EP2098314B1 - Method and apparatus for producing metallic casting moulds using the lost wax casting method - Google Patents

Method and apparatus for producing metallic casting moulds using the lost wax casting method Download PDF

Info

Publication number
EP2098314B1
EP2098314B1 EP08004045A EP08004045A EP2098314B1 EP 2098314 B1 EP2098314 B1 EP 2098314B1 EP 08004045 A EP08004045 A EP 08004045A EP 08004045 A EP08004045 A EP 08004045A EP 2098314 B1 EP2098314 B1 EP 2098314B1
Authority
EP
European Patent Office
Prior art keywords
heating mantle
gas
heat transfer
burners
transfer gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08004045A
Other languages
German (de)
French (fr)
Other versions
EP2098314A1 (en
Inventor
Helmut Rodehüser
Ulrich Steinrücken
Hans-Peter Nicolai
Dietmar Henneke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TiTAL GmbH
Original Assignee
TiTAL GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TiTAL GmbH filed Critical TiTAL GmbH
Priority to ES08004045T priority Critical patent/ES2393415T3/en
Priority to PL08004045T priority patent/PL2098314T3/en
Priority to PT08004045T priority patent/PT2098314E/en
Priority to EP08004045A priority patent/EP2098314B1/en
Publication of EP2098314A1 publication Critical patent/EP2098314A1/en
Application granted granted Critical
Publication of EP2098314B1 publication Critical patent/EP2098314B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings

Definitions

  • the present invention relates to a method according to claim 1 and a device according to claim 6 for the production of metal castings by precision casting, in particular cast aluminum or aluminum-containing alloys.
  • Advantageous developments are specified in the subclaims.
  • a wax model is usually produced by an object to be cast, which is then coated with a ceramic shell. This can be done, for example, by immersing the wax model in suitable ceramic slip. In this case, different slips can be applied successively. Subsequently, the wax model is melted out, and fired the ceramic form. As a result, a porous mold is obtained, in which metallic melts can be cast. After solidification of the metallic melt, the mold is destroyed and the casting can be removed.
  • the method described above also allows the production of complex castings.
  • a disadvantage of the casting technique described is that the ceramic casting molds produced have a poor thermal conductivity and thus contribute to a relatively long and unregulated solidification time of the molten metal in the casting mold.
  • a relatively coarse-grained microstructure arises, which can lead to reduced mechanical properties.
  • the EP 1 076 118 A discloses a method and apparatus for producing directionally cured castings. It is envisaged to lower the cast body in a cooling bath to achieve a directional curing. The located above the cooling bath part of the mold is tempered with a heating chamber, which has electrical heating elements.
  • the casting mold and thus also the melt introduced into the casting mold are heated above the cooling liquid level by means of an electrical resistance heater in order to keep the filled molten metal liquid above the cooling liquid level.
  • an electrical resistance heater in order to keep the filled molten metal liquid above the cooling liquid level.
  • the system is flushed by means of a protective gas at overpressure. This requires a suitably closed container.
  • the method known from the prior art has drawbacks such that in the electrical resistance heating based on radiation, the desired temperature level for securely holding the molten metal above the level of the cooling liquid can be kept difficult or even not achieved if the plant dimensions go beyond a critical limit measure or the grape geometry is such that radiation dead inner areas arise, ie those areas of the mold, which are shielded by other mold areas of the radiated by the electrical resistance heating radiant heat.
  • This is a significant limitation of the process in terms of the size of the castings to be cast and their geometry given.
  • the injection of inert gas leads to an additional cooling effect.
  • This object is achieved with respect to the method by a method for producing a metal casting by the investment casting method, wherein the casting metal or alloy to be cast is poured into a ceramic mold with porous walls and the mold for cooling and solidification of the melt from one end Starting from constantly immersed in such a way in a coolant, that as the interface between the melt and already solidified metal solidifying front lags the coolant level, which is characterized in that the lying still above the coolant level region of the mold by means of a heat transfer gas to a temperature above the Solidus temperature of the metal or alloy to be cast is heated.
  • the heat transfer gas to be used in this case contains an exothermically oxidizable gas and oxygen.
  • Suitable exothermic oxidizable gases are, for example, hydrogen, gaseous hydrocarbons such as methane, ethane, propane, butane, ethene, acetylene, or else carbon monoxide, and mixtures of these.
  • the heat transfer gas may contain other gases such as noble gases, halogenated hydrocarbons, ammonia, nitrogen, carbon dioxide, sulfur halides or mixtures thereof.
  • the further gases containing the heat gas can serve as protective or inert gases in order to prevent diffusion of hydrogen into the molten metal or the cast body.
  • the exothermic oxidizable gas contained in the heat transfer gas is directly oxidized within a heating hood, whereby the region of the casting mold located above the cooling liquid level is heated.
  • the heat carrier gas is removed from the heating hood together with possibly evaporated coolant constituents and fed to afterburning.
  • the exhaust gases resulting from the afterburning are fed to a heat exchanger which preheats at least part of the heat transfer gas to be supplied fresh to the heating hood.
  • the temperature is determined within the heating hood and used as a controlled variable for the content of exothermally oxidizable gas in the heat carrier gas or the content of other gases in the heat transfer gas.
  • the exothermic oxidizable gas is burned by burners in the course of a direct oxidation within the heating hood.
  • a heating hood has at least two burners or burner levels arranged one above the other. The individual burners can be controlled separately and can be clocked depending on the operating state of the heating hood. In addition, the combustion ratio (lambda) of the individual burners can be set differently.
  • the combustion ratio lambda a lower burner level ⁇ 1.0, the burners are thus operated with a substoichiometric gas / oxygen ratio, whereas the combustion ratio lambda the upper burner level> 1.0, ie the burner with be operated at a superstoichiometric gas / air ratio.
  • Such an embodiment of the method according to the invention makes it possible to dispense with afterburning of the exhaust gases discharged from the heating hood since, on the one hand, the surface of the coolant passing into contact with the heating hood is not oxidized due to the substoichiometric gas / oxygen ratio and, on the other hand, evaporating oxidizable constituents of the coolant bath in the Area of the upper, with a superstoichiometric gas / air ratio operated burner level directly oxidized in the course of combustion.
  • the exhaust gases discharged from the heating hood for further thermal utilization of a heat exchanger for preheating the heat transfer gas can be supplied.
  • a heating hood for carrying out a method according to the invention, which has an outer jacket, an insulating layer, burner and at least one outlet, wherein the burners burn a heat carrier gas containing exothermic oxidizable gas and the resulting exhaust gases are dissipatable via the at least one outlet, wherein the burners are arranged within the heating hood so that a substantially uniform heat distribution is ensured within the heating hood.
  • the burners are arranged in at least two levels within the heating hood.
  • the burners are each individually controllable.
  • individually controllable means that the burners can be switched on and off individually as well as with regard to the composition and the volume flow of the gas mixture supplied to them.
  • this is designed so that it can be integrated in a known from the prior art container for receiving a coolant in a precision casting process, for example by integration of the heating hood in the lid of such a container.
  • the heating hood according to the invention may have a post-combustion zone in which unburned constituents of the exothermically oxidizable gas reacted in the burners and / or any other gaseous constituents of the exhaust gas discharged from the heating hood are after-burned.
  • the post-combustion zone can either be located directly inside the heating hood or a separate post-combustion zone can be provided outside the heating hood.
  • gas inlets can be provided within the heating hood, via which further gases such as protective or inert gases can be introduced into the heating hood.
  • the exhaust gas for transmitting at least a portion of the thermal energy contained can be performed via a heat exchanger in one embodiment.
  • the waste heat can serve both for preheating the combustion air required in the burners, the exothermic oxidizable gas or the additional heating gas optionally supplied via the additional gas inlets further gases.
  • the entire gas flow does not necessarily have to be heated, but instead a bypass line can be provided for bypassing the heat exchanger.
  • the heating hood on mixing valves for adjusting a ratio between the gas passed through the heat exchanger and cold gas.
  • the heating hood according to the invention may also have temperature sensors for detecting the temperature within the heating hood.
  • the temperature sensor can pass a measurement signal corresponding to the temperature to a control device which controls the burners and / or the mixing valves for mixing cold and preheated gas as a function of the temperature determined in the heating hood.
  • Fig. 1 shows a heating hood 1 according to the invention for use in a precision casting process of the type described above.
  • the heating hood 1 has an outer jacket 2, which is equipped on the inside with a refractory insulating layer.
  • the outer shell 2 may be made of steel or other sufficiently temperature-resistant materials.
  • the refractory insulating layer 3 may be formed, for example, of a ceramic coating or Schamottausmautation.
  • the heating hood 1 according to the invention has burners 4, with which an exothermic oxidizable gas can be burned.
  • the burners 4 can in this case be arranged in two superimposed planes. In such an embodiment, the burners in the different levels can be operated with different combustion ratios lambda.
  • Fig. 2 shows a heating hood according to the invention, which is arranged within a coolant tank 13.
  • the heating hood is integrated into the lid 18 of the coolant tank.
  • the coolant tank 13 contains a coolant 15, which can be supplied or removed via inlet 14 and outlet 16.
  • the coolant tank 13 can have auxiliary connections 17, through which, for example, protective gas can be introduced into the coolant tank 13, or which can serve to ventilate the coolant tank 13.
  • the liquid level of the coolant 15 within the coolant tank 13 may be in the in Fig. 2 shown configuration through inlet 14 and outlet 16 are set so that the coolant level is flush with the lower edge of the heating hood.
  • Fig. 3 shows a further embodiment of a heating hood 1 according to the invention, which in addition to the burners 4 gas inlets 9, through which additional gases such as inert or protective gases can be introduced into the heating hood.
  • a post-combustion zone 5 is provided, to which a heat exchanger 7 is connected.
  • the gas mixture supplied to the burners 4 and / or the gas which can be introduced into the heating hood via the gas inlets 7 can be preheated.
  • the in Fig. 3 shown heating hood 1 temperature sensor 20, by means of which the temperature prevailing in the heating hood temperature can be determined.
  • a plurality of temperature sensors 20 are provided in different areas of the heating hood 1.
  • the temperature sensor 20 can be connected to a control unit which controls the burner 4 and / or mixing valves for adjusting the ratio of preheated by the heat exchanger 7 gas and cold gas and / or control valves for controlling the additional gas input depending on the temperature prevailing in the heating hood , As a result, an exact temperature control within the heating hood 1 according to the invention is possible.
  • the mold to be arranged in the heating hood is heated uniformly by means of a heat transfer gas, so that radiation-dead spaces are heated sufficiently.
  • the adjustable gas flow within the heating hood according to the invention ensures that any evaporating constituents of the coolant, which optionally have a reaction potential to the still liquid metal in the mold, are discharged as quickly as possible.
  • FIGS. 4 and 5 show further embodiments of the heating hood according to the invention in which the burner 4 can be aligned in a deviating from the horizontal orientation angle of 3 to 10 °. Likewise, it may be provided according to the invention, to arrange the burner tangentially to the hood center. Such a design of the heating hood according to the invention, a flow of the heat transfer gas is achieved within the heating hood, which contributes to a uniform heat distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren gemäß Anspruch 1 sowie eine Vorrichtung gemäß Anspruch 6 zur Herstellung metallischer Gusskörper nach dem Feingussverfahren, insbesondere Gusskörper aus Aluminium oder aluminium-haltigen Legierungen. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.The present invention relates to a method according to claim 1 and a device according to claim 6 for the production of metal castings by precision casting, in particular cast aluminum or aluminum-containing alloys. Advantageous developments are specified in the subclaims.

