energy converter
AT508182B1 (en) * 2009-04-20 2011-09-15 Hehenberger Gerald Dipl Ing METHOD FOR OPERATING AN ENERGY-GENERATING PLANT, IN PARTICULAR WIND POWER PLANT
AT508411B1 (en) 2009-07-02 2011-06-15 Hehenberger Gerald Dipl Ing DIFFERENTIAL GEARBOX FOR ENERGY EQUIPMENT AND METHOD FOR OPERATING
WO2011138724A2 (en) * 2010-05-02 2011-11-10 Iqwind Ltd. Wind turbine with discretely variable diameter gear box
EP2591249B1 (en) * 2010-07-08 2015-03-11 Parker-Hannifin Corporation Hydraulic power split engine with enhanced torque assist
GB2483866A (en) * 2010-09-21 2012-03-28 Nexxtdrive Ltd Electric generator apparatus for a fluid turbine arrangement
AT510848B1 (en) 2011-03-10 2012-07-15 Hehenberger Gerald Dipl Ing ENERGY RECOVERY SYSTEM
AT511720B1 (en) 2011-09-01 2013-02-15 Hehenberger Gerald ENERGY RECOVERY SYSTEM
DE102011084573A1 (en) * 2011-10-14 2013-04-18 Sauer-Danfoss Gmbh & Co. Ohg Stepless adjustable hydromechanical power-split transmission for e.g. wind power plant for converting flow energy into electric energy, has control device adjusting hydraulic pump such that output shaft exhibits constant output speed
US9989138B2 (en) * 2012-04-26 2018-06-05 Hamilton Sundstrand Corporation Integrated drive generator having a variable input speed and constant output frequency and method of driving
KR102029192B1 (en) * 2013-01-24 2019-10-08 두산중공업 주식회사 Variable Speed Drive Train for Wind Turbine and Wind Turbine having the same
KR101383425B1 (en) * 2013-01-30 2014-04-10 현대중공업 주식회사 Variable speed drive train for wind turbine
AT514281A3 (en) * 2013-05-17 2015-10-15 Gerald Dipl Ing Hehenberger Method of operating a drive train and drive train
KR101422775B1 (en) 2013-05-31 2014-07-24 삼성중공업 주식회사 Gear control type wind power generating system and operating method thereof
CN105291805B (en) * 2014-06-04 2018-03-13 中山大学 It is driven integration system and its control method
CN106050582B (en) * 2016-06-03 2018-11-23 南京安维士传动技术股份有限公司 A kind of method of aerial replacement wind turbine gearbox planet carrier motor side bearing
CN118100520B (en) * 2024-04-19 2024-07-16 横川机器人(深圳)有限公司 DD directly drives motor drive structure

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE419113B (en) 1979-11-14 1981-07-13 Allmaenna Ingbyran WIND POWER PLANT FOR MAIN MECHANICAL TRANSMISSION OF A VARIABLE TURBINE SPEED TO A SYNCHRONOUS OUTPUT SPEED
US4774855A (en) * 1982-08-17 1988-10-04 Vickers Shipbuilding And Engineering Limited Apparatus for providing an electrical generator with a constant rotational speed from a variable speed input
GB2136883B (en) * 1983-03-23 1988-02-10 English Electric Co Ltd Wind or water turbine power generating system
US4613760A (en) * 1984-09-12 1986-09-23 The English Electric Company Limited Power generating equipment
GB9312014D0 (en) * 1993-06-10 1993-07-28 Eaton Corp Auxiliary transmission system and input splitter therefor
JP2919713B2 (en) * 1993-06-28 1999-07-19 日野自動車工業株式会社 Transmission synchronizer
DE4321755B4 (en) * 1993-06-30 2006-07-27 Harald Von Hacht Vegetative drive conception with the aid of a stepless servo-mechanical transmission
DE10123105B4 (en) * 2001-05-12 2010-08-26 Zf Friedrichshafen Ag Power split transmission
JP2003065210A (en) * 2001-08-27 2003-03-05 Ntn Corp Speed change gear for wind power generator
JP3822100B2 (en) * 2001-12-21 2006-09-13 株式会社小松製作所 Wind power generator
DE10314757B3 (en) 2003-03-31 2004-11-11 Voith Turbo Gmbh & Co. Kg Powertrain to transmit variable power
GB0313345D0 (en) 2003-06-10 2003-07-16 Hicks R J Variable ratio gear
DE102004028619A1 (en) * 2004-06-12 2006-01-05 Voith Turbo Gmbh & Co. Kg Speed-controlled transmission for a power generation plant
AT504818A1 (en) * 2004-07-30 2008-08-15 Windtec Consulting Gmbh TRANSMISSION TRAIL OF A WIND POWER PLANT
DE102005012167A1 (en) * 2005-03-17 2006-04-27 Voith Turbo Gmbh & Co. Kg Power train for power generation plant, has gear to effect power branching on main and side lines, and control and/or regulating unit to control power transmission of hydrodynamic circuit such that speed of main line remains constant
EP2107237A1 (en) * 2008-03-31 2009-10-07 AMSC Windtec GmbH Wind energy converter comprising a superposition gear
US8008797B2 (en) * 2009-02-13 2011-08-30 Bernard Joseph Simon System for converting wind power to electrcial power with transmission
WO2010114771A1 (en) * 2009-03-30 2010-10-07 Emmeskay, Inc. Continuously variable transmission ratio device with optimized primary path power flow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008061263A2 *

