EP2091029B2 - Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung - Google Patents

Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung Download PDF

Info

Publication number
EP2091029B2
EP2091029B2 EP08101643.8A EP08101643A EP2091029B2 EP 2091029 B2 EP2091029 B2 EP 2091029B2 EP 08101643 A EP08101643 A EP 08101643A EP 2091029 B2 EP2091029 B2 EP 2091029B2
Authority
EP
European Patent Office
Prior art keywords
temperature
microcontroller
alarm
measurement signal
fire alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08101643.8A
Other languages
English (en)
French (fr)
Other versions
EP2091029B1 (de
EP2091029A1 (de
Inventor
Martin Fischer
Hans Aebersold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39683670&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2091029(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to AT08101643T priority Critical patent/ATE493724T1/de
Priority to DE502008002126T priority patent/DE502008002126D1/de
Priority to EP08101643.8A priority patent/EP2091029B2/de
Priority to PCT/EP2009/051730 priority patent/WO2009101187A1/de
Publication of EP2091029A1 publication Critical patent/EP2091029A1/de
Publication of EP2091029B1 publication Critical patent/EP2091029B1/de
Application granted granted Critical
Publication of EP2091029B2 publication Critical patent/EP2091029B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components

Definitions

  • the present invention relates to the technical field of hazard alarm technology.
  • the present invention relates to a fire alarm which has a primary measuring device for acquiring a physical measured variable and for outputting a measuring signal indicative of a given hazardous situation, and a microcontroller which is connected downstream of the measuring device and which is set up to evaluate the measuring signal.
  • the present invention also relates to a method for recognizing a dangerous situation with a fire alarm.
  • the present invention also relates to a computer-readable storage medium and a program element which contain instructions for carrying out the method according to the invention for recognizing a dangerous situation.
  • a smoke detector fire alarm in which light scattered from smoke particles is received by a light receiving element and a smoke density is detected using an output level of the light receiving element.
  • the fire detector has a temperature measuring means for measuring the ambient temperature of a light emitting element for irradiating the smoke particles and the light receiving element.
  • the fire alarm has a temperature compensation means for correcting the output level of the light receiving element in accordance with the ambient temperature measured by the temperature measuring means.
  • the temperature compensation means and the smoke density detection means are implemented in the form of a microcomputer.
  • Simple optical smoke alarms based on the scattered light principle usually have a light-emitting diode which emits light in the visible or in the infrared spectral range and which preferably emits light in a scattered area in pulsed form.
  • the scatter area is often referred to as a maze. If smoke particles are present in the scattering area, the light beams are at least partially scattered there and detected by a correspondingly mounted light receiver.
  • the received optical power of the light receiver detected measuring light is decisive, whether e.g. rather smaller, darker particles, which arise in open fires, or rather larger, lighter particles, which arise in smoldering fires, are detected.
  • test lights TF2 to TF5 are used to test the response behavior of the hazard warning device to different types of fire.
  • the American standard UL268 for fire detectors also knows different test fires, which, however, differ from the EN54-7 standard and are therefore not dealt with further here. In order to be allowed to bring a fire detector onto the market, all corresponding test fires with their respective different characteristics must be passed.
  • a "forward scattering" smoke alarm is to be understood as a smoke alarm in which the angle between the measuring light emitted by the light-emitting diode and the measuring light detected by the light receiver is greater than 90 °, for example approx. 150 °.
  • an optical fire detector with only one optical signal path and with an acceptable rate of false alarms therefore usually responds very inhomogeneously to the various test fires.
  • the test fire TF2 will generate an alarm very early, but the test fire TF5 will trigger an alarm very late.
  • “very early” and “very late” always mean a time specification in relation to the time limits defined in Standard 54-7.
  • additional sensor inputs can be coupled to a temperature sensor, for example.
  • the corresponding combination alarm is then referred to as an "O-T” alarm.
  • O stands for optical and "T” for temperature.
  • a further optical sensor with a different scattering angle and / or with a light-emitting diode emitting in a different spectral range.
  • Such combination alarms are accordingly referred to as "O-O" hazard alarms.
