EP2096262A1 - Axialturbine mit geringen Leckageverlusten - Google Patents

Axialturbine mit geringen Leckageverlusten Download PDF

Info

Publication number
EP2096262A1
EP2096262A1 EP08003488A EP08003488A EP2096262A1 EP 2096262 A1 EP2096262 A1 EP 2096262A1 EP 08003488 A EP08003488 A EP 08003488A EP 08003488 A EP08003488 A EP 08003488A EP 2096262 A1 EP2096262 A1 EP 2096262A1
Authority
EP
European Patent Office
Prior art keywords
deflector
casing
axial flow
flow
turbine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08003488A
Other languages
English (en)
French (fr)
Inventor
Thomas Dr. Hofbauer
Budimir Dept.Engineering Wittle Laboratory Rosic
Armin Dr. De Lazzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08003488A priority Critical patent/EP2096262A1/de
Publication of EP2096262A1 publication Critical patent/EP2096262A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other

Definitions

  • the invention relates to an axial flow turbine with low shroud leakage losses.
  • An axial flow turbine for example a steam turbine, comprises a casing and a rotor which is rotably supported within the casing.
  • the rotor comprises a shaft and a plurality of rotor blade rings which are attached behind one another to the shaft.
  • steam is expanded progressively by the blade rings to bring about driving the shaft.
  • Each rotor blade ring is formed by a plurality of rotor blades being circumferentially arranged, wherein two adjacent rotor blades form a blade passage.
  • the rotor blades are aerodynamically profiled such that, when the steam flow passes the blade passages, the stream flow is turned and thereby a circumferential force on the rotor blades is generated.
  • the circumferential forces on each blade of the rotor blade ring effect turning the rotor thereby generating shaft power.
  • the rotor blades are fixed to the shaft and extend therefrom to the casing.
  • the lateral ends of the rotor blades at the casing are formed into blade tips, wherein at the blade tips the rotor blade ring is shrouded by a shroud.
  • the shroud is fixed to the blade tips and spaced apart from the casing thereby forming a tip clearance.
  • the height of the tip clearance is dimensioned such that during operation of the steam turbine it is prevented that the shroud scrubs at the casing. Due to the fact that static pressure of the steam flow upstream of the rotor blade ring is higher than static pressure of the steam flow downstream of the rotor blade ring, during operation of the steam turbine a leakage flow passes the tip clearance.
  • the main steam flow passes the blade passages for shaft power generation, whereas the leakage flow bypasses the rotor blade ring via the tip clearance. Therefore, the leakage flow does not participate to the shaft power generation and is lost. Further, the leakage flow after reentrained into the main flow path interferes with the main steam flow. Therefore, the main steam flow is locally inhomogeneous resulting to a mismatched flow. Furthermore, the tip clearance flow mixes with the main steam flow and generates disadvantageous dissipation. As consequence of this, the presence of the tip clearance flow affects the turbine efficiency.
  • the loss caused by the tip clearance flow is significantly high compared with the total losses of the steam turbine.
  • a remedy to reduce this negative effect of the tip clearance flow on the aerodynamic efficiency of the steam turbine is to take measurements reducing the tip clearance flow.
  • a measurement for example, is to provide a labyrinth seal on the outer circumference of the shroud within the tip clearance in order to reduce the mass flow of the tip clearance flow.
  • a sealing element is fixed at the casing in the tip clearance.
  • a circumferential groove is provided into which the sealing element is mortised.
  • the axial flow turbine comprises a turbine casing and a blade ring having a shroud being spaced apart from the casing thereby forming a radial tip clearance, through which a leakage flow is passing during operation of the turbine, wherein the casing comprises a deflector arranged outside the tip clearance and adapted to alter the cavity flow such that the leakage flow is turned from axial direction to radial direction and/or such that a downstream part of the cavity is aerodynamically blocked by the deflector.
  • the leakage flow mixes with the main flow.
  • the mixing is accompanied by a vortex system generating dissipation and therefore loses.
  • the vortex system is advantageously affected by means of the deflector. Therefore, the loss production caused by the leakage flow is reduced.
  • the radial deflector is acting as an extra sealing element reducing the leakage mass flow fraction.
  • the deflector is arranged outside the tip clearance; hence the deflector has no influence on the geometry of the tip clearance. Therefore, known measurements for reducing the tip clearance flow, for example a labyrinth seal or a sealing element, can be provided in the tip clearance, although the deflector protrusion is arranged.
  • the deflector is arranged downstream of the rotor blade ring in the vicinity thereof.
