EP2097868A2 - Système multi-étages pour vérification de contenus de contenants - Google Patents

Système multi-étages pour vérification de contenus de contenants

Info

Publication number
EP2097868A2
EP2097868A2 EP07874464A EP07874464A EP2097868A2 EP 2097868 A2 EP2097868 A2 EP 2097868A2 EP 07874464 A EP07874464 A EP 07874464A EP 07874464 A EP07874464 A EP 07874464A EP 2097868 A2 EP2097868 A2 EP 2097868A2
Authority
EP
European Patent Office
Prior art keywords
radiation
container
spectral
materials
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07874464A
Other languages
German (de)
English (en)
Other versions
EP2097868A4 (fr
Inventor
David L. Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative American Technology Inc
Original Assignee
Innovative American Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/564,193 external-priority patent/US7851766B2/en
Priority claimed from US11/624,121 external-priority patent/US20070211248A1/en
Priority claimed from US11/624,089 external-priority patent/US7269527B1/en
Application filed by Innovative American Technology Inc filed Critical Innovative American Technology Inc
Priority to EP09163960A priority Critical patent/EP2098885B1/fr
Priority to EP09163959A priority patent/EP2103961A3/fr
Publication of EP2097868A2 publication Critical patent/EP2097868A2/fr
Publication of EP2097868A4 publication Critical patent/EP2097868A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/26Passive interrogation, i.e. by measuring radiation emitted by objects or goods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/271Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects using a network, e.g. a remote expert, accessing remote data or the like
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks

