EP3228403B1 - Method and device for keeping liquid metals warm - Google Patents

Method and device for keeping liquid metals warm Download PDF

Info

Publication number
EP3228403B1
EP3228403B1 EP17162249.1A EP17162249A EP3228403B1 EP 3228403 B1 EP3228403 B1 EP 3228403B1 EP 17162249 A EP17162249 A EP 17162249A EP 3228403 B1 EP3228403 B1 EP 3228403B1
Authority
EP
European Patent Office
Prior art keywords
melt
burner
container
fuel
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17162249.1A
Other languages
German (de)
French (fr)
Other versions
EP3228403A3 (en
EP3228403A2 (en
Inventor
Johannes Rauch
Michael Potesser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Austria GmbH
Original Assignee
Messer Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Austria GmbH filed Critical Messer Austria GmbH
Priority to RS20200777A priority Critical patent/RS60444B1/en
Priority to PL17162249T priority patent/PL3228403T3/en
Priority to SI201730316T priority patent/SI3228403T1/en
Publication of EP3228403A2 publication Critical patent/EP3228403A2/en
Publication of EP3228403A3 publication Critical patent/EP3228403A3/en
Application granted granted Critical
Publication of EP3228403B1 publication Critical patent/EP3228403B1/en
Priority to HRP20201180TT priority patent/HRP20201180T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means

Definitions

  • the invention relates to a method for keeping liquid metals warm according to the preamble of claim 1.
  • the invention further relates to a corresponding device.
  • molten metal for example a melt of aluminum or iron
  • transport pans Special transport containers, also called “transport pans”, are used for the transport, which, depending on the type of vehicle and the metal to be transported, can hold between 500 kg and 200 t of molten metal.
  • liquid metal transport containers are generally preheated.
  • a device in which a transport pan between its uses is heated by an air-natural gas burner.
  • the pore burner is either arranged in the lid of the transport vessel or extends along a column which is inserted into the center of the empty container during the heating process.
  • this arrangement is not suitable for heating a liquid melt, since the pores of the burner are quickly clogged by penetrating liquid metal, which would make it impossible for the smoke gases to penetrate.
  • the temperature of liquid metal decreases by around 5-15 K per hour in conventional transport containers. Since at the same time the initial temperature has a certain value for metallurgical reasons, in the case of liquid aluminum around 950 ° C, should not exceed, the temperature of the melt proves to be not unproblematic, particularly in road transport, since unforeseeable events, such as a traffic jam, can lead to considerable delays in transport, for example.
  • WO 2006/133679 A2 describes a method and a device for setting predetermined melting properties in a liquid metal, in particular aluminum.
  • the container holding the liquid metal is equipped with a heating device which can be lowered into the melt and by means of which the temperature of the liquid metal can be maintained even during longer transport times.
  • An electrical heating element or a burner which is accommodated in a protective tube, serves as the heating device.
  • a gas purging plug is provided on the bottom of the container, by means of which a gas can be introduced into the liquid metal. The rising gas bubbles create a flow through which the temperature distribution in the melt is homogenized. With this arrangement, the temperature of the melt can be maintained over a longer period of time with satisfactory homogeneity.
  • the device is very complex in construction and still needs improvement in terms of energy efficiency.
  • the invention is therefore based on the object of increasing the energy utilization when keeping a melt warm and at the same time improving the homogeneity of the temperature profile of the melt.
  • a method for keeping liquid metals warm in which a metallic melt is accommodated in a container and is heated by means of a burner, which is accommodated in an immersion tube inserted vertically or obliquely in the melt, by burning a fuel with oxygen, is characterized in that during the combustion of the fuel in the burner, the flue gases generated are introduced into the melt through at least one flow opening of the dip tube.
  • the burner is ignited in the immersion tube which is initially still arranged above the melt, forming a flame.
  • the dip tube is then lowered so deep into the melt that at least the at least one flow opening, but preferably a substantial section of the dip tube that surrounds the flow opening, is located below the surface of the melt.
  • the lower part of the immersion tube is preferably inserted into the melt up to at least the level of the flame generated by the burner. The flue gases produced during the combustion of the fuel penetrate into the melt from the at least one flow opening and rise in the form of gas bubbles in the melt.
  • the flow opening is preferably arranged on the lower end face of the dip tube, that is to say immersed in the melt; the parts of the immersion tube that protrude from the melt in the intended use, on the other hand, are preferably sealed gas-tight, so that the flue gases can only escape through the melt.
  • the liquid metal is therefore heated not only via the walls of the immersion tube heated by the burner, but also via the surfaces of the gas bubbles of the flue gases rising in the melt.
  • the total surface area available for heat transfer is thus significantly increased.
  • the rising gas bubbles after the mammoth pump effect, circulate the melt and thus homogenize the temperature distribution. Since essentially only water and / or carbon dioxide and / or oxygen are present in the flue gases when using natural gas and / or hydrogen as fuel, there is no contamination of the liquid metal.
  • the flue gases are preferably introduced into the melt in a lower region of the container in order to ensure that the ascending gas bubbles remain in the melt for as long as possible.
  • the dip tube has one or more flow openings on its lower end face and / or in an end section bordering this end face.
  • the immersion tube is inserted so deep into the melt that at least two thirds, preferably at least 80%, of the volume of the melt is above the flow opening or the flow openings.
  • the supply of fuel and / or oxygen to the burner is expediently regulated as a function of physical or chemical parameters of the melt.
  • the temperature of the melt for example, serves as a controlled variable, which is recorded continuously or at predetermined time intervals using a suitable measuring probe.
  • the measured values are transmitted to a control unit, by means of which they are used to regulate the supply of fuel and / or oxygen to the burner.
  • the burner is preferably controlled in two stages or in proportion to the deviation of the measured variable from a predetermined target value.
  • care must be taken to ensure that no liquid metal comes into contact with the burner orifice if the burner output is reduced or the burner is switched off.
  • the immersion depth of the immersion tube should also be regulated accordingly and the immersion tube should be completely lifted out of the melt for the duration of a burner standstill.
  • the object of the invention is also achieved with a device having the features of claim 4.
  • the device has a container intended for holding a metallic melt and a heating device which can be moved vertically or obliquely from above into the interior of the container by means of a feed device and which comprises a burner accommodated in an immersion tube and connected to a feed line for a fuel and a feed line for oxygen , wherein the immersion tube is equipped in its lower section with at least one flow opening which is permeable to fuel gases of the burner.
  • the device is characterized in that the immersion tube is made gas-tight in a section arranged outside the melt when the device is in use, with the exception of at least one passage opening for the burner and / or for the feed lines for the fuel and / or the oxidizing agent.
  • the burner of the heating device is accommodated in an immersion tube, the upper section of which, with the exception of the feed lines for the fuel and oxidant of the burner, is sealed gas-tight and allows the flue gases flowing out of the burner to escape only through one or more flow openings which are in a lower section of the Immersion tube is / are arranged, for example in an end face opposite the feed lines of the burner or in a part of the side wall of the dip tube adjacent to this end face.
  • the heating device is guided through an opening in a cover or a wall of the container and is designed to be movable in the axial direction between two adjustment positions during operation of the device by means of the feed device.
  • the mouth of the burner accommodated in the immersion tube is arranged vertically spaced from a predetermined level, at which the surface of a molten bath filled into the container is present during operation of the device. This means that at least the burner has no contact with the weld pool.
  • the burner is switched on or off in this position.
  • the heating device is also in this position.
  • the immersion tube is immersed at least with a lower section into the melt pool, at least to such an extent that the flow opening or the flow openings are located below the surface of the melt pool.
  • the heating device is fed into the melt either vertically or obliquely from above.
  • the burner Before the heater is moved to the second position, the burner must be lit so that it flows through the flow opening (s) escaping smoke gases prevent the liquid metal from entering the dip tube and direct contact of the liquid metal with the burner. After the heating process has ended, the heating device is moved back to the first position and then the burner is switched off.
  • the burner is fixed in the immersion tube and is arranged, for example, along the axis of the immersion tube.
  • the preferably cylindrical immersion tube is equipped with one or more flow openings, which is / are arranged in a section immersed in the melt when the device is used, preferably in the lower end face of the immersion tube.
  • the lower end face of the dip tube is completely open.
  • the dip tube In order to ensure that the flue gases generated during combustion are introduced as completely as possible into the melt, the dip tube is designed to be gas-tight on its upper end face and in the jacket section which is not below the surface of the melt after the dip tube has been immersed.
  • the immersion tube has only one through opening or more through openings for the burner and / or the feed lines for the fuel and / or the oxidizing agent, the connection between the burner or the feed lines and the walls of the dip tube likewise being at least largely gas-tight and no or only negligible amount of flue gas can escape there.
  • the container is designed as a transport container for transporting a metallic melt.
  • the container is a container permanently mounted or mountable on a road or rail vehicle for transporting liquid metals, such as liquid iron or liquid aluminum.
  • the heating device mounted on the container enables continuous temperature control of the melt even during transport. Due to the vertical adjustability of the heating device, the burner can also be switched off completely.
  • the device 1 for keeping a liquid metal, for example liquid aluminum, warm comprises a container 2, for example a crucible or a pan, which is suitable, for example, for transport on a road or rail vehicle, and a removable lid 3 which closes the container 2 when used as intended serves the container 2 for receiving a melt 4 up to the level of a level 5.
  • the container 2 and lid 3 each consist of a refractory, heat-resistant material or are each lined with a refractory material (not shown here).
  • a recess 6 is provided in the cover 3 for a heating device 7 described in more detail below.
  • the heating device 7 comprises a burner 10 accommodated in an immersion tube 9, for example in the form of a circular cylinder, and is arranged in the vertical direction by means of a feed device 11 which is arranged on the outside of the cover 3 and is not explained in detail here. into the interior of the container 3 and out of the interior of the container 3, movable.
  • the melt 4 is to be kept at a temperature of, for example, 780.degree.
  • the burner 10 is a fuel-oxygen burner with a central feed 13, connected to a fuel line 12, for a gaseous or liquid fuel, for example natural gas, and a connection, connected to an oxygen line 14, on the radially outside to the feed for the fuel subsequent oxidant supply 15 and an ignition device 16.
  • the burner 10 is fixed in a manner not shown here in the dip tube 9 and aligned along its axis.
  • the fuel line 12 and the oxygen line 14 are connected to sources of fuel and oxygen, not shown here.
  • the dip tube 9 is made of a ceramic or non-ceramic material and is open at its lower end face 17. Instead of or in addition to a completely open end face 17, one or more openings can moreover be arranged in a lower section of the immersion tube 9, that is, when used as intended, below the level 5 of a melt 4, in particular those with which smoke gases escaping from the immersion tube 9 in the lateral direction be directed into the melt.
  • the length of the immersion tube 9 is dimensioned such that when moving upwards with the aid of the feed device 11, a position is reached in which the lower end face 17, or at least the burner 10, is above the level 5 of the melt during the movement downward, however, the immersion tube is immersed deeply in the melt 4, and the burner 10 is positioned with its mouth below the level 5.
  • the immersion tube 9 On its upper end face 18, the immersion tube 9 is designed to be largely gas-tight and only has bushings 21, 22 for the lines 12, 14, in which these in turn are at least largely gas-tight, so that flue gas does not emit in this direction, or only to an insignificant amount can escape the dip tube 9.
  • the crucible 2 is filled with a melt 4 up to the level 5 and then the cover 3 with the heating device 6 is placed on the crucible 2.
  • the heating device 7 is initially still in an upper position in which the lower end face 17 of the immersion tube 9, or at least the burner 10, is above the level 5.
  • fuel preferably natural gas
  • oxygen preferably oxygen with a purity of at least 95% by volume
  • the heating device 7 is lowered by means of the feed device 11 until a lower section of the immersion tube 9 and in particular the end face 17 is inside the melt 4, as in FIG Fig. 1 shown.
  • the pressure of the flue gases produced during combustion prevents the melt from penetrating into the interior of the immersion tube 9; the flame 19 is therefore not in direct contact with the melt 4 or only at its outermost tip. Instead, the smoke gases are pushing - As indicated by arrows 23 - from the open, lower end face 17 of the dip tube 9, penetrate into the melt 4 and bead up in the form of gas bubbles 24. Due to the large number of ascending gas bubbles 24, a large area is available for heat transfer from the flue gas into the melt 4.
  • the rising gas bubbles 24 lead to a continuous circulation of the melt 4 due to the mammoth pump effect, through which the temperature distribution in the melt 4 is homogenized.
  • heat transfer also takes place on the wall of the immersion tube 9. The smoke gases emerging from the melt 4 are then discharged via a trigger 25 in the cover 3.
  • the supply of thermal energy in the melt 4 can, moreover, in the embodiment according to Fig. 1 can be regulated depending on the temperature of the melt 4.
  • a temperature measuring probe 27 which is guided through the wall of the cover 3, is in data connection with a control unit 28 - as indicated by a dashed line.
  • the probe 27 enables the temperature of the melt 4 to be measured continuously.
  • the control unit is in data communication with control valves 29, 30 in the lines 12, 14.
  • the output of the burner 10 can be controlled proportionally or stepwise as a function of the temperature of the melt 4 detected at the temperature measuring probe 27 and used, for example, to keep the temperature of the melt 4 at a constant level hold predetermined value.
  • automated heating is also possible during transport.
  • the device according to the invention is suitable for keeping various metals, in particular iron or aluminum, warm up to a temperature of 1000.degree.
  • the large heat exchange surface on the gas bubbles rising in the melt ensures a high heating efficiency as well as good temperature homogeneity in the melt due to the constant movement induced by the rising gas bubbles.
  • the flue gases consist largely of CO 2 , H 2 O and O 2 , which do not negatively affect the melt.