  • the radial deflector advantageously turns the leakage flow from axial direction to radial direction toward the inward of the casing before the leakage flow has been mixed with the main flow in the turbine downstream of the rotor blade ring. Further, since the deflector is arranged immediately downstream of the shroud, no additional space for the deflector has to be provided.
  • the deflector extends in radial direction towards the inward of the casing at most to the outer radius level of the shroud at the downstream edge. Further, the deflector is preferably formed into a ring protrusion.
  • the deflector advantageously can be formed into a uniform geometry device.
  • a ring cavity is provided in the casing upstream of the deflector and adjacent thereto.
  • the ring cavity upstream the deflector provides additional radial space compared with the tip clearance. Therefore, upstream the deflector in the ring cavity a turning vortex can be generated for effectively turning the leakage flow. Further, it is preferred that the deflector is integrally formed with the casing.
  • the deflector can be manufactured in line with the manufacturing of the casing. This is the reason why the provision of the deflector in the casing is related to no significant additional costs. Enhanced recirculating flow in the ring cavity dissipates the momentum of leakage flow reducing its mass flow fraction.
  • the deflector comprises a deflection face upstream facing the leakage flow.
  • the deflector works effectively like a vertical vane being formed into a circumferential strip.
  • the deflection face is bent opposite to the main flow direction.
  • the casing preferably comprises a plurality of turning vanes forming a turning vane ring being arranged within the tip clearance upstream of the deflector in order to reduce the circumferential component of the leakage flow.
  • the momentum of the leakage flow is advantageously changed.
  • the combination of the deflector and the turning vanes modifies the leakage re-entry angle, reduces its circumferential velocity component and reduces the leakage mass flow fraction.
  • the turning vanes are arranged to be inclined toward axial direction to achieve a favourable direction of the leakage flow at re-entry into the main flow.
  • the turning vanes are supported by the deflector or that the turning vanes and deflector are manufactured integrally.
  • Figures 1 and 2 shows a tip clearance area of an axial flow turbine 1.
  • the axial flow turbine 1 comprises a casing 7 and a rotor blade ring 2 formed by rotor blades 3.
  • the blade 3 extends in radial direction of the casing 7 and has a longitudinal end formed into a blade tip 4 facing the casing 7.
  • the blade tip 4 is shrouded by a shroud 5 having an outer surface facing the casing 7.
  • the outer surface of the shroud 5 comprises three shroud steps, wherein the shroud step 6 is located downstream and has the largest outer radius compared with the other two shroud steps.
  • the casing 7 comprises a clearance cavity 8.
  • the outer surface of the shroud 5 is spaced apart from the bottom wall of the clearance cavity 8 thereby forming a tip clearance 9.
  • each sealing element 10 is arranged and dimensioned for cooperating with one attributed shroud step.
  • the sealing elements 10 are arranged in the way to allow for restricted axial movement of the rotor relative to the casing for all operating conditions.
  • the casing 7 comprises a deflector 11 arranged outside the downstream the shroud edge 9 and downstream in the vicinity of the shroud step 6.
  • the deflector 11 extends in radial direction towards the inward of the casing 7 such that the deflector 11 is still spaced in radial direction from the outer radius level of the shroud step 6. Furthermore, the gap between deflector and shroud as a result of mutual radial and axial displacements between rotor and casing is formed into a circumferential ring protrusion.
  • the deflector 11 is integrally formed with the casing 7.
  • the height 14 of the ring cavity 13 is 6 mm
  • the axial distance 16 between the shroud 5 and the deflector 11 is 16 mm
  • the radial distance 15 between the shroud step 6 and the deflector 11 is 15 mm.
  • the casing 7 further comprises a ring cavity 13 being provided upstream of the deflector 11 and adjacent thereto.
  • the deflector 11 comprises a deflection face 12 upstream facing the leakage flow.
  • the deflection face 12 is curved opposite to the main flow direction.
  • the deflection face 12 is in line with the radial direction.
  • the casing 7 further comprises a plurality of turning vanes 17 forming a turning vane ring being arranged within the ring cavity 13 upstream of the deflector 11 and adjacent thereto.
  • the turning vanes 17 are arranged in a way to reduce leakage flow circumferential velocity component. Further, the turning vanes 17 are abutting against the deflection face 12 thereby being supported by the deflector 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP08003488A 2008-02-26 2008-02-26 Axialturbine mit geringen Leckageverlusten Withdrawn EP2096262A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08003488A EP2096262A1 (de) 2008-02-26 2008-02-26 Axialturbine mit geringen Leckageverlusten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08003488A EP2096262A1 (de) 2008-02-26 2008-02-26 Axialturbine mit geringen Leckageverlusten