Definitions

  • This invention relates in general to shipping container contents detection systems, and more particularly to a noninvasive system and method to detect and identify hazardous materials within containers, such as radiation and/or neutron emitting materials, explosives, and special materials such as highly enriched uranium, and further to identify the normally occurring radiological materials within containers.
  • hazardous materials such as radiation and/or neutron emitting materials, explosives, and special materials such as highly enriched uranium, and further to identify the normally occurring radiological materials within containers.
  • a multi-stage detection system and method detects gamma and neutron radiation providing additional data capture times when radiological materials are detected and a secondary position for further analysis.
  • the gamma and neutron detectors mounted on the spreader bar of a gantry crane provide an initial identification of the presence of radiological materials within a shipping container.
  • the spreader bar typically provides up to 30 seconds of close proximity for the radiation sensors to analyze the shipping container.
  • the radiation data captured is analyzed for specific isotope identification. Should the system require more data to complete the analysis, the spreader bar contact with the shipping container is extended to enable additional data capture.
  • one embodiment of the present invention provides a secondary radiation analysis position comprised of an array of radiation sensors deployed to allow the targeted container to be further analyzed.
  • the present invention allows an extended time for radiation analysis for those shipping containers where radiological materials have been detected and where the normal flow of the gantry crane movement does not allow for a complete analysis.
  • one embodiment of the present invention provides for a secondary radiation analysis position where the additional time for analysis is required beyond that provided at the gantry crane.
  • Another embodiment provides for tracking and monitoring of the targeted shipping container as it moves from the spreader bar to the secondary radiation analysis position.
  • isotope sensing and identification systems can be deployed in association with a container, such as with a crane assembly used to lift shipping and transfer containers.
  • the container crane includes a hoist-attachment which engages the shipping container.
  • An isotope sensing and identification system would consist of one or more gamma and neutron detectors that are mounted on the crane hoist- attachment (or on the spreader arm) and provide detailed radiation spectral data to a computer system performing spectral analysis for the detection and identification of isotope(s) that are present in the containers.
  • Many normally occurring radiological materials exist in common goods and cause radiation detection systems to produce false alarms.
  • the first stage of this process is the detection of the presence of radiological materials within the container.
  • the second stage is to identify the specific isotopes that are present. This second stage may be completed within the 30 second period that is typical for the spreader bar of a gantry crane to be attached to the shipping container as it is moved to and from the vessel.
  • the time that the spreader bar is connected to the shipping container may be extended. This could be accomplished in a variety of ways. For example, the spreader bar movement could be slowed or the spreader bar could remain connected to the container for an extended period of time after being placed into position.
  • identifying the specific isotope(s) that are present allows the system to also identify the types of goods or materials that the isotopes represent. With a list of potential goods that represent the identified isotopes, the system can perform a comparison between the identified goods or materials and the shipping container manifest to determine if the radiological material(s) present match the expected materials within the container.
  • the process of 1 ) identifying the isotope(s) that are within a container, 2) identifying the goods or materials that the isotopes represent and 3) verifying the contents of the manifest against the identified goods allows the efficient verification of the container without negative impact to the flow of commerce.
  • a neutron pulse device is positioned on the spreader bar to provide active analysis to determine if shielded materials such as highly enriched uranium, explosives, or other materials are present.
  • the radiation sensor system has a secondary position deployed for further analysis of a shipping container where radiological materials have been detected and further analysis is required to determine the specific isotopes that are present.
  • This secondary position along with the spreader bar radiation sensor position are all part of an integrated radiological analysis system.
  • Each radiological analysis system is configured as a node on a multi-node system.
  • the data acquired from the spreader bar sensors is used in conjunction with the data acquired at the secondary position for analysis of the shipping container contents.
  • the shipping container is monitored as it is moved from the spreader bar position to the secondary position.
  • the shipping container may be monitored through the use of CCTV cameras or wireless tracking devices such as radio frequency identification devices.
  • the radiation sensor positions are monitored by a central monitoring station.
  • This central monitoring station may include an interactive graphic display illustrating the map of the port, the placement of the gantry cranes, the placement of the secondary position(s), video cameras and the position of the targeted shipping container as it moves across the port to the secondary position.
  • the radiation sensors for each node on the system are connected to a processor system that collects and analyzes the gamma energy levels and spectral data detected and then sends this data to a spectral analysis engine.
  • Data from each node is individually addressed and sent to the spectral analysis engine to allow for analysis of individual detector data or detector group data.
  • the analysis engine can combine data from multiple nodes for use in analyzing the shipping container contents.
  • the processor system and a data collection system are electrically coupled with the sensors of each node to collect signals from the array of neutron sensor devices to form histograms with the collected spectral data.
  • the histograms are used by the spectral analysis system to identify the isotopes that are present.
  • the spectral analysis system includes an information processing system and software that analyzes the data collected and identifies the isotopes that are present.
  • the spectral analysis software consists of more that one method to provide multi-confirmation of the isotopes identified. Should more than one isotope be present, the system identifies the ratio of each isotope present.
  • Examples of methods that can be used for spectral analysis such as in the spectral analysis software according to one embodiment of a container verification system, include: 1 ) a Margin Setting method as described in United States Patent No. 6,847,731 ; and 2) a LINSCAN method (a linear analysis of spectra method) and/or an Advanced Peak Detection method, as described in U.S. Patent Application No. 1 1 /624,121 , filed on January 17, 2007, and entitled "Advanced Pattern Recognition Systems for Spectral Analysis", and as will be discussed in more detail below; the collective entire teachings of which being herein incorporated by reference.
  • a user interface of the information processing system provides a graphic view of the radiation spectra detected and the isotopes identified.
  • the user interface allows a user of the system to view, among other things, the individual detectors, detector groups, individual sensors, and sensor groups, individual nodes and a combination of multiple nodes to quickly identify maintenance conditions, radiation detected, and isotopes identified.
  • FIG. 1 is a picture depicting a container in proximity to a crane arm assembly (or a spreader bar) with sensors in sensor housings, in accordance with one embodiment of the present invention.
  • FIG. 2 is a simplified diagram of a secondary radiation verification position.
  • FIG. 3 is a block diagram illustrating an example of a data collection and analysis system, in accordance with one embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating an example of a central monitoring system, in accordance with one embodiment of the present invention.
