EP2097312B1 - Method for operating a rebreather and a rebreather - Google Patents

Method for operating a rebreather and a rebreather Download PDF

Info

Publication number
EP2097312B1
EP2097312B1 EP07858177A EP07858177A EP2097312B1 EP 2097312 B1 EP2097312 B1 EP 2097312B1 EP 07858177 A EP07858177 A EP 07858177A EP 07858177 A EP07858177 A EP 07858177A EP 2097312 B1 EP2097312 B1 EP 2097312B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
gas
sensor
flushing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07858177A
Other languages
German (de)
French (fr)
Other versions
EP2097312A2 (en
Inventor
Arne Sieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DP Scandinavia AB
Original Assignee
DP Scandinavia AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DP Scandinavia AB filed Critical DP Scandinavia AB
Publication of EP2097312A2 publication Critical patent/EP2097312A2/en
Application granted granted Critical
Publication of EP2097312B1 publication Critical patent/EP2097312B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • B63C11/24Air supply carried by diver in closed circulation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/02Respiratory apparatus with compressed oxygen or air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/32Decompression arrangements; Exercise equipment

Definitions

  • the invention relates to a method for operating a rebreather, in which oxygen is metered into the respiratory gas, the content of the oxygen being monitored by at least one oxygen sensor, and wherein the oxygen sensor is checked by flushing with a gas having a known oxygen concentration.
  • Open diving equipment is characterized by a breathing gas storage bottle which is filled with compressed air or another breathing gas mixture and a one- or two-stage pressure reducer which reduces the pressure of the gas in the bottle to ambient pressure.
  • the exhaled air is released into the water, whereby only a small part of the oxygen in the breathing gas was actually consumed.
  • about 3% (25 l respiratory minute volume, 0.8 l spent oxygen, at rest) of the inhaled gas are consumed at the water surface; at a depth of, for example, 20 m, this value is only one due to the increased ambient pressure of 2 bar Third, that is 1%.
  • a dive at 20 m one hundred times as much breathing gas must be carried along as is actually consumed.
  • Semi-closed and closed rebreather systems are used to circumvent the systemic low efficiency of open diving equipment (SCUBA, SCBA) for breathing gas consumption. These devices are breathed in a cycle.
  • the exhaled air is purified in these devices by means of a carbon dioxide absorber of carbon dioxide and re-enriched with oxygen.
  • Such devices are characterized by a one- or two-part counterlung, which can absorb the exhaled gas volume. With rebreathers, the efficiency of gas consumption can be increased up to 100%.
  • the present invention relates to such semi-closed and closed rebreathers and to a method of operating such devices.
  • Electrochemical sensors are usually used as pO 2 sensors, which are calibrated on the surface with air or 100% O 2 before the dive.
  • a correctly functioning pO 2 sensor for use in rebreathers has an output signal (current or voltage), which depends linearly only on the pO 2 in front of the diaphragm of the sensor.
  • the susceptibility to failure of the pO 2 sensors is countered by the redundant use of pO 2 sensors.
  • three oxygen sensors are usually used in closed rebreathers. If a sensor fails, therefore, its output signal is different from that of the other two, this is by comparing all three sensor signals with a "voting algorithm" ( GB 240 45 93 A . WO 2004/112905 A1 ), and this sensor is no longer used to control the pO 2 .
  • depth profile, time and pO 2 are often stored in an internal memory of the pO 2 meter and can be transferred to a personal computer after the dive, the temporal resolution and the maximum length of the recording depends on the internal memory size and is therefore limited.
  • the invention as claimed in independent claims 1 and 10 is therefore the object of a pO 2 measuring device in such a way that errors in the pO 2 sensor signals, non-linearities of pO 2 sensor signals, a possible current limitation of pO 2 sensors reliably detected and a detailed record the dive-relevant data are made possible.
  • this object is achieved in that the test is triggered automatically. It will be so after a necessary and prescribed Calibration performs a check that is not started manually, but is triggered automatically.
  • the test is thus independent of any stress situation in which the diver is located. Especially in such a stress situation, however, due to an increased oxygen demand and an increased respiratory rate, as well as the associated increased production of CO 2 increases the probability of failure of a sensor.
  • the test can lead to an alarm signal, trigger a changeover to emergency operation or cause a correction of the calibration.
  • the test is carried out under water taking into account the ambient pressure.
  • Essential to the present invention is the fact that the ambient pressure in the test is also crucial for the choice of the time of the test.
  • the partial pressure of oxygen is in the range of the upper limit of the partial pressure of oxygen which, for medical reasons, can be expected of humans.
  • a purge with pure oxygen is carried out, in which the partial pressure is then about 1.6 bar.
  • the rinsing is carried out until a reliable signal is obtained, which corresponds to pure oxygen. This will usually take four to six seconds.
  • the linearity of the oxygen sensor and the function in the important range of higher oxygen partial pressures can be checked by this test of the first type.
  • This test of the first kind is usually carried out during descent, when the above-described depth of about 6 m is reached.
  • ongoing further checks, namely tests of the second kind can be carried out, for example, to discover when an oxygen sensor is impaired by condensation in its function. Since these checks are usually carried out at greater depths, they are not carried out with pure oxygen, since otherwise unacceptably high partial pressures would be achieved.
  • the test is carried out with mixed gas, in which case the oxygen partial pressure may well be below 1 bar.
  • the present invention relates to a rebreather with at least one pressure bottle for oxygen and another pressure bottle for a thinner gas and with a valve for the supply of oxygen and / or thinner gas in the circuit, which valve is controlled in response to the signal of at least one oxygen sensor, wherein means for purging the oxygen sensor is provided with a gas having a known oxygen concentration.
  • this rebreather device is characterized in that the device is in communication with a pressure sensor and is controlled in dependence on the signal of the pressure sensor in order to test the oxygen sensor.
  • the gas requirement for the inspection of the oxygen sensor can be minimized in particular by the fact that the reference gas injection is mounted directly in front of the sensor membrane and so only the space in front of the membrane is rinsed.
  • a memory card slot allows dive-related data to be stored with high time resolution and a personal computer with memory card slot is sufficient to read the data.
  • the measuring device is characterized by one or more integrated reference gas feeds.
  • a microcontroller with suitable software is used for signal processing, for the calculations, for the control of the solenoid valves, for outputs on the display and the storage of data on a memory card.
  • a reference gas on the one hand pure oxygen and the diluent gas in closed rebreathers, or the supply gas in semi-closed rebreathers, used.
  • the reference gases can be injected directly in front of the membrane of the oxygen sensors.
  • the injection duration is preferably between 5 and 10 seconds, depending on the response time of the oxygen sensors.
  • the oxygen sensor only measures the oxygen partial pressure of the reference gas, while the gas mixture in the circuit in front of the sensor is displaced by the comparison gas flow. From the depth, which is usually determined with a pressure sensor, the ambient pressure is calculated and calculated together with the known oxygen content of the reference gases, the actual oxygen partial pressure upstream of the sensor diaphragm (setpoint) and the actual value (calculated from the sensor signal and the sensitivity determined during the calibration ) of the sensor. Furthermore, the maximum comparison mass flow is limited to 1 to 2 bar l / min by integrated orifices.
  • the function of the rebreather during these checks is not affected and the diver can breathe normally.
  • the timed amount of oxygen in the 100% oxygen test is approximately equal to human psychological oxygen consumption per unit of time and should therefore not lead to a significant increase in the oxygen partial pressure in the circulation.
  • the invention is characterized by an integrated memory card slot.
  • Dive-relevant data such as sensor signals from one or more sensors, time, depth and battery voltage are written once per s to a Secure Digital memory card (file system FAT 12, 16 or 32).
  • a 60-minute dive corresponds to a file of about 500 kbytes. This file can then be read by any personal computer equipped with a commercially available reader / card slot for Secure Digital memory cards.
  • Fig. 1 shows the basic structure of a closed rebreather.
  • the diver exhales through the mouthpiece with directional valves 1 through the exhalation tube into the exhalation counterlung 2.
  • excess gas can be discharged into the environment.
  • the exhaled air is purified in the soda lime tank 4 of carbon dioxide.
  • With the inhalation counter-lung 13 and the inhalation hose closes the cycle.
  • the oxygen sensors 11 are mounted in the lime container.
  • a ⁇ -controller 12 calculates the pO 2 from the signals of the oxygen sensors and displays the dive-relevant data on a display 14. If the oxygen partial pressure pO 2 in the circuit is too low, is via the oxygen cylinder 5, the pressure reducer 8 and a solenoid valve 10 supplied oxygen.
  • thinner gas can be supplied to the circuit via an automatic lungs-automatic valve or a bypass valve 9 from the diluting gas cylinder 6 and a further pressure reducer 7 (important when diving, when flushing the circuit, or when blowing out the mask).
  • the pressure reducers reduce the cylinder pressure to a pressure ⁇ 8 - 12 bar higher than the ambient pressure.
  • a pressure sensor 30 is used to determine the ambient pressure.
  • Fig. 2 is the subject invention, which represents an extension for rebreathers, for example.
  • the ⁇ -controller 20 evaluates the signals of the oxygen sensor (s) 11. These are screwed in a suspension 24 on the outlet side in the lime container. Via a Serial Peripheral Interface (SPI short) connection 22, a display 21 is connected. Another SPI connection 23, a memory card slot 19 for Secure Digital (SD cards short) is connected. If Compact Flash cards are used, they are not described via an SPI connection but via a parallel connection.
  • SPI short Serial Peripheral Interface
  • SD cards short Secure Digital
  • the ⁇ -controller 20 can via a solenoid valve 10 from an oxygen cylinder 5 and pressure reducer 8 100% oxygen directly in front of the membrane (the) pO 2 sensor (s) (s), wherein the flow rate (for example, 1 bar I / min) through an aperture 18 is defined.
  • diluent gas of known oxygen content can pass from reservoir cylinder 6 via pressure reducer 7 and another solenoid valve 16 to the membrane of the pO 2 sensor (s).
  • the maximum gas flow is defined by a diaphragm 17 (again, for example, 1 bar I / min).
  • the leads are fastened by means of a holder 25 in front of the sensor membrane.
  • Fig. 2 an extension too Fig. 1 represents, that is, the solenoid valve 10 and the manual valve 9 are still part of the circuit.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Emergency Medicine (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Kreislauftauchgerätes, bei dem dem Atemgas Sauerstoff zudosiert wird, wobei der Saustoffgehalt durch mindestens einen Sauerstoffsensor überwacht wird und wobei der Sauerstoffsensor durch Spülung mit einem Gas mit bekannter Sauerstoffkonzentration geprüft wird.The invention relates to a method for operating a rebreather, in which oxygen is metered into the respiratory gas, the content of the oxygen being monitored by at least one oxygen sensor, and wherein the oxygen sensor is checked by flushing with a gas having a known oxygen concentration.