Description

Die Erfindung betrifft ein Verfahren zum Warmhalten flüssiger Metalle nach dem Oberbegriff des Patentanspruchs 1. Die Erfindung betrifft des Weiteren eine entsprechende Vorrichtung.The invention relates to a method for keeping liquid metals warm according to the preamble of claim 1. The invention further relates to a corresponding device.

Im Gießereiwesen ist es häufig erforderlich, eine Metallschmelze, beispielsweise eine Schmelze aus Aluminium oder Eisen, über eine gewisse Zeitdauer im flüssigen Zustand auf einer hohen Temperatur zu halten. Insbesondere ergibt sich die Notwendigkeit, das Flüssigmetall vom Ort der Verflüssigung zum Ort einer Weiterverarbeitung zu transportieren. Erfolgte der Transport anfangs nur innerhalb eines Werkes, werden Metallschmelzen heute über eine Entfernung von 200 km und mehr mittels Straßen- oder Schienenfahrzeugen transportiert. Zum Transport kommen dabei spezielle Transportgefäße, auch "Transportpfannen" genannt, zum Einsatz, die je nach Fahrzeugart und zu transportierendem Metall zwischen 500 kg und 200 t Metallschmelze aufnehmen können.In the foundry, it is often necessary to keep a molten metal, for example a melt of aluminum or iron, in a liquid state at a high temperature for a certain period of time. In particular, there is a need to transport the liquid metal from the place of liquefaction to the place of further processing. Initially, the transport was only carried out within one plant, but today molten metals are transported over a distance of 200 km and more by road or rail vehicles. Special transport containers, also called "transport pans", are used for the transport, which, depending on the type of vehicle and the metal to be transported, can hold between 500 kg and 200 t of molten metal.

Um das Flüssigmetall über die gesamte Transportdauer auf einer vorgegebenen Temperatur von beispielsweise 700 bis 1000°C zu halten, werden Flüssigmetall - Transportbehälter in der Regel vorgewärmt. So ist beispielsweise aus der EP 1 078 704 B1 eine Einrichtung bekannt, bei der eine Transportpfanne zwischen ihren Einsätzen mittels eines Luft-Erdgasbrenners beheizt wird. In der DE 10 2007 022 684 A1 wird ein Flüssigmetall-Transportbehälter mit Vorheizeinrichtung beschrieben, bei der der Behälter vor seinem Einsatz mittels eines feldartig aufgebauten Porenbrenners vorgewärmt wird. Der Porenbrenner ist dabei entweder im Deckel des Transportgefäßes angeordnet oder erstreckt sich entlang einer Säule, die während des Heizvorgangs mittig in den leeren Behälter hineingeführt wird. Diese Anordnung ist allerdings nicht geeignet, eine flüssige Schmelze zu beheizen, da die Poren des Brenners rasch durch eindringendes Flüssigmetall verstopft und dadurch ein Durchdringen der Rauchgase unmöglich gemacht werden würde.In order to keep the liquid metal at a predetermined temperature of, for example, 700 to 1000 ° C. over the entire duration of the transport, liquid metal transport containers are generally preheated. For example, from the EP 1 078 704 B1 a device is known in which a transport pan between its uses is heated by an air-natural gas burner. In the DE 10 2007 022 684 A1 describes a liquid metal transport container with a preheating device in which the container is preheated by means of a field-type pore burner before it is used. The pore burner is either arranged in the lid of the transport vessel or extends along a column which is inserted into the center of the empty container during the heating process. However, this arrangement is not suitable for heating a liquid melt, since the pores of the burner are quickly clogged by penetrating liquid metal, which would make it impossible for the smoke gases to penetrate.