Verfahren zur Herstellung metallischer Gusskörper nach dem Feingussverfahren sind aus dem Stand der Technik bekannt. Zur Herstellung von Gusskörpern mittels des Feingussverfahrens wird in der Regel von einem zu gießenden Objekt ein Wachsmodell gefertigt, welches anschließend mit einer keramischen Schale umhüllt wird. Dies kann beispielsweise durch Eintauchen des Wachsmodells in geeignete keramische Schlicker erfolgen. Hierbei können auch nacheinander unterschiedliche Schlicker aufgetragen werden. Anschließend wird das Wachsmodell ausgeschmolzen, und die keramische Form gebrannt. Hierdurch wird eine poröse Gießform erhalten, in welche metallische Schmelzen vergossen werden können. Nach Erstarren der metallischen Schmelze wird die Gießform zerstört und der Gusskörper kann entnommen werden. Das zuvor beschriebene Verfahren ermöglicht auch die Herstellung komplexer Gusskörper.Methods for producing metal castings by the precision casting method are known from the prior art. For the production of castings by means of the investment casting process, a wax model is usually produced by an object to be cast, which is then coated with a ceramic shell. This can be done, for example, by immersing the wax model in suitable ceramic slip. In this case, different slips can be applied successively. Subsequently, the wax model is melted out, and fired the ceramic form. As a result, a porous mold is obtained, in which metallic melts can be cast. After solidification of the metallic melt, the mold is destroyed and the casting can be removed. The method described above also allows the production of complex castings.

Ein Nachteil der beschriebenen Gusstechnik ist, dass die hergestellten keramischen Gießformen eine schlechte Wärmeleitfähigkeit besitzen und so zu einer relativ langen und ungeregelten Erstarrungszeit der Metallschmelze in der Gießform beitragen. Durch langsames Erstarren und Abkühlen entsteht jedoch in Abhängigkeit vom zu vergießenden Metall ein relativ grobkörniges Gefüge, welches zu verminderten mechanischen Eigenschaften führen kann.A disadvantage of the casting technique described is that the ceramic casting molds produced have a poor thermal conductivity and thus contribute to a relatively long and unregulated solidification time of the molten metal in the casting mold. However, due to slow solidification and cooling, depending on the metal to be cast, a relatively coarse-grained microstructure arises, which can lead to reduced mechanical properties.

