EP2539225B1 - Diving rebreather comprising a mouthpiece - Google Patents

Diving rebreather comprising a mouthpiece Download PDF

Info

Publication number
EP2539225B1
EP2539225B1 EP11707384.1A EP11707384A EP2539225B1 EP 2539225 B1 EP2539225 B1 EP 2539225B1 EP 11707384 A EP11707384 A EP 11707384A EP 2539225 B1 EP2539225 B1 EP 2539225B1
Authority
EP
European Patent Office
Prior art keywords
sensor
mouthpiece
rebreather
gas
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11707384.1A
Other languages
German (de)
French (fr)
Other versions
EP2539225A1 (en
Inventor
Arne Sieber
Milena Stoianova-Sieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2539225A1 publication Critical patent/EP2539225A1/en
Application granted granted Critical
Publication of EP2539225B1 publication Critical patent/EP2539225B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • B63C11/24Air supply carried by diver in closed circulation

Definitions

  • the invention relates to a rebreather with a mouthpiece which is connected via a inhalation hose and an exhalation hose to a breathing gas circuit, wherein at least one gas sensor for measuring the partial pressure of a respiratory gas component is arranged in the respiratory gas circuit.
  • WO 2008/080948 which is considered to be the closest prior art, describes such a device.
  • open diving equipment includes a breathing gas storage bottle filled with compressed air or other breathing gas mixture and a one or two-stage pressure reducer which reduces the pressure of the gas in the bottle to ambient pressure.
  • the exhaled air is released into the surrounding water, but only a small part of the oxygen in the breathing gas is really consumed.
  • only about 3% of the inhaled gas is actually consumed on the water surface, while at a depth of, for example, 20 meters by the increased by two bar ambient pressure only a third of this value, ie 1% of the oxygen of the inspired gas is consumed.
  • a dive to a depth of twenty meters one hundred times as much breathing gas has to be carried along as it actually consumes.
  • Semi-closed and closed rebreathers are used to circumvent system-related low breathing efficiency of open diving equipment. These devices are breathed in a cycle.
  • the exhaled air is purified in rebreathers by means of a CO 2 absorber of carbon dioxide and re-enriched with oxygen.
  • CO 2 absorber of carbon dioxide and re-enriched with oxygen.
  • such devices are characterized by a one- or two-part counterlung, which can absorb the exhaled gas volume. With rebreathers, gas efficiency can be increased up to 100%.
  • the oxygen partial pressure is kept at a certain level by means of a control loop.
  • Electronically controlled closed rebreathers for example, from the publications GB 2 404 593 A . US 2003/188744 A1 and WO 2005/107390 A2 known.
  • the oxygen supply manually set by the diver and thus the oxygen partial pressure manually controlled.
  • oxygen is usually metered in with an electromagnetic control valve.
  • This solenoid valve is usually housed in the housing of the carbon dioxide filter.
  • the actual control loop is implemented in one or - for redundancy reasons - in several microcontrollers.
  • the oxygen partial pressure of the breathing gas must be within certain limits in order to be breathable. Generally, 0.16 bar is considered the lower limit and 1.6 bar the upper limit. An oxygen partial pressure below or above these limits is classified as life-threatening. It can be seen that for rebreathers a continuous monitoring of the oxygen partial pressure is necessary. Closed units require pO 2 sensors for manual and / or electronically controlled regulation of the oxygen partial pressure in the breathing gas circuit. As pO 2 sensors usually electrochemical liquid electrolyte sensors are used, which must be calibrated before the dive on the surface with air or 100% O 2 .
  • a properly functioning pO 2 sensor for use in rebreathers has an output signal (current or voltage), which depends linearly only on the oxygen partial pressure in front of the membrane of the sensor.
  • the error susceptibility of the pO 2 sensors is attempted with the redundant use of pO 2 sensors to counter.
  • three oxygen sensors are usually used in closed rebreathers. If one sensor fails and therefore its output signal differs from that of the other two, this is detected by a comparison of all three sensor signals with a "voting algorithm", and this sensor is no longer used to control the pO 2 (see GB 2 404 593 A or WO 2004/112905 A1 ).
  • a calibration / validation device allows the flow of an oxygen sensor with a gas of known composition. Thus, a sensor can be easily checked for correct function.
  • CO 2 sensors are usually based on absorption of infrared light. However, this method is not very reliable due to the high humidity (up to 100% condensing) in a rebreather. It is known to increase the reliability in front of the measuring cell of the infrared CO 2 sensor to arrange a moisture barrier or hydrophobic membrane. Another way to increase the reliability of such CO 2 sensors, the sensors / sensor element is to increase to a temperature greater than the gas temperature in the rebreather, to preclude condensation. Furthermore, to check the function of the carbon dioxide absorber, the temperature of the carbon dioxide filter can be measured ( US 2003/074154 A1 ).
  • the DE 10 2007 039 124 A1 describes a device and a method for controlling and / or regulating a training and / or regulation of a training and / or rehabilitation unit.
  • this device contains a sensor unit with a heatable electrochemical solid electrolyte sensor for determining oxygen concentration and another heatable electrochemical solid electrolyte sensor for determining the concentration of carbon dioxide.
  • a rebreather usually has an inhalation and exhalation hose. In between, the mouthpiece is mounted, in which two directional valves are arranged.
  • the main focus in the construction of rebreathers is, among other things, a construction of a mouthpiece in which the so-called dead space, which is understood as meaning the space between the directional valves and the bite piece, is minimized. This is important because otherwise there is the risk that the CO 2 content in the dead space increases. This is especially a problem when the diver is breathing very shallow.
  • the JP 2005 350 282 A , the US 5,746,806 A , as well as the US 5 071 453 A essentially disclose oxygen concentrators which also employ, among other things, a zirconia solid state electrolyte sensor.
  • the gas sensor is designed as a solid electrolyte sensor, wherein at least one solid electrolyte sensor is arranged in the mouthpiece. At least two directional valves may be arranged in the mouthpiece, wherein preferably at least one gas sensor is arranged between the two directional valves.
  • the solid electrolytic sensor can be incorporated as O 2 - may be formed and / or CO 2 as a gas sensor.
  • Solid state electrolyte sensors are based on special materials that are conductive to gas ions. Normally, however, these materials are conductive only at elevated temperatures (typically 500 ° C - 700 ° C). Typical materials include zirconia and ceria for oxygen and nasicon for CO 2 .
  • Potentiometric solid electrolyte sensors for oxygen have been known for a long time, and find application in engine controls (lambda sensor) or in industrial combustion controls, among others.
  • Miniaturized gas sensors are used, among other things, for in-situ and bypass measurements of O x , CO x , H 2 , C x H y , NO x in medical and environmental technology, eg in the performance diagnostics of astronauts or for residual gas analysis in space , (see http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenowski/ilr/rsn).
  • Thick-film miniature solid-state electrolyte sensors have the advantage of a long service life and a very fast response time.
  • the actual sensor elements are available in the size 2.5 x 2.5 x 2 mm 3 and can be easily integrated into a rebreather. Due to the small design only low heat outputs (1 - 2 watts) are required, which allows conventional batteries or rechargeable batteries to operate for several hours.
  • the high operating temperature prevents condensation-related disturbances.
  • the fast response time allows precise control of the oxygen partial pressure.
  • the high response speed of less than 100 ms even allows to determine the heart rate, as the pO 2 / pCO 2 signal of the exhaled air is modulated with the heart rate.
  • the small dimensions allow integration of the gas sensors directly in the mouthpiece.
  • the oxygen partial pressure of inhaled and exhaled gas can be detected separately.
  • Favorable placement in the gas stream can also be used with these solid-state electrolyte sensors to measure the mass flow of the respiratory gases and thus the minute volume of the diver and the respiratory rate be inferred.
  • the high temporal resolution of the sensors allows a high-precision determination of small and short-term oxygen partial pressure changes.
  • the load on the diver can be recorded and this, in turn, can be used as a factor influencing the decompression calculation.
  • Part of the invention is the integration of electronics and sensors directly in the mouthpiece.
  • Long sensor cables (as described in the article by S. Fasoulas) can lead to measurement errors if there are electrical interference fields. Underwater, this is usually not the case, but rebreathers are being prepared on the surface.
  • Electromagnetic interference due to, for example, radio or a poorly suppressed motor can - especially when long leads are used - lead to measurement errors. This is especially problematic if these measurement errors occur during a device test or a calibration, since in this case a faulty O 2 control can be the result - a circumstance that can be classified as life-threatening. Problems of this kind have already led to accidents with rebreathers in the past.
  • By integrating the electronics directly next to the sensors in the mouthpiece such sources of error can be minimized.
  • the oxygen supply control valve in the breathing circuit can also be integrated directly into the mouthpiece.
  • sources of error such as cables to the solenoid valve, which lead through the water, omitted.
  • the complete control circuit of the rebreather can thus be integrated in the mouthpiece.
  • a rebreather tip is attached to a full-face mask. This is particularly often preferred by emergency services, as full-face masks bring additional security. For example, in the case of powerlessness, a gas supply remains secure. This is special for divers important, because a fainting can cause the mouthpiece falls out of the mouth and thus the gas supply is interrupted.
  • Fig. 1 shows a closed rebreather according to the prior art.
  • the diver exhales through the bite piece 19 connected to the mouthpiece 1 via the exhalation hose 2 into the exhalation counterlung 4.
  • CO 2 filter 7 (“scrubber")
  • carbon dioxide is chemically absorbed from the exhaled air.
  • the breathing gas then passes into the inhalation counter lung 5.
  • the breathing gas is inhaled again.
  • fresh O 2 gas is supplied to the breathing gas circuit from an oxygen storage bottle 11 via an electromagnetic control valve 9, which is usually housed in the housing of the CO 2 filter 7.
  • a pressure reducer 12 reduces the cylinder pressure to a pressure of typically 7 - 10 bar.
  • the storage bottle 11 contains pure oxygen O 2 .
  • the control circuit also has a microcontroller 10 and one to four oxygen sensors 8, via which the oxygen partial pressure pO 2 in the breathing gas circuit is measured. Dive relevant data are displayed on a display 15. If the oxygen partial pressure falls below a certain value, pure oxygen O 2 is added to the respiratory gas cycle via the electromagnetic control valve 9.
  • the breathing gas is compressed in the breathing gas circulation.
  • diluent gas from a supply bottle 13 is supplied to the breathing gas circuit 26 via a manual valve 16 or an automatic valve.
  • the cylinder pressure is reduced to typically 8-10 bar above atmospheric pressure. Excess gas can escape through a pressure relief valve 6.
  • Fig. 2 shows a simple embodiment of the invention.
  • the embodiment formed as a mouthpiece integrated mouthpiece 1 is connected via a breathing tube 3 and an exhalation 2 to the breathing gas circuit 26.
  • the two directional valves - inhalation valve 18 and exhalation valve 17 - specify the gas flow direction. With 19 is the actual rubber bite piece, which holds the diver with his teeth.
  • the O 2 sensor 20 and the CO 2 sensor 21 are formed as solid electrolyte sensors and mounted in the cavity of the mouthpiece 1 between the directional valves 17, 18.
  • a miniature solenoid valve control valve 23 which the control valve 9 from Fig. 1 can be replaced from an in Fig. 2 unrecognizable oxygen storage bottle and an oxygen supply line 24 oxygen via an opening 27 to the breathing gas circuit 26 are supplied.
  • the feed into the breathing gas circuit 26 takes place after the exhalation valve 17 in order to guarantee a good mixing and at the same time to avoid short-term peak increases in the oxygen partial pressure in the inhaled gas.
  • the control of the control valve 23 via an electronic control unit 22 via a waterproof cable 25, a display unit and an external battery power can be connected.
  • the electronic control unit 22 and the control valve 23 are water and pressure-tight integrated in the mouthpiece 1.
  • a disc or barrel-like closure for the bit may be incorporated into the mouthpiece 1 in the event that the bit 19 is removed from the mouth by the diver.
  • a switching roller in the mouthpiece 1 which allows a switch from closed circuit to open circuit (b).
  • a so-called second stage (low-pressure stage) of an open dipping system is expediently integrated into the mouthpiece 1.
  • the second stage can also act as an auto diluent control valve in closed mode.
  • the mouthpiece is designed so that when the bite piece is closed in case (a) or in open mode in case (b), the sensors are protected between the directional valves of water. In case (a), this is easy to do because the disc or roller-type closure seals the space between the directional valves from the bit, and so automatically the sensors are also protected from water.