Die Temperatur von Flüssigmetall nimmt in üblichen Transportbehältern etwa um 5-15 K pro Stunde ab. Da zugleich die Anfangstemperatur aus metallurgischen Gründen einen bestimmten Wert, im Falle von flüssigem Aluminium etwa 950°C, nicht übersteigen sollte, erweist sich die Temperaturhaltung der Schmelze insbesondere im Straßentransport als nicht unproblematisch, da es beispielsweise durch nicht vorhersehbare Ereignisse, etwa ein Verkehrsstau, zu beträchtlichen Verzögerungen beim Transport kommen kann.The temperature of liquid metal decreases by around 5-15 K per hour in conventional transport containers. Since at the same time the initial temperature has a certain value for metallurgical reasons, in the case of liquid aluminum around 950 ° C, should not exceed, the temperature of the melt proves to be not unproblematic, particularly in road transport, since unforeseeable events, such as a traffic jam, can lead to considerable delays in transport, for example.

Um die Aufrechterhaltung einer vorgegebenen Temperatur der Schmelze auch bei längeren Transportzeiten bzw. Aufenthaltsdauer der Schmelze im Transportbehälter zu gewährleisten, ist es bereits bekannt, die Behälter mit Heizeinrichtungen auszurüsten.In order to ensure the maintenance of a predetermined temperature of the melt even during longer transport times or the length of time the melt stays in the transport container, it is already known to equip the containers with heating devices.

Beispielsweise ist es bekannt, Gießpfannen mit einer Lichtbogenheizung zu versehen; besonders bei kleinen Pfannen führt aber der erforderliche Teilkreisdurchmesser der Elektroden zu nur geringen Abständen zwischen Elektroden und dem feuerfesten Verschleißfutter der Pfannenwandung, wodurch der Verschleiß des Futters außerordentlich groß ist.For example, it is known to provide ladles with an arc heater; especially in the case of small pans, however, the required pitch circle diameter of the electrodes leads to only small distances between the electrodes and the refractory wear lining of the pan wall, as a result of which the lining wear is extremely high.

Eine weitere bekannte Maßnahme besteht in einer induktiven Beheizung der Pfanne. Dies setzt allerdings eine Mindesthöhe des Flüssigmetallbades voraus, um einen vertretbaren Wirkungsgrad dieser Beheizung sicherzustellen. Zudem sind für diese Beheizungsart spezielle Pfannen erforderlich.Another known measure consists in induction heating of the pan. However, this requires a minimum height of the liquid metal bath in order to ensure an acceptable level of efficiency of this heating. Special pans are also required for this type of heating.

Aus der DE 3 637 065 A1 ist eine elektrische Beheizung mittels eines sich über der Schmelze in der Pfanne erstreckenden Graphitstabs bekannt. Die Beheizung der Pfanne mit oder ohne Inhalt erfolgt dabei lediglich durch Wärmestrahlung, wobei ein oberhalb des Graphitstabes angeordneter Strahlungsschild als Reflektor zur besseren Ausnutzung der Strahlungsenergie dient. Diese Vorrichtung ist allerdings mit einem erheblichen konstruktiven Aufwand und einem im Betrieb hohen Energieverbrauch verbunden.From the DE 3 637 065 A1 electric heating by means of a graphite rod extending over the melt in the pan is known. The pan is heated with or without content only by heat radiation, with a radiation shield arranged above the graphite rod serving as a reflector for better utilization of the radiation energy. However, this device is associated with considerable design effort and high energy consumption during operation.

Beim Gegenstand der EP 0 217 094 A1 wird in einem - mit Schmelze gefüllten oder leeren - Pfannenofen ein Brennstoff mit Luft oder einem anderen sauerstoffhaltigen Gas verbrannt und die dabei freiwerdende Wärme direkt auf die Schmelze bzw. auf die Wände der Pfanne übertragen. Der Brenner ist dabei an einer Halterung in einem Deckel der Pfanne befestigt und beheizt mit seiner Flamme die Oberfläche des Schmelze bzw. das Innere der leeren Pfanne. Im Vergleich zur elektrischen Beheizung mittels Lichtbogen sind die Investitionskosten eines Brenners sowie die laufenden Kosten für die Bereitstellung der Energie relativ gering. Nachteilig bei diesem Gegenstand ist jedoch die geringe Effizienz bei Beheizung einer mit Schmelze gefüllten Pfanne, da die Wärmestrahlung der Flamme nur eine geringe Eindringtiefe in die Schmelze besitzt.With the subject of EP 0 217 094 A1 a fuel is burned in a - filled or empty - furnace with air or another oxygen-containing gas and the heat released is transferred directly to the melt or to the walls of the pan. The burner is attached to a holder in a lid of the pan and heats the surface of the with its flame Melt or the inside of the empty pan. Compared to electrical heating by means of an arc, the investment costs of a burner and the running costs for providing the energy are relatively low. A disadvantage of this object, however, is the low efficiency when heating a pan filled with melt, since the heat radiation from the flame has only a small depth of penetration into the melt.

Um eine gewisse Eindringtiefe der Energie in die Schmelze zu erreichen, wurde bereits versucht, einen Brennstoff-Luft-Brenner in einem nach unten geschlossenen, aus einem keramischen oder nichtkeramischen Material gefertigten Tauchrohr anzuordnen, das mittig in einen das Schmelzbad aufnehmenden Tiegel eingefahren wird. Die heißen Brenngase kommen dabei über die als Wärmetauscherflächen fungierenden Außenwände des Tauchrohrs mit der Schmelze in indirekten thermischen Kontakt. Das Rauchgas entweicht oberhalb der Badoberfläche aus dem Tauchrohr und wird in die Atmosphäre abgeführt. Allerdings ist bei diesem Gegenstand die Homogenisierung der Temperatur in der Schmelze unzureichend, da sich ein stark abfallendes Temperaturprofil vom heißeren Tauchrohr hin zur kühleren Tiegelwand einstellt.In order to achieve a certain depth of penetration of the energy into the melt, attempts have already been made to arrange a fuel-air burner in a downward-closed immersion tube made of a ceramic or non-ceramic material, which is inserted in the middle of a crucible holding the melt pool. The hot fuel gases come into indirect thermal contact with the melt via the outer walls of the immersion tube, which act as heat exchanger surfaces. The flue gas escapes from the dip tube above the surface of the bath and is discharged into the atmosphere. However, the homogenization of the temperature in the melt is inadequate for this object, since a sharply falling temperature profile results from the hotter dip tube to the cooler crucible wall.

In der WO 2006/133679 A2 wird ein Verfahren sowie eine Vorrichtung zum Einstellen vorgegebener Schmelzeigenschaften in einem Flüssigmetall, insbesondere Aluminium, beschrieben. Dabei ist der das Flüssigmetall aufnehmende Behälter mit einer in die Schmelze absenkbaren Heizeinrichtung ausgerüstet, mittels der die Temperatur des Flüssigmetalls auch bei längeren Transportzeiten aufrecht erhalten werden kann. Als Heizeinrichtung dient ein elektrisches Heizelement oder ein Brenner, der in einem Schutzrohr aufgenommen ist. Zudem ist am Boden des Behälters ein Gasspülstein vorgesehen, mittels dessen ein Gas in das Flüssigmetall eingetragen werden kann. Die aufsteigenden Gasblasen erzeugen eine Strömung, durch die die Temperaturverteilung in der Schmelze homogenisiert wird. Mit dieser Anordnung lässt sich die Temperatur der Schmelze mit einer befriedigenden Homogenität über einen längeren Zeitraum aufrecht erhalten. Jedoch ist die Vorrichtung sehr komplex im Aufbau und hinsichtlich der Energieeffizienz noch verbesserungswürdig.In the WO 2006/133679 A2 describes a method and a device for setting predetermined melting properties in a liquid metal, in particular aluminum. The container holding the liquid metal is equipped with a heating device which can be lowered into the melt and by means of which the temperature of the liquid metal can be maintained even during longer transport times. An electrical heating element or a burner, which is accommodated in a protective tube, serves as the heating device. In addition, a gas purging plug is provided on the bottom of the container, by means of which a gas can be introduced into the liquid metal. The rising gas bubbles create a flow through which the temperature distribution in the melt is homogenized. With this arrangement, the temperature of the melt can be maintained over a longer period of time with satisfactory homogeneity. However, the device is very complex in construction and still needs improvement in terms of energy efficiency.