Zur Verbesserung der geringen Wärmeleitfähigkeit der keramischen Gießformen wird mit der DE 36 29 079 vorgeschlagen, in die keramischen Gießformen taschenförmige Einsätze einzuarbeiten, welche vor dem Einfüllen der Metallschmelze mit Stahlkies als Kühlmittel gefüllt werden. Hierbei sorgt der Stahlkies aufgrund seiner guten Wärmeleitfähigkeit und seiner hohen Wärmekapazität für eine verbesserte Wärmeabfuhr aus der Gießform.To improve the low thermal conductivity of the ceramic molds is with the DE 36 29 079 proposed in the ceramic molds bag-shaped Incorporate inserts which are filled with steel gravel as a coolant before filling the molten metal. Due to its good thermal conductivity and high heat capacity, the steel gravel ensures improved heat dissipation from the casting mold.

Die EP 1 076 118 A offenbart ein Verfahren sowie eine Vorrichtung zur Herstellung von direktional ausgehärteten Gusskörpem. Dabei ist vorgesehen, den Gusskörper in ein Kühlbad abzusenken, um eine gerichtete Aushärtung zu erreichen. Der oberhalb des Kühlbades befindliche Teil der Gussform wird dabei mit einer Heizkammer temperiert, welche elektrische Heizelemente aufweist.The EP 1 076 118 A discloses a method and apparatus for producing directionally cured castings. It is envisaged to lower the cast body in a cooling bath to achieve a directional curing. The located above the cooling bath part of the mold is tempered with a heating chamber, which has electrical heating elements.

Mit der EP 0 571 703 wird vorgeschlagen, die poröse keramische Gießform nach Einfüllen der metallischen Schmelze in ein Kühlmittelbad einzutauchen, welches eine die poröse keramische Gießform-Wand allmählich penetrierende Kühlflüssigkeit aufweist, deren Siedetemperatur niedriger ist als die Eingießtemperatur der Metallschmelze. Hierbei wird die Gießform von einem Ende aus beginnend stetig in das Kühlmittel eingetaucht, und zwar derart, dass die als Grenzfläche zwischen Schmelze und bereits erstarrten Metall sich bildende Erstarrungsfront und der Penetrationsbereich, in dem die Gießform-Wand von der Kühlflüssigkeit über ihre Dicke durchdrungen ist, sich im Wesentlichen in Richtung der freien Schmelzoberfläche bewegen, und die Eintauchgeschwindigkeit der Gießform in die Kühlflüssigkeit so gewählt ist, dass in Bewegungsrichtung der Erstarrungsfront gesehen der Penetrationsbereich der Kühlflüssigkeit der Erstarrungsfront nacheilt. Hierbei kann es auch vorgesehen sein, dass die Gießform und somit auch die in die Gießform eingebrachte Schmelze oberhalb des Kühlflüssigkeitsspiegels mittels einer elektrischen Widerstandsheizung beheizt werden, um die eingefüllte Metallschmelze oberhalb des Kühlflüssigkeitsspiegels flüssig zu halten. Hierbei ist es jedoch notwendig, dass zur Vermeidung von Reaktionen der verwendeten Kühlflüssigkeit mit Luftsauerstoff, die Anlage mittels eines Schutzgases bei Überdruck gespült wird. Dies setzt einen entsprechend geschlossenen Behälter voraus. Das aus dem Stand der Technik bekannte Verfahren weist jedoch Nachteile auf, derart, dass bei der auf Strahlung basierenden verwendeten elektrischen Widerstandsheizung das gewünschte Temperaturniveau zum sicheren Flüssighalten der Metallschmelze oberhalb des Kühlflüssigkeitsspiegels nur schwer gehalten werden kann bzw. sogar nicht erreicht wird, wenn die Anlagenabmessungen über ein kritisches Grenzmaß hinausgehen oder die Traubengeometrie so beschaffen ist, dass strahlungstote Innenbereiche entstehen, also solche Bereiche der Gießform, welche durch andere Gießform-Bereiche von der durch die elektrische Widerstandsheizung ausgestrahlten Strahlungswärme abgeschirmt sind. Hierdurch ist eine deutliche Beschränkung des Verfahrens hinsichtlich der Größe der zu gießenden Feingussteile sowie deren Geometrie gegeben. Darüber hinaus führt das Einblasen von Schutzgas zu einem zusätzlichen Abkühleffekt.With the EP 0 571 703 It is proposed to immerse the porous ceramic mold after filling the metallic melt in a coolant bath, which has a porous ceramic mold wall gradually penetrating the cooling liquid whose boiling temperature is lower than the pouring temperature of the molten metal. In this case, the casting mold is continuously immersed starting from one end into the coolant, in such a way that the solidification front forming the interface between the melt and already solidified metal and the penetration region in which the casting wall is penetrated by the cooling liquid over its thickness , Move substantially in the direction of the free surface of the melt, and the dipping speed of the mold is selected in the cooling liquid so that seen in the direction of movement of the solidification front lags the penetration range of the cooling liquid of the solidification front. In this case, it can also be provided that the casting mold and thus also the melt introduced into the casting mold are heated above the cooling liquid level by means of an electrical resistance heater in order to keep the filled molten metal liquid above the cooling liquid level. In this case, however, it is necessary that in order to avoid reactions of the cooling liquid used with atmospheric oxygen, the system is flushed by means of a protective gas at overpressure. This requires a suitably closed container. However, the method known from the prior art has drawbacks such that in the electrical resistance heating based on radiation, the desired temperature level for securely holding the molten metal above the level of the cooling liquid can be kept difficult or even not achieved if the plant dimensions go beyond a critical limit measure or the grape geometry is such that radiation dead inner areas arise, ie those areas of the mold, which are shielded by other mold areas of the radiated by the electrical resistance heating radiant heat. This is a significant limitation of the process in terms of the size of the castings to be cast and their geometry given. In addition, the injection of inert gas leads to an additional cooling effect.

Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie eine Vorrichtung bereitzustellen, mit welchem die aus dem Stand der Technik bekannten Nachteile bei der Herstellung von metallischen Gusskörpern nach dem Feingussverfahren insbesondere hinsichtlich der Größe sowie der Gussteilgeometrie überwunden werden.It is therefore the object of the present invention to provide a method and a device with which known from the prior art Disadvantages in the production of metal castings after the investment casting process, especially in terms of size and the casting geometry to be overcome.