  • An "OT” hazard alarm has the disadvantage that its construction is relatively expensive. In the production of an "OT” alarm device, there are costs for installing a temperature-sensitive component and for the temperature-sensitive component itself. also The shape of the alarm detector's housing must be adapted to the temperature-sensitive component and mechanical protective measures such as protection against accidental contact must be taken.
  • the present invention is based on the device-related object of creating a hazard indicator that is as inexpensive as possible but nevertheless safe from false alarms.
  • the present invention is based on the method-related object of improving the detection of a dangerous situation with regard to a low false alarm rate in a cost-effective manner.
  • a hazard alarm which can in particular be an optical smoke alarm
  • the described hazard alarm has (a) a measuring device for acquiring a physical measured variable and for outputting a measuring signal which is indicative of a given hazardous situation, (b) a microcontroller which is connected downstream of the measuring device and which is set up to evaluate the measuring signal, and (c) a temperature measuring device for detecting a temperature and for outputting a temperature measuring signal which is indicative of the detected temperature.
  • the temperature measuring device is integrated in the microcontroller and the microcontroller is set up in such a way that the temperature measuring signal is also taken into account when evaluating the measuring signal.
  • the hazard alarm described is based on the knowledge that modern microprocessors often have integrated temperature-dependent components which can be used for temperature measurement without or only with a small additional apparatus structure.
  • the temperature measurement can be translated into a temperature value by means of an analog / digital converter, for example.
  • This temperature value can then represent the housing temperature of the microcontroller. In this way, the heating of the housing of the microcontroller can be used as an additional hazard input for an alarm criterion of the hazard indicator in addition to the measurement signal from the measurement device.
  • the temperature measuring device is integrated in the microcontroller. This means that a common component housing is provided for the microcontroller and the temperature measuring device. Typically, “integrated” also means that it is not possible to separate the temperature measuring device from the microcontroller without destroying at least one of the two components “microcontroller and temperature measuring device”.
  • the sensitivity and the response time of the temperature measuring device integrated in the microcontroller will generally not be as good as, for example, a separate temperature-sensitive resistor which is used in a known manner for special temperature indicators.
  • Such temperature-sensitive resistors such as NTC resistors (negative temperature coefficient resistors) are usually spatially arranged in a temperature detector in such a way that the ambient air flows optimally against them and respond quickly due to a preferably low thermal mass. Rapid temperature changes can thus be detected quickly.
  • the temperature measuring device integrated in the microcontroller can therefore usually not completely replace the NTC resistance of a thermal alarm indicator, so that, for example, the thermal standard EN54-5 relevant for hazard alarms could not be met.
  • An increase in the housing temperature of the microcontroller detected by the integrated temperature measuring device can, however, contribute to both increasing the sensitivity of the hazard alarm and reducing the probability of triggering a false alarm in a simple manner and in particular without additional expenditure on equipment.
  • the temperature measurement signal of the temperature measurement device integrated in the microcontroller is used in addition to the measurement signal of the actual measurement device as a further or additional hazard alarm input.
  • this additional alarm input therefore, as a rule, no additional expenditure on equipment is required in an advantageous manner. This applies in any case to those microcontrollers which anyway have a suitable temperature measuring device.
  • the measuring device can be, for example, a gas measuring device which has a chemical sensor to which gas molecules from the ambient air are chemically bound on the sensor surface.
  • the bound gas molecules can give off electrical charges that change the electrical conductivity of the sensor's semiconductor material.
  • the gases to be detected can be fire gases such as CO2. From a certain concentration in a monitored room, the described hazard alarm generates a hazard message or an alarm message.
  • the hazard alarm can of course also have several measuring devices may have, wherein at least one of the measuring devices is combined with the described temperature measuring device with regard to a common signal processing.
  • the measurement signals provided by all measurement devices are preferably combined with one another.
  • the temperature measuring device is a temperature measuring diode.
  • the use of a temperature measuring diode as a temperature measuring device integrated in the microcontroller has the advantage that it can be produced with a semiconductor production of the microcontroller without additional process steps.
  • Temperature measuring diodes are already present in many modern microcontrollers. Therefore, the described hazard alarm can be constructed with simple electronic standard components and can thus be implemented in an inexpensive manner.