Description

Die Erfindung betrifft ein Kreislauftauchgerät mit einem Mundstück, welches über einen Einatemschlauch und einen Ausatemschlauch an einem Atemgaskreislauf angeschlossen ist, wobei im Atemgaskreislauf zumindest ein Gassensor zur Messung des Partialdruckes einer Atemgaskomponente angeordnet ist.The invention relates to a rebreather with a mouthpiece which is connected via a inhalation hose and an exhalation hose to a breathing gas circuit, wherein at least one gas sensor for measuring the partial pressure of a respiratory gas component is arranged in the respiratory gas circuit.

WO 2008/080948 , welches als nächstliegender Stand der Technik betrachtet wird, beschreibt ein solches Gerät. WO 2008/080948 , which is considered to be the closest prior art, describes such a device.

Man unterscheidet zwischen offenen Atemgeräten, halbgeschlossenen und geschlossenen Kreislauftauchgeräten.One differentiates between open breathing devices, half-closed and closed rebreather devices.

Offene Tauchgeräte beispielsweise weisen eine Atemgasvorratsflasche, welche mit Pressluft oder einem anderen Atemgasgemisch gefüllt ist, sowie einen einoder zweistufigen Druckminderer auf, welcher den Druck des Gases in der Flasche auf Umgebungsdruck reduziert. Die ausgeatmete Luft wird ins umgebene Wasser abgegeben, wobei jedoch nur ein kleiner Teil des Sauerstoffes im Atemgas auch wirklich verbraucht wird. So werden an der Wasseroberfläche nur ca. 3% des eingeatmeten Gases tatsächlich verbraucht, während in einer Tiefe von beispielsweise 20 Meter durch den um zwei bar erhöhten Umgebungsdruck nur noch ein Drittel dieses Wertes, also 1% des Sauerstoffes des eingeatmeten Gases verbraucht wird. Somit muss für einen Tauchgang auf zwanzig Meter Tiefe hundert mal so viel Atemgas mitgeführt werden, wie tatsächlich verbraucht wird.For example, open diving equipment includes a breathing gas storage bottle filled with compressed air or other breathing gas mixture and a one or two-stage pressure reducer which reduces the pressure of the gas in the bottle to ambient pressure. The exhaled air is released into the surrounding water, but only a small part of the oxygen in the breathing gas is really consumed. Thus, only about 3% of the inhaled gas is actually consumed on the water surface, while at a depth of, for example, 20 meters by the increased by two bar ambient pressure only a third of this value, ie 1% of the oxygen of the inspired gas is consumed. Thus, for a dive to a depth of twenty meters, one hundred times as much breathing gas has to be carried along as it actually consumes.

Um die systembedingte, den Atemgasverbrauch betreffende, geringe Effizienz von offenen Tauchgeräten zu umgehen, werden halb geschlossene und geschlossene Kreislaufgeräte eingesetzt. Bei diesen Geräten wird in einem Kreislauf geatmet. Die ausgeatmete Luft wird bei Kreislauftauchgeräten mittels eines CO2-Absorbers von Kohlendioxid gereinigt und wieder mit Sauerstoff angereichert. Weiters zeichnen sich solche Geräte durch eine ein- oder zweiteilige Gegenlunge aus, welche das ausgeatmete Gasvolumen aufnehmen kann. Mit Kreislauftauchgeräten kann die den Gasverbrauch betreffende Effizienz auf bis zu 100% Prozent erhöht werden.Semi-closed and closed rebreathers are used to circumvent system-related low breathing efficiency of open diving equipment. These devices are breathed in a cycle. The exhaled air is purified in rebreathers by means of a CO 2 absorber of carbon dioxide and re-enriched with oxygen. Furthermore, such devices are characterized by a one- or two-part counterlung, which can absorb the exhaled gas volume. With rebreathers, gas efficiency can be increased up to 100%.

Während bei offenen Tauchgeräten im Normalfall immer ein Gas mit atembaren Sauerstoffgehalt geatmet wird, wird bei halb geschlossenen Kreislauftauchgeräten der Sauerstoffpartialdruck (pO2) im Kreislauf von der zugeführten Gasmenge und dem Metabolismus des Tauchers bestimmt. In elektronisch gesteuerten geschlossenen Geräten wird der Sauerstoffpartialdruck mittels eines Regelkreises auf einem bestimmten Niveau gehalten. Elektronisch gesteuerte geschlossene Kreislauftauchgeräte sind beispielsweise aus den Veröffentlichungen GB 2 404 593 A , US 2003/188744 A1 und WO 2005/107390 A2 bekannt. Bei manuell gesteuerten geschlossenen Kreislauftauchgeräten wird die Sauerstoffzufuhr vom Taucher manuell eingestellt und somit der Sauerstoffpartialdruck manuell geregelt. Bei einem elektronisch gesteuerten geschlossenen Kreislauftauchgerät wird Sauerstoff üblicherweise mit einem elektromagnetischen Steuerventil zudosiert. Dieses Magnetventil ist üblicherweise im Gehäuse des Kohlendioxidfilters untergebracht. Der eigentliche Regelkreis ist dabei in einem oder - aus Redundanzgründen - in mehreren Mikrocontrollern implementiert. Der Sauerstoffpartialdruck des Atemgases muss innerhalb bestimmter Grenzen liegen, um atembar zu sein. Allgemein werden 0,16 bar als untere Grenze und 1,6 bar als obere Grenze angesehen. Ein Sauerstoffpartialdruck unter- oder oberhalb dieser Grenzen wird als lebensbedrohend eingestuft. Daraus wird ersichtlich, dass für Kreislauftauchgeräte eine ständige Überwachung des Sauerstoffpartialdruckes notwendig ist. Geschlossene Geräte benötigen pO2-Sensoren zur manuellen und/oder elektronisch gesteuerten Regelung des Sauerstoffpartialdruckes im Atemgaskreislauf. Als pO2-Sensoren werden üblicherweise elektrochemische Flüssigelektrolytsensoren eingesetzt, welche vor dem Tauchgang an der Oberfläche mit Luft oder 100% O2 kalibriert werden müssen.While open diving equipment normally breathes a gas with breathable oxygen content, semi-closed rebreather devices determine the partial pressure of oxygen (pO 2 ) in the circuit according to the amount of gas supplied and the metabolism of the diver. In electronically controlled closed devices, the oxygen partial pressure is kept at a certain level by means of a control loop. Electronically controlled closed rebreathers, for example, from the publications GB 2 404 593 A . US 2003/188744 A1 and WO 2005/107390 A2 known. In manually controlled closed rebreathers, the oxygen supply manually set by the diver and thus the oxygen partial pressure manually controlled. In an electronically controlled closed-circuit rebreather, oxygen is usually metered in with an electromagnetic control valve. This solenoid valve is usually housed in the housing of the carbon dioxide filter. The actual control loop is implemented in one or - for redundancy reasons - in several microcontrollers. The oxygen partial pressure of the breathing gas must be within certain limits in order to be breathable. Generally, 0.16 bar is considered the lower limit and 1.6 bar the upper limit. An oxygen partial pressure below or above these limits is classified as life-threatening. It can be seen that for rebreathers a continuous monitoring of the oxygen partial pressure is necessary. Closed units require pO 2 sensors for manual and / or electronically controlled regulation of the oxygen partial pressure in the breathing gas circuit. As pO 2 sensors usually electrochemical liquid electrolyte sensors are used, which must be calibrated before the dive on the surface with air or 100% O 2 .