Der Erfindung liegt daher die Aufgabe zu Grunde, die Energieausnutzung beim Warmhalten einer Schmelze zu steigern und dabei zugleich die Homogenität des Temperaturprofils der Schmelze zu verbessern.The invention is therefore based on the object of increasing the energy utilization when keeping a melt warm and at the same time improving the homogeneity of the temperature profile of the melt.

Gelöst ist diese Aufgabe mit einem Verfahren mit den Merkmalen des Anspruchs 1 sowie mit einer Vorrichtung mit den Merkmalen des Anspruchs 4.This object is achieved with a method with the features of claim 1 and with a device with the features of claim 4.

Ein Verfahren zum Warmhalten flüssiger Metalle, bei dem eine metallische Schmelze in einem Behälter aufgenommen und mittels eines Brenners, der in einem vertikal oder schräg in die Schmelze eingebrachten Tauchrohr aufgenommen ist, durch Verbrennen eines Brennstoffs mit Sauerstoff beheizt wird, ist erfindungsgemäß dadurch gekennzeichnet, dass bei der Verbrennung des Brennstoffs im Brenner entstehenden Rauchgase durch wenigstens eine Strömungsöffnung des Tauchrohrs in die Schmelze eingetragen werden.A method for keeping liquid metals warm, in which a metallic melt is accommodated in a container and is heated by means of a burner, which is accommodated in an immersion tube inserted vertically or obliquely in the melt, by burning a fuel with oxygen, is characterized in that during the combustion of the fuel in the burner, the flue gases generated are introduced into the melt through at least one flow opening of the dip tube.

Beim erfindungsgemäßen Verfahren wird der Brenner in dem zunächst noch oberhalb der Schmelze angeordneten Tauchrohr unter Ausbildung einer Flamme gezündet. Anschließend wird das Tauchrohr so tief in die Schmelze abgesenkt, dass sich zumindest die wenigstens eine Strömungsöffnung, bevorzugt jedoch ein wesentlicher und die Strömungsöffnung umfassender Abschnitt des Tauchrohrs unterhalb der Oberfläche der Schmelze befindet. Bevorzugt wird der untere Teil des Tauchrohrs bis mindestens zur Höhe der vom Brenner erzeugten Flamme in die Schmelze eingefahren. Die bei der Verbrennung des Brennstoffs entstehenden Rauchgase drängen aus der wenigstens einen Strömungsöffnung in die Schmelze hinein und steigen in Form von Gasblasen in der Schmelze auf.In the method according to the invention, the burner is ignited in the immersion tube which is initially still arranged above the melt, forming a flame. The dip tube is then lowered so deep into the melt that at least the at least one flow opening, but preferably a substantial section of the dip tube that surrounds the flow opening, is located below the surface of the melt. The lower part of the immersion tube is preferably inserted into the melt up to at least the level of the flame generated by the burner. The flue gases produced during the combustion of the fuel penetrate into the melt from the at least one flow opening and rise in the form of gas bubbles in the melt.

Bevorzugt ist dabei die Strömungsöffnung auf der unteren, d.h. in die Schmelze eintauchenden Stirnseite des Tauchrohrs angeordnet; die im bestimmungsgemäßen Einsatz aus der Schmelze herausragenden Teile des Tauchrohrs sind dagegen bevorzugt gasdicht abgeschlossen, sodass die Rauchgase ausschließlich über den Weg durch die Schmelze entweichen können. Die Beheizung des Flüssigmetalls erfolgt somit nicht nur über die vom Brenner erhitzten Wände des Tauchrohrs, sondern auch über die Oberflächen der in der Schmelze aufsteigenden Gasblasen der Rauchgase.In this case, the flow opening is preferably arranged on the lower end face of the dip tube, that is to say immersed in the melt; the parts of the immersion tube that protrude from the melt in the intended use, on the other hand, are preferably sealed gas-tight, so that the flue gases can only escape through the melt. The liquid metal is therefore heated not only via the walls of the immersion tube heated by the burner, but also via the surfaces of the gas bubbles of the flue gases rising in the melt.

Gegenüber dem Stand der Technik ist die für die Wärmeübertragung zur Verfügung stehende Gesamtoberfläche damit deutlich erhöht. Gleichzeitig sorgen die aufsteigenden Gasblasen nach dem Mammutpumpeneffekt für eine Umwälzung der Schmelze und damit für eine Homogenisierung der Temperaturverteilung. Da beim Einsatz insbesondere von Erdgas und/oder Wasserstoff als Brennstoff im Wesentlichen nur Wasser und/oder Kohlendioxid und/oder Sauerstoff in den Rauchgasen vorhanden sind, kommt es nicht zu einer Kontamination des Flüssigmetalls.Compared to the prior art, the total surface area available for heat transfer is thus significantly increased. At the same time, the rising gas bubbles, after the mammoth pump effect, circulate the melt and thus homogenize the temperature distribution. Since essentially only water and / or carbon dioxide and / or oxygen are present in the flue gases when using natural gas and / or hydrogen as fuel, there is no contamination of the liquid metal.

Die Rauchgase werden dabei bevorzugt in einem unteren Bereich des Behälters in die Schmelze eingetragen, um eine möglichst lange Aufenthaltsdauer der aufsteigenden Gasblasen in der Schmelze zu gewährleisten. Dazu weist das Tauchrohr an seiner unteren Stirnseite und/oder in einem an diese Stirnseite grenzenden Endabschnitt eine oder mehrere Strömungsöffnungen auf. Beispielsweise wird das Tauchrohr so tief in die Schmelze eingefahren, dass sich mindestens zwei Drittel, bevorzugt mindestens 80% des Volumens der Schmelze oberhalb der Strömungsöffnung oder der Strömungsöffnungen befinden. Dadurch wird ein großer Teil der Schmelze von der durch die aufsteigenden Gasblasen induzierten Strömung erfasst und eine besonders gute Homogenisierung der Temperaturverteilung in der Schmelze erzielt.The flue gases are preferably introduced into the melt in a lower region of the container in order to ensure that the ascending gas bubbles remain in the melt for as long as possible. For this purpose, the dip tube has one or more flow openings on its lower end face and / or in an end section bordering this end face. For example, the immersion tube is inserted so deep into the melt that at least two thirds, preferably at least 80%, of the volume of the melt is above the flow opening or the flow openings. As a result, a large part of the melt is caught by the flow induced by the rising gas bubbles and a particularly good homogenization of the temperature distribution in the melt is achieved.

Zweckmäßigerweise wird die Zuführung von Brennstoff und/oder Sauerstoff zum Brenner in Abhängigkeit von physikalischen oder chemischen Parametern der Schmelze geregelt. Als Regelgröße dient beispielsweise die Temperatur der Schmelze, die mit einer geeigneten Messsonde kontinuierlich oder in vorgegebenen Zeitabständen erfasst wird. Die Messwerte werden an eine Steuereinheit übermittelt, mittels der sie zur Regelung der Zuführung von Brennstoff und/oder Sauerstoff an den Brenner eingesetzt werden. Die Regelung des Brenners erfolgt dabei bevorzugt zweistufig oder proportional zur Abweichung der Messgröße von einem vorgegebenen Sollwert. Bei der Regelung der Zufuhr ist allerdings darauf zu achten, dass bei einer verminderten Brennerleistung oder bei abgestelltem Brenner kein Flüssigmetall mit der Brennermündung in Berührung kommt. In diesem Fall sollte auch die Eintauchtiefe des Tauchrohrs entsprechend geregelt und das Tauchrohr für die Dauer eines Brennerstillstandes vollständig aus der Schmelze gehoben werden.The supply of fuel and / or oxygen to the burner is expediently regulated as a function of physical or chemical parameters of the melt. The temperature of the melt, for example, serves as a controlled variable, which is recorded continuously or at predetermined time intervals using a suitable measuring probe. The measured values are transmitted to a control unit, by means of which they are used to regulate the supply of fuel and / or oxygen to the burner. The burner is preferably controlled in two stages or in proportion to the deviation of the measured variable from a predetermined target value. When regulating the supply, however, care must be taken to ensure that no liquid metal comes into contact with the burner orifice if the burner output is reduced or the burner is switched off. In this case, the immersion depth of the immersion tube should also be regulated accordingly and the immersion tube should be completely lifted out of the melt for the duration of a burner standstill.