  • the measuring device is an optical measuring device which has (a) a light transmitter set up to emit a measuring light and (b) a light receiver set up to receive at least part of the measuring light.
  • O-T optical temperature
  • the temperature measurement signal can, however, be used for evaluating the measurement signal of the primary measurement device and thus contribute to a higher sensitivity and, at the same time, to a lower probability of false alarms compared to hazard alarms with only a single measurement device.
  • the described hazard alarm can be manufactured significantly more cheaply compared to known O-T hazard alarms.
  • the temperature measuring device essentially detects the rise in the housing temperature of the microcontroller. Even if the temperature measuring device is inevitably coupled with a comparatively large thermal mass, in the event of a fire, taking into account the rise in the housing temperature can contribute to complying with the EN54-7 regulation, which is relevant for optical fire detectors, even with a less sensitive optical adjustment and therefore protecting against false alarms increase significantly.
  • the optical measuring device can be used to measure light scattering caused by smoke particles and / or shadowing caused by smoke particles.
  • the light receiver is preferably arranged at an angle of, for example, greater than 10 ° relative to the optical axis of the measurement light emitted by the light transmitter. This means that only scattered measuring light reaches the light receiver, which generates a corresponding measuring signal in the presence of smoke particles.
  • the light receiver is preferably arranged relative to the light transmitter in such a way that at least some of the unscattered measurement light reaches the light receiver even when there is no smoke. The light intensity measured by the light receiver is reduced in this case by the presence of light absorbing or light scattering smoke particles.
  • the described primarily optical hazard alarm can be calibrated less sensitively thanks to the additional thermal hazard input compared to a known purely optical hazard alarm.
  • This has the advantage that the comparison process for generating or initiating a hazard message is considerably easier. This is due to the fact that the specified tolerances are considerably narrower for more sensitive alarm devices and such sensitive alarm devices are therefore much more difficult to manufacture within the narrow prescribed tolerances of the EN54-7 standard.
  • the hazard alarm additionally has an alarm housing, in the spatial center of which the microcontroller is arranged. This has the advantage that the thermal directional dependency of the hazard alarm described is low. This in turn means that a temperature change caused by a heat source can be detected with constant sensitivity regardless of the direction in which the heat source is located, starting from the hazard alarm described.
  • the housing it is not absolutely necessary that the housing have a perfectly symmetrical shape.
  • the microcontroller is then preferably arranged at the point within the housing at which heat sources, such as a fire, can be detected as independent of direction as possible.
  • the hazard alarm additionally has at least one heat-conducting element which is connected to a housing of the microcontroller.
  • the temperature measuring device of the microcontroller can better detect temperature changes in the air surrounding the alarm.
  • the materials that conduct heat well and / or the at least one heat-conducting element can be arranged in such a way that the outside air of the hazard alarm flows around or against them.
  • the heat conduction element can also be referred to as a so-called thermal discharge pad.
  • the described use of at least one heat conducting element has the advantage that a better thermal coupling of the microcontroller to its surroundings and thus a shorter response time of the microcontroller housing to temperature changes can be guaranteed.
  • the heating element can be used, for example, to thermally couple a shielding plate of the photodiode serving as the light transmitter to the housing of the microcontroller. Since the shielding bleach of the photodiode is typically located within the labyrinth through which air flows or within the optical measuring chamber of the alarm indicator, the thermal coupling of the temperature measuring device to the ambient air is improved in a simple and efficient manner and thus the thermal time constant of the housing is effectively reduced.
  • a method for recognizing a dangerous situation in particular for recognizing smoke, is specified.
  • the specified method comprises (a) recording a physical measured variable and outputting a measurement signal which is indicative of a given dangerous situation by means of a measuring device, (b) recording a temperature and outputting a temperature measurement signal which is indicative of the recorded temperature, by means of a temperature measuring device integrated in the microcontroller, and (c) an evaluation of the measurement signal, taking into account the temperature measurement signal, by means of the microcontroller which is connected downstream of the measuring device.