Ein korrekt funktionierender pO2-Sensor für den Einsatz in Kreislauftauchgeräten weist ein Ausgangssignal (Strom oder Spannung) auf, welches linear nur von dem Sauerstoffpartialdruck vor der Membran des Sensors abhängt.A properly functioning pO 2 sensor for use in rebreathers has an output signal (current or voltage), which depends linearly only on the oxygen partial pressure in front of the membrane of the sensor.

Als Flüssigelektrolytsensoren ausgebildete pO2-Sensoren sind aber sehr fehleranfällig. Typische Fehler, die auftreten können, sind:

  • Nichtlinearität;
  • Stromlimitierung: in diesem Fall wird der pO2-Sensor ab einem bestimmten Sauerstoffpartialdruck nichtlinear da der Ausgangsstrom des Sensors (oder Ausgangsspannung) fehlerbedingt nicht über einen bestimmten Level ansteigen kann. Dies resultiert in zu niedrigen Sensorsignalen bei hohem Sauerstoffpartialdruck;
  • Fehlerhafte Signale von einem oder mehreren Sensoren bzw. der Sensorsignalverarbeitung;
  • Fehlerhafte Kalibrierung.
However, pO 2 sensors designed as liquid electrolyte sensors are very error-prone. Typical errors that can occur are:
  • Nonlinearity;
  • Current limitation: in this case, the pO 2 sensor becomes non-linear at a certain oxygen partial pressure because the output current of the sensor (or output voltage) can not rise above a certain level due to an error. This results in too low sensor signals at high oxygen partial pressure;
  • Faulty signals from one or more sensors or the sensor signal processing;
  • Incorrect calibration.

Der Fehleranfälligkeit der pO2-Sensoren versucht man mit dem redundanten Einsatz von pO2-Sensoren zu entgegnen. So werden in geschlossenen Kreislauftauchgeräten üblicherweise drei Sauerstoffsensoren eingesetzt. Falls ein Sensor ausfällt und sich daher sein Ausgangssignal von dem der anderen beiden unterscheidet, wird dieser durch einen Vergleich aller drei Sensorsignale mit einem "Votingalgorithmus" erkannt, und dieser Sensor nicht mehr zur Regelung des pO2 herangezogen (siehe GB 2 404 593 A oder WO 2004/112905 A1 ).The error susceptibility of the pO 2 sensors is attempted with the redundant use of pO 2 sensors to counter. For example, three oxygen sensors are usually used in closed rebreathers. If one sensor fails and therefore its output signal differs from that of the other two, this is detected by a comparison of all three sensor signals with a "voting algorithm", and this sensor is no longer used to control the pO 2 (see GB 2 404 593 A or WO 2004/112905 A1 ).

Ein fehlerhafter Sensor kann so ermittelt werden. Diese Methode versagt aber bei folgenden Fehlern:

  • Ausfall von zwei Sensoren, die jedoch ein gleiches Ausgangssignal haben;
  • gleiche Nichtlinearität von mindestens zwei Sensoren (> = zwei Sensoren aus der gleichen Produktionscharge, gleiches Alter, gleiche Bedingungen, ...);
  • gleiche Stromlimitierung von mindestens zwei Sensoren.
A faulty sensor can thus be determined. However, this method fails with the following errors:
  • Failure of two sensors, but with the same output;
  • same nonlinearity of at least two sensors (> = two sensors from the same production lot, same age, same conditions, ...);
  • same current limitation of at least two sensors.

Eine Alternative wird in WO 2008/080948 A2 beschrieben. Eine Kalibrierungs/Validierungsvorrichtung erlaubt die Beströmung eines Sauerstoffsensors mit einem Gas mit bekannter Zusammensetzung. Somit kann ein Sensor sehr einfach auf korrekte Funktion überprüft werden.An alternative is in WO 2008/080948 A2 described. A calibration / validation device allows the flow of an oxygen sensor with a gas of known composition. Thus, a sensor can be easily checked for correct function.

Neben der Fehleranfälligkeit haben O2-Flüssigelektrolytsensoren noch weitere Nachteile:

  • Kurze Lebensdauer von maximal ca. 1.5 Jahren;
  • Können fehlerhafte Signale bei hoher Luftfeuchtigkeit liefern (Kondensation auf der Sensormembran);
  • Elektrolyt kann aus dem Sensorgehäuse lecken;
  • Lange Ansprechzeiten (t90) von typisch 6 s;
  • Relativ große Abmessungen;
  • Die relativ lange Ansprechzeit macht eine Regelung des Sauerstoffpartialdruckes relativ schwierig. In einem geschlossenen Kreislauftauchgerät wird üblicherweise der Sauerstoffpartialdruck mit Sauerstoffpartialdrucksensoren gemessen und sodann mit Hilfe eines Regelkreises (meistens mit einem Mikrocontroller) ein elektromagnetisches Steuerventil angesteuert, mit welchem Sauerstoff aus einer Vorratsflasche dem Kreislauf zugeführt wird. Im schlimmsten Fall kann dies kurzzeitig zu hohen Sauerstoffpartialdruckspitzen im Kreislauf führen, die als lebensbedrohend angesehen werden müssen, jedoch mit den herkömmlichen Sensoren aufgrund deren langer Ansprechzeit nicht erkannt werden, da die lange Ansprechzeit eine Mittelung des Signals bewirkt.
In addition to the susceptibility to errors, O 2 liquid-electrolyte sensors also have further disadvantages:
  • Short life of a maximum of about 1.5 years;
  • May give erroneous signals at high humidity (condensation on the sensor membrane);
  • Electrolyte can leak from the sensor housing;
  • Long response times (t90) of typically 6 s;
  • Relatively large dimensions;
  • The relatively long response time makes regulation of the oxygen partial pressure relatively difficult. In a closed rebreather usually the oxygen partial pressure is measured with oxygen partial pressure sensors and then with the aid of a control circuit (usually with a microcontroller) an electromagnetic control valve is activated, with which oxygen is supplied from a supply bottle to the circuit. In the worst case, this can temporarily lead to high oxygen partial pressure spikes in the circuit, which must be regarded as life-threatening, but are not recognized with the conventional sensors due to their long response time, since the long response time causes an averaging of the signal.

In einem Kreislauftauchgerät absorbiert ein Kohlendioxidabsorber (chemischer Filter, Atemkalk, Kohlendioxidfilter, Scrubber) das ausgeatmete Kohlendioxid. Eine einwandfreie Funktion des Kohlendioxidabsorbers ist lebensnotwendig, da mit einem Anstieg des Kohlendioxidgehaltes im Kreislauf eine Kohlendioxidvergiftung droht, was wiederum als lebensbedrohlich einzustufen ist. Folgende Fehler können auftreten:

  • Atemkalk ist defekt
  • Maximale Absorptionskapazität ist erreicht, es kann kein weiters Kohlendioxid aufgenommen werden;
  • Der Absorber ist zu kalt und die chemische Reaktion findet nur ungenügend statt;
  • Wasser ist im Kreislauf eingedrungen und dadurch wurde der Atemkalk unbrauchbar;
  • Richtungsventile im Mundstück sind defekt - es kommt zu Pendelatmung und der Kohlendioxidfilter wird nicht durchströmt, somit kann kein Kohlendioxid absorbiert werden.
In a rebreather, a carbon dioxide absorber (chemical filter, soda lime, carbon dioxide filter, scrubber) absorbs the exhaled carbon dioxide. A proper function of the carbon dioxide absorber is vital, since with an increase in the carbon dioxide content in the circulation threatens carbon dioxide poisoning, which in turn is classified as life-threatening. The following errors can occur:
  • Soda lime is defective
  • Maximum absorption capacity is reached, no further carbon dioxide can be absorbed;
  • The absorber is too cold and the chemical reaction is insufficient;
  • Water has entered the circulation and thus the soda lime has become unusable;
  • Directional valves in the mouthpiece are defective - it comes to pendulum breathing and the carbon dioxide filter is not flowed through, so no carbon dioxide can be absorbed.