Die Aufgabe der Erfindung wird auch mit einer Vorrichtung mit den Merkmalen des Anspruchs 4 gelöst. Die Vorrichtung weist dabei einen zur Aufnahme einer metallischen Schmelze bestimmten Behälter sowie eine mittels einer Zuführeinrichtung vertikal oder schräg von oben in das Behälterinnere einfahrbare Heizeinrichtung auf, die einen in einem Tauchrohr aufgenommenen, an eine Zuleitung für einen Brennstoff und eine Zuleitung für Sauerstoff angeschlossenen Brenner umfasst, wobei das Tauchrohr in seinem unteren Abschnitt mit wenigstens einer für Brenngase des Brenners durchlässigen Strömungsöffnung ausgerüstet ist. Die Vorrichtung ist erfindungsgemäß dadurch gekennzeichnet, dass das Tauchrohr in einem im Einsatz der Vorrichtung außerhalb der Schmelze angeordneten Abschnitt mit Ausnahme von wenigstens einer Durchtrittsöffnung für den Brenner und/oder für die Zuleitungen für den Brennstoff und/oder das Oxidationsmittel gasdicht ausgebildet ist.The object of the invention is also achieved with a device having the features of claim 4. The device has a container intended for holding a metallic melt and a heating device which can be moved vertically or obliquely from above into the interior of the container by means of a feed device and which comprises a burner accommodated in an immersion tube and connected to a feed line for a fuel and a feed line for oxygen , wherein the immersion tube is equipped in its lower section with at least one flow opening which is permeable to fuel gases of the burner. According to the invention, the device is characterized in that the immersion tube is made gas-tight in a section arranged outside the melt when the device is in use, with the exception of at least one passage opening for the burner and / or for the feed lines for the fuel and / or the oxidizing agent.

Der Brenner der Heizeinrichtung ist in einem Tauchrohr aufgenommen, dessen oberer Abschnitt, mit Ausnahme der Zuleitungen für Brennstoff und Oxidationsmittel des Brenners, gasdicht abgeschlossen ist und ein Entweichen der vom Brenner abströmenden Rauchgase nur über eine oder mehrere Strömungsöffnungen zulässt, die in einem unteren Abschnitt des Tauchrohrs angeordnet ist/sind, beispielsweise in einer von den Zuleitungen des Brenners entgegengesetzten Stirnseite oder in einem an diese Stirnseite angrenzenden Teil der Seitenwand des Tauchrohrs. Die Heizeinrichtung ist durch eine Öffnung in einem Deckel oder einer Wand des Behälters hindurchgeführt und auch während des Betriebs der Vorrichtung mittels der Zuführeinrichtung zwischen zwei Stellpositionen in axialer Richtung verfahrbar ausgebildet. In der ersten Stellposition ist zumindest die Ausmündung des im Tauchrohr aufgenommenen Brenners, bevorzugt das gesamte Tauchrohr, vertikal beabstandet von einer vorgegebenen Pegelhöhe angeordnet, bei der im Betrieb der Vorrichtung die Oberfläche eines in den Behälter eingefüllten Schmelzbades vorliegt. Somit hat zumindest der Brenner keinen Kontakt zum Schmelzbad. In dieser Stellposition wird der Brenner an- oder abgeschaltet. Bei abgeschaltetem Brenner befindet sich die Heizeinrichtung ebenfalls in dieser Stellposition. In der zweiten Stellposition taucht das Tauchrohr zumindest mit einem unteren Abschnitt in das Schmelzbad ein, und zwar zumindest so weit, dass sich die Strömungsöffnung bzw. die Strömungsöffnungen unterhalb der Oberfläche des Schmelzbades befinden. Die Zuführung der Heizeinrichtung in die Schmelze erfolgt entweder senkrecht oder schräg von oben. Vor der Verfahren der Heizeinrichtung in die zweite Stellposition muss der Brenner gezündet werden, damit die über die Strömungsöffnung/en entweichenden Rauchgase das Eindringen des Flüssigmetalls in das Tauchrohr und einen direkten Kontakt des Flüssigmetalls mit dem Brenner verhindern. Nach Beendigung des Heizvorgangs wird die Heizeinrichtung wieder in die erste Stellposition verfahren und anschließend der Brenner abgestellt.The burner of the heating device is accommodated in an immersion tube, the upper section of which, with the exception of the feed lines for the fuel and oxidant of the burner, is sealed gas-tight and allows the flue gases flowing out of the burner to escape only through one or more flow openings which are in a lower section of the Immersion tube is / are arranged, for example in an end face opposite the feed lines of the burner or in a part of the side wall of the dip tube adjacent to this end face. The heating device is guided through an opening in a cover or a wall of the container and is designed to be movable in the axial direction between two adjustment positions during operation of the device by means of the feed device. In the first setting position, at least the mouth of the burner accommodated in the immersion tube, preferably the entire immersion tube, is arranged vertically spaced from a predetermined level, at which the surface of a molten bath filled into the container is present during operation of the device. This means that at least the burner has no contact with the weld pool. The burner is switched on or off in this position. When the burner is switched off, the heating device is also in this position. In the second setting position, the immersion tube is immersed at least with a lower section into the melt pool, at least to such an extent that the flow opening or the flow openings are located below the surface of the melt pool. The heating device is fed into the melt either vertically or obliquely from above. Before the heater is moved to the second position, the burner must be lit so that it flows through the flow opening (s) escaping smoke gases prevent the liquid metal from entering the dip tube and direct contact of the liquid metal with the burner. After the heating process has ended, the heating device is moved back to the first position and then the burner is switched off.

Der Brenner ist fest im Tauchrohr montiert und beispielsweise entlang der Achse des Tauchrohrs angeordnet. Das bevorzugt zylinderförmige Tauchrohr ist mit einer oder mehreren Strömungsöffnungen ausgerüstet, die in einem im Einsatz der Vorrichtung in die Schmelze eintauchenden Abschnitt angeordnet ist/sind, bevorzugt in der unteren Stirnseite des Tauchrohrs. Im einfachsten Falle ist die untere Stirnseite des Tauchrohrs vollständig geöffnet. Es ist im Rahmen der Erfindung jedoch auch vorstellbar, mehrere Strömungsöffnungen in der unteren Stirnseite und/oder in der Seitenfläche des eintauchenden Abschnitts des Tauchrohrs vorzusehen.The burner is fixed in the immersion tube and is arranged, for example, along the axis of the immersion tube. The preferably cylindrical immersion tube is equipped with one or more flow openings, which is / are arranged in a section immersed in the melt when the device is used, preferably in the lower end face of the immersion tube. In the simplest case, the lower end face of the dip tube is completely open. However, it is also conceivable within the scope of the invention to provide a plurality of flow openings in the lower end face and / or in the side face of the immersing section of the dip tube.

Um zu gewährleisten, dass die bei der Verbrennung entstehenden Rauchgase möglichst vollständig in die Schmelze eingetragen werden, ist das Tauchrohr an seiner oberen Stirnseite und in dem Mantelabschnitt, der sich nach dem Eintauchen des Tauchrohrs nicht unterhalb Oberfläche der Schmelze befindet, gasdicht ausgebildet. Das Tauchrohr weist lediglich eine Durchtrittsöffnung oder mehrere Durchtrittsöffnungen für den Brenner und/oder die Zuleitungen für die für den Brennstoff und/oder das Oxidationsmittel auf, wobei die Verbindung zwischen dem Brenner bzw. den Zuleitungen und den Wänden des Tauchrohrs gleichfalls zumindest weitgehend gasdicht ausgebildet ist und dort kein oder nur vernachlässigbar wenig Rauchgas entweichen kann.In order to ensure that the flue gases generated during combustion are introduced as completely as possible into the melt, the dip tube is designed to be gas-tight on its upper end face and in the jacket section which is not below the surface of the melt after the dip tube has been immersed. The immersion tube has only one through opening or more through openings for the burner and / or the feed lines for the fuel and / or the oxidizing agent, the connection between the burner or the feed lines and the walls of the dip tube likewise being at least largely gas-tight and no or only negligible amount of flue gas can escape there.