Offene Tauchgeräte weisen sich durch einen Atemgasvorratsflasche, welche mit Pressluft oder einem anderen Atemgasgemisch gefüllt ist und einem ein- oder zweistufigen Druckminderer, welcher den Druck des Gases in der Flasche auf Umgebungsdruck reduziert, aus. Die ausgeatmete Luft wird ins Wasser abgegeben, wobei nur ein kleiner Teil des Sauerstoffs im Atemgas auch wirklich verbraucht wurde. So werden an der Wasseroberfläche ca. 3% (25 l Atemminutenvolumen, 0,8 l verbrauchter Sauerstoff, in Ruhe) des eingeatmeten Gases verbraucht, in einer Tiefe von beispielsweise 20 m beträgt dieser Wert bedingt durch den um 2 bar erhöhten Umgebungsdruck nur noch ein Drittel, also 1%. Somit muss für einen Tauchgang auf 20 m einhundertfach soviel Atemgas mitgeführt werden wie tatsächlich verbraucht wird.Open diving equipment is characterized by a breathing gas storage bottle which is filled with compressed air or another breathing gas mixture and a one- or two-stage pressure reducer which reduces the pressure of the gas in the bottle to ambient pressure. The exhaled air is released into the water, whereby only a small part of the oxygen in the breathing gas was actually consumed. Thus, about 3% (25 l respiratory minute volume, 0.8 l spent oxygen, at rest) of the inhaled gas are consumed at the water surface; at a depth of, for example, 20 m, this value is only one due to the increased ambient pressure of 2 bar Third, that is 1%. Thus, for a dive at 20 m one hundred times as much breathing gas must be carried along as is actually consumed.

Um die systembedingte den Atemgasverbrauch betreffende geringe Effizienz von offenen Tauchgeräten (SCUBA, Presslufttauchgeräte) zu umgehen, werden halbgeschlossene und geschlossene Kreislauftauchgeräte eingesetzt. Bei diesen Geräten wird in einem Kreislauf geatmet. Die ausgeatmete Luft wird bei diesen Geräten mittels eines Kohlendioxidabsorbers von Kohlendioxid gereinigt und wieder mit Sauerstoff angereichert. Weiters zeichnen sich solche Geräte durch eine ein- oder zweiteilige Gegenlunge aus, welche das ausgeatmete Gasvolumen aufnehmen kann. Mit Kreislaufgeräten kann die den Gasverbrauch betreffende Effizient auf bis zu 100% erhöht werden.Semi-closed and closed rebreather systems are used to circumvent the systemic low efficiency of open diving equipment (SCUBA, SCBA) for breathing gas consumption. These devices are breathed in a cycle. The exhaled air is purified in these devices by means of a carbon dioxide absorber of carbon dioxide and re-enriched with oxygen. Furthermore, such devices are characterized by a one- or two-part counterlung, which can absorb the exhaled gas volume. With rebreathers, the efficiency of gas consumption can be increased up to 100%.

Die vorliegende Erfindung betrifft solche halb geschlossene und geschlossene Kreislauftauchgeräte und ein Verfahren zum Betreiben dieser Vorrichtungen.The present invention relates to such semi-closed and closed rebreathers and to a method of operating such devices.