Publications (1)

Publication Number Publication Date
EP2096262A1 true EP2096262A1 (de) 2009-09-02

Family

ID=40040085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08003488A Withdrawn EP2096262A1 (de) 2008-02-26 2008-02-26 Axialturbine mit geringen Leckageverlusten

Country Status (1)

Country Link
EP (1) EP2096262A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292897A1 (de) * 2009-09-02 2011-03-09 Alstom Technology Ltd Axialdurchflussturbine
WO2011029420A1 (de) * 2009-09-10 2011-03-17 Mtu Aero Engines Gmbh Umlenkvorrichtung für einen leckagestrom in einer gasturbine und gasturbine
WO2011054341A3 (de) * 2009-11-07 2011-07-07 Mtu Aero Engines Gmbh Dichtanordnung für eine gasturbine und eine derartige gasturbine
WO2012036068A1 (ja) * 2010-09-17 2012-03-22 三菱重工業株式会社 タービン
JP2012154201A (ja) * 2011-01-24 2012-08-16 Ihi Corp タービン動翼及びシール構造
CN102822450A (zh) * 2010-05-26 2012-12-12 三菱重工业株式会社 密封结构、具备该密封结构的涡轮机、以及具备该涡轮机的发电设备
EP2554796A1 (de) * 2010-03-30 2013-02-06 Mitsubishi Heavy Industries, Ltd. Turbine
JP2014084816A (ja) * 2012-10-25 2014-05-12 Hitachi Ltd 軸流タービン
JP2014234714A (ja) * 2013-05-31 2014-12-15 三菱日立パワーシステムズ株式会社 軸流タービン
US20150132114A1 (en) * 2013-11-08 2015-05-14 Mitsubishi Hitachi Power Systems, Ltd. Axial turbine
US9453417B2 (en) 2012-10-02 2016-09-27 General Electric Company Turbine intrusion loss reduction system
JP2016194306A (ja) * 2016-08-03 2016-11-17 三菱日立パワーシステムズ株式会社 蒸気タービンの静止体及びこれを備えた蒸気タービン
CN108119189A (zh) * 2016-11-30 2018-06-05 通用电气公司 叶片、旋转机械及其组装方法
WO2019131011A1 (ja) * 2017-12-28 2019-07-04 三菱重工航空エンジン株式会社 航空機用ガスタービン及び航空機用ガスタービンの動翼
JP2019203398A (ja) * 2018-05-21 2019-11-28 三菱日立パワーシステムズ株式会社 蒸気タービン
WO2020158106A1 (ja) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 回転機械
WO2020158105A1 (ja) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 回転機械
WO2020158104A1 (ja) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 回転機械
CN114776389A (zh) * 2022-03-16 2022-07-22 北京航空航天大学 一种具有缘板台阶机匣的带冠涡轮

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1953710A1 (de) * 1968-10-28 1970-04-30 Elin Union Ag Erosionsschutz fuer die Beschaufelung von Gasturbinen,insbesondere Abgasturbinen
FR2439869A1 (fr) * 1978-10-24 1980-05-23 Gerry Ulrich Convertisseur d'energie tournant utilisant un fluide, notamment pour compresseurs ou turbines pour moteur a turbine a gaz assurant la propulsion de vehicules aeriens ou marins
JP2004011553A (ja) * 2002-06-07 2004-01-15 Mitsubishi Heavy Ind Ltd 軸流型ターボ機械
US20040223844A1 (en) * 2003-05-07 2004-11-11 Farrell Alison Carol Method and apparatus to facilitate sealing within turbines
GB2417053A (en) * 2004-08-11 2006-02-15 Rolls Royce Plc A turbine comprising baffles situated between turbine blades and guide vanes
EP1767746A1 (de) * 2005-09-22 2007-03-28 Siemens Aktiengesellschaft Rotor- bzw. Leitschaufel einer Turbine sowie Turbinenstufe mit einer Anzahl solcher Rotor- bzw. Leitschaufeln
JP2007321721A (ja) * 2006-06-05 2007-12-13 Toshiba Corp 軸流タービン段落および軸流タービン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1953710A1 (de) * 1968-10-28 1970-04-30 Elin Union Ag Erosionsschutz fuer die Beschaufelung von Gasturbinen,insbesondere Abgasturbinen
FR2439869A1 (fr) * 1978-10-24 1980-05-23 Gerry Ulrich Convertisseur d'energie tournant utilisant un fluide, notamment pour compresseurs ou turbines pour moteur a turbine a gaz assurant la propulsion de vehicules aeriens ou marins
JP2004011553A (ja) * 2002-06-07 2004-01-15 Mitsubishi Heavy Ind Ltd 軸流型ターボ機械
US20040223844A1 (en) * 2003-05-07 2004-11-11 Farrell Alison Carol Method and apparatus to facilitate sealing within turbines
GB2417053A (en) * 2004-08-11 2006-02-15 Rolls Royce Plc A turbine comprising baffles situated between turbine blades and guide vanes
EP1767746A1 (de) * 2005-09-22 2007-03-28 Siemens Aktiengesellschaft Rotor- bzw. Leitschaufel einer Turbine sowie Turbinenstufe mit einer Anzahl solcher Rotor- bzw. Leitschaufeln
JP2007321721A (ja) * 2006-06-05 2007-12-13 Toshiba Corp 軸流タービン段落および軸流タービン