  • the stated method is based on the knowledge that simple hazard alarms with only one sensor input can be upgraded in a simple manner and in particular without additional equipment expenditure by using a temperature measuring device, which is already present in many modern microcontroller components, for temperature measurement. A measured temperature value achieved in this way is then taken into account when evaluating the primary measurement signal of the measurement device. Thus, a danger message initiated by the microcontroller no longer depends exclusively on the output primary measurement signal of the measuring device but also on the temperature measurement signal of the temperature measuring device integrated in the microcontroller.
  • the described method has the advantage that it can be carried out by many conventional alarm indicators without any equipment modifications. This also applies to alarm indicators which initially only have a single alarm input or at least initially no thermal alarm input.
  • the only requirement for the implementation of the specified method is the presence of a microcontroller which has an integrated temperature measuring device.
  • the described method can be implemented by simple programming, i. can be implemented using software.
  • the method additionally includes amplifying the changes over time in the measurement signal and / or the temperature measurement signal. This means that, for example, in the event of a temperature rise, the rise over time of the temperature measurement curve recorded by the temperature measurement device is amplified. In other words, this means that the slope of the temperature measurement curve is increased.
  • This can be done in a known manner, for example, by a suitable software algorithm and / or by an appropriately designed electronic circuit and thus in hardware.
  • the described amplification of the temporal changes has the advantage that the temporal response behavior of the integrated temperature measuring device, which is very much slowed compared to an external NTC, can, after amplification, at least approximate to the response of an external temperature sensor, for example an NTC.
  • only a relative change in the temperature measurement signal is taken into account when the microcontroller evaluates the measurement signal.
  • the entire alarm indicator can be produced just as quickly as a less powerful conventional alarm indicator, which only has one sensor input and, if necessary, does not use a temperature measuring device integrated in a microcontroller at all for evaluating and initiating a hazard message .
  • the temperature measurement signal is indicative of an absolute temperature.
  • a temperature measurement signal which is indicative of an absolute temperature value has the advantage that not only temperature changes but also absolute temperature values can be taken into account when evaluating the primary measurement signal.
  • the hazard alarm can be adapted even more specifically to certain ambient conditions and, on the one hand, high sensitivity and, on the other hand, a low false alarm probability of the hazard alarm can be achieved.
  • an absolute temperature value must be taken into account before and possibly calibration or calibration of the temperature measuring device also during operation of the hazard alarm. To do this, the temperature measuring device must be compared with a reference temperature.
  • the measuring device is an optical measuring device and the temperature measuring signal is used to compensate for temperature-dependent effects of the optical measuring device.
  • the term optical path is not only to be understood as the entire optical path between the light transmitter and the light receiver, the optical path also includes optical or optoelectronic components such as the light transmitter and the light receiver.
  • the temperature changes not only the light output of the light transmitter but also the sensitivity of the light receiver can change.
  • a set relative adjustment between the light transmitter and light receiver can change, for example, as a result of thermal stresses in the holding elements of the hazard alarm. All these thermal effects can, as far as they are reproducible and known in advance, be taken into account in the evaluation of the primary measurement signal and compensated in a suitable manner.
  • the temperature measurement signal essentially reflects the housing temperature of the microcontroller.
  • the housing temperature is used for temperature compensation of the optical path. This improves the response behavior of the alarm indicator, especially at very cold and very hot temperatures.
  • the response behavior of the alarm indicator at 55 degrees may deviate from the response behavior at 25 degrees by a maximum of a certain factor.
  • the described compensation of temperature-dependent effects thus contributes to the fact that the corresponding optical measuring device can more easily meet the EN54-7 standard.
  • a computer-readable storage medium in which a program for recognizing a dangerous situation is stored. If the program is executed by a microcontroller of a hazard alarm of the type described above, it is set up to carry out the above-specified method for recognizing a hazardous situation.
  • a program element for recognizing a dangerous situation is described.
  • the program element when it is executed by a microcontroller of a hazard indicator of the type described above, is set up to carry out the above-specified method for recognizing a hazardous situation.
  • the program and / or the program element can be implemented as computer-readable instruction code in any suitable programming language such as, for example, JAVA, C ++, etc.
  • the program and / or the program element can be stored on a computer-readable storage medium (CD-ROM, DVD, removable drive, volatile or non-volatile memory, built-in memory / processor, etc.).