Ein Kreislaufgerät und Verfahren mit den Merkmalen des Oberbegriffs der unabhängigen Ansprüche 1 und 10 sind bekannt aus GB 2 329 343 .A rebreather and method having the features of the preamble of independent claims 1 and 10 are known from GB 2 329 343 ,

Während man bei offenen Tauchgeräten im Normalfall immer ein Gas mit atembaren Sauerstoffgehalt atmet, wird bei semigeschlossenen Kreislaufgeräten der pO2 im Kreislauf von der zugeführten Gasmenge und des Metabolismus des Tauchers bestimmt und in elektronisch gesteuerten geschlossenen Geräten mittels eines Regelkreises auf einem bestimmten Level gehalten ( GB 24 045 93 A , US 2003188744 A1 , WO 2005/107390 A2 ). Bei manuell gesteuerten geschlossenen Kreislaufgeräten wird die Sauerstoffzufuhr vom Taucher manuell eingestellt und somit der Sauerstoffpartialdruck manuell geregelt. Der Sauerstoffpartialdruck des Atemgases muss innerhalb bestimmter Grenzen liegen um atembar zu sein. Allgemein werden 0,16 bar als untere Grenze und 1,6 bar als obere Grenze angesehen. Ein pO2 unter oder oberhalb dieser Grenzen wird als lebensbedrohend eingestuft. Daraus wird ersichtlich, dass für Kreislaufgeräte eine ständige Überwachung des pO2 notwendig ist. Geschlossene Geräte benötigen pO2 Sensoren zur manuellen oder elektronisch gesteuerten Regelung des pO2 im Kreislauf. Als pO2 Sensoren werden üblicherweise elektrochemische Sensoren eingesetzt, welche vor dem Tauchgang an der Oberfläche mit Luft oder 100% O2 kalibriert werden.While normally breathing a gas with breathable oxygen content always takes place in open scuba diving equipment, in semi-closed rebreathers the pO 2 in the circuit is determined by the amount of gas supplied and the diver's metabolism and kept at a certain level in electronically controlled closed equipment by means of a control loop ( GB 24 045 93 A . US 2003188744 A1 . WO 2005/107390 A2 ). In manually controlled closed rebreathers, the diver will manually adjust the oxygen supply and thus the oxygen partial pressure regulated manually. The oxygen partial pressure of the breathing gas must be within certain limits to be breathable. Generally, 0.16 bar is considered the lower limit and 1.6 bar the upper limit. A PO 2 below or above these limits is classified as life-threatening. It can be seen that a constant monitoring of the pO 2 is necessary for rebreathers. Closed units require pO 2 sensors for manual or electronically controlled regulation of the pO 2 in the circuit. Electrochemical sensors are usually used as pO 2 sensors, which are calibrated on the surface with air or 100% O 2 before the dive.

Ein korrekt funktionierender pO2 Sensor für den Einsatz in Kreislauftauchgeräten weist ein Ausgangssignal (Strom oder Spannung) auf, welches linear nur von dem pO2 vor der Membran des Sensors abhängt.A correctly functioning pO 2 sensor for use in rebreathers has an output signal (current or voltage), which depends linearly only on the pO 2 in front of the diaphragm of the sensor.

pO2 Sensoren sind sehr fehleranfällig. Typische Fehler, die auftreten können, sind:

  1. a. Nichtlinearität;
  2. b. Stromlimitierung: in diesem Fall wird der pO2 Sensor ab einem bestimmten pO2 nichtlinear da der Ausgangsstrom des Sensors (oder Ausgangsspannung) fehlerbedingt nicht über einen bestimmten Level ansteigen kann. Dies resultiert in zu niedrigen Sensorsignalen bei hohem pO2;
  3. c. Fehlerhafte Signale von einem oder mehreren Sensoren bzw. der Sensorsignalverarbeitung;
  4. d. Fehlerhafte Kalibration;
pO 2 sensors are very error-prone. Typical errors that can occur are:
  1. a. Nonlinearity;
  2. b. Current limitation: in this case, the pO 2 sensor becomes non-linear starting at a certain pO 2 because the output current of the sensor (or output voltage) can not rise above a certain level due to an error. This results in too low sensor signals at high pO 2 ;
  3. c. Faulty signals from one or more sensors or the sensor signal processing;
  4. d. Faulty calibration;

pO2 Messgeräte werden wie schon erwähnt an der Oberfläche mit Luft oder 100% O2 unter normobaren Bedingungen (auf Meeresniveau daher ∼1000 mbar Umgebungsdruck) kalibriert, wobei die Empfindlichkeit der Sensoren bestimmt wird. Der maximal erreichbare pO2 ist daher 1,0 bar. Da bei Tauchgängen oft ein pO2 höher als 1,0 bar auftritt, ist es wichtig die Sensoren auf a) und b) zu prüfen. (Beispiel für eine Kalibration mit 100% O2: Umgebungsdruck: 1000 mbar, Ausgangsspannungssignal: 50 mV -> Empfindlichkeit = 50 mV/bar pO2)As already mentioned, pO 2 measuring instruments are calibrated on the surface with air or 100% O 2 under normobaric conditions (at sea level therefore ~1000 mbar ambient pressure), whereby the sensitivity of the sensors is determined. The maximum achievable pO 2 is therefore 1.0 bar. Since dO often results in a pO 2 higher than 1.0 bar, it is important to check the sensors for a) and b). (Example of a calibration with 100% O 2 : ambient pressure: 1000 mbar, output voltage signal: 50 mV -> sensitivity = 50 mV / bar pO 2 )

Der Fehleranfälligkeit der pO2 Sensoren versucht man mit dem redundanten Einsatz von pO2 Sensoren zu entgegnen. So werden in geschlossenen Kreislaufgeräten üblicherweise drei Sauerstoffsensoren eingesetzt. Falls ein Sensor ausfällt, sich daher sein Ausgangssignal von dem der anderen beiden unterscheidet, wird dieser durch einen Vergleich aller drei Sensorsignale mit einem "Votingalgorithmus" ( GB 240 45 93 A , WO 2004/112905 A1 ) erkannt, und dieser Sensor nicht mehr zur Regelung des pO2 herangezogen.The susceptibility to failure of the pO 2 sensors is countered by the redundant use of pO 2 sensors. For example, three oxygen sensors are usually used in closed rebreathers. If a sensor fails, therefore, its output signal is different from that of the other two, this is by comparing all three sensor signals with a "voting algorithm" ( GB 240 45 93 A . WO 2004/112905 A1 ), and this sensor is no longer used to control the pO 2 .

Ein fehlerhafter Sensor kann so ermittelt werden. Diese Methode versagt aber bei folgenden Fehlern:

  • e. Ausfall von zwei Sensoren, die jedoch ein gleiches Ausgangssignal haben;
  • f. gleiche Nichtlinearität von mindestens zwei Sensoren (>= zwei Sensoren aus der gleichen Produktionscharge, gleiches Alter, gleiche Bedingungen ...);
  • g. gleiche Stromlimitierung von mindestens zwei Sensoren
A faulty sensor can thus be determined. However, this method fails with the following errors:
  • e. Failure of two sensors, but with the same output;
  • f. same nonlinearity of at least two sensors (> = two sensors from the same production lot, same age, same conditions ...);
  • G. same current limitation of at least two sensors

Weiters ist für eine detaillierte Tauchgangsanalyse eine kontinuierliche Aufzeichnung aller tauchgangsrelevanten Daten notwendig, so werden Tiefenprofil, Zeit und pO2 oft in einem internen Speicher des pO2 Messgerätes abgelegt und können nach dem Tauchgang auf einen Personal Computer übertragen werden, wobei die zeitliche Auflösung und die maximale Länge der Aufzeichnung von der internen Speichergröße abhängt und somit limitiert ist.Furthermore, for a detailed dive analysis a continuous recording of all dive relevant data is necessary, depth profile, time and pO 2 are often stored in an internal memory of the pO 2 meter and can be transferred to a personal computer after the dive, the temporal resolution and the maximum length of the recording depends on the internal memory size and is therefore limited.