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292897A1 (de) * 2009-09-02 2011-03-09 Alstom Technology Ltd Axialdurchflussturbine
WO2011029420A1 (de) * 2009-09-10 2011-03-17 Mtu Aero Engines Gmbh Umlenkvorrichtung für einen leckagestrom in einer gasturbine und gasturbine
WO2011054341A3 (de) * 2009-11-07 2011-07-07 Mtu Aero Engines Gmbh Dichtanordnung für eine gasturbine und eine derartige gasturbine
EP2554796A1 (de) * 2010-03-30 2013-02-06 Mitsubishi Heavy Industries, Ltd. Turbine
US9388701B2 (en) 2010-03-30 2016-07-12 Mitsubishi Hitachi Power Systems, Ltd. Turbine
EP2554796A4 (de) * 2010-03-30 2014-08-06 Mitsubishi Heavy Ind Ltd Turbine
CN102822450B (zh) * 2010-05-26 2015-03-11 三菱重工业株式会社 密封结构、具备该密封结构的涡轮机、以及具备该涡轮机的发电设备
EP2578810A4 (de) * 2010-05-26 2013-10-16 Mitsubishi Heavy Ind Ltd Dichtungsstruktur, turbinenmaschine damit sowie kraftwerk mit dieser turbinenmaschine
EP2578810A1 (de) * 2010-05-26 2013-04-10 Mitsubishi Heavy Industries, Ltd. Dichtungsstruktur, turbinenmaschine damit sowie kraftwerk mit dieser turbinenmaschine
CN102822450A (zh) * 2010-05-26 2012-12-12 三菱重工业株式会社 密封结构、具备该密封结构的涡轮机、以及具备该涡轮机的发电设备
JP2012062863A (ja) * 2010-09-17 2012-03-29 Mitsubishi Heavy Ind Ltd タービン
KR101491971B1 (ko) * 2010-09-17 2015-02-11 미츠비시 히타치 파워 시스템즈 가부시키가이샤 터빈
US9726027B2 (en) 2010-09-17 2017-08-08 Mitsubishi Hitachi Power Systems, Ltd. Turbine
CN103097666B (zh) * 2010-09-17 2016-01-20 三菱日立电力系统株式会社 透平机
CN103097666A (zh) * 2010-09-17 2013-05-08 三菱重工业株式会社 透平机
WO2012036068A1 (ja) * 2010-09-17 2012-03-22 三菱重工業株式会社 タービン
JP2012154201A (ja) * 2011-01-24 2012-08-16 Ihi Corp タービン動翼及びシール構造
US9453417B2 (en) 2012-10-02 2016-09-27 General Electric Company Turbine intrusion loss reduction system
JP2014084816A (ja) * 2012-10-25 2014-05-12 Hitachi Ltd 軸流タービン
EP2725201A3 (de) * 2012-10-25 2016-05-25 Mitsubishi Hitachi Power Systems, Ltd. Axial durchströmte Turbine
US9476315B2 (en) 2012-10-25 2016-10-25 Mitsubishi Hitachi Power Systems, Ltd. Axial flow turbine
JP2014234714A (ja) * 2013-05-31 2014-12-15 三菱日立パワーシステムズ株式会社 軸流タービン
US20150132114A1 (en) * 2013-11-08 2015-05-14 Mitsubishi Hitachi Power Systems, Ltd. Axial turbine
JP2016194306A (ja) * 2016-08-03 2016-11-17 三菱日立パワーシステムズ株式会社 蒸気タービンの静止体及びこれを備えた蒸気タービン
CN108119189A (zh) * 2016-11-30 2018-06-05 通用电气公司 叶片、旋转机械及其组装方法
CN108119189B (zh) * 2016-11-30 2022-05-17 通用电气公司 叶片、旋转机械及其组装方法
WO2019131011A1 (ja) * 2017-12-28 2019-07-04 三菱重工航空エンジン株式会社 航空機用ガスタービン及び航空機用ガスタービンの動翼
JP2019120140A (ja) * 2017-12-28 2019-07-22 三菱重工航空エンジン株式会社 航空機用ガスタービン及び航空機用ガスタービンの動翼
US11339676B2 (en) 2017-12-28 2022-05-24 Mitsubishi Heavy Industries Aero Engines, Ltd. Aircraft gas turbine, and rotor blade of aircraft gas turbine
JP2019203398A (ja) * 2018-05-21 2019-11-28 三菱日立パワーシステムズ株式会社 蒸気タービン
JP7148273B2 (ja) 2018-05-21 2022-10-05 三菱重工業株式会社 蒸気タービン
CN113383147A (zh) * 2019-01-31 2021-09-10 三菱动力株式会社 旋转机械
WO2020158106A1 (ja) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 回転機械
JP2020122445A (ja) * 2019-01-31 2020-08-13 三菱日立パワーシステムズ株式会社 回転機械
JP2020122446A (ja) * 2019-01-31 2020-08-13 三菱日立パワーシステムズ株式会社 回転機械
CN113631797A (zh) * 2019-01-31 2021-11-09 三菱动力株式会社 旋转机械
WO2020158104A1 (ja) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 回転機械
WO2020158105A1 (ja) * 2019-01-31 2020-08-06 三菱日立パワーシステムズ株式会社 回転機械
US11655723B2 (en) 2019-01-31 2023-05-23 Mitsubishi Heavy Industries, Ltd. Rotating machine
JP7145775B2 (ja) 2019-01-31 2022-10-03 三菱重工業株式会社 回転機械
JP7145774B2 (ja) 2019-01-31 2022-10-03 三菱重工業株式会社 回転機械
JP2020122444A (ja) * 2019-01-31 2020-08-13 三菱日立パワーシステムズ株式会社 回転機械
US11519287B2 (en) 2019-01-31 2022-12-06 Mitsubishi Heavy Industries, Ltd. Rotating machine
CN113383147B (zh) * 2019-01-31 2023-01-13 三菱重工业株式会社 旋转机械
CN113631797B (zh) * 2019-01-31 2023-01-20 三菱重工业株式会社 旋转机械
CN114776389A (zh) * 2022-03-16 2022-07-22 北京航空航天大学 一种具有缘板台阶机匣的带冠涡轮