Gelöst wird diese Aufgabe hinsichtlich des Verfahrens durch ein Verfahren zur Herstellung eines metallischen Gusskörpers nach dem Feingussverfahren, wobei das zu gießende Metall oder die zu gießende Legierung in eine keramische Gießform mit porösen Wänden gegossen wird und die Gießform zur Abkühlung und Erstarrung der Schmelze von einem Ende aus beginnend stetig derart in ein Kühlmittel eingetaucht wird, dass die als Grenzfläche zwischen Schmelze und bereits erstarrtem Metall sich bildende Erstarrungsfront dem Kühlmittelspiegel nacheilt, welches dadurch gekennzeichnet ist, dass der noch oberhalb des Kühlmittelspiegels liegende Bereich der Gießform mittels eines Wärmeträgergases auf eine Temperatur oberhalb der Solidustemperatur des zu vergießenden Metalls oder der Legierung erwärmt wird. This object is achieved with respect to the method by a method for producing a metal casting by the investment casting method, wherein the casting metal or alloy to be cast is poured into a ceramic mold with porous walls and the mold for cooling and solidification of the melt from one end Starting from constantly immersed in such a way in a coolant, that as the interface between the melt and already solidified metal solidifying front lags the coolant level, which is characterized in that the lying still above the coolant level region of the mold by means of a heat transfer gas to a temperature above the Solidus temperature of the metal or alloy to be cast is heated.

Das hierbei einzusetzende Wärmeträgergas enthält ein exotherm oxidierbares Gas sowie Sauerstoff. Geeignete exotherm oxidierbare Gase sind beispielsweise Wasserstoff, gasförmige Kohlenwasserstoffe wie Methan, Ethan, Propan, Butan, Ethen, Acetylen, oder auch Kohlenmonoxid sowie Mischungen dieser.The heat transfer gas to be used in this case contains an exothermically oxidizable gas and oxygen. Suitable exothermic oxidizable gases are, for example, hydrogen, gaseous hydrocarbons such as methane, ethane, propane, butane, ethene, acetylene, or else carbon monoxide, and mixtures of these.

Zusätzlich kann das Wärmeträgergas weitere Gase wie beispielsweise Edelgase, Halogenkohlenwasserstoffe, Ammoniak, Stickstoff, Kohlendioxid, Schwefelhalogenide oder Mischungen dieser enthalten. Hierbei können die weiteren im Wärmegas enthaltenden Gase als Schutz- oder Inertgase dienen, um eine Diffusion von Wasserstoff in die Metallschmelze bzw. den Gusskörper zu vermeiden.In addition, the heat transfer gas may contain other gases such as noble gases, halogenated hydrocarbons, ammonia, nitrogen, carbon dioxide, sulfur halides or mixtures thereof. In this case, the further gases containing the heat gas can serve as protective or inert gases in order to prevent diffusion of hydrogen into the molten metal or the cast body.

Das im Wärmeträgergas enthaltene exotherm oxidierbare Gas wird innerhalb einer Heizhaube direkt oxidiert, wodurch der über dem Kühlflüssigkeitsspiegel liegende Bereich der Gießform beheizt wird.The exothermic oxidizable gas contained in the heat transfer gas is directly oxidized within a heating hood, whereby the region of the casting mold located above the cooling liquid level is heated.

Erfindungsgemäß ist es vorgesehen, dass das Wärmeträgergas nach der exothermen Oxidierung des im Wärmeträgergas enthaltenen exotherm oxidierbaren Gases aus der Heizhaube zusammen mit eventuell verdampften Kühlmittelbestandteilen abgeführt und einer Nachverbrennung zugeführt wird. Hierbei kann es vorgesehen sein, dass die aus der Nachverbrennung entstehenden Abgase einem Wärmetauscher zugeführt werden, welcher zumindest einen Teil des frisch der Heizhaube zuzuführenden Wärmeträgergases vorwärmt. Hierdurch wird die thermische Nutzung des Energiegehaltes des exotherm oxidierbaren Gases maximiert, wodurch sich der Bedarf an exotherm oxidierbaren Gas im Wärmeträgergas reduziert.According to the invention, it is provided that after the exothermic oxidation of the exothermic oxidizable gas contained in the heat carrier gas, the heat carrier gas is removed from the heating hood together with possibly evaporated coolant constituents and fed to afterburning. In this case, it may be provided that the exhaust gases resulting from the afterburning are fed to a heat exchanger which preheats at least part of the heat transfer gas to be supplied fresh to the heating hood. As a result, the thermal utilization of the energy content of the exothermic oxidizable gas is maximized, thereby the need for exothermic oxidizable gas in the heat transfer gas is reduced.

In der Nachverbrennung selbst werden noch nicht vollständig oxidierte Reste des exotherm oxidierbaren Gases im Wärmeträgergas zusammen mit eventuell verdampften Bestandteilen des Kühlmittels verbrannt, um einen Austrag von noch nicht oxidierten Gas bzw. Kühlmittelbestandteilen zu vermeiden. Die Abgase der Nachverbrennung können nach thermischer Ausnutzung des Energiegehaltes im Wärmetauscher einer geeigneten Abgasreinigung zugeführt werden.In the afterburning itself not completely oxidized residues of the exothermic oxidizable gas are burned in the heat carrier gas together with any evaporated components of the coolant to avoid discharge of not yet oxidized gas or coolant components. After the thermal utilization of the energy content in the heat exchanger, the exhaust gases of the afterburning can be supplied to a suitable exhaust gas purification system.

Erfindungsgemäß kann es vorgesehen sein, dass die Temperatur innerhalb der Heizhaube bestimmt und als Regelgröße für den Gehalt an exotherm oxidierbaren Gas im Wärmeträgergas oder auch des Gehaltes an weiteren Gasen im Wärmeträgergas genutzt wird.According to the invention it can be provided that the temperature is determined within the heating hood and used as a controlled variable for the content of exothermally oxidizable gas in the heat carrier gas or the content of other gases in the heat transfer gas.

In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird das exotherm oxidierbare Gas mittels Brennern im Zuge einer Direktoxidation innerhalb der Heizhaube verbrannt. In einer weiteren Ausgestaltung der Erfindung weist eine Heizhaube wenigstens zwei übereinander angeordnete Brenner bzw. Brennerebenen auf. Die einzelnen Brenner sind getrennt steuerbar und können in Abhängigkeit des Betriebszustandes der Heizhaube getaktet werden. Darüber hinaus kann das Verbrennungsverhältnis (Lambda) der einzelnen Brenner unterschiedlich eingestellt sein. In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens ist das Verbrennungsverhältnis Lambda einer unteren Brennerebene < 1,0, die Brenner werden also mit einem unterstöchiometrischen Gas/Sauerstoff-Verhältnis betrieben, wohingegen das Verbrennungsverhältnis Lambda der oberen Brennerebene > 1,0 ist, also die Brenner mit einem überstöchiometrischen Gas/Luft-Verhältnis betrieben werden.In one embodiment of the method according to the invention, the exothermic oxidizable gas is burned by burners in the course of a direct oxidation within the heating hood. In a further embodiment of the invention, a heating hood has at least two burners or burner levels arranged one above the other. The individual burners can be controlled separately and can be clocked depending on the operating state of the heating hood. In addition, the combustion ratio (lambda) of the individual burners can be set differently. In a further embodiment of the method according to the invention, the combustion ratio lambda a lower burner level <1.0, the burners are thus operated with a substoichiometric gas / oxygen ratio, whereas the combustion ratio lambda the upper burner level> 1.0, ie the burner with be operated at a superstoichiometric gas / air ratio.