  • FIG. 5 is a diagram illustrating radiation sensors deployed in a push pull bar configuration of a crane spreader bar, according to one embodiment of the present invention.
  • FIG. 6 is a diagram illustrating radiation sensors deployed about the main body of a crane spreader bar, according to one embodiment of the present invention.
  • FIG. 7 is a diagram illustrating multiple background radiation environment effects.
  • FIG. 8 is a diagram illustrating dynamic background radiation effects compensation.
  • FIG. 9 is a formula useful for dynamic background radiation effects compensation.
  • a program, computer program, or software application may include a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system.
  • a data storage means includes many different types of computer readable media that allow a computer to read data therefrom and that maintain the data stored for the computer to be able to read the data again.
  • Such data storage means can include, for example, non-volatile memory, such as ROM, Flash memory, battery backed-up RAM, Disk drive memory, CD-ROM, DVD, and other permanent storage media.
  • volatile storage such as RAM, buffers, cache memory, and network circuits are contemplated to serve as such data storage means according to different embodiments of the present invention.
  • the present invention overcomes problems with the prior art by providing a multi-stage radiation verification process for the contents of a shipping container.
  • the radiation sensor data collected at each stage of the verification process is used to enable detection and identification of the specific isotopes that are present in a container under examination.
  • a noninvasive container contents detection and verification system operates without having to enter the cavity of a container under examination.
  • the system can include multiple radiation sensor systems that use integrated digital sensors for Gamma and neutron detection, and with a spectral analysis capability to identify the specific isotope(s) of materials in containers.
  • the multi-stage system provides for monitoring and tracking of targeted containers that are delivered to a secondary verification station.
  • the multi-stage system provides for network connections between the spreader bar position and the secondary verification position to enable information integration.
  • Such a multi-stage system can also include detection and identification of explosives and special materials in containers. These special materials may include highly enriched uranium.
  • One embodiment of the invention includes radiation sensors deployed on the spreader bar of a gantry crane to provide radiation detection and isotope identification for the contents of the shipping container.
  • the spreader bar is connected to the shipping container for approximately 30 seconds as the container is moved to or from the vessel at a port.
  • the multi-stage radiation verification system enables radiation detection and analysis of the contents within the shipping container within the normal 30 seconds while the spreader bar is connected to the shipping container.
  • the multistage system also allows for an extended time-period for the spreader bar to stay connected to the shipping container when radiological materials have been detected that the initial 30 second analysis does not allow adequate time for the identification of the isotopes present.
  • the multi-stage radiation verification system uses a secondary sensor position for continued analysis of the shipping container if additional time is needed beyond the extended time provided at the spreader bar.
  • the shipping container may be tracked as it moves from the spreader bar position to the secondary position.
  • An example of tracking and monitoring devices include CCTV cameras and wireless tracking technologies such as radio frequency identification devices.
  • a crane arm assembly mounted sensor system may comprise a node within a distributed network of radiation sensor positions.
  • An example of such a system is described in U.S. Patent Application No. 1 1/624,089, Filed on January 17, 2007, and entitled “System Integration Module for CBRNE Sensors", the entire teachings of which being incorporated by reference.
  • a crane arm (spreader bar) mounted radiation sensor system is used for the detection and first stage of isotope identification for detected radiological material within a shipping container.
  • An example of such a system is described in U.S. patent application 1 1/363,594 filed on February 27, 2006, and entitled “Container Verification System for Non-Invasive Detection of Contents", the entire teachings of which being incorporated by reference.
  • a sensor concentrator unit may be used to connect multiple sensors in a group and enable efficient connection to the central processor for spectral analysis.
  • This configuration could utilize a sensor interface unit (SIU) that is comprised of an integrated multi-channel analyzer, high voltage power supply, voltage system and communications interface.
  • SIU sensor interface unit
  • This SIU configuration uses a concentrator unit to combine multiple sensors into a concentrated communications channel for connection to the central processor.
  • the communications concentrator provides individual IP addressed for each sensor group.
  • An example of the concentrator unit is a device that provides multiple USB ports for sensor connection and concentrates the USB ports into an Ethernet connection for backhaul.
  • An embedded processor unit may be used to connect multiple sensors in a group and enable efficient connection to the central processor for spectral analysis.
  • This configuration could utilize a sensor interface unit (SIU) that is comprised of an integrated multi-channel analyzer, high voltage power supply, voltage system and communications interface.
  • SIU sensor interface unit
  • This SIU configuration is connected to an embedded processor supporting multiple sensors and providing one or more communications channel(s) for connection to the central processor.
  • the embedded processor provides individual IP addressed for each sensor.
  • the time that the spreader bar is connected to the shipping container may be extended to enable further analysis and radiological data acquisition.
  • the time that the spreader bar is connected to the shipping container may be extended to enable further analysis and radiological data acquisition.
  • a secondary radiation verification system could be deployed as another node of the radiation verification system to enable further analysis and radiological data acquisition.
  • the targeted shipping container may be tracked and or monitored as it moves to the secondary radiation verification system.
  • Described now is an example of a multi-stage radiation detection and identification system with one node mounted on a spreader bar of a crane assembly and another node deployed as a secondary radiation verification position. An example of a process for operation of the system is also discussed.
  • a radiation detection and identification system deployed on a crane arm (or spreader bar) 102 provides the first and second stages of a multi-stage radiation verification system.
  • FIG. 1 illustrates example installation positions for various sensor housings 101 , 1 10. Certain inventive features and advantages of exemplary embodiments of a radiation detection and identification system, such as deployed in connection with a crane assembly or other shipping container handling operation, will be discussed below. However, it is assumed that the reader has an understanding of radiation and sensor technologies.
  • FIGs. 1 and 2 an example of a multi-node radiation verification system is shown.
  • the system includes a spreader bar node (as shown in FIG. 1 ) and a secondary radiation verification node 202 as shown in FIG. 2.
  • a truck 220 carries a container 222 that contains cargo 215 inside the container 222.
  • Multiple radiation sensors 202 are deployed on either or both sides of the container 222 to enable further analysis of the contents 215.
  • a power distribution station 203 provides power to the sensors.
  • a communication distribution module 204 couple signals between the multiple radiation sensors 202 and a distribution network 210 of which is further described in FIG. 3. Once a container cargo 215 is identified at the spreader bar stage as suspect, the container 222 is tracked and moved from the spreader bar position (as shown in FIG.
  • the secondary verification position includes positioning the container 222 by using a truck to move the container 222 to the multiple radiation sensors 202 deployed on either or both sides of the container 222.