Eine besonders vorteilhafte Ausgestaltung der Erfindung sieht vor, dass der Behälter als Transportbehälter zum Transportieren einer metallischen Schmelze ausgebildet ist. Beispielsweise handelt es sich um einen auf ein Straßen- oder Schienenfahrzeug fest montierten oder montierbaren Behälter zum Transportieren flüssiger Metalle, wie beispielsweise flüssiges Eisen oder flüssiges Aluminium. Die am Behälter montierte Heizeinrichtung ermöglicht dabei auch während des Transports eine kontinuierliche Temperaturregelung der Schmelze. Aufgrund der vertikalen Verstellbarkeit der Heizeinrichtung ist dabei auch ein völliges Abschalten des Brenners möglich.A particularly advantageous embodiment of the invention provides that the container is designed as a transport container for transporting a metallic melt. For example, it is a container permanently mounted or mountable on a road or rail vehicle for transporting liquid metals, such as liquid iron or liquid aluminum. The heating device mounted on the container enables continuous temperature control of the melt even during transport. Due to the vertical adjustability of the heating device, the burner can also be switched off completely.

Die einzige Zeichnung (Fig. 1) veranschaulicht schematisch eine erfindungsgemäße Vorrichtung.The only drawing ( Fig. 1 ) schematically illustrates a device according to the invention.

Die Vorrichtung 1 zum Warmhalten eines flüssigen Metalls, beispielsweise flüssiges Aluminium, umfasst einen beispielsweise für den Transport auf einem Straßen- oder Schienenfahrzeug geeigneten Behälter 2, beispielsweise einen Tiegel oder eine Pfanne, und einen den Behälter 2 verschließenden, abnehmbaren Deckel 3. Im bestimmungsgemäßen Einsatz dient der Behälter 2 zum Aufnehmen einer Schmelze 4 bis zur Höhe eines Pegels 5. Behälter 2 und Deckel 3 bestehen jeweils aus einem feuerfesten, hitzebeständigen Material bzw. sind jeweils mit einem Feuerfestmaterial ausgekleidet (hier nicht gezeigt). Im Deckel 3 ist eine Aussparung 6 für eine im Folgenden näher beschriebene Heizeinrichtung 7 vorgesehen.The device 1 for keeping a liquid metal, for example liquid aluminum, warm comprises a container 2, for example a crucible or a pan, which is suitable, for example, for transport on a road or rail vehicle, and a removable lid 3 which closes the container 2 when used as intended serves the container 2 for receiving a melt 4 up to the level of a level 5. The container 2 and lid 3 each consist of a refractory, heat-resistant material or are each lined with a refractory material (not shown here). A recess 6 is provided in the cover 3 for a heating device 7 described in more detail below.

Die Heizeinrichtung 7 umfasst einen in einem beispielsweise kreiszylinderförmig ausgebildeten Tauchrohr 9 aufgenommenen Brenner 10 und ist mittels einer außenseitig am Deckel 3 angeordneten und hier nicht näher erläuterten Zuführeinrichtung 11 in vertikaler Richtung, d.h. in das Innere des Behälters 3 hinein und aus dem Inneren des Behälters 3 hinaus, verfahrbar. Mittels der Heizeinrichtung 7 soll beispielsweise die Schmelze 4 für die Dauer eines Transports von beispielsweise 2-4 h auf einer Temperatur von beispielsweise 780°C gehalten werden.The heating device 7 comprises a burner 10 accommodated in an immersion tube 9, for example in the form of a circular cylinder, and is arranged in the vertical direction by means of a feed device 11 which is arranged on the outside of the cover 3 and is not explained in detail here. into the interior of the container 3 and out of the interior of the container 3, movable. By means of the heating device 7, for example, the melt 4 is to be kept at a temperature of, for example, 780.degree.

Beim Brenner 10 handelt es sich um einen Brennstoff - Sauerstoff - Brenner mit einer zentralen, an eine Brennstoffleitung 12 angeschlossenen Zuführung 13 für einen gasförmigen oder flüssigen Brennstoff, beispielsweise Erdgas, einer an eine Sauerstoffleitung 14 angeschlossenen, sich radial außenseitig an die Zuführung für den Brennstoff anschließenden Oxidationsmittelzuführung 15 sowie einer Zündeinrichtung 16. Der Brenner 10 ist in hier nicht gezeigter Weise im Tauchrohr 9 fixiert und entlang dessen Achse ausgerichtet. Die Brennstoffleitung 12 sowie die Sauerstoffleitung 14 sind an hier nicht gezeigten Quellen für Brennstoff bzw. Sauerstoff angeschlossen.The burner 10 is a fuel-oxygen burner with a central feed 13, connected to a fuel line 12, for a gaseous or liquid fuel, for example natural gas, and a connection, connected to an oxygen line 14, on the radially outside to the feed for the fuel subsequent oxidant supply 15 and an ignition device 16. The burner 10 is fixed in a manner not shown here in the dip tube 9 and aligned along its axis. The fuel line 12 and the oxygen line 14 are connected to sources of fuel and oxygen, not shown here.

Das Tauchrohr 9 ist aus einem keramischen oder nichtkeramischen Material gefertigt und ist an seiner unteren Stirnseite 17 offen ausgebildet. Anstelle oder ergänzend zu einer vollständig geöffneten Stirnseite 17 können im Übrigen auch eine oder mehrere Öffnungen in einem unteren, d.h. beim bestimmungsgemäßen Einsatz unterhalb des Pegels 5 einer Schmelze 4 vorliegenden Abschnitts des Tauchrohrs 9 angeordnet sein, insbesondere solche, mit denen aus dem Tauchrohr 9 entweichende Rauchgase in seitliche Richtung in die Schmelze hinein gelenkt werden. Die Länge des Tauchrohrs 9 ist so bemessen, dass beim Verfahren nach oben mit Hilfe der Zuführeinrichtung 11 eine Position erreicht wird, in der sich die untere Stirnseite 17, zumindest aber der Brenner 10, oberhalb der Höhe des Pegels 5 der Schmelze befindet, beim Verfahren nach unten dagegen das Tauchrohr tief in die Schmelze 4 eintaucht, und der Brenner 10 mit seiner Mündung unterhalb der Höhe des Pegels 5 positioniert ist.The dip tube 9 is made of a ceramic or non-ceramic material and is open at its lower end face 17. Instead of or in addition to a completely open end face 17, one or more openings can moreover be arranged in a lower section of the immersion tube 9, that is, when used as intended, below the level 5 of a melt 4, in particular those with which smoke gases escaping from the immersion tube 9 in the lateral direction be directed into the melt. The length of the immersion tube 9 is dimensioned such that when moving upwards with the aid of the feed device 11, a position is reached in which the lower end face 17, or at least the burner 10, is above the level 5 of the melt during the movement downward, however, the immersion tube is immersed deeply in the melt 4, and the burner 10 is positioned with its mouth below the level 5.

An seiner oberen Stirnseite 18 ist das Tauchrohr 9 weitgehend gasdicht geschlossen ausgebildet und weist lediglich Durchführungen 21, 22 für die Leitungen 12, 14 auf, in der diese ihrerseits zumindest weitgehend gasdicht aufgenommen sind, wodurch Rauchgas nicht oder nur in unwesentlichen Mengen in dieser Richtung aus dem Tauchrohr 9 entweichen kann.On its upper end face 18, the immersion tube 9 is designed to be largely gas-tight and only has bushings 21, 22 for the lines 12, 14, in which these in turn are at least largely gas-tight, so that flue gas does not emit in this direction, or only to an insignificant amount can escape the dip tube 9.