  • the instruction code can program a computer or other programmable device to perform the desired functions.
  • the program and / or the program element can be provided in a network such as the Internet, from which it can be downloaded by a user if necessary.
  • the invention can be implemented both by means of a computer program, e.g. software, as well as by means of one or more special electrical circuits, i. in hardware or in any hybrid form, i.e. using software components and hardware components.
  • FIG. 11 shows a schematic representation of a forward scattering optical hazard alarm 100.
  • the upper part of FIG Figure 1 shows the hazard alarm 100 in a side view parallel to an assembly plane.
  • the mounting level can, for example, be the ceiling of a room to be monitored.
  • the lower part of Figure 1 shows the hazard alarm 100 in a plan view, the viewing direction being oriented perpendicular to the mounting plane.
  • the hazard alarm 100 has a primary optical measuring device which has a light transmitter 110 in the form of a light-emitting diode and a light receiver 115 in the form of a photodiode.
  • the optical measuring device works according to the known scattered light principle.
  • the light receiver 115 only detects a measurement light when this measurement light is scattered on aerosols or smoke particles.
  • the in Figure 1 Hazard indicator shown is thus a smoke alarm 100, which is also suitable for detecting fires.
  • the light-emitting diode 110 is set up to emit measuring light in the infrared spectral range.
  • the smoke detector 100 has a detector housing 140.
  • a substrate 130 in the form of a printed circuit board is located within the housing 140.
  • the detector housing 140 forms an optical chamber 142 into which the smoke particles to be detected can enter via an air stream 150.
  • air slots are formed in the detector housing 140.
  • the smoke alarm 100 also has a microcontroller 120 which is coupled in a known manner both to the light transmitter 110 and to the light receiver 115.
  • the microcontroller 120 is on the one hand for controlling the light-emitting diode 110, possibly via in Figure 1 set up driver circuits not shown.
  • the microcontroller 120 is set up to evaluate an optical measurement signal generated by the photodiode 115.
  • the microcontroller 120 has a temperature measuring device 125 designed as a temperature measuring diode.
  • the temperature measuring diode 125 is integrated in the microcontroller 120. This means that the microcontroller 120 and the temperature measuring diode 125 are arranged in a common housing.
  • the microcontroller 120 is set up, for example by means of suitable programming, in such a way that a temperature measurement signal from the temperature measurement diode 125 is also taken into account when evaluating a measurement signal generated by the photodiode 115.
  • the described hazard alarm 100 differs from a known so-called O-T hazard alarm, among other things, in that instead of a separate temperature measuring resistor such as an NTC resistor, a temperature measuring device 125 integrated in the microcontroller 120 is used for temperature measurement.
  • the circuit board 130 serves not only for electrical wiring or the electrical contacting of electronic and optoelectronic components of the smoke detector 100. According to the exemplary embodiment shown here, the circuit board 130 also serves as a mechanical holder for these components.
  • heat conducting elements 134 are provided.
  • the heat conducting elements 134 which are also referred to as thermal pads, represent a heat-conducting connection between the temperature measuring diode 125 and a heat exchange element 116.
  • the heat-conducting connection is made via a soldered connection through a through hole 132 to the heat exchange element 116
  • the heat exchange element is a metallic shield 116 of the photodiode 115 Figure 1 As can be seen, ambient air 150 flows against or around metallic shield 116, so that heating of ambient air 150, in particular due to an external source of fire, is quickly detected by integrated temperature measuring device 125.
  • Figure 2 shows a diagram 260 in which the response behavior of the in Figure 1 illustrated optical hazard alarm 100 for a test fire TF5 according to the standard EN54-7.
  • the optical measurement signal detected by the optical measurement device is shown as a function of time with reference number 270.
  • the time zero marks the beginning of the test fire TF5.
  • the optical measurement signal 270 is shown in relative units (see the ordinate on the left-hand side of the diagram 260).
  • the temperature measurement signal detected by the temperature measurement device 125 is shown as a function of time with the reference numeral 280.
  • the time axes of the optical measurement signal 270 and of the temperature measurement signal 280 are identical.
  • the temperature measurement signal 280 is shown in degrees Celsius (see the ordinate on the right-hand side of the diagram 260).