  • a data collection system 310 in this example, is communicatively coupled via cabling, wireless communication link, and/or other communication link 305 with each of the gamma radiation sensor devices 301 and neutron sensor devices 302 in each sensor unit, and with each of the neutron pulse sensor device(s) 303.
  • the data collection system 310 includes an information processing system with data communication interfaces 324 that collect signals from the radiation sensor units 301 , 302, and from the neutron pulse device(s) 303.
  • the collected signals in this example, represent detailed spectral data from each sensor device that has detected radiation.
  • the data collection system 310 is modular in design and can be used specifically for radiation detection and identification, or for data collection for explosives and special materials detection and identification.
  • the data collection system 310 is communicatively coupled with a local controller and monitor system 312.
  • the local system 312 comprises an information processing system that includes a computer, memory, storage, and a user interface 314 such a display on a monitor and a keyboard, or other user input/output device.
  • the local system 312 also includes a multi-channel analyzer 330 and a spectral analyzer 340.
  • the multi-channel analyzer (MCA) 330 comprises a device composed of many single channel analyzers (SCA).
  • the single channel analyzer interrogates analog signals received from the individual radiation detectors 301 , 302, and determines whether the specific energy range of the received signal is equal to the range identified by the single channel. If the energy received is within the SCA the SCA counter is updated. Over time, the SCA counts are accumulated. At a specific time interval, a multi-channel analyzer 330 includes a number of SCA counts, which result in the creation of a histogram. The histogram represents the spectral image of the radiation that is present.
  • the MCA 330 uses analog to digital converters combined with computer memory that is equivalent to thousands of SCAs and counters and is dramatically more powerful and cheaper.
  • the histogram is used by the spectral analysis system 340 to identify isotopes that are present in materials contained in the container under examination.
  • One of the functions performed by the information processing system 312 is spectral analysis, performed by the spectral analyzer 340, to identify the one or more isotopes, explosives or special materials contained in a container under examination.
  • the spectral analyzer 340 compares one or more spectral images of the radiation present to known isotopes that are represented by one or more spectral images 350 stored in the isotope database 322. By capturing multiple variations of spectral data for each isotope there are numerous images that can be compared to one or more spectral images of the radiation present.
  • the isotope database 322 holds the one or more spectral images 350 of each isotope to be identified. These multiple spectral images represent various levels of acquisition of spectral radiation data so isotopes can be compared and identified using various amounts of spectral data available from the one or more sensors. Whether there are small amounts (or large amounts) of data acquired from the sensor, the spectral analysis system 340 compares the acquired radiation data from the sensor to one or more spectral images for each isotope to be identified. This significantly enhances the reliability and efficiency of matching acquired spectral image data from the sensor to spectral image data of each possible isotope to be identified.
  • the information processing system 312 can compare the isotope mix against possible materials, goods, and/or products that may be present in the container under examination.
  • a manifest database 315 includes a detailed description of the contents of each container that is to be examined. The manifest 315 can be referred to by the information processing system 312 to determine whether the possible materials, goods, and/or products, contained in the container match the expected authorized materials, goods, and/or products, described in the manifest for the particular container under examination.
  • This matching process is significantly more efficient and reliable than any container contents monitoring process in the past.
  • the spectral analysis system 340 includes an information processing system and software that analyzes the data collected and identifies the isotopes that are present.
  • the spectral analysis software consists of more that one method to provide multi-confirmation of the isotopes identified. Should more than one isotope be present, the system identifies the ratio of each isotope present. Examples of methods that can be used for spectral analysis such as in the spectral analysis software according to one embodiment of a container contents verification system, include: 1 ) a margin setting method as described in United States Patent No. 6,847,731 ; and 2) a LINSCAN method (a linear analysis of spectra method) and/or an Advanced Peak Detection method, as described in U.S. Patent Application No. 1 1 /624,121 , filed on January 17, 2007, and entitled "Advanced Pattern Recognition Systems for Spectral Analysis”; the collective entire teachings of which being herein incorporated by reference.
  • the spectral analyzer 340 and the information processing system 312 compare identified possible explosives and/or special materials to the manifest 315 by converting the stored manifest data relating to the shipping container under examination to expected explosives and/or radiological materials and then by comparing the identified possible explosives and/or special materials with the expected explosives and/or radiological materials. If the system determines that there is no match to the manifest for the container then the identified possible explosives and/or special materials are unauthorized. The system can then provide information to system supervisory personnel to alert them to the alarm condition and to take appropriate action.
  • this issue is addressed through the use of a dynamic background method used to compensate for the changing background effects.
  • This method applies continuous background updates against the main background data. Different weights and intervals can be varied for the background updates to achieve the appropriate dynamic background for the specific application.
  • An example formula is provided below, and also shown in FIG. 9.
  • Bi (X) Ai (X) * alpha + Bi- 1 (X) * (1 -alpha) (1 )
  • Bi (X) Ai(X) alpha + Bi -1 (X) * (1 - alpha)
  • background radiation effects can vary depending on a varying background environment that can be experienced by the sensors, such as the sensors located at the spreader bar and/or sensors located at locations relative to changing background environments.
  • the sensors at the spreader bar can be over water, over a ship, high over the ground, low over the ground, or inside the ship.
  • These different background environments can affect the radiation detection and isotope identification. Radiation from the sky should typically be predominant and remain normal during spreader bar movement. Also, sensors at the spreader bar should typically be protected by the container under examination and the spreader bar from most of the background radiation coming from the ground, water, and over the ship. Accordingly, a new and novel approach to compensate for the changing background effects applies continuous background updates against the main background data.
  • the dynamic background is comprised of the primary background and the incremental background.
  • the background environment effects can be subtracted from the collected data using continuous background updates against a main background data.
  • collected radiation data can be dynamically adjusted according to dynamically changing background radiation data, such as relating to water, land, air, ground, and other structures.
  • This dynamic background compensation approach has the advantages of increased speed and sensitivity for dynamic background capture, memory efficiency in processing collected data, and flexibility to adjust to variable system parameters and to address specific applications.
  • an information processing system can learn a particular process used in locating sensors during data collection, such as to anticipate the changes in background effects in a normal operation and movement of the spreader bar.
  • the dynamic background compensation approach can provide a continuous differential subtraction of the effects of varying background environment. This approach enhances the quality of the analyzed data leading to better and more reliable radiation detection and isotope identification.