Im Betrieb der Vorrichtung 1 wird der Tiegel 2 bis zur Höhe des Pegels 5 mit einer Schmelze 4 gefüllt und anschließend der Deckel 3 mit der Heizeinrichtung 6 auf den Tiegel 2 aufgesetzt. Die Heizeinrichtung 7 befindet sich dabei zunächst noch in einer oberen Position, in der sich die untere Stirnseite 17 des Tauchrohrs 9, zumindest aber der Brenner 10, oberhalb des Pegels 5 befindet. Anschließend werden Brennstoff, bevorzugt Erdgas, und Sauerstoff, bevorzugt Sauerstoff mit einer Reinheit von mindestens 95 Vol.-%, über die Leitungen 12, 14 herangeführt und mittels der Zündung 16 gezündet, woraufhin der Brennstoff unter Ausbildung einer Flamme 19 verbrennt. Die dabei entstehenden Rauchgase entweichen vollständig, oder nahezu vollständig, über die offene Stirnseite 17 des Tauchrohrs. Anschließend wird die Heizeinrichtung 7 mittels der Zuführeinrichtung 11 abgesenkt, bis sich ein unterer Abschnitt des Tauchrohrs 9 und insbesondere die Stirnseite 17 innerhalb der Schmelze 4 befindet, wie in Fig. 1 gezeigt. Durch den Druck der bei der Verbrennung entstehenden Rauchgase wird das Eindringen der Schmelze in das Innere des Tauchrohrs 9 verhindert; die Flamme 19 steht also nicht oder nur an ihrer äußersten Spitze mit der Schmelze 4 in direktem Kontakt. Stattdessen drängen die Rauchgase - wie durch Pfeile 23 angedeutet - aus der offenen, unteren Stirnseite 17 des Tauchrohrs 9 hinaus, dringen in die Schmelze 4 ein und perlen in Form von Gasblasen 24 nach oben. Durch die große Zahl aufsteigender Gasblasen 24 steht eine große Fläche für einen Wärmeübergang vom Rauchgas in die Schmelze 4 zur Verfügung. Gleichzeitig führen die aufsteigenden Gasblasen 24 aufgrund des Mammutpumpeneffekts zu einer kontinuierlichen Umwälzung der Schmelze 4, durch die die Temperaturverteilung in der Schmelze 4 homogenisiert wird. Neben dem Wärmeübergang an der Oberfläche der Gasblasen 24 findet im Übrigen eine Wärmeübertragung auch an der Wand des Tauchrohrs 9 statt. Die aus der Schmelze 4 austretenden Rauchgase werden anschließend über einen Abzug 25 im Deckel 3 abgeführt.During operation of the device 1, the crucible 2 is filled with a melt 4 up to the level 5 and then the cover 3 with the heating device 6 is placed on the crucible 2. The heating device 7 is initially still in an upper position in which the lower end face 17 of the immersion tube 9, or at least the burner 10, is above the level 5. Subsequently, fuel, preferably natural gas, and oxygen, preferably oxygen with a purity of at least 95% by volume, are introduced via lines 12, 14 and ignited by means of ignition 16, whereupon the fuel burns to form a flame 19. The resulting flue gases escape completely, or almost completely, via the open end face 17 of the dip tube. Subsequently, the heating device 7 is lowered by means of the feed device 11 until a lower section of the immersion tube 9 and in particular the end face 17 is inside the melt 4, as in FIG Fig. 1 shown. The pressure of the flue gases produced during combustion prevents the melt from penetrating into the interior of the immersion tube 9; the flame 19 is therefore not in direct contact with the melt 4 or only at its outermost tip. Instead, the smoke gases are pushing - As indicated by arrows 23 - from the open, lower end face 17 of the dip tube 9, penetrate into the melt 4 and bead up in the form of gas bubbles 24. Due to the large number of ascending gas bubbles 24, a large area is available for heat transfer from the flue gas into the melt 4. At the same time, the rising gas bubbles 24 lead to a continuous circulation of the melt 4 due to the mammoth pump effect, through which the temperature distribution in the melt 4 is homogenized. In addition to the heat transfer on the surface of the gas bubbles 24, heat transfer also takes place on the wall of the immersion tube 9. The smoke gases emerging from the melt 4 are then discharged via a trigger 25 in the cover 3.

Die Zuführung von Wärmeenergie in die Schmelze 4 kann im Übrigen in der Ausführungsform nach Fig. 1 in Abhängigkeit von der Temperatur der Schmelze 4 geregelt werden. Dazu steht eine durch die Wand des Deckels 3 hindurch geführte Temperaturmesssonde 27 mit einer Steuereinheit 28 - wie durch eine gestrichelte Linie angedeutet - in Datenverbindung. Die Sonde 27 ermöglicht die kontinuierliche Messung der Temperatur der Schmelze 4. Die Steuereinheit steht mit Stellventilen 29, 30 in den Leitungen 12, 14 in Datenverbindung. Auf diese Weise kann die Leistung des Brenners 10 durch Beeinflussung der Zuführung von Brennstoff und/oder Sauerstoff proportional oder stufenweise in Abhängigkeit von der an der Temperaturmesssonde 27 erfassten Temperatur der Schmelze 4 gesteuert und beispielsweise dazu eingesetzt werden, die Temperatur der Schmelze 4 dauerhaft auf einem vorgegebenen Wert zu halten. Dadurch ist insbesondere auch eine automatisierte Heizung während eines Transports möglich.The supply of thermal energy in the melt 4 can, moreover, in the embodiment according to Fig. 1 can be regulated depending on the temperature of the melt 4. For this purpose, a temperature measuring probe 27, which is guided through the wall of the cover 3, is in data connection with a control unit 28 - as indicated by a dashed line. The probe 27 enables the temperature of the melt 4 to be measured continuously. The control unit is in data communication with control valves 29, 30 in the lines 12, 14. In this way, by influencing the supply of fuel and / or oxygen, the output of the burner 10 can be controlled proportionally or stepwise as a function of the temperature of the melt 4 detected at the temperature measuring probe 27 and used, for example, to keep the temperature of the melt 4 at a constant level hold predetermined value. As a result, automated heating is also possible during transport.

Die erfindungsgemäße Vorrichtung ist für die Warmhaltung verschiedener Metalle, insbesondere Eisen oder Aluminium, bis zu einer Temperatur von 1000°C geeignet. Durch die große Wärmeaustauschfläche an den in der Schmelze aufsteigenden Gasblasen ist eine hohe Effizienz der Erwärmung ebenso gewährleistet, wie eine gute Temperaturhomogenität in der Schmelze aufgrund der beständigen, durch die aufsteigenden Gasblasen induzierten Bewegung. Bei Verwendung eines Brennstoff-Sauerstoff-Brenners wird gewährleistet, dass die Rauchgase weit überwiegend aus CO2, H2O und O2 bestehen, die die Schmelze nicht negativ beeinflussen.The device according to the invention is suitable for keeping various metals, in particular iron or aluminum, warm up to a temperature of 1000.degree. The large heat exchange surface on the gas bubbles rising in the melt ensures a high heating efficiency as well as good temperature homogeneity in the melt due to the constant movement induced by the rising gas bubbles. When using a fuel-oxygen burner, it is ensured that the flue gases consist largely of CO 2 , H 2 O and O 2 , which do not negatively affect the melt.

BezugszeichenlisteReference symbol list

1.1.
Vorrichtungcontraption
2.2nd
Behältercontainer
3.3rd
Deckelcover
4.4th
Schmelzemelt
5.5.
Pegellevel
6.6.
AussparungRecess
7.7.
HeizeinrichtungHeater
8.8th.
--
9.9.
TauchrohrDip tube
10.10th
Brennerburner
11.11.
ZuführeinrichtungFeeding device
12.12.
BrennstoffleitungFuel line
13.13.
Zuführung für BrennstoffFeeder for fuel
14.14.
SauerstoffleitungOxygen line
15.15.
Zuführung für SauerstoffSupply for oxygen
16.16.
ZündeinrichtungIgnition device
17.17th
Untere StirnseiteLower front
18.18th
Obere StirnseiteUpper face
19.19th
Flammeflame
20.20th
--
21.21.
Durchführungexecution
22.22.
Durchführungexecution
23.23.
Pfeilarrow
24.24th
GasblaseGas bubble
25.25th
AbzugDeduction
26.26.
--
27.27th
TemperturmesssondeTemperature measuring probe
28.28
SteuereinheitControl unit
29.29.
StellventilControl valve
30.30th
StellventilControl valve

Claims (6)