Similar Documents

Publication Publication Date Title
EP2096262A1 (de) Axialturbine mit geringen Leckageverlusten
US8727713B2 (en) Rotor oscillation preventing structure and steam turbine using the same
US10316679B2 (en) Seal structure and rotating machine
US8784045B2 (en) Seal assembly
CN105822352B (zh) 用于轮空间吹扫空气的控制的涡轮叶片
KR101305575B1 (ko) 터빈 동익 및 터보 기계
EP3037674A1 (de) Motor und Verfahren zum Betrieb des besagten Motors
JP2010159667A (ja) 軸流タービン
KR101939520B1 (ko) 터빈
US8608424B2 (en) Contoured honeycomb seal for a turbomachine
EP3161265A1 (de) Verdichterschaufelblatt und zugehörige verdichterrotorbaugruppe
JP2011106474A (ja) 軸流タービン段落および軸流タービン
US10041368B2 (en) Turbine assembly
JP2011099438A (ja) 蒸気通路流れ剥離低減システム
US10794397B2 (en) Rotor blade and axial flow rotary machine
JP6924233B2 (ja) 回転機械
CN111051650B (zh) 轴流旋转机械
US8888446B2 (en) Turbomachine rotor having patterned coating
JP6209787B2 (ja) シール構造及び回転機械
JP6986426B2 (ja) タービン
CN111622811B (zh) 轴流涡轮机
EP4130439A1 (de) Sekundärflussunterdrückungsstruktur
US20170211407A1 (en) Flow alignment devices to improve diffuser performance
EP2299057B1 (de) Gasturbine
JP2019082154A (ja) タービン及び動翼

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100303

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566