Zur Übertragung auf den Personal Computer werden üblicherweise spezielle Interface Kabel benötigt. Speziell für die effektive Behandlung von Tauchunfällen ist eine rasche Auswertung der Tauchgangsdaten wichtig. Oft ist jedoch das passende Interface Kabel nicht vor Ort verfügbar. Die Möglichkeit zum Auslesen der Tauchgangsdaten ohne solch spezielle Kabel mit jedem handelsüblichen PC ist somit wünschenswert.For transfer to the personal computer usually special interface cables are needed. Especially for the effective treatment of diving accidents, a quick evaluation of the dive data is important. Often, however, the right interface cable is not available on-site. The ability to read the dive data without such special cable with any standard PC is therefore desirable.

Der Erfindung wie beanspruchs in unabhängigen Ansprüchen 1 und 10 liegt somit die Aufgabe zugrunde, eine pO2 Messvorrichtung so auszugestalten, dass Fehler in den pO2 Sensorsignalen, Nichtlinearitäten der pO2 Sensorsignalen, eine eventuelle Strombegrenztheit von pO2 Sensoren zuverlässig erkannt und eine detaillierte Aufzeichnung der tauchgangsrelevanten Daten ermöglicht werden.The invention as claimed in independent claims 1 and 10 is therefore the object of a pO 2 measuring device in such a way that errors in the pO 2 sensor signals, non-linearities of pO 2 sensor signals, a possible current limitation of pO 2 sensors reliably detected and a detailed record the dive-relevant data are made possible.

Aus der US 4,939,647 A ist ein Verfahren bekannt, das die oben beschriebenen Probleme zumindest teilweise löst. Dabei wird ein Sauerstoffsensor durch Spülung mit reinem Sauerstoff kalibriert. Dies ermöglicht eine Kalibration bei einem Sauerstoffpartialdruck von 1 bar. Es hat sich jedoch herausgestellt, dass eine solche Kalibrierung nicht ausreicht, um die oben dargestellten Fehlerfälle zuverlässig zu erkennen.From the US 4,939,647 A For example, a method is known which at least partially solves the problems described above. An oxygen sensor is calibrated by purge with pure oxygen. This allows calibration at an oxygen partial pressure of 1 bar. However, it has been found that such a calibration is not sufficient to reliably detect the error cases presented above.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass die Prüfung automatisch ausgelöst wird. Es wird also nach einer notwendigen und vorgeschriebenen Kalibrierung eine Überprüfung vorgenommen, die jedoch nicht manuell gestartet wird, sondern automatisch ausgelöst wird. Die Prüfung ist somit unabhängig von einer eventuellen Stresssituation, in der sich der Taucher befindet. Gerade in einer solchen Stresssituation ist jedoch bedingt durch einen erhöhten Sauerstoffbedarf und eine erhöhte Atemfrequenz, sowie die damit verbundene gesteigerte Produktion von CO2 die Wahrscheinlichkeit des Ausfalls eines Sensors vergrößert. Die Prüfung kann je nach Einstellung, Art der Abweichung und dgl. zu einem Alarmsignal führen, eine Umschaltung auf Notbetrieb auslösen oder eine Korrektur der Kalibrierung bewirken.According to the invention this object is achieved in that the test is triggered automatically. It will be so after a necessary and prescribed Calibration performs a check that is not started manually, but is triggered automatically. The test is thus independent of any stress situation in which the diver is located. Especially in such a stress situation, however, due to an increased oxygen demand and an increased respiratory rate, as well as the associated increased production of CO 2 increases the probability of failure of a sensor. Depending on the setting, type of deviation and the like, the test can lead to an alarm signal, trigger a changeover to emergency operation or cause a correction of the calibration.

Vorzugsweise erfolgt dabei die Prüfung unter Wasser unter Berücksichtigung des Umgebungsdrucks. Wesentlich an der vorliegenden Erfindung ist die Tatsache, dass der Umgebungsdruck bei der Prüfung auch für die Wahl des Zeitpunktes der Prüfung ausschlaggebend ist. Auf diese Weise kann man die Prüfung bei einem Sauerstoffpartialdruck durchführen, der im oberen Bereich des gewöhnlichen Messbereiches liegt. Dies bedeutet, dass insbesondere der Sauerstoffpartialdruck im Bereich des oberen Grenzwertes des Sauerstoffpartialdruckes liegt, der aus medizinischen Gründen Menschen zugemutet werden kann. Dies bedeutet etwa, dass bei einer Tauchtiefe von 6 m eine Spülung mit reinem Sauerstoff vorgenommen wird, bei dem dann der Partialdruck bei etwa 1,6 bar liegt. Die Spülung wird dabei so lange durchgeführt, bis zuverlässig ein Signal vorliegt, das reinem Sauerstoff entspricht. Dies wird in der Regel vier bis sechs Sekunden benötigen.Preferably, the test is carried out under water taking into account the ambient pressure. Essential to the present invention is the fact that the ambient pressure in the test is also crucial for the choice of the time of the test. In this way one can perform the test at an oxygen partial pressure which is in the upper range of the usual measuring range. This means that, in particular, the partial pressure of oxygen is in the range of the upper limit of the partial pressure of oxygen which, for medical reasons, can be expected of humans. This means, for example, that at a depth of 6 m, a purge with pure oxygen is carried out, in which the partial pressure is then about 1.6 bar. The rinsing is carried out until a reliable signal is obtained, which corresponds to pure oxygen. This will usually take four to six seconds.

Durch diese Prüfung erster Art kann insbesondere die Linearität des Sauerstoffsensors und die Funktion in dem wichtigen Bereich höherer Sauerstoffpartialdrücke überprüft werden. Dies ermöglicht die Aufdeckung von Fehlerquellen, die bei einer Kalibrierung oder Überprüfung an Land nicht entdeckt werden können, da hier der maximale Sauerstoffpartialdruck mit 1 bar begrenzt ist. Diese Prüfung erster Art wird in der Regel während des Abtauchens durchgeführt, wenn die oben beschriebene Tauchtiefe von etwa 6 m erreicht ist. In weiterer Folge können laufende weitere Überprüfungen, nämlich Prüfungen zweiter Art durchgeführt werden, die beispielsweise aufdecken sollen, wenn ein Sauerstoffsensor durch Kondenswasser in seiner Funktion beeinträchtigt ist. Da diese Überprüfungen in der Regel bei größeren Tauchtiefen erfolgen, werden diese nicht mit reinem Sauerstoff durchgeführt, da ansonsten unzulässig hohe Partialdrücke erreicht werden würden. Die Überprüfung erfolgt mit Mischgas, wobei hier der Sauerstoffpartialdruck durchaus auch unterhalb von 1 bar liegen kann.In particular, the linearity of the oxygen sensor and the function in the important range of higher oxygen partial pressures can be checked by this test of the first type. This makes it possible to detect sources of error which can not be detected during a calibration or on-shore test, since the maximum oxygen partial pressure is limited here to 1 bar. This test of the first kind is usually carried out during descent, when the above-described depth of about 6 m is reached. As a result, ongoing further checks, namely tests of the second kind can be carried out, for example, to discover when an oxygen sensor is impaired by condensation in its function. Since these checks are usually carried out at greater depths, they are not carried out with pure oxygen, since otherwise unacceptably high partial pressures would be achieved. The test is carried out with mixed gas, in which case the oxygen partial pressure may well be below 1 bar.