Durch eine solche Ausgestaltung des erfindungsgemäßen Verfahrens kann auf eine Nachverbrennung der aus der Heizhaube abgeführten Abgase verzichtet werden, da einerseits die mit der Heizhaube gegebenenfalls in Kontakt tretende Oberfläche des Kühlmittels aufgrund des unterstöchiometrischen Gas/Sauerstoffverhältnisses nicht oxidiert wird und andererseits verdampfende oxidationsfähige Bestandteile des Kühlmittelbades im Bereich der oberen, mit einem überstöchiometrischen Gas/LuftVerhältnis betriebenen Brennerebene direkt im Zuge einer Verbrennung oxidiert werden.Such an embodiment of the method according to the invention makes it possible to dispense with afterburning of the exhaust gases discharged from the heating hood since, on the one hand, the surface of the coolant passing into contact with the heating hood is not oxidized due to the substoichiometric gas / oxygen ratio and, on the other hand, evaporating oxidizable constituents of the coolant bath in the Area of the upper, with a superstoichiometric gas / air ratio operated burner level directly oxidized in the course of combustion.

Auch bei der zuvor beschriebenen Ausgestaltung des erfindungsgemäßen Verfahrens kann es vorgesehen sein, dass die aus der Heizhaube abgeführten Abgase zur weiteren thermischen Ausnutzung einem Wärmetauscher zur Vorwärmung des Wärmeträgergases zugeführt werden.Also in the above-described embodiment of the method according to the invention, it may be provided that the exhaust gases discharged from the heating hood for further thermal utilization of a heat exchanger for preheating the heat transfer gas can be supplied.

Erfindungsgemäß ist es vorgesehen, die Kühlmittelzusammensetzung so zu wählen, dass die Gefahr von Brandüberschlägen oder Verpuffungen ausgeschlossen ist.According to the invention it is provided to select the coolant composition so that the risk of fire flashovers or deflagration is excluded.

Hinsichtlich der Vorrichtung wird die der Erfindung zugrunde liegende Aufgabe durch eine Heizhaube zur Durchführung eines erfindungsgemäßen Verfahrens gelöst, welche einen äußeren Mantel, eine Isolierschicht, Brenner und wenigstens einen Auslass aufweist, wobei die Brenner ein exotherm oxidierbares Gas enthaltendes Wärmeträgergas verbrennen und die dabei entstehenden Abgase über den wenigstens einen Auslass abführbar sind, wobei die Brenner innerhalb der Heizhaube so angeordnet sind, dass eine im Wesentlichen gleichmäßige Wärmeverteilung innerhalb der Heizhaube gewährleistet ist.With regard to the device, the object underlying the invention is achieved by a heating hood for carrying out a method according to the invention, which has an outer jacket, an insulating layer, burner and at least one outlet, wherein the burners burn a heat carrier gas containing exothermic oxidizable gas and the resulting exhaust gases are dissipatable via the at least one outlet, wherein the burners are arranged within the heating hood so that a substantially uniform heat distribution is ensured within the heating hood.

In einer Ausgestaltung der erfindungsgemäßen Heizhaube sind die Brenner in wenigstens zwei Ebenen innerhalb der Heizhaube angeordnet. Die Brenner sind jeweils einzeln steuerbar. Hierbei ist unter einzeln steuerbar zu verstehen, dass die Brenner sowohl einzeln ein- und ausschaltbar sind, als auch hinsichtlich der Zusammensetzung und des Volumenstromes des ihnen zugeführten Gasgemisches steuerbar sind.In one embodiment of the heating hood according to the invention, the burners are arranged in at least two levels within the heating hood. The burners are each individually controllable. In this case, individually controllable means that the burners can be switched on and off individually as well as with regard to the composition and the volume flow of the gas mixture supplied to them.

In einer weiteren Ausgestaltung der erfindungsgemäßen Heizhaube ist diese so gestaltet, dass sie in einen aus dem Stand der Technik bekannten Behälter zur Aufnahme eines Kühlmittels in einem Feingussverfahren integrierbar ist, beispielsweise durch Integration der Heizhaube in den Deckel eines solchen Behälters.In a further embodiment of the heating hood according to the invention, this is designed so that it can be integrated in a known from the prior art container for receiving a coolant in a precision casting process, for example by integration of the heating hood in the lid of such a container.

Die erfindungsgemäße Heizhaube kann eine Nachverbrennungszone aufweisen, in welcher nicht verbrannte Bestandteile des in den Brennern umgesetzten exotherm oxidierbaren Gases und/oder etwaige andere gasförmige Bestandteile des aus der Heizhaube abgeführten Abgases nachverbrannt werden. Hierbei kann die Nachverbrennungszone entweder sich direkt innerhalb der Heizhaube befinden, oder es kann eine separate Nachverbrennungszone außerhalb der Heizhaube vorgesehen sein.The heating hood according to the invention may have a post-combustion zone in which unburned constituents of the exothermically oxidizable gas reacted in the burners and / or any other gaseous constituents of the exhaust gas discharged from the heating hood are after-burned. In this case, the post-combustion zone can either be located directly inside the heating hood or a separate post-combustion zone can be provided outside the heating hood.

Des Weiteren können innerhalb der Heizhaube Gaseinlässe vorgesehen sein, über welche weitere Gase wie beispielsweise Schutz- oder Inertgase in die Heizhaube eingeleitet werden können.Furthermore, gas inlets can be provided within the heating hood, via which further gases such as protective or inert gases can be introduced into the heating hood.

Bei der erfindungsgemäßen Heizhaube kann in einer Ausgestaltung das Abgas zur Übertragung zumindest eines Teils der enthaltenen thermischen Energie über einen Wärmetauscher geführt werden. Die Abwärme kann sowohl zum Vorwärmen der in den Brennern benötigten Verbrennungsluft, des exotherm oxidierbaren Gases oder der der Heizhaube über die zusätzlichen Gaseinlässe gegebenenfalls zugeführten weiteren Gase dienen. Hierbei muss nicht zwangsläufig der gesamte Gasstrom erwärmt werden, sondern es kann eine Bypassleitung zur Umgehung des Wärmetauschers vorgesehen sein. In einer solchen Ausgestaltung weist die Heizhaube Mischventile zur Einstellung eines Verhältnisses zwischen über den Wärmetauscher geleiteten Gas und kaltem Gas auf.In the heating hood according to the invention, the exhaust gas for transmitting at least a portion of the thermal energy contained can be performed via a heat exchanger in one embodiment. The waste heat can serve both for preheating the combustion air required in the burners, the exothermic oxidizable gas or the additional heating gas optionally supplied via the additional gas inlets further gases. In this case, the entire gas flow does not necessarily have to be heated, but instead a bypass line can be provided for bypassing the heat exchanger. In such an embodiment, the heating hood on mixing valves for adjusting a ratio between the gas passed through the heat exchanger and cold gas.