Viele Projekte haben sich mit der Entwicklung eines CO2 Sensors für Kreislauftauchgeräte beschäftigt, um eine Fehlfunktion des Kohlendioxidfilters und/oder einen Anstieg von CO2 im Kreislauf zu detektieren. Optische CO2-Sensoren basieren meistens auf der Absorption von infrarotem Licht. Aufgrund der hohen Luftfeuchtigkeit (bis zu 100% kondensierend) in einem Kreislauftauchgerät ist diese Methode jedoch nicht sehr zuverlässig. Es ist bekannt, zur Erhöhung der Zuverlässigkeit vor der Messzelle des Infrarot CO2-Sensors eine Feuchtesperre oder hydrophobe Membran anzuordnen. Eine andere Möglichkeit die Zuverlässigkeit von solchen CO2-Sensoren zu erhöhen, ist die Sensoren/das Sensorelement auf eine Temperatur größer der Gastemperatur im Kreislauftauchgerät zu erhöhen, um eine Kondensation auszuschließen. Weiters kann zur Überprüfung der Funktion des Kohlendioxidabsorbers die Temperatur des Kohlendioxidfilters gemessen werden ( US 2003/074154 A1 ).Many projects have been developing a CO 2 sensor for rebreathers to detect a carbon dioxide filter malfunction and / or an increase in CO 2 in the circuit. Optical CO 2 sensors are usually based on absorption of infrared light. However, this method is not very reliable due to the high humidity (up to 100% condensing) in a rebreather. It is known to increase the reliability in front of the measuring cell of the infrared CO 2 sensor to arrange a moisture barrier or hydrophobic membrane. Another way to increase the reliability of such CO 2 sensors, the sensors / sensor element is to increase to a temperature greater than the gas temperature in the rebreather, to preclude condensation. Furthermore, to check the function of the carbon dioxide absorber, the temperature of the carbon dioxide filter can be measured ( US 2003/074154 A1 ).

Die DE 10 2007 039 124 A1 beschreibt eine Vorrichtung und ein Verfahren zur Steuerung und/oder Regelung einer Trainings- und/oder Regelung einer Trainings- und/oder Rehabilitationseinheit. Diese Vorrichtung enthält neben einer Trainings- und Rehabilitationseinheit, einem Mikro-Controller und einer Bremsoder Widerstandsanordnung eine Sensor-Einheit mit einem beheizbaren elektrochemischen Festelektrolyt-Sensor zur Sauerstoffkonzentrationsbestimmung und einem weiteren beheizbaren elektrochemischen Festelektrolyt-Sensor für die Kohlendioxid-Konzentrationsbestimmung.The DE 10 2007 039 124 A1 describes a device and a method for controlling and / or regulating a training and / or regulation of a training and / or rehabilitation unit. In addition to a training and rehabilitation unit, a microcontroller and a brake or resistance arrangement, this device contains a sensor unit with a heatable electrochemical solid electrolyte sensor for determining oxygen concentration and another heatable electrochemical solid electrolyte sensor for determining the concentration of carbon dioxide.

Im Artikel " Solid State Electrolyte Sensors for the Determination of Oxygen, Carbon Dioxide, and Total Flow Rates Associated to Respiration in Human Subjects", edited by S. Fasoulas; Executive Summary to the ESTEC Contract No. 15450/01/NL/JS, CCN 1,2,3; Report No. ILR-RSN P 06-07, 13th October 2006 (zu finden online unter http://www.ibtk.de/project/rss/PR03-FR-Exec-Sum_17102006.pdf ) wird die Verwendung von Festkörperelektrolyten zur Bestimmung von O2- und CO2-Konzentrationen, sowie zu weiteren Anwendungen diskutiert und vorgestellt. Unter anderem ist aus dieser Veröffentlichung eine Anordnung mit in ein Rohrstück eingebauten O2- und CO2-Sensoren bekannt, wobei das Rohrstück über einen Filter mit einer Atemmaske verbunden ist. Somit wird durch das selbe Rohstück ein und ausgeatmet (Fig. 35). Die Sensorelektronik ist in einem separaten Gehäuse untergebracht.In the article " Solid State Electrolyte Sensors for the Determination of Oxygen, Carbon Dioxide, and Total Flow Rates Associated to Respiratory Human Subjects, edited by S. Fasoulas, Executive Summary to the ESTEC Contract No. 15450/01 / NL / JS, CCN 1, 2,3, Report No. ILR-RSN P 06-07, 13th October 2006 (can be found online at http://www.ibtk.de/project/rss/PR03-FR-Exec-Sum_17102006.pdf ) the use of solid electrolytes for the determination of O 2 and CO 2 concentrations as well as for other applications is discussed and presented. Among other things, from this publication, an arrangement with built-in a pipe O 2 - and CO 2 sensors is known, wherein the pipe section is connected via a filter with a breathing mask. Thus, inhaling and exhaling through the same blank (Figure 35). The sensor electronics are housed in a separate housing.

Ein Kreislauftauchgerät verfügt normalerweise über einen Einatem- und einen Ausatemschlauch. Dazwischen ist das Mundstück angebracht, in welchem zwei Richtungsventile angeordnet sind. Hauptaugenmerk bei der Konstruktion von Kreislauftauchgeräten ist unter anderem eine Konstruktion eines Mundstückes, bei dem der sogenannte Totraum, worunter man den Raum zwischen den Richtungsventilen und dem Bissstück versteht, minimiert ist. Dies ist wichtig, da ansonsten das Risiko gegeben ist, dass der CO2 Gehalt im Totraum ansteigt. Dies ist vor allem dann ein Problem, wenn der Taucher sehr flach atmet. Eine Integration von einem Rohrstück, wie im genannten Artikel beschrieben, ist bei einem Tauchgerät nachteilig bzw. ein zusätzlicher Risikofaktor, denn dadurch würde der Totraum vergrößert, vor allem wenn man berücksichtigt, dass bei Kreislauftauchgeräten die Querschnitte der Gaszu- und Ableitungen ca. 6 - 15 cm2 betragen sollen, um auch in größeren Tiefen eine minimale Atemarbeit (WOB = "work of breathing") zu ermöglichen.A rebreather usually has an inhalation and exhalation hose. In between, the mouthpiece is mounted, in which two directional valves are arranged. The main focus in the construction of rebreathers is, among other things, a construction of a mouthpiece in which the so-called dead space, which is understood as meaning the space between the directional valves and the bite piece, is minimized. This is important because otherwise there is the risk that the CO 2 content in the dead space increases. This is especially a problem when the diver is breathing very shallow. An integration of a piece of pipe, as described in said article, is detrimental or an additional risk factor in a diving device, because this would increase the dead space, especially taking into account that in cross-section diving devices, the cross sections of gas supply and discharge approx. 15 cm 2 should be in order to allow even at greater depths a minimum work of breathing (WOB = work).

Die JP 2005 350 282 A , die US 5 746 806 A , sowie auch die US 5 071 453 A offenbaren im Wesentlichen Sauerstoffkonzentratoren, die unter anderem auch einen Zirkonia-Festkörperelektrolytsensor einsetzen.The JP 2005 350 282 A , the US 5,746,806 A , as well as the US 5 071 453 A essentially disclose oxygen concentrators which also employ, among other things, a zirconia solid state electrolyte sensor.

Es ist die Aufgabe der Erfindung, die genannten Fehlerquellen bei der Partialdruckmessung von Gasbestandteilen im Atemgas zu vermeiden. Weiters ist es Aufgabe der Erfindung, das Messsystem so auszugestalten, dass mechanische Fehler wie beispielsweise fehlerhafte Richtungsventile im Mundstück erkannt werden und eine robuste und störungsanfällige Bauweise erreicht wird.It is the object of the invention to avoid said sources of error in the partial pressure measurement of gas constituents in the respiratory gas. Furthermore, it is an object of the invention to design the measuring system so that mechanical errors such as incorrect directional valves are detected in the mouthpiece and a robust and fault-prone design is achieved.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass der Gassensor als Festkörperelektrolytsensor ausgebildet ist, wobei zumindest ein Festkörperelektrolytsensor im Mundstück angeordnet ist. Im Mundstück können zumindest zwei Richtungsventile angeordnet sein, wobei vorzugsweise zumindest ein Gassensor zwischen den beiden Richtungsventilen angeordnet ist. Dabei sollte das Mundstück so ausgebildet sein, dass der Totraum zwischen den Richtungsventilen und dem Bissstück minimiert ist und trotzdem große Leitungsquerschnitte eingehalten werden. Die Festkörperelektrolytsensor kann dabei als O2- und/oder als CO2-Gassensor ausgebildet sein.According to the invention this object is achieved in that the gas sensor is designed as a solid electrolyte sensor, wherein at least one solid electrolyte sensor is arranged in the mouthpiece. At least two directional valves may be arranged in the mouthpiece, wherein preferably at least one gas sensor is arranged between the two directional valves. This should be the mouthpiece be designed so that the dead space between the directional valves and the bite piece is minimized and yet large cable cross-sections are met. The solid electrolytic sensor can be incorporated as O 2 - may be formed and / or CO 2 as a gas sensor.