Weiters betrifft die vorliegende Erfindung ein Kreislauftauchgerät mit mindestens einer Druckflasche für Sauerstoff und einer weiteren Druckflasche für ein Verdünnergas und mit einem Ventil zur Zufuhr von Sauerstoff und/oder Verdünnergas in den Kreislauf, welches Ventil in Abhängigkeit von dem Signal mindestens eines Sauerstoffsensors gesteuert ist, wobei eine Einrichtung zur Spülung des Sauerstoffsensors mit einem Gas mit bekannter Sauerstoffkonzentration vorgesehen ist.Furthermore, the present invention relates to a rebreather with at least one pressure bottle for oxygen and another pressure bottle for a thinner gas and with a valve for the supply of oxygen and / or thinner gas in the circuit, which valve is controlled in response to the signal of at least one oxygen sensor, wherein means for purging the oxygen sensor is provided with a gas having a known oxygen concentration.

Erfindungsgemäß ist dieses Kreislauftauchgerät dadurch gekennzeichnet, dass die Einrichtung mit einem Drucksensor in Verbindung steht und in Abhängigkeit vom Signal des Drucksensors gesteuert ist, um den Sauerstoffsensor zu prüfen.According to the invention, this rebreather device is characterized in that the device is in communication with a pressure sensor and is controlled in dependence on the signal of the pressure sensor in order to test the oxygen sensor.

Der Gasbedarf für die Überprüfung des Sauerstoffsensors kann insbesondere dadurch minimiert werden, dass die Vergleichsgaseinspritzung direkt vor der Sensormembran angebracht ist und so nur der Raum vor der Membran gespült wird.The gas requirement for the inspection of the oxygen sensor can be minimized in particular by the fact that the reference gas injection is mounted directly in front of the sensor membrane and so only the space in front of the membrane is rinsed.

Ein Steckplatz für Speicherkarten ermöglicht, dass tauchgangsrelevante Daten mit hoher Zeitauflösung abgespeichert werden und ein Personal Computer mit Speicherkartensteckplatz ausreicht, um die Daten auszulesen.A memory card slot allows dive-related data to be stored with high time resolution and a personal computer with memory card slot is sufficient to read the data.

Die Messvorrichtung zeichnet sich durch ein oder mehrere integrierte Vergleichsgaszufuhren aus. Ein Mikrocontroller mit geeigneter Software wird dabei zur Signalverarbeitung, für die Berechnungen, zur Steuerung der Magnetventile, für Ausgaben am Display und das Abspeichern von Daten auf einer Speicherkarte eingesetzt. Wie oben ausgeführt, werden als Vergleichsgas einerseits reiner Sauerstoff und das Verdünnergas bei geschlossenen Kreislaufgeräten, bzw. das Versorgungsgas bei halbgeschlossenen Kreislaufgeräten, herangezogen. Mittels eines Magnetventils können die Vergleichsgase direkt vor die Membran der Sauerstoffsensoren eingespritzt werden. Die Einspritzdauer beträgt dabei vorzugsweise zwischen 5 und 10 Sekunden, je nach der Einstellzeit der Sauerstoffsensoren. So misst der Sauerstoffsensor für die Zeitdauer der Gaseinspritzung nur den Sauerstoffpartialdruck des Vergleichsgases, während das Gasgemisch im Kreislauf vor dem Sensor durch den Vergleichgasstrom verdrängt wird. Aus der Tiefe, die üblicherweise mit einem Drucksensor bestimmt wird, wird der Umgebungsdruck berechnet und zusammen mit dem bekannten Sauerstoffgehalt der Vergleichsgase der tatsächliche Sauerstoffpartialdruck vor der Sensormembran berechnet (Sollwert) und mit dem Istwert (berechnet aus dem Sensorsignal und der bei der Kalibration bestimmten Empfindlichkeit) des Sensors verglichen. Weiters wird durch integrierte Blenden der maximale Vergleichsmassenfluss auf 1 bis 2 bar l/min begrenzt.The measuring device is characterized by one or more integrated reference gas feeds. A microcontroller with suitable software is used for signal processing, for the calculations, for the control of the solenoid valves, for outputs on the display and the storage of data on a memory card. As stated above, as a reference gas on the one hand pure oxygen and the diluent gas in closed rebreathers, or the supply gas in semi-closed rebreathers, used. By means of a solenoid valve, the reference gases can be injected directly in front of the membrane of the oxygen sensors. The injection duration is preferably between 5 and 10 seconds, depending on the response time of the oxygen sensors. Thus, for the duration of the gas injection, the oxygen sensor only measures the oxygen partial pressure of the reference gas, while the gas mixture in the circuit in front of the sensor is displaced by the comparison gas flow. From the depth, which is usually determined with a pressure sensor, the ambient pressure is calculated and calculated together with the known oxygen content of the reference gases, the actual oxygen partial pressure upstream of the sensor diaphragm (setpoint) and the actual value (calculated from the sensor signal and the sensitivity determined during the calibration ) of the sensor. Furthermore, the maximum comparison mass flow is limited to 1 to 2 bar l / min by integrated orifices.

Es ist hervorzuheben, dass die Funktion des Kreislauftauchgerätes während dieser Überprüfungen nicht beeinträchtigt wird und der Taucher somit ganz normal atmen kann. Auch entspricht die zeitlich zugeführte Menge an Sauerstoff bei der Überprüfung mit 100% Sauerstoff etwa dem menschlichen psychologischen Sauerstoffverbrauch pro Zeiteinheit und sollte daher nicht zu einer nennenswerten Erhöhung des Sauerstoffpartialdruckes im Kreislauf führen.It should be noted that the function of the rebreather during these checks is not affected and the diver can breathe normally. Also, the timed amount of oxygen in the 100% oxygen test is approximately equal to human psychological oxygen consumption per unit of time and should therefore not lead to a significant increase in the oxygen partial pressure in the circulation.

Die im Folgenden beschriebenen Überprüfungen a), b), c) und d) werden von dem µ-controller automatisch durchgeführt.The checks a), b), c) and d) described below are performed automatically by the μ-controller.

Zur Überprüfung der korrekten Funktion eines pO2 Sensors wird folgendes Verfahren angewandt:

  • In einem bestimmten Zeitintervall (beispielsweise alle 2 min) wird vom µ-controller der pO2 Messvorrichtung Verdünnergas bei geschlossenen Kreislaufgeräten oder das Versorgungsgas bei halbgeschlossenen Geräten vor die Membran des Sensors eingespritzt. Durch den Vergleich der Soll- und Istwerte kann der pO2 Sensor dann auf ein korrektes Funktionieren überprüft werden. Ebenso kann mit dieser Überprüfung auf korrekte Kalibration geprüft werden.
To verify the correct operation of a pO 2 sensor, the following procedure is used:
  • At a certain time interval (for example every 2 min), the μ-controller of the pO 2 measuring device injects diluent gas in the case of closed rebreathing devices or the supply gas in semi-closed devices into the membrane of the sensor. By comparing the setpoints and actual values, the pO 2 sensor can then be checked for correct functioning. Likewise, this check can be checked for correct calibration.