Die erfindungsgemäße Heizhaube kann darüber hinaus Temperaturfühler zur Erfassung der Temperatur innerhalb der Heizhaube aufweisen. Die Temperaturfühler können ein der Temperatur entsprechendes Messsignal an eine Steuereinrichtung weitergeben, welche in Abhängigkeit der in der Heizhaube bestimmten Temperatur die Brenner und/oder die Mischventile zur Mischung von kalten und vorgewärmten Gas steuert.The heating hood according to the invention may also have temperature sensors for detecting the temperature within the heating hood. The temperature sensor can pass a measurement signal corresponding to the temperature to a control device which controls the burners and / or the mixing valves for mixing cold and preheated gas as a function of the temperature determined in the heating hood.

Darüber hinaus können erfindungsgemäß weitere Messeinrichtungen wie beispielsweise eine Lambda-Sonde zur Bestimmung der Zusammensetzung der aus der erfindungsgemäßen Heizhaube abgeführten Abgase vorgesehen sein, welche ebenfalls mit der Steuereinrichtung verbunden ist, so dass die durch diese Messeinrichtungen ermittelten Messwerte als Steuergröße für die Steuerung der Brenner und/oder der Mischventile dienen können.

Fig. 1:
zeigt einen Querschnitt durch eine erfindungsgemäße Heizhaube.
Fig. 2:
zeigt einen Querschnitt durch eine in einen Kühlmittelbehälter integrierte erfindungsgemäße Heizhaube.
Fig. 3:
zeigt einen Querschnitt einer erfindungsgemäßen Heizhaube, welche eine außerhalb der Heizhaube angeordnete Nachverbrennungszone sowie einen Wärmetauscher aufweist.
Fig. 4:
zeigt eine erfindungsgemäße Heizhaube im Querschnitt, in welcher die Brenner in einem von der horizontalen Ausrichtung abweichenden Winkel ausgerichtet sind.
Fig. 5:
zeigt den Querschnitt in horizontaler Ebene einer erfindungsgemäßen
Heizhaube, in welcher die Brenner nicht radial auf den Mittelpunkt der Heizhaube, sondern quasi tangential in abweichendem Winkel angeordnet ist.In addition, according to the invention, further measuring devices such as, for example, a lambda probe for determining the composition of the exhaust gases discharged from the heating hood according to the invention can be provided, which is likewise connected to the control device, so that the measured values determined by these measuring devices serve as a control variable for the control of the burners / or the mixing valves can serve.
Fig. 1:
shows a cross section through a heating hood according to the invention.
Fig. 2:
shows a cross section through an integrated into a coolant tank inventive heating hood.
3:
shows a cross section of a heating hood according to the invention, which has a arranged outside the heating hood post-combustion zone and a heat exchanger.
4:
shows a heating hood according to the invention in cross section, in which the burners are aligned at an angle deviating from the horizontal orientation.
Fig. 5:
shows the cross section in the horizontal plane of an inventive
Heating hood, in which the burner is not arranged radially to the center of the heating hood, but quasi tangent at a different angle.

Fig. 1 zeigt eine erfindungsgemäße Heizhaube 1 zur Anwendung in einem Feingussverfahren der eingangs beschriebenen Art. Die Heizhaube 1 weist einen äußeren Mantel 2 auf, welcher auf der Innenseite mit einer feuerfesten Isolierschicht ausgerüstet ist. Der äußere Mantel 2 kann aus Stahl oder anderen hinreichend temperaturbeständigen Materialien gefertigt sein. Die feuerfeste Isolierschicht 3 kann beispielsweise aus einer keramischen Beschichtung oder Schamottausmauerung gebildet sein. Die erfindungsgemäße Heizhaube 1 weist Brenner 4 auf, mit welchen ein exotherm oxierbares Gas verbrannt werden kann. Die Brenner 4 können hierbei in zwei übereinanderliegenden Ebenen angeordnet sein. In einer solchen Ausgestaltung können die Brenner in den unterschiedlichen Ebenen mit unterschiedlichen Verbrennungsverhältnissen Lambda betrieben werden. Hierdurch ist es möglich eine Nachverbrennungszone im oberen Bereich der Heizhaube zu schaffen, in welcher eventuell noch nicht oxidativ umgesetztes Gas oder verdampfte Bestandteile des Kühlmittels verbrannt werden. Die innerhalb der Heizhaube entstehenden Verbrennungsabgase werden über Auslass 6 abgeführt. Fig. 1 shows a heating hood 1 according to the invention for use in a precision casting process of the type described above. The heating hood 1 has an outer jacket 2, which is equipped on the inside with a refractory insulating layer. The outer shell 2 may be made of steel or other sufficiently temperature-resistant materials. The refractory insulating layer 3 may be formed, for example, of a ceramic coating or Schamottausmauerung. The heating hood 1 according to the invention has burners 4, with which an exothermic oxidizable gas can be burned. The burners 4 can in this case be arranged in two superimposed planes. In such an embodiment, the burners in the different levels can be operated with different combustion ratios lambda. This makes it possible to create a post-combustion zone in the upper region of the heating hood, in which possibly not oxidatively reacted gas or vaporized components of the coolant are burned. The resulting within the heating hood combustion exhaust gases are discharged through outlet 6.

Fig. 2 zeigt eine erfindungsgemäße Heizhaube, welche innerhalb eines Kühlmittelbehälters 13 angeordnet ist. Die Heizhaube ist dazu in den Deckel 18 des Kühlmittelbehälters integriert. Der Kühlmittelbehälter 13 enthält ein Kühlmittel 15, welches über Zulauf 14 und Ablauf 16 zu- bzw. abgeführt werden kann. Darüber hinaus kann der Kühlmittelbehälter 13 Nebenanschlüsse 17 aufweisen, durch welche beispielsweise Schutzgas in den Kühlmittelbehälter 13 eingelassen werden kann, oder welche zur Belüftung des Kühlmittelbehälters 13 dienen können. Der Flüssigkeitsspiegel des Kühlmittels 15 innerhalb des Kühlmittelbehälters 13 kann in der in Fig. 2 gezeigten Ausgestaltung durch Einlauf 14 und Auslauf 16 so eingestellt werden, dass der Kühlmittelspiegel mit dem unteren Rand der Heizhaube abschließt. Fig. 2 shows a heating hood according to the invention, which is arranged within a coolant tank 13. The heating hood is integrated into the lid 18 of the coolant tank. The coolant tank 13 contains a coolant 15, which can be supplied or removed via inlet 14 and outlet 16. In addition, the coolant tank 13 can have auxiliary connections 17, through which, for example, protective gas can be introduced into the coolant tank 13, or which can serve to ventilate the coolant tank 13. The liquid level of the coolant 15 within the coolant tank 13 may be in the in Fig. 2 shown configuration through inlet 14 and outlet 16 are set so that the coolant level is flush with the lower edge of the heating hood.