Festkörperelektrolytsensoren basieren auf speziellen Materialien, die für Gasionen leitfähig sind. Im Normalfall werden diese Materialien jedoch nur unter erhöhten Temperaturen leitfähig (typisch 500°C - 700°C). Typische Materialien sind unter anderem Zirconia und Ceria für Sauerstoff und Nasicon für CO2.Solid state electrolyte sensors are based on special materials that are conductive to gas ions. Normally, however, these materials are conductive only at elevated temperatures (typically 500 ° C - 700 ° C). Typical materials include zirconia and ceria for oxygen and nasicon for CO 2 .

Potentiometrische Festkörperelektrolytsensoren für Sauerstoff sind schon lange bekannt, und finden unter anderem Anwendung in Motorsteuerungen (Lambda Sensor) oder in industriellen Verbrennungssteuerungen.Potentiometric solid electrolyte sensors for oxygen have been known for a long time, and find application in engine controls (lambda sensor) or in industrial combustion controls, among others.

Herkömmliche Sensoren wie sie z.B. in einem Auto eingesetzt werden, haben aber den Nachteil, dass sie relativ groß sind, daher eine hohe elektrische Heizleistung (> 10 Watt) benötigen und eine Referenzmesskammer mit einem Referenzgas nötig ist (potentiometrische Sensoren, Nernst Potential). Diese Nachteile erlaubten bis heute keine Verwendung dieser Sensoren in Kreislauftauchgeräten.Conventional sensors such as e.g. used in a car, but have the disadvantage that they are relatively large, therefore, require a high electrical heating power (> 10 watts) and a reference measuring chamber with a reference gas is necessary (potentiometric sensors, Nernst potential). These disadvantages have not permitted the use of these sensors in rebreathers until today.

Miniaturisierte Gassensoren werden unter anderem für In-Situ - und Bypass-Messungen von Ox, COx, H2, CxHy, NOx in der Medizin- und Umwelttechnik, z.B. bei der Leistungsdiagnostik von Astronauten oder zur Restgasanalyse im Weltraum eingesetzt, (siehe http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenwesen/ilr/rsn).Miniaturized gas sensors are used, among other things, for in-situ and bypass measurements of O x , CO x , H 2 , C x H y , NO x in medical and environmental technology, eg in the performance diagnostics of astronauts or for residual gas analysis in space , (see http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenwesen/ilr/rsn).

Miniatur-Festkörperelektrolytsensoren in Dickschichttechnik haben den Vorteil einer langer Lebensdauer und einer sehr schnellen Ansprechzeit. Die eigentlichen Sensorelemente sind in der Größe 2.5 x 2.5 x 2 mm3 verfügbar und lassen sich einfach in ein Kreislauftauchgerät integrieren. Durch die kleine Bauweise sind lediglich geringe Heizleistungen (1 - 2 Watt) erforderlich, was mit herkömmlichen Batterien oder Akkus einen Betrieb von mehreren Stunden ermöglicht.Thick-film miniature solid-state electrolyte sensors have the advantage of a long service life and a very fast response time. The actual sensor elements are available in the size 2.5 x 2.5 x 2 mm 3 and can be easily integrated into a rebreather. Due to the small design only low heat outputs (1 - 2 watts) are required, which allows conventional batteries or rechargeable batteries to operate for several hours.

Die hohe Betriebstemperatur verhindert kondensationsbedingte Störungen. Die schnelle Ansprechzeit erlaubt eine präzise Regelung des Sauerstoffpartialdruckes. Die hohe Ansprechgeschwindigkeit von unter 100 ms ermöglicht es sogar die Herzfrequenz mitzubestimmen, da das pO2/pCO2 Signal der ausgeatmeten Luft mit der Herzfrequenz moduliert ist.The high operating temperature prevents condensation-related disturbances. The fast response time allows precise control of the oxygen partial pressure. The high response speed of less than 100 ms even allows to determine the heart rate, as the pO 2 / pCO 2 signal of the exhaled air is modulated with the heart rate.

Die kleinen Abmessungen erlauben eine Integration der Gassensoren direkt im Mundstück. Somit lassen sich der Sauerstoffpartialdruck von eingeatmetem und ausgeatmetem Gas getrennt erfassen. Durch günstige Platzierung im Gasstrom kann mit diesen Festkörperelektrolytsensoren auch der Massenfluss der Atemgase gemessen und somit auf das Minutenvolumen des Tauchers und die Atemfrequenz rückgeschlossen werden. Die hohe zeitliche Auflösung der Sensoren erlaubt eine hochpräzise Bestimmung auch von kleinen und kurzfristigen Sauerstoffpartialdruckveränderungen.The small dimensions allow integration of the gas sensors directly in the mouthpiece. Thus, the oxygen partial pressure of inhaled and exhaled gas can be detected separately. Favorable placement in the gas stream can also be used with these solid-state electrolyte sensors to measure the mass flow of the respiratory gases and thus the minute volume of the diver and the respiratory rate be inferred. The high temporal resolution of the sensors allows a high-precision determination of small and short-term oxygen partial pressure changes.

Durch die Erfassung von Minutenvolumen und Atemfrequenz kann die Belastung des Tauchers erfasst werden und dies wiederum kann als Einflussfaktor für die Dekompressionsberechnung verwendet werden.By recording minute volume and respiratory rate, the load on the diver can be recorded and this, in turn, can be used as a factor influencing the decompression calculation.

Planare Miniatur-Festkörperelektrolytsensoren für die Partialdruckmessung von CO2 und O2 weisen somit folgende Eigenschaften auf:

  • Sehr schnelle Ansprechzeit < 100 ms;
  • Betriebstemperatur 650°C (O2) und 550°C (CO2). Durch die hohe Betriebstemperatur können Probleme mit hoher/kondensierender Luftfeuchtigkeit ausgeschlossen werden;
  • O2-Sensor: unbegrenzte Lebensdauer;
  • CO2-Sensor: ∼ 2000 Betriebsstunden;
  • Der O2-Sensor ist ein amperometrischer Sensor - somit ist keine Referenzmesskammer nötig;
  • Im CO2-Sensor ist eine Festelektrolytreferenz integriert, so benötigt auch dieser keine Referenzkammer;
  • Niedrige Betriebskosten;
  • Sensoren sind sehr klein (eigentliches Sensorelement ∼ 4mm2);
  • Die hohe Ansprechgeschwindigkeit erlaubt sogar die Herzfrequenz mitzubestimmen, da das pO2/pCO2 Signal der ausgeatmeten Luft mit der Herzfrequenz moduliert ist.
Planar miniature solid-state electrolyte sensors for the partial pressure measurement of CO 2 and O 2 thus have the following properties:
  • Very fast response time <100 ms;
  • Operating temperature 650 ° C (O 2 ) and 550 ° C (CO 2 ). Due to the high operating temperature problems with high / condensing humidity can be excluded;
  • O 2 sensor: unlimited life;
  • CO 2 sensor: ~ 2000 operating hours;
  • The O 2 sensor is an amperometric sensor - so no reference measuring chamber is needed;
  • In the CO 2 sensor, a solid electrolyte reference is integrated, so this also requires no reference chamber;
  • Low operating costs;
  • Sensors are very small (actual sensor element ~ 4mm 2 );
  • The high response rate even allows to determine the heart rate, as the pO 2 / pCO 2 signal of the exhaled air is modulated with the heart rate.

Durch Anwendung von einem O2- und einem CO2- Festkörperelektrolytsensor in einem Kreislauftauchgerät ergeben sich folgende Vorteile:

  • Hohe Betriebssicherheit, da die Sensoren sehr robust und fehlerresistent sind;
  • Da die Sensoren sehr klein sind, lassen sie sich auch direkt in dem Mundstück von einem Kreislauftauchgerät integrieren;
  • Da die Sensoren eine sehr kurze Ansprechzeit haben (< 100 ms) lassen sich
    • o der Sauerstoffpartialdruck im System besser und genauer steuern;
    • o Unterschiede in der Gaszusammensetzung von eingeatmetem und ausgeatmetem Gas messen (bei Integration im Mundstück);
    • o Dies erlaubt Rückschlüsse auf den Sauerstoffmetabolismus des Tauchers.
  • Da die Sensoren auf hoher Temperatur gehalten werden, können diese als Gas-Massenflussmesser eingesetzt werden. Durch geeignete Platzierung der Sensoren im Gasfluss, kann der Gasstrom gemessen werden (Ein- und Ausatemvolumen, Minutenvolumen), dies erlaubt:
    • o Rückschluss auf Aktivität des Tauchers (Stress, hohe körperliche Belastung, ...);
    • o Feststellung, ob der Taucher überhaupt atmet, und wie schnell - was wiederum als Eingangsparameter für die Steuerung verwendet werden kann.
  • Mit einem vorzugsweise zwischen den Richtungsventilen platzierten CO2-Sensor kann folgendes überprüft werden
    • o Korrekte Funktion des CO2-Filters;
    • o Korrekte Funktion der Richtungsventile im Kreislauftauchgerät (falls die Richtungsventile beschädigt sind, kann dies schnell zu einem lokalen CO2 Anstieg führen (CO2--buildup);
    • o Rückschluss auf den Metabolismus des Tauchers (hohe körperliche Belastungen, Stress, ...);
    • o Überprüfung des Sauerstoffsensors bzw. des Kohlendioxidsensors: im Normalfall sollte die Differenz des Sauerstoffpartialdrucks des ein- und des ausgeatmeten Gases in etwa der Differenz des Kohlendioxidpartialdruckes entsprechen.
Application of an O 2 and a CO 2 solid state electrolyte sensor in a rebreather results in the following advantages:
  • High operational safety, as the sensors are very robust and error-resistant;
  • Since the sensors are very small, they can also be integrated directly into the mouthpiece of a rebreather;
  • Since the sensors have a very short response time (<100 ms) can be
    • o control the oxygen partial pressure in the system better and more accurately;
    • o measure differences in the gas composition of inhaled and exhaled gas (when integrated in the mouthpiece);
    • o This allows conclusions about the oxygen metabolism of the diver.
  • Since the sensors are kept at high temperature, they can be used as a gas mass flow meter. By appropriate placement of the sensors in the gas flow, the gas flow can be measured (inhalation and exhalation volume, minute volume), allowing:
    • o conclusion on activity of the diver (stress, high physical stress, ...);
    • o Determining if the diver is breathing at all and how fast - which in turn can be used as an input parameter to the controller.
  • With a preferably placed between the directional valves CO 2 sensor, the following can be checked
    • o Correct function of the CO 2 filter;
    • o Correct operation of the directional valves in the rebreather (if the directional valves are damaged, this can quickly lead to a local CO 2 increase (CO 2- buildup);
    • o conclusions about the metabolism of the diver (high physical stress, stress, ...);
    • o Checking the oxygen sensor or the carbon dioxide sensor: Normally, the difference in the oxygen partial pressure of the inhaled and expired gases should correspond approximately to the difference in the partial pressure of carbon dioxide.