Linearitätsüberprüfung bei halbgeschlossenen Kreislaufgeräten:

  • Die pO2 Messvorrichtung wird an der Oberfläche mit Luft oder dem Versorgergas kalibriert. In einem bestimmten Zeitintervall (beispielsweise alle 2 min) wird vom µ-controller der pO2 Messvorrichtung Versorgungsgas (bekannter Sauerstoffgehalt) vor die Membran des Sensors eingespritzt. Durch den Vergleich der Soll- und Istwerte kann der pO2 Sensor auf Linearität überprüft werden.
Linearity check on semi-closed rebreathers:
  • The pO 2 measuring device is calibrated on the surface with air or the supply gas. At a certain time interval (for example every 2 minutes) supply gas (known oxygen content) is injected by the μ-controller of the pO 2 measuring device in front of the membrane of the sensor. By comparing the setpoints and actual values, the pO 2 sensor can be checked for linearity.

Linearitätsüberprüfung bei geschlossenen Kreislauftauchgeräten:

  • Die pO2 Messvorrichtung wird an der Oberfläche mit 100% Sauerstoff (1,0 bar pO2) kalibriert. Am Beginn des Tauchganges wird vom µ-controller automatisch in einer Tiefe von vorzugsweise 5 m bis 7 m 100% Sauerstoff vor die Membran des Sensors eingespritzt. Der tatsächliche Wert des pO2 des Gases vor der Sensormembran ist demnach 1,5 bar - 1,7 bar. Ein Vergleich mit dem tatsächlichen Sensorsignal lässt eine Beurteilung des Sensors auf Linearität zu. Prinzipiell ließe sich auch das Sauerstoffventil des Regelkreises einsetzen um den Raum vor den Sensoren zu fluten, um so eine automatische Linearitätsüberprüfung durchzuführen. In diesem Fall sollte der Taucher für die Zeit der Überprüfung den Atem anhalten, um nicht das Messergebnis zu verfälschen.
Linearity check for closed rebreathers:
  • The pO 2 measuring device is calibrated on the surface with 100% oxygen (1.0 bar pO 2 ). At the beginning of the dive, the μ-controller automatically injects 100% oxygen into the membrane of the sensor at a depth of preferably 5 to 7 meters. The actual value of the pO 2 of the gas in front of the sensor membrane is therefore 1.5 bar - 1.7 bar. A comparison with the actual sensor signal allows an evaluation of the sensor for linearity. In principle, the oxygen valve of the control loop could also be used to flood the space in front of the sensors in order to perform an automatic linearity check. In this case, the diver should hold his breath for the duration of the check so as not to falsify the measurement result.

Diese Linearitätsüberprüfungen eignen sich genauso zur Prüfung der Sensoren auf Strombegrenztheit.These linearity checks are just as suitable for testing the sensors for current limitation.

Diese Prüfmethoden erlauben im Gegensatz zum Votingalgorithmus ein echtes Prüfen eines Sauerstoffsensors während des Tauchganges. Die Fehlerfälle a), b), c), d), e), f) und g) können zuverlässig erkannt werden. Insbesondere ist eine Überprüfung der Sensoren auf eine korrekte Funktion während des ganzen Tauchganges in bestimmten Intervallen möglich.These test methods, in contrast to the voting algorithm, allow for real testing of an oxygen sensor during the dive. The error cases a), b), c), d), e), f) and g) can be reliably detected. In particular, one is Checking the sensors for correct functioning during the whole dive at certain intervals possible.

Somit ist im Prinzip auch der sichere Betrieb eines geschlossenen Kreislauftauchgerätes mit nur einem Sauerstoffsensor möglich.Thus, in principle, the safe operation of a closed rebreather with only one oxygen sensor is possible.

Weichen Soll- und Istwerte voneinander ab, so wird der Taucher durch eine Alarmfunktion aufmerksam gemacht. Bei geschlossenen Kreislauftauchgeräten werden für die Regelung nur pO2 Sensoren verwendet, die die automatische Funktionsüberprüfung erfolgreich bestanden haben.If setpoints and actual values deviate from one another, the diver is alerted by an alarm function. For closed-loop rebreathers, only pO 2 sensors are used for the control and have successfully passed the automatic function check.

Bedingt durch Kondensation von Wasser direkt auf der Membran (Wassertropfen) von Sauerstoffsensoren kann Fehlerfall c) auftreten. Mittels dem Vergleichsgasvolumenstrom kann solch ein Wassertropfen von der Membran weggeblasen werden. Danach sollte der pO2 Sensor wieder korrekte Werte liefern.Due to condensation of water directly on the membrane (water droplets) of oxygen sensors, failure c) can occur. By means of the reference gas volume flow, such a drop of water can be blown away from the membrane. Thereafter, the pO 2 sensor should return correct values.

Weiters zeichnet sich die Erfindung durch einen integrierten Speicherkartensteckplatz aus. Tauchgangsrelevante Daten wie Sensorsignale von einem oder mehreren Sensoren, Zeit, Tiefe und Batteriespannung werden einmal pro s auf eine Secure Digital Speicherkarte geschrieben (Filesystem FAT 12, 16 oder 32). Ein 60 min Tauchgang entspricht einer Datei mit etwa 500 kByte. Diese Datei lässt sich dann mit jedem Personal Computer auslesen, der mit einem handelsüblichen Lesegerät/Kartensteckplatz für Secure Digital Speicherkarten ausgestattet ist.Furthermore, the invention is characterized by an integrated memory card slot. Dive-relevant data such as sensor signals from one or more sensors, time, depth and battery voltage are written once per s to a Secure Digital memory card (file system FAT 12, 16 or 32). A 60-minute dive corresponds to a file of about 500 kbytes. This file can then be read by any personal computer equipped with a commercially available reader / card slot for Secure Digital memory cards.

In der Folge wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert. Es zeigen:

Fig. 1
den grundsätzlichen Aufbau eines erfindungsgemäßen Kreislauf- tauchgerätes; und
Fig. 2
eine erweiterte Ausführungsvariante der Erfindung.
In the following, the invention will be explained in more detail with reference to the embodiments illustrated in FIGS. Show it:
Fig. 1
the basic structure of a circulatory diving apparatus according to the invention; and
Fig. 2
an expanded embodiment of the invention.