  • a multiple background analysis approach can be used to remove varying background effects on the collected data.
  • a GPS detector is mechanically coupled to the structure supporting the moving sensors, such as the crane spreader bar, and provides continuous location data (of the spreader bar) to an information processing system that is processing the collected data.
  • the location of the spreader bar for example, can indicate the type of background environment that is being experienced by the sensors at the spreader bar.
  • the GPS detector operates in a well known manner and can provide both geographic location information and elevation information. Knowing the elevation of the spreader bar above, say, ground or sea level, can indicate the type of background effects that are experienced by the sensors at the spreader bar.
  • the elevation information, and/or the geographic location information can be, for example, compared against an expected map of structures and background environments in proximity to the spreader bar. These expected background environments correspond to background effects that can, for example, be subtracted from the collected data to provide better and more reliable data for analysis leading to better and more reliable radiation detection and isotope identification.
  • Alternative location detection devices including mechanical devices and/or electrical devices and/or manual data entry, can be used by the system to track changing backgrounds and corresponding background effects on collected data.
  • a neutron pulse may be generated by a neutron pulse device that is included in the sensor system deployed at the spreader bar or on the gantry crane to provide an active analysis whereby gamma feedback following the neutron pulse can identify shielded radiological materials such as highly enriched uranium, explosives or illicit drugs, inside containers.
  • a particular system implementation may limit the activation of the neutron pulse device to particular geographic areas and/or elevations above ground and/or sea level.
  • a neutron pulse device can be controlled to remain inactive while the crane and/or spreader bar are in close proximity to a crane operator's cabin or to a protected area such as one normally occupied by people.
  • the user interface 314 allows service or supervisory personnel to operate the local system 312 and to monitor the status of radiation detection and identification of isotopes and/or the detection of RF signals by the collection of sensor units 301 , 302 and 303 deployed on the frame structure, such as on the crane arm assembly (or spreader bar).
  • the user interface 31 can present to a user a representation of the collected received returning signals, or the identified possible explosives and/or special materials in the shipping container under examination, or any system identified unauthorized explosives and/or special materials contained within the shipping container under examination, or any combination thereof.
  • the data collection system can also be communicatively coupled with a remote control and monitoring system 318 such as via a network 316.
  • the remote system 318 comprises an information processing system that has a computer, memory, storage, and a user interface 320 such as a display on a monitor and a keyboard, or other user input/output device.
  • the network 316 comprises any number of local area networks and/or wide area networks. It can include wired and/or wireless communication networks. This network communication technology is well known in the art.
  • the user interface 320 allows remotely located service or supervisory personnel to operate the local system 312 and to monitor the status of shipping container verification by the collection of sensor units 301 , 302 and 303 deployed on the frame structure, such as on the crane arm assembly (or spreader bar).
  • the central monitoring system can display the position of the shipping container as it is moved to the secondary position through the use of CCTV cameras (350) or shipping container tracking systems (355).
  • a neutron pulse device can be included in the sensor system deployed on the spreader bar or on the gantry crane to provide an active analysis whereby gamma feedback identifies shielded radiological materials such as highly enriched uranium, explosives or illicit drugs.
  • an example of a multi-node radiation verification system includes multiple spreader bar radiation verification systems (401 ) and secondary radiation verification nodes (404), operations center (408), container tracking system (410) and CCTV (402) cameras that are interconnected by a data network(405).
  • a forklift truck is used to move the containers around the terminal.
  • the forklift truck (420) is equipped with a spreader bar and can be configured as a wireless radiation verification node.
  • FIG 5 an example of a spreader bar with radiation sensors installed in the push pull bars is shown.
  • one or more radiation sensors are integrated within the push pull bar 501 .
  • the radiation sensors are enclosed in a box with shock absorbing connectors 51 1 .
  • the gamma sensors 512 are shock mounted within the box on the lower side of the unit.
  • the one or more gamma sensors comprise sensor resolution of 7% or better at 662kev.
  • the neutron sensors 514 and the supporting electronics 513 are mounted on the top side of the box.
  • Alternative mounting arrangements of the one or more radiation sensors, the gamma sensors 512, the neutron sensors 514, and the supporting electronics 513, relative to the push pull bar 501 should become obvious to those of ordinary skill in the art in view of the present discussion.
  • FIG 6 an example of a spreader bar with radiation sensors installed in the main unit 601 is shown.
  • the radiation sensors are integrated within the main unit 601 .
  • the radiation sensors are enclosed in a box with shock absorbing connectors 61 1 .
  • the gamma sensors 612 are shock mounted within the box on the lower side of the unit.
  • the neutron sensors 613 and the supporting electronics 614 are mounted on the top side of the box.
  • Alternative mounting arrangements of the one or more radiation sensors, the gamma sensors 612, the neutron sensors 613, and the supporting electronics 614, relative to the main unit 601 should become obvious to those of ordinary skill in the art in view of the present discussion.
  • system monitoring function can be combined to monitor more than radiation and explosives.
  • Other types of hazardous elements can be monitored in combination with the radiation detection by combining appropriate sensors and detectors for these other types of hazardous elements with the radiation sensor units and monitoring system according to alternative embodiments of the present invention.
  • the preferred embodiments of the present invention can be realized in hardware, software, or a combination of hardware and software.
  • a system according to a preferred embodiment of the present invention can be realized in a centralized fashion in one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system - or other apparatus adapted for carrying out the methods described herein - is suited.
  • a typical combination of hardware and software could be a general purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
  • One embodiment according to present invention can also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which - when loaded in a computer system - is able to carry out these methods.
  • Computer program means or computer program in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following a) conversion to another language, code or, notation; and b) reproduction in a different material form.
  • Each computer system may include one or more computers and at least a computer readable medium allowing a computer to read data, instructions, messages or message packets, and other computer readable information from the computer readable medium.
  • the computer readable medium may include non-volatile memory, such as ROM, Flash memory, Disk drive memory, CD-ROM, and other permanent storage. Additionally, a computer readable medium may include, for example, volatile storage such as RAM, buffers, cache memory, and network circuits.
  • the computer readable medium may comprise computer readable information in a transitory state medium such as a network link and/or a network interface, including a wired network or a wireless network that allow a computer to read such computer readable information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Economics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Geophysics (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