Die Vielzahl von Vorteilen erlaubt also

  • o eine optimierte Regelung der Sauerstoffzuführung;
  • o eine Erfassung von physiologischen Daten (Metabolismus, Atemzugsvolumen, Minutenvolumen, Atemfrequenz, O2-Gehalt in Ein-und Ausatemgas, CO2 im Ausatemgas) - dies kann
    • ■ zur Überprüfung der Sauerstoffregelung genutzt werden;
    • ■ Einfluss finden in der Dekompressionsberechnung (wichtiger Punkt);
  • o erhöhte Sicherheit des Systems durch unterschiedliche Sensorsysteme (O2-, CO2- und Massenflusssensor)
The multitude of advantages allows so
  • o an optimized control of the oxygen supply;
  • o a collection of physiological data (metabolism, tidal volume, minute volume, respiratory rate, O 2 content in inhaled and exhaled gas, CO 2 in exhaled gas) - this can
    • ■ be used to check the oxygen control;
    • ■ find influence in the decompression calculation (important point);
  • o Increased safety of the system due to different sensor systems (O 2 , CO 2 and mass flow sensor)

Zur Steuerung und zum Auslesen der Sensoren sind elektronische Schaltungen notwendig. Diese bestehen normalerweise aus einem Mikrocontroller, der die Heizungsregelung übernimmt und einer Analogschaltung, welche typisch aus Verstärkung und analogen Filtern besteht. Mit heutiger Technik können solche Schaltung stark miniaturisiert werden, sodass die komplette Elektronik weniger als 1 - 2 cm3 Platz benötigt.To control and read the sensors electronic circuits are necessary. These usually consist of a microcontroller that takes over the heating control and an analogue circuit, which typically consists of amplification and analogue filters. With today's technology, such a circuit can be highly miniaturized, so that the entire electronics requires less than 1 - 2 cm 3 space.

Teil der Erfindung ist die Integration von Elektronik und Sensorik direkt im Mundstück. Durch lange Sensorkabel (wie beim beschriebenen Artikel von S. Fasoulas vorgesehen) können Messfehler auftreten, wenn elektrische Störfelder vorhanden sind. Unterwasser ist dies normalerweise zwar nicht der Fall, jedoch werden Kreislauftauchgeräte an der Oberfläche vorbereitet. Elektromagnetische Einstreuungen durch beispielsweise Funk oder einen schlecht entstörten Motor können - vorallem wenn lange Zuleitungen verwendet werden - zu Messfehlern führen. Problematisch ist dies vor allem dann, wenn diese Messfehler während eines Gerätetests oder einer Kalibration auftreten, da in diesem Fall eine fehlerhafte O2-Regelung die Folge sein kann - ein Umstand, der als lebendbedrohend einzustufen ist. Probleme dieser Art haben in der Vergangenheit schon zu Unfällen mit Kreislaufgeräten geführt. Durch Integration der Elektronik direkt neben der Sensorik im Mundstück können solche Fehlerquellen minimiert werden.Part of the invention is the integration of electronics and sensors directly in the mouthpiece. Long sensor cables (as described in the article by S. Fasoulas) can lead to measurement errors if there are electrical interference fields. Underwater, this is usually not the case, but rebreathers are being prepared on the surface. Electromagnetic interference due to, for example, radio or a poorly suppressed motor can - especially when long leads are used - lead to measurement errors. This is especially problematic if these measurement errors occur during a device test or a calibration, since in this case a faulty O 2 control can be the result - a circumstance that can be classified as life-threatening. Problems of this kind have already led to accidents with rebreathers in the past. By integrating the electronics directly next to the sensors in the mouthpiece, such sources of error can be minimized.

Unter Verwendung von miniaturisierten Magnetventilen lässt sich auch das Steuerventil für die Sauerstoffeinspeisung in den Atemkreislauf direkt in das Mundstück integrieren. Somit kann nochmals die Kompaktheit und Robustheit nochmals erhöht werden, da Fehlerquellen wie beispielsweise Kabel zum Magnetventil, welche durchs Wasser führen, entfallen.Using miniaturized solenoid valves, the oxygen supply control valve in the breathing circuit can also be integrated directly into the mouthpiece. Thus, once again the compactness and robustness can be further increased, since sources of error such as cables to the solenoid valve, which lead through the water, omitted.

Zusammen mit einer miniaturisierten elektronischen Steuereinheit kann somit der komplette Regelkreis des Kreislauftauchgerätes im Mundstück integriert werden.Together with a miniaturized electronic control unit, the complete control circuit of the rebreather can thus be integrated in the mouthpiece.

Durch Integration der kompletten Steuerelektronik und des Steuerventils im Mundstück ergeben sich zahlreiche Vorteile:

  • o keine langen Kabel und dadurch verursachte Signalverfälschungen, da Sensoren, Magnetventil, Elektronik und Stromversorgung (Batterie) direkt nebeneinander integriert sind;
  • o robustere Bauweise und so erhöhte Sicherheit;
  • o kostengünstige Bauweise;
  • o das Mundstück beinhaltet die gesamte Elektronik. Kreislauftauchgeräte ohne elektronischer Steuerung können einfach aufgerüstet werden, indem das ursprüngliche Mundstück mit dem vollintegrierten Mundstück ersetzt wird
The integration of the complete control electronics and the control valve in the mouthpiece offers numerous advantages:
  • o no long cables and signal distortions caused by them, as sensors, solenoid valve, electronics and power supply (battery) are integrated directly next to each other;
  • o more robust construction and thus increased safety;
  • o cost-effective construction;
  • o The mouthpiece contains all the electronics. Rebreather units without electronic controls can be easily upgraded by replacing the original mouthpiece with the fully integrated mouthpiece

Die Festkörperelektrolytsensoren werden, wie bereits beschreiben, elektrisch geheizt. Fall das Mundstück geflutet wird, kann es passieren, dass die Sensoren dem Wasser ausgesetzt werden. Mehrere Maßnahmen sind denkbar, um die Sensoren zu schützen:

  • Die Sensoren werden hinter einer hydrophoben Membran angeordnet, welche ein Endringen von Wasser verhindert.
  • Das Mundstück ist mit einer Vorrichtung versehen, mit der - falls das Mundstück unter Wasser aus dem Mund genommen wird - der Raum zwischen den Richtungsventilen gegen das Bissstück abgedichtet wird.
  • Die Elektronik überwacht kontinuierlich die Temperatur des Sensors. Falls diese plötzlich abfällt, obwohl der Heizstrom konstant bleibt, ist dies ein Hinweist dafür, dass der Sensor in Kontakt mit Wasser ist. Als Folgemaßnahme wird die Heizleistung minimiert, um eine Überlastung des Heizers zu vermeiden. Insbesondere wird die Spannungsversorgung des Heizers auf kleiner 1 Volt begrenzt, um Elektrolyse zu vermeiden. Falls die Sensortemperatur anschließend wieder größer als 100°C beträgt, kann davon ausgegangen werden, dass das Wasser verdunstet ist und der normale Betrieb kann wieder aufgenommen werden.
The solid-state electrolyte sensors are, as already described, electrically heated. If the mouthpiece is flooded, it may happen that the sensors are exposed to the water. Several measures are conceivable to protect the sensors:
  • The sensors are placed behind a hydrophobic membrane, which prevents the penetration of water.
  • The mouthpiece is provided with a device with which - if the mouthpiece is taken under water from the mouth - the space between the directional valves is sealed against the bite piece.
  • The electronics continuously monitor the temperature of the sensor. If this drops suddenly, although the heating current remains constant, this is an indication that the sensor is in contact with water. As a consequence, the heating power is minimized to avoid overloading the heater. In particular, the voltage supply of the heater is limited to less than 1 volt to avoid electrolysis. If the sensor temperature is then greater than 100 ° C again, it can be assumed that the water has evaporated and normal operation can be resumed.