In Fig. 1 ist der prinzipielle Aufbau eines geschlossenen Kreislaufgerätes dargestellt. Der Taucher atmet durch das Mundstück mit Richtungsventilen 1 durch den Ausatemschlauch in die Ausatemgegenlunge 2 aus. Durch das Überdruckventil 3 kann überschüssiges Gas in die Umgebung abgegeben werden. Die ausgeatmete Luft wird im Atemkalkbehälter 4 von Kohlendioxid gereinigt. Mit der Einatemgegenlunge 13 und dem Einatemschlauch schließt sich der Kreislauf. Die Sauerstoffsensoren 11 sind im Kalkbehälter angebracht. Ein µ-controller 12 berechnet aus den Signalen der Sauerstoffsensoren den pO2 und zeigt die tauchgangsrelevanten Daten auf einem Display 14 an. Falls der Sauerstoffpartialdruck pO2 im Kreislauf zu niedrig ist, wird über die Sauerstoffflasche 5, dem Druckminderer 8 und einem Magnetventil 10 Sauerstoff zugeführt. Weiters kann über ein lungenautomatisches Ventil oder ein Bypassventil 9 aus der Verdünnergasflasche 6 und einem weiteren Druckminderer 7 Verdünnergas dem Kreislauf zugeführt werden (wichtig beim Abtauchen, beim Spülen des Kreislaufes, oder beim Ausblasen der Taucherbrille). Die Druckminderer reduzieren den Flaschendruck auf einen Druck ∼8 - 12 bar höher als der Umgebungsdruck. Weiters dient ein Drucksensor 30 zur Bestimmung des Umgebungsdruckes.In Fig. 1 shows the basic structure of a closed rebreather. The diver exhales through the mouthpiece with directional valves 1 through the exhalation tube into the exhalation counterlung 2. By the pressure relief valve 3 excess gas can be discharged into the environment. The exhaled air is purified in the soda lime tank 4 of carbon dioxide. With the inhalation counter-lung 13 and the inhalation hose closes the cycle. The oxygen sensors 11 are mounted in the lime container. A μ-controller 12 calculates the pO 2 from the signals of the oxygen sensors and displays the dive-relevant data on a display 14. If the oxygen partial pressure pO 2 in the circuit is too low, is via the oxygen cylinder 5, the pressure reducer 8 and a solenoid valve 10 supplied oxygen. Furthermore, thinner gas can be supplied to the circuit via an automatic lungs-automatic valve or a bypass valve 9 from the diluting gas cylinder 6 and a further pressure reducer 7 (important when diving, when flushing the circuit, or when blowing out the mask). The pressure reducers reduce the cylinder pressure to a pressure ~8 - 12 bar higher than the ambient pressure. Furthermore, a pressure sensor 30 is used to determine the ambient pressure.

In Fig. 2 ist der Erfindungsgegenstand, welcher eine Erweiterung für Kreislaufgeräte beispielsweise, dargestellt. Der µ-controller 20 wertet die Signale des (der) Sauerstoffsensors(en) 11 aus. Diese sind in einer Aufhängung 24 an der Auslassseite im Kalkbehälter eingeschraubt. Über eine Serial Peripheral Interface (kurz SPI) Verbindung 22 ist ein Display 21 angeschlossen. Über eine weitere SPI Verbindung 23 ist ein Speicherkartensteckplatz 19 für Secure Digital (kurz SD) Karten angeschlossen. Werden Compact Flashkarten verwendet, so werden diese nicht über eine SPI Verbindung sondern über eine parallele Verbindung beschrieben. Der µ-controller 20 kann über ein Magnetventil 10 aus einer Sauerstoffflasche 5 und Druckminderer 8 100% Sauerstoff direkt vor die Membran des (der) pO2 Sensors(en) leiten, wobei die Durchflussmenge (beispielsweise 1 bar I/min) durch eine Blende 18 definiert wird. Weiters kann Verdünnergas mit bekanntem Sauerstoffgehalt aus der Vorratsflasche 6 über den Druckminderer 7 und einem weiteren Magnetventil 16 vor die Membran des (der) pO2 Sensors(en) leiten. Auch hier wird der maximale Gasfluss durch eine Blende 17 definiert (wieder beispielsweise 1 bar I/min). Die Zuleitungen werden mittels einer Halterung 25 vor der Sensormembran befestigt. Weiters ist noch anzumerken, dass Fig. 2 eine Erweiterung zu Fig. 1 darstellt, sprich das Magnetventil 10 und das manuelle Ventil 9 sind weiterhin noch Bestandteil des Kreislaufes.In Fig. 2 is the subject invention, which represents an extension for rebreathers, for example. The μ-controller 20 evaluates the signals of the oxygen sensor (s) 11. These are screwed in a suspension 24 on the outlet side in the lime container. Via a Serial Peripheral Interface (SPI short) connection 22, a display 21 is connected. Another SPI connection 23, a memory card slot 19 for Secure Digital (SD cards short) is connected. If Compact Flash cards are used, they are not described via an SPI connection but via a parallel connection. The μ-controller 20 can via a solenoid valve 10 from an oxygen cylinder 5 and pressure reducer 8 100% oxygen directly in front of the membrane (the) pO 2 sensor (s) (s), wherein the flow rate (for example, 1 bar I / min) through an aperture 18 is defined. Furthermore, diluent gas of known oxygen content can pass from reservoir cylinder 6 via pressure reducer 7 and another solenoid valve 16 to the membrane of the pO 2 sensor (s). Again, the maximum gas flow is defined by a diaphragm 17 (again, for example, 1 bar I / min). The leads are fastened by means of a holder 25 in front of the sensor membrane. It should also be noted that Fig. 2 an extension too Fig. 1 represents, that is, the solenoid valve 10 and the manual valve 9 are still part of the circuit.

Claims (14)

  1. Method for operating a rebreather, in which oxygen is metered to the breathing gas, wherein the oxygen partial pressure is monitored by at least one oxygen sensor (11) and wherein the one oxygen sensor (11) is tested by flushing with a gas with known oxygen concentration, characterized in that the test is automatically triggered.
  2. Method according to claim 1, characterized in that the test occurs under water considering the ambient pressure.
  3. Method according to claim 1 or 2, characterized in that the flushing occurs by direct injection of gas with known oxygen concentration before the membrane of the oxygen sensor (11).
  4. Method according to any one of claims 1 to 3, characterized in that the test is carried out as a function of the ambient pressure.
  5. Method according to any one of claims 1 to 4, characterized in that a test of a first kind is carried out at a predefined ambient pressure by flushing with pure oxygen.
  6. Method according to claim 5, characterized in that the test of the first kind is carried out at a ambient pressure, at which the oxygen partial pressure pO2 is in the range of the upper limit of the oxygen partial pressure pO2.
  7. Method according to claim 6, characterized in that the test of the first kind is carried out at an ambient pressure, at which the oxygen partial pressure pO2 is between 1.5 and 2 bar, preferably at about 1.6 bar.
  8. Method according to any one of claims 1 to 7, characterized in that tests of a second kind are carried out at defined intervals by flushing with a gas with known oxygen concentration.
  9. Method according to claim 8, characterized in that the tests of the second kind are carried out by flushing with diluting gas.
  10. Rebreather apparatus with at least one pressure cylinder (5) for oxygen and an additional pressure cylinder (6) for a diluting gas and with a valve (9; 10) for supply of oxygen and/or diluting gas in the circuit, which valve (9; 10) is controlled as a function of the signal of the at least one oxygen sensor (11), wherein a device for flushing of the oxygen sensor (11) with a gas with known oxygen concentration is provided, characterized in that the device is in connection with a pressure sensor (30) and is controlled as a function of the signal of the pressure sensor (30) in order to automatically test the oxygen sensor.
  11. Rebreather apparatus according to claim 10, characterized in that the oxygen sensor (11) has a membrane, at which a flushing nozzle for flushing of the oxygen sensor (11) with a gas with known oxygen concentration is pointed.
  12. Rebreather apparatus according to any one of claims 10 or 11, characterized in that a control device (20) is provided, which triggers the flushing with oxygen when a defined ambient pressure is on hand.
  13. Rebreather apparatus according to claim 12, characterized in that the control device (20) has a memory card slot (19).
  14. Rebreather apparatus according to any one of claims 10 to 13, characterized in that an aperture (18) is provided which reduces the flow rate of the gas.
EP07858177A 2006-12-28 2007-12-27 Method for operating a rebreather and a rebreather Active EP2097312B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0089906U AT9946U1 (en) 2006-12-28 2006-12-28 OXYGEN PARTIAL PRESSURE MEASUREMENT DEVICE FOR CIRCULAR DIVING UNITS
PCT/EP2007/064581 WO2008080948A2 (en) 2006-12-28 2007-12-27 Method for operating a rebreather