L'invention concerne un procédé multi-étages détectant et identifiant un rayon, des explosifs et des matériaux spéciaux au sein d'un contenant d'expédition. Le procédé utilise des capteurs de rayonnement configurés comme des nœuds sur le réseau distribué. Le procédé collecte des données de rayonnement depuis les nœuds. Les données de rayonnement sont associées au contenant et à ses contenus. Les données de rayonnement collectées sont ajustées dynamiquement selon des données de rayonnement de fond changeant de manière dynamique, telles que liées à l'eau, à la terre, à l'air, au sol et à d'autres structures. Le procédé compare les données de rayonnement collectées et ajustées à des images spectrales représentant des isotopes pour identifier un ou plusieurs isotopes présents. Les isotopes identifiés sont mis en correspondance par rapport aux matériaux probables qu'ils représentent. Les matériaux probables sont comparés au manifeste du contenant pour confirmer l'identité des matériaux contenus dans le contenant et pour détecter et/ou identifier des matériaux non autorisés dans le contenant. Un dispositif à impulsion de neutrons pourrait être utilisé pour identifier des matériaux blindés, explosifs et d'autres types de matériaux.
EP07874464A 2006-11-28 2007-11-27 Système multi-étages pour vérification de contenus de contenants Withdrawn EP2097868A4 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09163960A EP2098885B1 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification du contenu d'un conteneur
EP09163959A EP2103961A3 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification de contenu de conteneur