Fig. 3 zeigt eine weitere Ausgestaltung einer erfindungsgemäßen Heizhaube 1, welche neben den Brennern 4 Gaseinlässe 9 aufweist, durch welche zusätzliche Gase wie beispielsweise Inert- oder Schutzgase in die Heizhaube eingebracht werden können. Oberhalb des Auslasses 6 ist eine Nachverbrennungszone 5 vorgesehen, an welche sich ein Wärmetauscher 7 anschließt. In den Wärmetauscher 7 kann das den Brennern 4 zugeführte Gasgemisch und/oder das über die Gaseinlässe 7 in die Heizhaube einbringbare Gas vorgewärmt werden. Fig. 3 shows a further embodiment of a heating hood 1 according to the invention, which in addition to the burners 4 gas inlets 9, through which additional gases such as inert or protective gases can be introduced into the heating hood. Above the outlet 6, a post-combustion zone 5 is provided, to which a heat exchanger 7 is connected. In the heat exchanger 7, the gas mixture supplied to the burners 4 and / or the gas which can be introduced into the heating hood via the gas inlets 7 can be preheated.

Darüber hinaus weist die in Fig. 3 gezeigte erfindungsgemäße Heizhaube 1 Temperaturfühler 20 auf, mittels welchen die in der Heizhaube herrschende Temperatur bestimmt werden kann. Vorteilhafterweise sind mehrere Temperaturfühler 20 in unterschiedlichen Bereichen der Heizhaube 1 vorgesehen. Die Temperaturfühler 20 können mit einem Steuergerät verbunden werden, welches in Abhängigkeit der in der Heizhaube herrschenden Temperatur die Brenner 4 und/oder Mischventile zur Einstellung des Verhältnisses von durch den Wärmetauscher 7 vorgewärmtem Gas und kaltem Gas und/oder Regelventile zur Steuerung des zusätzlichen Gaseintrages steuert. Hierdurch ist eine exakte Temperatursteuerung innerhalb der erfindungsgemäßen Heizhaube 1 möglich.In addition, the in Fig. 3 shown heating hood 1 temperature sensor 20, by means of which the temperature prevailing in the heating hood temperature can be determined. Advantageously, a plurality of temperature sensors 20 are provided in different areas of the heating hood 1. The temperature sensor 20 can be connected to a control unit which controls the burner 4 and / or mixing valves for adjusting the ratio of preheated by the heat exchanger 7 gas and cold gas and / or control valves for controlling the additional gas input depending on the temperature prevailing in the heating hood , As a result, an exact temperature control within the heating hood 1 according to the invention is possible.

Durch die erfindungsgemäße Ausgestaltung einer Heizhaube wird die in der Heizhaube anzuordnende Gießform mittels eines Wärmeträgergases gleichmäßig aufgeheizt, so dass auch strahlungstote Räume hinreichend erwärmt werden. Darüber hinaus stellt die innerhalb der erfindungsgemäßen Heizhaube einstellbare Gasführung sicher, dass eventuell abdampfende Bestandteile des Kühlmittels, welche gegebenenfalls ein Reaktionspotential zu dem noch flüssigen Metall in der Gießform aufweisen, schnellstmöglich ausgetragen werden.Due to the inventive design of a heating hood, the mold to be arranged in the heating hood is heated uniformly by means of a heat transfer gas, so that radiation-dead spaces are heated sufficiently. In addition, the adjustable gas flow within the heating hood according to the invention ensures that any evaporating constituents of the coolant, which optionally have a reaction potential to the still liquid metal in the mold, are discharged as quickly as possible.

Die Figuren 4 und 5 zeigen weitere Ausgestaltungen der erfindungsgemäßen Heizhaube in welchen die Brenner 4 in einem von der horizontalen Ausrichtung abweichenden Winkel von 3 bis 10° ausgerichtet sein können. Ebenso kann es erfindungsgemäß vorgesehen sein, die Brenner tangential zum Haubenmittelpunkt anzuordnen. Durch eine solche Ausgestaltung der erfindungsgemäßen Heizhaube wird eine Strömung des Wärmeträgergases innerhalb der Heizhaube erreicht, welche zu einer gleichmäßigen Wärmeverteilung beiträgt.The FIGS. 4 and 5 show further embodiments of the heating hood according to the invention in which the burner 4 can be aligned in a deviating from the horizontal orientation angle of 3 to 10 °. Likewise, it may be provided according to the invention, to arrange the burner tangentially to the hood center. Such a design of the heating hood according to the invention, a flow of the heat transfer gas is achieved within the heating hood, which contributes to a uniform heat distribution.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Heizhaubeheating cover
22
äußerer Mantelouter coat
33
Isolierschichtinsulating
44
Brennerburner
55
Nachverbrennungafterburning
66
Auslassoutlet
77
Wärmetauscherheat exchangers
99
Gaseinlässegas inlets
1313
Behältercontainer
1414
ZulaufIntake
1515
Kühlmittelcoolant
1616
Ablaufprocedure
1717
Nebenanschlussshunt
2020
Temperaturfühlertemperature sensor

Claims (15)