Oftmals ist ein Kreislauftauchgerätmundstück an eine Vollgesichtsmaske angeschlossen. Dies wird insbesondere oftmals von Einsatzkräften bevorzugt, da Vollgesichtsmasken zusätzliche Sicherheit bringen. So ist beispielsweise Im Falle einer Ohnmacht eine Gasversorgung weiterhin gesichert. Dies ist bei Tauchern besonders wichtig, denn eine Ohnmacht kann dazu führen, dass das Mundstück aus dem Mund fällt und somit die Gasversorgung unterbrochen wird.Often, a rebreather tip is attached to a full-face mask. This is particularly often preferred by emergency services, as full-face masks bring additional security. For example, in the case of powerlessness, a gas supply remains secure. This is special for divers important, because a fainting can cause the mouthpiece falls out of the mouth and thus the gas supply is interrupted.

Die Erfindung wird im folgenden an Hand der Figuren näher erläutert. Es zeigen:

Fig. 1
ein bekanntes Kreislauftauchgerät; und
Fig. 2
einen Teil eines erfindungsgemäßes Kreislauftauchgerätes.
The invention will be explained in more detail below with reference to FIGS. Show it:
Fig. 1
a known rebreather; and
Fig. 2
a part of an inventive rebreather.

Fig. 1 zeigt ein geschlossenes Kreislauftauchgerät gemäß dem Stand der Technik. Der Taucher atmet durch das mit dem Mundstück 1 verbundene Bissstück 19 über den Ausatemschlauch 2 in die Ausatemgegenlunge 4 aus. Im CO2-Filter 7 ("Scrubber") wird Kohlendioxid aus der Ausatemluft chemisch absorbiert. Das Atemgas gelangt dann weiter in die Einatemgegenlunge 5. Über das Bissstück 19 des Mundstücks 1 und den Einatemschlauch 3 wird das Atemgas wieder eingeatmet. Um den verbrauchten Sauerstoff zu ersetzen, wird aus einer Sauerstoff-Vorratsflasche 11 über ein elektromagnetisches Steuerventil 9, welches üblicherweise im Gehäuse des CO2-Filters 7 untergebracht ist, frisches O2-Gas dem Atemgaskreislauf zugeführt. Ein Druckminderer 12 reduziert dabei den Flaschendruck auf einen Druck von typischerweise 7 - 10 bar. Die Vorratsflasche 11 enthält reinen Sauerstoff O2. Neben dem elektromagnetischen Steuerventil 9 weist der Regelkreis noch einen Mikrocontroller 10 und über ein bis vier Sauerstoffsensoren 8 auf, über welche der Sauerstoffpartialdruck pO2 im Atemgaskreislauf gemessen wird. Tauchgangsrelevante Daten werden auf einem Display 15 dargestellt. Fällt der Sauerstoffpartialdruck unter einem gewissen Wert, so wird über das elektromagnetische Steuerventil 9 reiner Sauerstoff O2 dem Atemgaskreislauf zudosiert. Beim Abtauchen wird das Atemgas im Atemgaskreislauf komprimiert. Um den druckbedingten Volumenverlust auszugleichen, wird über ein manuelles Ventil 16 oder ein automatisches Ventil Diluentgas aus einer Vorratsflasche 13 dem Atemgaskreislauf 26 zugeführt. Über die beiden Druckminderer 12, 14 wird der Flaschendruck auf typischerweise 8 - 10 bar über Umgebungsdruck reduziert. Überschüssiges Gas kann durch ein Überdruckventil 6 entweichen. Fig. 1 shows a closed rebreather according to the prior art. The diver exhales through the bite piece 19 connected to the mouthpiece 1 via the exhalation hose 2 into the exhalation counterlung 4. In the CO 2 filter 7 ("scrubber"), carbon dioxide is chemically absorbed from the exhaled air. The breathing gas then passes into the inhalation counter lung 5. About the bite piece 19 of the mouthpiece 1 and the inhalation tube 3, the breathing gas is inhaled again. To replace the used oxygen, fresh O 2 gas is supplied to the breathing gas circuit from an oxygen storage bottle 11 via an electromagnetic control valve 9, which is usually housed in the housing of the CO 2 filter 7. A pressure reducer 12 reduces the cylinder pressure to a pressure of typically 7 - 10 bar. The storage bottle 11 contains pure oxygen O 2 . In addition to the electromagnetic control valve 9, the control circuit also has a microcontroller 10 and one to four oxygen sensors 8, via which the oxygen partial pressure pO 2 in the breathing gas circuit is measured. Dive relevant data are displayed on a display 15. If the oxygen partial pressure falls below a certain value, pure oxygen O 2 is added to the respiratory gas cycle via the electromagnetic control valve 9. When diving, the breathing gas is compressed in the breathing gas circulation. To compensate for the pressure-related loss of volume, diluent gas from a supply bottle 13 is supplied to the breathing gas circuit 26 via a manual valve 16 or an automatic valve. By means of the two pressure reducers 12, 14, the cylinder pressure is reduced to typically 8-10 bar above atmospheric pressure. Excess gas can escape through a pressure relief valve 6.

Fig. 2 zeigt eine einfache Ausführung der Erfindung. Das im Ausführungsbeispiel als Mundstück ausgebildete integrierte Mundstück 1 ist über einen Einatemschlauch 3 und einen Ausatemschlauch 2 am Atemgaskreislauf 26 angeschlossen. Die beiden Richtungsventile - Einatemventil 18 und Ausatemventil 17 - geben die Gasflussrichtung vor. Mit 19 ist das eigentliche Gummi-Bissstück bezeichnet, welches der Taucher mit den Zähnen hält. Der O2-Sensor 20 und der CO2-Sensor 21 sind als Festelektrolytsensoren ausgebildet und im Hohlraum des Mundstücks 1 zwischen den Richtungsventilen 17, 18 angebracht. Mittels eines durch ein Miniaturmagnetventil gebildeten Steuerventils 23, welches das Steuerventil 9 aus Fig. 1 ersetzt, kann aus einer in Fig. 2 nicht ersichtlichen Sauerstoffvorratsflasche und einer Sauerstoffversorgungsleitung 24 Sauerstoff über eine Öffnung 27 dem Atemgaskreislauf 26 zugeführt werden. Die Einspeisung in den Atemgaskreislauf 26 erfolgt nach dem Ausatemventil 17, um eine gute Durchmischung zu garantieren und gleichzeitig kurzzeitige Spitzenanstiege des Sauerstoffpartialdruckes im Einatemgas zu vermeiden. Die Steuerung des Steuerventils 23 erfolgt über eine elektronische Steuereinheit 22. Über ein wasserdichtes Kabel 25 kann eine Anzeigeeinheit und eine externe Batterieversorgung angeschlossen werden. Die elektronische Steuereinheit 22 und das Steuerventil 23 sind wasser- und druckdicht im Mundstück 1 integriert. Fig. 2 shows a simple embodiment of the invention. The embodiment formed as a mouthpiece integrated mouthpiece 1 is connected via a breathing tube 3 and an exhalation 2 to the breathing gas circuit 26. The two directional valves - inhalation valve 18 and exhalation valve 17 - specify the gas flow direction. With 19 is the actual rubber bite piece, which holds the diver with his teeth. The O 2 sensor 20 and the CO 2 sensor 21 are formed as solid electrolyte sensors and mounted in the cavity of the mouthpiece 1 between the directional valves 17, 18. By means of a formed by a miniature solenoid valve control valve 23, which the control valve 9 from Fig. 1 can be replaced from an in Fig. 2 unrecognizable oxygen storage bottle and an oxygen supply line 24 oxygen via an opening 27 to the breathing gas circuit 26 are supplied. The feed into the breathing gas circuit 26 takes place after the exhalation valve 17 in order to guarantee a good mixing and at the same time to avoid short-term peak increases in the oxygen partial pressure in the inhaled gas. The control of the control valve 23 via an electronic control unit 22 via a waterproof cable 25, a display unit and an external battery power can be connected. The electronic control unit 22 and the control valve 23 are water and pressure-tight integrated in the mouthpiece 1.

Im Rahmen der Erfindung können weitere Optionen vorgesehen sein. So kann (a) ein scheiben- oder walzenartiger Verschluss für das Bissstück in das Mundstück 1 integriert sein, für den Fall, dass vom Taucher das Bissstück 19 aus dem Mund genommen wird. Weiters ist es denkbar, eine Umschaltwalze in das Mundstück 1 zu integrieren, welche ein Umschalten vom geschlossenen Kreislauf auf offenen Kreislauf ermöglicht(b). Dabei ist zweckmäßigerweise eine sogenannte zweite Stufe (Niederdruckstufe) eines offenen Tauchsystem in das Mundstück 1 integriert. Die zweite Stufe kann im geschlossenen Modus zusätzlich als Auto-Diluent Steuerventil fungieren. In beiden Fällen wird jedoch das Mundstück so ausgestaltet, dass bei verschlossenem Bissstück im Fall (a) oder bei offenen Betrieb im Fall (b) die Sensoren zwischen den Richtungsventilen von Wasser geschützt werden. Im Fall (a) ist dies einfach zu bewerkstelligen, da der scheibenoder walzenartiger Verschluss den Raum zwischen den Richtungsventilen vom Bissstück abdichtet, und so automatisch die Sensoren auch von Wasser geschützt sind.In the context of the invention, further options may be provided. Thus, (a) a disc or barrel-like closure for the bit may be incorporated into the mouthpiece 1 in the event that the bit 19 is removed from the mouth by the diver. Furthermore, it is conceivable to integrate a switching roller in the mouthpiece 1, which allows a switch from closed circuit to open circuit (b). In this case, a so-called second stage (low-pressure stage) of an open dipping system is expediently integrated into the mouthpiece 1. The second stage can also act as an auto diluent control valve in closed mode. In both cases, however, the mouthpiece is designed so that when the bite piece is closed in case (a) or in open mode in case (b), the sensors are protected between the directional valves of water. In case (a), this is easy to do because the disc or roller-type closure seals the space between the directional valves from the bit, and so automatically the sensors are also protected from water.