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/564,193 US7851766B2 (en) 2001-10-26 2006-11-28 Multi-stage system for verification of container contents
US11/624,121 US20070211248A1 (en) 2006-01-17 2007-01-17 Advanced pattern recognition systems for spectral analysis
US11/624,089 US7269527B1 (en) 2006-01-17 2007-01-17 System integration module for CBRNE sensors
PCT/US2007/085578 WO2008118219A2 (fr) 2006-11-28 2007-11-27 Système multi-étages pour vérification de contenus de contenants

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP09163960A Division EP2098885B1 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification du contenu d'un conteneur
EP09163959A Division EP2103961A3 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification de contenu de conteneur

Publications (2)

Publication Number Publication Date
EP2097868A2 true EP2097868A2 (fr) 2009-09-09
EP2097868A4 EP2097868A4 (fr) 2010-05-19

Family

ID=40863163

Family Applications (3)

Application Number Title Priority Date Filing Date
EP07874464A Withdrawn EP2097868A4 (fr) 2006-11-28 2007-11-27 Système multi-étages pour vérification de contenus de contenants
EP09163960A Not-in-force EP2098885B1 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification du contenu d'un conteneur
EP09163959A Withdrawn EP2103961A3 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification de contenu de conteneur

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP09163960A Not-in-force EP2098885B1 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification du contenu d'un conteneur
EP09163959A Withdrawn EP2103961A3 (fr) 2006-11-28 2007-11-27 Système à plusieurs étapes pour la vérification de contenu de conteneur

Country Status (8)

Country Link
EP (3) EP2097868A4 (fr)
JP (1) JP4601713B2 (fr)
AU (1) AU2007349827A1 (fr)
BR (1) BRPI0719542A2 (fr)
CA (1) CA2670450A1 (fr)
IL (1) IL198987A0 (fr)
MX (1) MX2009005709A (fr)
WO (1) WO2008118219A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096537A (zh) * 2015-07-22 2015-11-25 南华大学 基于无线传感器网络的铀尾矿库水土污染监测预警系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330115B2 (en) 2005-12-01 2012-12-11 Innovative American Technology, Inc. High performance neutron detector with near zero gamma cross talk
US8247781B2 (en) 2005-12-01 2012-08-21 Innovative American Technology, Inc. Fabrication of a high performance neutron detector with near zero gamma cross talk
WO2009143131A2 (fr) 2008-05-19 2009-11-26 Innovative American Technology Inc. Structure de cadre mobile à réseaux de capteurs passifs/actifs pour une identification non invasive de matériaux dangereux
WO2015160398A2 (fr) * 2014-01-16 2015-10-22 University Of Florida Research Foundation, Inc. Système et procédé pour l'analyse de matériaux fissiles par analyse par interrogation neutronique active multispectrale

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090829A1 (fr) * 2003-01-31 2004-10-21 Veritainer Corporation Appareil et procede pour la detection de rayonnement ou de blindage de rayonnement dans des conteneurs d'expedition
GB2424065A (en) * 2005-03-11 2006-09-13 Corus Uk Ltd Radiation detection apparatus
US20060261942A1 (en) * 2001-10-26 2006-11-23 Innovative American Technology Inc. Container verification system for non-invasive detection of contents

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617169A (en) * 1984-09-12 1986-10-14 The United States Of America As Represented By The United States Department Of Energy Measurement of radionuclides in waste packages
KR920704134A (fr) * 1992-06-08 1992-12-19
DE19532965C2 (de) * 1995-09-07 1998-07-16 Heimann Systems Gmbh & Co Röntgenprüfanlage für großvolumige Güter
US5838759A (en) * 1996-07-03 1998-11-17 Advanced Research And Applications Corporation Single beam photoneutron probe and X-ray imaging system for contraband detection and identification
GB2363693B (en) * 2000-03-01 2004-07-14 Univ Tsinghua A container inspection device
US6847731B1 (en) 2000-08-07 2005-01-25 Northeast Photo Sciences, Inc. Method and system for improving pattern recognition system performance
US20020175291A1 (en) * 2001-04-06 2002-11-28 Reeder Paul L. Radiation detection and discrimination device, radiation survey instrument, and method
AU2003302720B9 (en) * 2002-07-19 2008-08-21 Smiths Detection-Pasadena, Inc. Non-specific sensor array detectors
TW200417848A (en) * 2002-09-17 2004-09-16 Allset Tracking Ab Method and system for monitoring containers to maintain the security thereof
EP1606654A2 (fr) * 2003-03-06 2005-12-21 Randolph & Baldwin Detection et poursuite de rayonnement au moyen d'un systeme de communication sans fil gps
US7045788B2 (en) * 2003-08-04 2006-05-16 Thermo Electron Corporation Multi-way radiation monitoring
US7039159B2 (en) * 2004-01-30 2006-05-02 Science Applications International Corporation Method and system for automatically scanning and imaging the contents of a moving target
US7359480B2 (en) * 2004-04-23 2008-04-15 Lawrence Livermore National Security, Llc Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo
US7183554B2 (en) * 2004-04-29 2007-02-27 Massachusetts Institute Of Technology Detection of nuclear weapons and fissile material abroad cargo containerships
WO2006045019A2 (fr) * 2004-10-18 2006-04-27 Technology Management Consulting Services, Inc. Systeme de detection pour voies de circulation
WO2006119605A1 (fr) * 2005-05-11 2006-11-16 Optosecurity Inc. Procede et systeme permettant de verifier des conteneurs de cargaison