Also Published As

Publication number Publication date
KR20090083468A (en) 2009-08-03
JP5244813B2 (en) 2013-07-24
BRPI0721387A2 (en) 2014-06-17
WO2008061263A3 (en) 2008-09-25
CA2670013A1 (en) 2008-05-29
US20100048350A1 (en) 2010-02-25
US8206262B2 (en) 2012-06-26
WO2008061263A2 (en) 2008-05-29
AU2007324315A1 (en) 2008-05-29
AT504395B1 (en) 2009-05-15
CN101583794B (en) 2013-04-10
JP2010510431A (en) 2010-04-02
CN101583794A (en) 2009-11-18
AT504395A1 (en) 2008-05-15
AU2007324315B2 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
AT504395B1 (en) COMPENSATION GEAR OF A WIND POWER PLANT AND METHOD FOR MODIFYING OR SWITCHING THE PERFORMANCE OF THIS BALANCE TRANSMISSION
EP1756423B1 (en) Energy generation installation with an adjustable-speed gear
EP1538739B1 (en) Driveline for a flow converting machine
AT508411B1 (en) DIFFERENTIAL GEARBOX FOR ENERGY EQUIPMENT AND METHOD FOR OPERATING
AT507643B1 (en) TURNING MECHANISM FOR DRIVING A GENERATOR
EP1895157B1 (en) Method for operating a wind farm with a synchronous generator and an overriding drive
AT507394B1 (en) WIND TURBINE
EP2467600B1 (en) Wind power plant and method for controlling the operation of a wind power plant
EP4375540A1 (en) Drive train for pumps, energy generation systems or the like and method for starting up a drive train of this type
EP2556217A2 (en) Power plant line having a variable-speed pump
WO2010040165A2 (en) Differential for a wind power station
DE102011084573A1 (en) Stepless adjustable hydromechanical power-split transmission for e.g. wind power plant for converting flow energy into electric energy, has control device adjusting hydraulic pump such that output shaft exhibits constant output speed
DE102008046509A1 (en) Apparatus for energy recovery for a large diesel engine
DE102012000341A1 (en) Wind turbine
DE102014115191B4 (en) Apparatus and method for driving variable speed work machines
WO2010040167A1 (en) Method for operating a differential gear for an energy production plant
WO2009127402A2 (en) Generator arrangement
EP3574234A1 (en) Method for operating a drivetrain for driving a working machine at a variable rotational speed, and drivetrain
EP2342455B1 (en) Wind power station
AT13294U1 (en) Differential gear for an energy recovery plant
WO2016169740A1 (en) Drive assembly for transmitting rotational motion
WO2014037801A2 (en) Method for converting a rotational speed and rotational speed converter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090603

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F03D 7/02 20060101AFI20131128BHEP

Ipc: F16H 37/08 20060101ALI20131128BHEP

Ipc: F03D 11/02 20060101ALI20131128BHEP

Ipc: F16H 47/04 20060101ALI20131128BHEP

INTG Intention to grant announced

Effective date: 20131218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140429