Publications (2)

Publication Number Publication Date
EP2097312A2 EP2097312A2 (en) 2009-09-09
EP2097312B1 true EP2097312B1 (en) 2010-10-27

Family

ID=39273039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858177A Active EP2097312B1 (en) 2006-12-28 2007-12-27 Method for operating a rebreather and a rebreather

Country Status (5)

Country Link
US (1) US8424522B2 (en)
EP (1) EP2097312B1 (en)
AT (2) AT9946U1 (en)
DE (1) DE502007005494D1 (en)
WO (1) WO2008080948A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8770195B2 (en) * 2007-10-29 2014-07-08 Poseidon Diving Systems Ab Mouth piece for a breathing apparatus
WO2009058081A1 (en) 2007-10-29 2009-05-07 Poseidon Diving Systems Oxygen control in breathing apparatus
WO2010005343A2 (en) * 2008-07-08 2010-01-14 Marat Vadimovich Evtukhov Rebreather respiratory loop failure detector
AT507418B1 (en) * 2009-01-02 2010-05-15 Dive System GAS DISTRIBUTION UNIT
AT509551B1 (en) 2010-02-25 2012-01-15 Arne Dipl Ing Dr Sieber CIRCULAR DIVING UNIT WITH A MOUTHPIECE
GB201405548D0 (en) 2014-03-27 2014-05-14 Avon Polymer Prod Ltd Controller for, and method of, controlling a breathing apparatus
WO2017212464A1 (en) * 2016-06-08 2017-12-14 Frånberg Oskar Ppo2 sensor authentication for electronic closed circuit rebreathers
CN111093746B (en) * 2017-10-20 2023-02-28 深圳迈瑞生物医疗电子股份有限公司 Anesthesia machine, oxygen battery calibration system and calibration method thereof
US11679286B2 (en) * 2018-05-25 2023-06-20 Tesseron Ltd. Oxygen sensor calibration for rebreather
PL438048A1 (en) * 2018-11-23 2022-03-14 Dezega Holding Ukraine, Llc Insulating breather
KR102267743B1 (en) * 2019-10-30 2021-06-22 주식회사 파로시스템 Rebreather device with inhalation oxygen mixing and exhalation carbon dioxide removal by electronic control

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469562A (en) * 1982-12-29 1984-09-04 Chang Kuo Wei Carbon dioxide sensor
GB2208203B (en) * 1987-07-03 1991-11-13 Carmellan Research Limited Diving systems
US5542284A (en) * 1994-10-18 1996-08-06 Queen's University At Kingston Method and instrument for measuring differential oxygen concentration between two flowing gas streams
GB9719824D0 (en) * 1997-09-18 1997-11-19 A P Valves Self-contained breathing apparatus
WO2002036204A2 (en) 2000-10-31 2002-05-10 Marat Vadimovich Evtukhov Integral life support system
US6668850B2 (en) * 2002-01-08 2003-12-30 Biotel Co., Ltd. Apparatus for supplying oxygen
US20040107965A1 (en) * 2002-09-16 2004-06-10 Hickle Randall S. System and method for monitoring gas supply and delivering gas to a patient
GB2402885A (en) 2003-06-20 2004-12-22 Uri Baran Head up display for diving apparatus
GB2404593A (en) 2003-07-03 2005-02-09 Alexander Roger Deas Control electronics system for rebreather
US20070215157A1 (en) * 2004-04-30 2007-09-20 Straw Philip E Rebreather Setpoint Controller and Display
US7497216B2 (en) * 2004-08-30 2009-03-03 Forsyth David E Self contained breathing apparatus modular control system
GB2427366A (en) * 2005-06-21 2006-12-27 Alex Deas Fault tolerant fail safe rebreather control device and method
WO2009058081A1 (en) * 2007-10-29 2009-05-07 Poseidon Diving Systems Oxygen control in breathing apparatus

Also Published As

Publication number Publication date
AT9946U1 (en) 2008-06-15
WO2008080948A3 (en) 2008-10-16
US8424522B2 (en) 2013-04-23
WO2008080948A2 (en) 2008-07-10
EP2097312A2 (en) 2009-09-09
DE502007005494D1 (en) 2010-12-09
ATE486005T1 (en) 2010-11-15
US20100313887A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2097312B1 (en) Method for operating a rebreather and a rebreather
DE69828033T2 (en) Ventilator with a system for leak and occlusion detection
DE60102837T2 (en) GAS SENSOR CALIBRATION SYSTEM
DE102015106949B3 (en) Method for operating a device for breathing gas analysis
DE102004039711B3 (en) Method for automatic recording of pressure-volume curves in artificial respiration and apparatus for carrying out the method
DE69909023T2 (en) A method to determine tube system volume in a fan
DE2610578A1 (en) PROCEDURE AND ARRANGEMENT FOR DETERMINING THE BREATHING ALCOHOL CONTENT
DE1960517B2 (en) Device for maintaining breathable air
DE102006051571B3 (en) Clinical respiration assembly determines the quantity of carbon dioxide that has been accumulated from a patient under full anaesthetic
WO2003055552A1 (en) Respiratory device
DE3109660C2 (en) Electrically and mechanically controllable breathing apparatus based on the circulatory principle
DE102010031961B4 (en) Leak test method, device and respiratory protective device
DE102005015275B3 (en) Method and apparatus for determining the residual capacity of respirable air for an oxygen-producing, circulatory respirator
DE102007031043B4 (en) Oxygen supply means
EP2729800A1 (en) Monitoring of the functionality of a converter of a breath analysis apparatus
DE102016013958A1 (en) Device with a pumping device for checking a functional readiness of a gas guide element of a gas measuring system
DE102004015406A1 (en) Method and device for administration of xenon to patients
DE69822996T2 (en) METHOD FOR TESTING AN OXYGEN SUPPLY APPARATUS OF AN AIRCRAFT
DE102016007336A1 (en) Medical device and method for alarm organization
DE202015106233U1 (en) Device for switching a rebreather from closed to open breathing mode
DE2337061A1 (en) Supervision of pulmonary conditions of bed-ridden patient - using monitoring appts. with respiration press. and volume measuring devices
DE2750450C3 (en) Ventilator
EP2539225B1 (en) Diving rebreather comprising a mouthpiece
DE19542584C2 (en) Procedure for the testing of respiratory protection devices
DE19543056A1 (en) Determining life of gas filters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090629

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR OPERATING A REBREATHER AND A REBREATHER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007005494

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110227

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110127

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005494

Country of ref document: DE

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101227

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 486005

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: BE

Effective date: 20150619

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20180921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007005494

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005494

Country of ref document: DE

Representative=s name: HOFFMANN - EITLE PATENT- UND RECHTSANWAELTE PA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005494

Country of ref document: DE

Owner name: POSEIDON DIVING GROUP AB, SE

Free format text: FORMER OWNER: DP SCANDINAVIA AB, VAESTRA FROELUNDA, SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230321

Year of fee payment: 16

Ref country code: IT

Payment date: 20230322

Year of fee payment: 16

Ref country code: BE

Payment date: 20230321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230331

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240111

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240116

Year of fee payment: 17

Ref country code: CH

Payment date: 20240118

Year of fee payment: 17

Ref country code: GB

Payment date: 20240115

Year of fee payment: 17