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060261942A1 (en) * 2001-10-26 2006-11-23 Innovative American Technology Inc. Container verification system for non-invasive detection of contents
WO2004090829A1 (fr) * 2003-01-31 2004-10-21 Veritainer Corporation Appareil et procede pour la detection de rayonnement ou de blindage de rayonnement dans des conteneurs d'expedition
GB2424065A (en) * 2005-03-11 2006-09-13 Corus Uk Ltd Radiation detection apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008118219A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096537A (zh) * 2015-07-22 2015-11-25 南华大学 基于无线传感器网络的铀尾矿库水土污染监测预警系统

Also Published As

Publication number Publication date
EP2097868A4 (fr) 2010-05-19
EP2103961A3 (fr) 2009-12-02
JP4601713B2 (ja) 2010-12-22
WO2008118219A2 (fr) 2008-10-02
WO2008118219A3 (fr) 2009-03-12
JP2010511153A (ja) 2010-04-08
CA2670450A1 (fr) 2008-10-02
BRPI0719542A2 (pt) 2014-01-21
MX2009005709A (es) 2009-06-17
IL198987A0 (en) 2010-02-17
EP2098885A2 (fr) 2009-09-09
AU2007349827A1 (en) 2008-10-02
EP2098885B1 (fr) 2012-07-25
EP2103961A2 (fr) 2009-09-23
EP2098885A3 (fr) 2009-10-21

Similar Documents

Publication Publication Date Title
US7760103B2 (en) Multi-stage system for verification of container contents
US7851766B2 (en) Multi-stage system for verification of container contents
US7142109B1 (en) Container verification system for non-invasive detection of contents
US8304740B1 (en) Mobile frame structure with passive/active sensor arrays for non-invasive identification of hazardous materials
US20090236538A1 (en) Mobile radiation threat identification system
CN101322164A (zh) 对内容物进行非侵入式检测的容器检测系统
EP2098885B1 (fr) Système à plusieurs étapes pour la vérification du contenu d'un conteneur
US8110808B2 (en) Floating intelligent perimeter sensor system
US20120153162A1 (en) High performance straddle carrier cbrne radiation verification system
US20100224788A1 (en) Various arrangements of radiation and fissile materials detection systems using sensor arrays in spreader bars, gantry cranes, self-propelled frame structures, and transport vehicles
CN101563705A (zh) 用于集装箱内容验证的多级系统
US20090236531A1 (en) Horizontal sensor arrays for non-invasive identification of hazardous materials
US7668681B2 (en) Distributed sensor network with a common processing platform for CBMRNE devices and novel applications
WO2010091003A2 (fr) Ensembles divers de systèmes de détection de matières fissiles et radioactives utilisant des ensembles de détecteurs placés dans des palonniers, des grues à portique, des structures à bâti automoteur et des véhicules de transport
WO2009120674A1 (fr) Réseaux de détecteurs horizontaux pour une identification non invasive de matériaux dangereux
KR20090097896A (ko) 다 단계 방사능 검출 및 확인 시스템
WO2009139959A2 (fr) Système mobile d'identification d'un danger de rayonnement
MX2008007094A (en) Container verification system for non-invasive detection of contents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090625

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INNOVATIVE AMERICAN TECHNOLOGY INC.

A4 Supplementary search report drawn up and despatched

Effective date: 20100416

RIC1 Information provided on ipc code assigned before grant

Ipc: G01T 1/167 20060101ALI20100412BHEP

Ipc: G06Q 50/00 20060101AFI20081017BHEP

17Q First examination report despatched

Effective date: 20110516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121211