  1. Method for keeping liquid metals warm, in which a metallic melt (4) is held in a container (2) and is heated by burning a fuel with oxygen by means of a burner (10) held in an immersion pipe (9) introduced into the melt (4) vertically or at an angle, characterized
    in that flue gases produced during the burning of the fuel in the burner (10) are introduced into the melt through a flow opening of the immersion pipe (9).
  2. Method according to Claim 1, characterized in that the flue gases are introduced into the melt (4) in a lower region of the container (2).
  3. Method according to Claim 1 or 2, characterized in that the feeding of fuel and/or oxygen to the burner (10) is controlled in dependence on parameters in the melt (4) that are detected at a measuring probe (27) inside the container (2).
  4. Apparatus for keeping liquid metals warm, with a container (2), intended for receiving a metallic melt (4), and also with a heating device (7), which can be moved into the interior of the container vertically or at an angle by means of a feeding device (11) and comprises a burner (10), which is held in an immersion pipe (9) and connected to a supply line (12) for a fuel and a supply line (14) for oxygen, wherein the immersion pipe (9) is equipped in its lower portion with at least one flow opening that allows combustion gases of the burner (10) to pass through,
    characterized
    in that, in a portion arranged outside the melt (4) when the apparatus is in use, the immersion pipe (9) is formed in a gastight manner with the exception of at least one passage (21, 22) for the burner (10) and/or for the supply lines (12, 14) for the fuel and/or the oxidizing agent.
  5. Apparatus according to Claim 4, characterized in that the flow opening is arranged in the lower end face (17) of the immersion pipe.
  6. Apparatus according to Claim 5 or 6, characterized in that the container (2) is formed as a transporting container for transporting a metallic melt (4).
EP17162249.1A 2016-03-24 2017-03-22 Method and device for keeping liquid metals warm Active EP3228403B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RS20200777A RS60444B1 (en) 2016-03-24 2017-03-22 Method and device for keeping liquid metals warm
PL17162249T PL3228403T3 (en) 2016-03-24 2017-03-22 Method and device for keeping liquid metals warm
SI201730316T SI3228403T1 (en) 2016-03-24 2017-03-22 Method and device for keeping liquid metals warm
HRP20201180TT HRP20201180T1 (en) 2016-03-24 2020-07-29 Method and device for keeping liquid metals warm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016003728.8A DE102016003728A1 (en) 2016-03-24 2016-03-24 Method and device for keeping liquid metals warm

Publications (3)

Publication Number Publication Date
EP3228403A2 EP3228403A2 (en) 2017-10-11
EP3228403A3 EP3228403A3 (en) 2017-11-15
EP3228403B1 true EP3228403B1 (en) 2020-06-03

Family

ID=58401457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17162249.1A Active EP3228403B1 (en) 2016-03-24 2017-03-22 Method and device for keeping liquid metals warm

Country Status (9)

Country Link
EP (1) EP3228403B1 (en)
DE (1) DE102016003728A1 (en)
ES (1) ES2797928T3 (en)
HR (1) HRP20201180T1 (en)
HU (1) HUE050839T2 (en)
LT (1) LT3228403T (en)
PL (1) PL3228403T3 (en)
RS (1) RS60444B1 (en)
SI (1) SI3228403T1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604493B (en) * 2020-06-19 2021-12-07 武汉钢铁有限公司 Tundish baking protection system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3530043A1 (en) 1985-08-22 1987-02-26 Linde Ag METHOD AND DEVICE FOR KEEPING A MEL IN A PAN
DE3637065A1 (en) 1986-10-31 1988-05-05 Technometal Ges Fuer Metalltec Ladle with heating device
JP2831376B2 (en) * 1989-04-28 1998-12-02 東邦瓦斯株式会社 Immersion burner type low pressure casting furnace
JP3485826B2 (en) * 1998-03-13 2004-01-13 株式会社トウネツ Melt holding furnace
US6540957B1 (en) 1999-08-27 2003-04-01 Kawasaki Steel Corporation Ladle, a ladle heating system and methods of heating the ladle
JP4125944B2 (en) * 2002-11-15 2008-07-30 照雄 神成 Apparatus and method for preheating the inside of a ladle that temporarily receives molten metal
WO2006133679A2 (en) 2005-06-13 2006-12-21 Karl Konzelmann Metallschmelzwerke Gmbh & Co. Kg Method for adjusting pre-determined melting properties of a liquid metal, especially liquid aluminium, treatment system, transport container, and transport vehicle for liquid metal
JP4959786B2 (en) 2006-05-16 2012-06-27 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Heating device for preheating liquid metal transport containers
JP5832332B2 (en) * 2012-02-22 2015-12-16 東邦瓦斯株式会社 Molten metal burner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HUE050839T2 (en) 2021-01-28
HRP20201180T1 (en) 2020-11-13
SI3228403T1 (en) 2020-08-31
DE102016003728A1 (en) 2017-09-28
EP3228403A3 (en) 2017-11-15
LT3228403T (en) 2020-08-25
PL3228403T3 (en) 2020-12-14
RS60444B1 (en) 2020-07-31
ES2797928T3 (en) 2020-12-04
EP3228403A2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
DE2522467A1 (en) PROCESS AND DEVICE TO PREVENT ADDITIONS IN THE MOUTH AREA OF A METALLURGICAL MELTING VESSEL
DE102007022684A1 (en) Heating device for preheating a liquid metal transport container
EP3228403B1 (en) Method and device for keeping liquid metals warm
DE2729188A1 (en) HIGH TEMPERATURE REACTOR AND PROCEDURE FOR ITS OPERATION
DE1924812C3 (en) Burner lance for a metallurgical furnace and method for operating such a furnace with this burner lance
DE2758654C2 (en) Method and device for heating a molten metal located in a pan
DE3408542C2 (en)
DE4432924A1 (en) Method for melting scrap metal and electric arc furnace for carrying out the method
DE3142989A1 (en) POROESER PLUG FOR A MELT-LIQUID METAL CONTAINER
DE3619092A1 (en) PAN FOR METAL MELT WITH COVER
EP2142852A1 (en) Burner arrangement
EP2354259B1 (en) Vacuum circulation gas removal assembly with ignitor
CH653367A5 (en) METHOD AND MELTING STOVE FOR METALS AND METAL ALLOYS WITH A HEAT-INSULATED CHAMBER CONNECTED BY AN EXHAUST GAS CHANNEL.
DE3437417C2 (en)
DE2749523C2 (en) Device for preheating parts of a container for molten metal
EP2437017B1 (en) Method for melting non ferrous-metals in a gas-fed shaft furnace and shaft furnace assembly for performing the method
DE102010029648A1 (en) Method for melting e.g. aluminum scrap or glass, for heat treatment of steel in hearth furnace, involves operating burners of furnace using radiant flame, and supplying oxygen to combustion air flow to enrich air on pressure side of blower
DE2521873B2 (en) Charging device for Feinmöller to electric ovens with self-baking hollow electrodes and method for operating the charging device
DE10059744A1 (en) Process for the targeted tempering of a casting trough and casting trough for carrying out the process
DE2135289A1 (en)
AT252973B (en) Device for heating steel melting vessels
DE3926786C1 (en) Gas injection in molten metal - using injection pipe in refractory lining of arc furnace vessel, etc.
DE1928571C3 (en) Method and apparatus for melting glass in a reverberation furnace
DE2932938A1 (en) Arc melting furnace for metals - includes fuel burners located in its side wall to achieve rapid melting of scrap
DE2648433A1 (en) IMPROVEMENT OF CASTING AND CONTINUOUS CASTING INDUCTION FURNACES AND TREATMENT PANS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017005510

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22D0041010000

Ipc: B22D0041015000

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 41/015 20060101AFI20171006BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180515

RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20180515

Extension state: MD

Effective date: 20180515

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20180515

Extension state: BA

Payment date: 20180515

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191220

INTG Intention to grant announced

Effective date: 20200108

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1276509

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005510

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20201180T

Country of ref document: HR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E019435

Country of ref document: EE

Effective date: 20200710

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 34760

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200904

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20201180

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2797928

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E050839

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201006

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201003

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MD

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005510

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201180

Country of ref document: HR

Payment date: 20210317

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

26N No opposition filed

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210322

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210322

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210322

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201180

Country of ref document: HR

Payment date: 20220321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230215

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201180

Country of ref document: HR

Payment date: 20230207

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230227

Year of fee payment: 7

Ref country code: LT

Payment date: 20230316

Year of fee payment: 7

Ref country code: AT

Payment date: 20230227

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230213

Year of fee payment: 7

Ref country code: SI

Payment date: 20230127

Year of fee payment: 7

Ref country code: RS

Payment date: 20230221

Year of fee payment: 7

Ref country code: PL

Payment date: 20230102

Year of fee payment: 7

Ref country code: LV

Payment date: 20230120

Year of fee payment: 7

Ref country code: HU

Payment date: 20230213

Year of fee payment: 7

Ref country code: HR

Payment date: 20230207

Year of fee payment: 7

Ref country code: EE

Payment date: 20230206

Year of fee payment: 7

Ref country code: DE

Payment date: 20230331

Year of fee payment: 7

Ref country code: BE

Payment date: 20230216

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230405

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231229

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240108

Year of fee payment: 8