  1. A method for producing a metallic casting in accordance with the lost-wax casting process, wherein the metal to be cast or the alloy to be cast is poured into a ceramic casting mould with porous walls and the casting mould is from one end onward steadily immersed in a cooling medium in order to cool and solidify the molten metal, namely in such a way that the solid-liquid interface being formed as boundary surface between the molten metal and the already solidified metal lags the cooling medium level, characterized in that the region of the casting mould that still lies above the cooling medium level is heated to a temperature above the solidus temperature of the metal or the alloy to be cast within a heating mantle by means of a heat transfer gas, wherein the heat transfer gas contains oxygen, as well as an exothermally oxidizable gas.
  2. The method according to Claim 1, wherein the heat transfer gas contains an exothermally oxidizable gas in the form of a gas that is selected from the group consisting of hydrogen, gaseous hydrocarbons, carbon monoxide or mixtures thereof.
  3. The method according to one of Claims 1 or 2, wherein the heat transfer gas contains at least one other gas of the group consisting of noble gases, halogenated hydrocarbons, ammonia, nitrogen, carbon dioxide, sulphur halides or mixtures thereof.
  4. The method according to Claim 1, wherein the region of the casting mould that still lies above the cooling medium level is heated by means of a heating mantle, in which the exothermally oxidizable gas in the heat transfer gas is exothermally oxidized.
  5. The method according to Claim 4, wherein the gaseous reaction products created due to the exothermal oxidation are withdrawn from the heating mantle and fed to a post-combustion.
  6. A heating mantle for carrying out the method according to one of Claims 1 to 5, featuring an outer mantle (2), an insulating layer (3), burners (4) and at least one outlet (6), wherein a heat transfer gas that contains an exothermally oxidizable gas can be burned in the burners (4) and the waste gases created during this process can be discharged through the outlet (6), wherein the burners (4) are arranged within the heating mantle (1) in such a way that a uniform heat distribution within the heating mantle is ensured, and wherein this heating mantle features a post-combustion zone (5) for the post-combustion of the waste gases discharged from the heating mantle (1).
  7. The heating mantle according to Claim 6, wherein the burners (4) are arranged within the heating mantle (1) on at least two levels.
  8. The heating mantle according to one of Claims 6 or 7, wherein the burners (4) can be individually controlled.
  9. The heating mantle according to one of Claims 6 to 8, wherein the heating mantle is integrated into the cover of a container (13) for accommodating a cooling medium (15).
  10. The heating mantle according to one of Claims 6 to 9, wherein gas inlets (9) are provided within the heating mantle and inert gas can be introduced into the heating mantle through these gas inlets.
  11. The heating mantle according to one of Claims 6 to 10, featuring a heat exchanger (7) for transferring at least part of the thermal energy contained in the waste gases discharged from the heating mantle (1) to the heat transfer gas.
  12. The heating mantle according to Claim 11, wherein a bypass line is provided for bypassing the heat exchanger.
  13. The heating mantle according to Claim 12, wherein mixing valves are provided that make it possible to adjust the ratio between heat transfer gas conveyed through the heat exchanger (9) and cold heat transfer gas.
  14. The heating mantle according to one of Claims 6 to 13, featuring temperature sensors (20) for measuring the temperature within the heating mantle (1).
  15. The heating mantle according to Claim 14, wherein the temperature sensors (20) are connected to a control unit that controls the burners (4), as well as the mixing valves for adjusting the ratio between heat transfer gas conveyed through the heat exchanger (9) and cold heat transfer gas, in dependence on the temperature measured within the heating mantle (1) by the temperature sensors (4).
EP08004045A 2008-03-05 2008-03-05 Method and apparatus for producing metallic casting moulds using the lost wax casting method Active EP2098314B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES08004045T ES2393415T3 (en) 2008-03-05 2008-03-05 Procedure and device for the manufacture of metal foundries according to the precision casting procedure
PL08004045T PL2098314T3 (en) 2008-03-05 2008-03-05 Method and apparatus for producing metallic casting moulds using the lost wax casting method
PT08004045T PT2098314E (en) 2008-03-05 2008-03-05 Method and apparatus for producing metallic casting moulds using the lost wax casting method
EP08004045A EP2098314B1 (en) 2008-03-05 2008-03-05 Method and apparatus for producing metallic casting moulds using the lost wax casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08004045A EP2098314B1 (en) 2008-03-05 2008-03-05 Method and apparatus for producing metallic casting moulds using the lost wax casting method

Publications (2)

Publication Number Publication Date
EP2098314A1 EP2098314A1 (en) 2009-09-09
EP2098314B1 true EP2098314B1 (en) 2012-09-19

Family

ID=39705264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08004045A Active EP2098314B1 (en) 2008-03-05 2008-03-05 Method and apparatus for producing metallic casting moulds using the lost wax casting method

Country Status (4)

Country Link
EP (1) EP2098314B1 (en)
ES (1) ES2393415T3 (en)
PL (1) PL2098314T3 (en)
PT (1) PT2098314E (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3629079A1 (en) 1986-08-27 1988-03-03 Thyssen Industrie Method for the precision casting of castings in a ceramic shell mould
DE4216870C2 (en) 1992-05-22 1994-08-11 Titan Aluminium Feingus Gmbh Process for the production of a metallic casting by the precision casting process
US6311760B1 (en) * 1999-08-13 2001-11-06 Asea Brown Boveri Ag Method and apparatus for casting directionally solidified article
US7448428B2 (en) * 2005-10-14 2008-11-11 Pcc Airfoils, Inc. Method of casting

Also Published As

Publication number Publication date
PL2098314T3 (en) 2013-02-28
PT2098314E (en) 2012-10-04
EP2098314A1 (en) 2009-09-09
ES2393415T3 (en) 2012-12-21

Similar Documents

Publication Publication Date Title
Maleki et al. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy
DE3725615C2 (en) Immersion pyrometer for measuring high temperatures
DE19539770A1 (en) Process for producing a directionally solidified casting and device for carrying out this process
KR100683365B1 (en) Semi-solid concentration processing of metallic alloys
Qbau et al. Development of light weight high strength aluminum alloy for selective laser melting
JPS60121042A (en) Intermediate treater for liquefied metal or alloy flow
DE2729188A1 (en) HIGH TEMPERATURE REACTOR AND PROCEDURE FOR ITS OPERATION
EP2098314B1 (en) Method and apparatus for producing metallic casting moulds using the lost wax casting method
Pichugin et al. The effect of separating layer between reacting media and molding template on the porous structure of combustion synthesized Ni-Al intermetallics
DE19647313A1 (en) Method and device for the directional solidification of a melt
CN102230096A (en) Method for preparing dispersed Al3Ti phase-enhanced Al-Cu-Mg system alloy
Zheng et al. Compositional Optimization of ESR Slags for H13 Steel Containing Ce and Mg
DE3873994T2 (en) METHOD AND METHOD FOR METAL CASTING.
DE2452611C2 (en) Method and device for refining and / or for refining molten steel
EP3228403B1 (en) Method and device for keeping liquid metals warm
CN106191638B (en) The production method of automobile engine disjunctor main beating cap
DE1433464A1 (en) Process for the production of cast steel or cast iron
Popov et al. Influence of heat treatment modes on the formation of structure and physical and mechanical properties of cast blanks from the aluminothermic alloys
DE3109589C1 (en) Method for casting steel ingots
US3822736A (en) Method for manufacturing cooling members for cooling systems of metallurgical furnaces
US4188210A (en) Iron and/or steel treatment with magnesium and refractory coated composite shot
DE1290674B (en) Spout for steel pouring pans
DE1811295A1 (en) Continuous metal casting die
US65473A (en) Improvement in making steel direct from ore
DE2849968A1 (en) PROCEDURE FOR PERFORMING A THERMAL COMPENSATION PROCESS ON STEEL BLOCKS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090911

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100827

111Z Information provided on other rights and legal means of execution

Free format text: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Effective date: 20110923

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120927

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 575720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008206

Country of ref document: DE

Effective date: 20121115

R11X Information provided on other rights and legal means of execution (corrected)

Free format text: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Effective date: 20120905

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2393415

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121221

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 13937

Country of ref document: SK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

26N No opposition filed

Effective date: 20130620

BERE Be: lapsed

Owner name: TITAL G.M.B.H.

Effective date: 20130331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008206

Country of ref document: DE

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130305

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080305

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008008206

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008008206

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240304

Year of fee payment: 17

Ref country code: DE

Payment date: 20240220

Year of fee payment: 17

Ref country code: CZ

Payment date: 20240226

Year of fee payment: 17

Ref country code: PT

Payment date: 20240221

Year of fee payment: 17

Ref country code: GB

Payment date: 20240220

Year of fee payment: 17

Ref country code: SK

Payment date: 20240228

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240227

Year of fee payment: 17

Ref country code: PL

Payment date: 20240223

Year of fee payment: 17

Ref country code: IT

Payment date: 20240220

Year of fee payment: 17

Ref country code: FR

Payment date: 20240220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240402

Year of fee payment: 17