Claims (12)

  1. Rebreather with a mouthpiece (1) which is connected to a respiratory gas circulation via an inhalation tube (3) and an exhalation tube (2),
    wherein at least one gas sensor for measuring the partial pressure of a respiratory gas component is arranged in the respiratory gas circulation (26),
    characterized in that
    the gas sensor is formed as a solid state electrolyte sensor, wherein at least one solid state electrolyte sensor is arranged in the mouthpiece (1).
  2. Rebreather according to claim 1, characterized in that the mouthpiece comprises at least two direction valves (17, 18), wherein preferably at least one gas sensor is arranged between the two direction valves (17, 18).
  3. Rebreather according to claim 1 or 2, characterized in that at least one solid state electrolyte sensor is formed as an O2 sensor (20).
  4. Rebreather according to one of the claims 1 to 3, characterized in that at least one solid state electrolyte sensor is formed as a CO2 sensor (21).
  5. Rebreather according to one of the claims 1 to 4, with at least one oxygen supply conduit (24) ending into the respiratory gas circulation (26) via an electrical control valve (23), characterized in that the electrical control valve (23), which is preferably formed as a miniature magnetic valve, is arranged in the mouthpiece (1).
  6. Rebreather according to claim 5, characterized in that the oxygen supply conduit (24) is ending into the respiratory gas circulation in the region of the mouthpiece (1), preferably into the exhalation tube (2) downstream of an exhalation valve (17).
  7. Rebreather according to one of the claims 1 to 6, characterized in that an electronic control unit (22) connected to the gas sensor and/or to the electrical control valve (23) is integrated in the mouthpiece (1).
  8. Rebreather according to claim 7, characterized in that the electronic control unit (22) is connected to an external display unit and/or an external energy source.
  9. Rebreather according to one of the claims 1 to 8, characterized in that at least one battery for current supply of the electronic control unit (22) is arranged in the mouthpiece (1).
  10. Rebreather according to one of the claims 1 to 9, characterized in that the mouthpiece (1) is connected to a full face mask.
  11. Rebreather according to one of the claims 1 to 10, characterized in that at least one solid state electrolyte sensor is protected against water by a hydrophobic membrane.
  12. Rebreather according to one of the claims 1 to 11, characterized in that the mouthpiece comprises a bite piece and that the gas sensor in the mouthpiece is sealable against the bite piece and protectable against water by an apparatus, preferably a disc-type or a roller-type closure.
EP11707384.1A 2010-02-25 2011-02-25 Diving rebreather comprising a mouthpiece Not-in-force EP2539225B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2922010A AT509551B1 (en) 2010-02-25 2010-02-25 CIRCULAR DIVING UNIT WITH A MOUTHPIECE
PCT/EP2011/052790 WO2011104327A1 (en) 2010-02-25 2011-02-25 Diving rebreather comprising a mouthpiece

Publications (2)

Publication Number Publication Date
EP2539225A1 EP2539225A1 (en) 2013-01-02
EP2539225B1 true EP2539225B1 (en) 2014-06-18

Family

ID=44064708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11707384.1A Not-in-force EP2539225B1 (en) 2010-02-25 2011-02-25 Diving rebreather comprising a mouthpiece

Country Status (3)

Country Link
EP (1) EP2539225B1 (en)
AT (1) AT509551B1 (en)
WO (1) WO2011104327A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084957A1 (en) * 2011-10-21 2013-04-25 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Arrangement for monitoring oxygen concentration in processing device, has oxygen sensor positioned in processing device and is connected with monitoring circuit, which compares threshold value with output signal of oxygen sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556098A (en) * 1968-12-04 1971-01-19 John W Kanwisher Apparatus for controlling environmental conditions, suitable for use underwater
US5071453A (en) * 1989-09-28 1991-12-10 Litton Systems, Inc. Oxygen concentrator with pressure booster and oxygen concentration monitoring
US5746806A (en) * 1996-08-15 1998-05-05 Nellcor Puritan Bennett Incorporated Apparatus and method for controlling output of an oxygen concentrator
GB2384713B (en) * 2000-10-31 2004-10-27 Deas Alexander Roger Integral life support system
US6618687B2 (en) * 2001-10-16 2003-09-09 The United States Of America As Represented By The Secretary Of The Navy Temperature-based estimation of remaining absorptive capacity of a gas absorber
GB2402885A (en) * 2003-06-20 2004-12-22 Uri Baran Head up display for diving apparatus
GB2404593A (en) * 2003-07-03 2005-02-09 Alexander Roger Deas Control electronics system for rebreather
WO2005107390A2 (en) * 2004-04-30 2005-11-17 Heliox Technologies, Inc. Rebreather setpoint controller and display
JP4206970B2 (en) * 2004-06-08 2009-01-14 ダイキン工業株式会社 Oxygen concentrator
AT9946U1 (en) * 2006-12-28 2008-06-15 Sieber Arne Dipl Ing Dr OXYGEN PARTIAL PRESSURE MEASUREMENT DEVICE FOR CIRCULAR DIVING UNITS
DE102007039124A1 (en) * 2007-08-18 2009-02-19 Ulrich Dr. Jerichow Device and method for controlling and / or regulating a training and / or rehabilitation unit

Also Published As

Publication number Publication date
WO2011104327A1 (en) 2011-09-01
EP2539225A1 (en) 2013-01-02
AT509551B1 (en) 2012-01-15
AT509551A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
EP2097312B1 (en) Method for operating a rebreather and a rebreather
CA2495678C (en) Apparatus and method for diagnostic gas analysis
DE60223527T2 (en) METHOD AND MEASURING DEVICE FOR MEASURING NITROGEN OXIDE CONCENTRATION IN EXTERNAL AIR
CH639206A5 (en) DEVICE FOR DETECTING AND SEPARATING THE ALVEOLAR AIR PART FROM THE BREATHING AIR.
DE1960517B2 (en) Device for maintaining breathable air
CN104883971A (en) Mouthpiece for accurate detection of exhaled no
WO2013178714A1 (en) Measuring apparatus and method for detecting the hydrocarbon fraction in gases while taking into account cross-sensitivities
DE102009043236A1 (en) Multifunction control valve for gas meters
DE19532799A1 (en) Method and device for the detection of toxic gases
WO2020097654A1 (en) Determining the mass flow of an exhaust gas constituent of a fuel cell
WO2001080735A1 (en) Method and device for determining the partial pressure of a gas component in the expiration air of a patient, resolved per respiration
US20150346174A1 (en) Exposure monitoring
WO2013007516A1 (en) Monitoring of the functionality of a converter of a breath analysis apparatus
EP2539225B1 (en) Diving rebreather comprising a mouthpiece
DE60215955T2 (en) DEVICE FOR THE QUANTITATIVE ANALYSIS OF BREATHING GASES
DE2428352A1 (en) ARRANGEMENT FOR DETERMINING THE ALCOHOL CONCENTRATION OF THE (DEEP) LUNG AIR
CN110554028A (en) Gas detection method and gas detection system based on same
EP1420691B1 (en) Device for quantitative analysis of respiratory gases
DE60213428T2 (en) APPARATUS FOR THE QUANTITATIVE ANALYSIS OF BREATHING GAS, COMPRISING A PASSIVE BREATHING GAS HUMIDIFIER, IN WHICH LIGHT BEAMS ARE GIVEN BY A DEHUMIDIFIED GAS FLOW
CN210742134U (en) Gas detection system
CN103487479A (en) Handheld expired air analyzer
DE2608546A1 (en) RECYCLING DEVICE, IN PARTICULAR FOR UNDERWATER WORK
DE2750450B2 (en) Ventilator
DE102022111059A1 (en) System for recording breathing gas components
CN210803283U (en) Double-mechanism cooperative gas detection device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 673167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003455

Country of ref document: DE

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140919

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140618

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141020

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003455

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

26N No opposition filed

Effective date: 20150319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER AND PARTNER PATENTANWAELTE AG, LI

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011003455

Country of ref document: DE

Representative=s name: COHAUSZ & FLORACK PATENT- UND RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011003455

Country of ref document: DE

Representative=s name: COHAUSZ & FLORACK PATENT- UND RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011003455

Country of ref document: DE

Owner name: JOHNSON OUTDOORS INC., RACINE, US

Free format text: FORMER OWNERS: SIEBER, ARNE, ZELL AM SEE, AT; STOIANOVA-SIEBER, MILENA, ZELL AM SEE, AT

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: JOHNSON OUTDOORS INC., US

Free format text: FORMER OWNER: SIEBER, ARNE, AT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 673167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170921 AND 20170927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200227

Year of fee payment: 10

Ref country code: DE

Payment date: 20200227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200304

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011003455

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210225