  • the measured temperature rise 280 lags behind the rise of the optical measurement signal 270 in time. Nevertheless, the information provided by the temperature measurement signal 280 can also be taken into account for the evaluation of the optical measurement signal 270.
  • the measured temperature rise ⁇ T is in fact already approx. 4 degrees Celsius 200 seconds after the start of the test fire TF5.
  • the probability of triggering a false alarm can be reduced considerably while the reliability for the detection of an actual fire is nevertheless high. This is true at least in comparison to a simple optical smoke alarm with only one optical alarm input.
  • the vertical line marked with the reference numeral 290 in the diagram 290 represents the upper limit of the measured test fire TF5 according to the standard EN54-7. In the measured, depicted test fire, this limit is 200 seconds. If an alarm message only occurs at a later point in time, then in the case shown, the corresponding fire detector does not meet the EN54-7 standard.
  • the rise in the temperature measurement signal 280 can also initially be amplified and only then can be used for a common signal evaluation. This means that the Slope of the temperature measurement signal 280 is artificially increased. This can be done in a known manner, for example, by a suitable software algorithm and / or by an appropriately designed electronic circuit and thus in hardware.
  • the rise in the optical measurement signal 270 can also be amplified.
  • the increased increase can also be used as an additional alarm criterion. In this way, the alarm time of the corresponding alarm can be further reduced.
  • the optical channel which is prone to false alarms, can be designed to be even less sensitive.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

  • Die vorliegende Erfindung betrifft das technische Gebiet der Gefahrmeldetechnik. Die vorliegende Erfindung betrifft einen Brandmelder, welcher eine primäre Messeinrichtung zum Erfassen einer physikalischen Messgröße und zum Ausgeben eines Messsignals, welche für eine vorgegebene Gefahrensituation indikativ sind, und einen Mikrocontroller aufweist, welcher der Messeinrichtung nachgeschaltet ist und welcher zum Auswerten des Messsignals eingerichtet ist. Die vorliegende Erfindung betrifft ferner ein Verfahren zum Erkennen einer Gefahrensituation mit einem Brandmelder. Die vorliegende Erfindung betrifft außerdem ein computerlesbares Speichermedium sowie ein Programm-Element, welche Instruktionen zur Durchführung des erfindungsgemäßen Verfahrens zum Erkennen einer Gefahrensituation enthalten.
  • Aus der europäischen Patentanmeldung EP 0 618 555 A2 ist ein Brandmelder mit Rauchdetektor bekannt, in welchem von Rauchpartikeln gestreutes Licht von einem Lichtempfangselement empfangen wird und eine Rauchdichte unter Verwendung eines Ausgangspegels des Lichtempfangselementes detektiert wird. Der Brandmelder weist ein Temperaturmessmittel zur Messung der Umgebungstemperatur eines Lichtabstrahlelementes zur Bestrahlung der Rauchpartikel und des Lichtempfangselementes auf. Ferner weist der Brandmelder ein Temperaturausgleichsmittel zur Korrektur des Ausgangspegels des Lichtempfangselementes entsprechend der durch das Temperaturmessmittel gemessenen Umgebungstemperatur auf. Er weist zudem ein Rauchdichtenerkennungsmittel zur Erkennung der Rauchdichte unter Verwendung des durch das Temperaturausgleichsmittel korrigierten Ausgangspegels auf. Das Temperaturausgleichsmittel und das Rauchdichtenerkennungsmittel sind in Form eines Mikrocomputers realisiert.
  • Einfache optische Rauchmelder nach dem Streulichtprinzip weisen üblicherweise eine im sichtbaren oder im infraroten Spektralbereich Licht emittierenden Leuchtdiode auf, welche bevorzugt in gepulster Form Licht in einen Streubereich aussendet. Der Streubereich wird häufig auch als Labyrinth bezeichnet. Falls in dem Streubereich Rauchpartikel vorhanden sind, werden die Lichtstrahlen an diesen zumindest teilweise gestreut und von einem entsprechend monierten Lichtempfänger detektiert. Die empfangene optische Leistung des Lichtempfänger detektierten Messlicht ist dabei maßgebend, ob z.B. eher kleinere, dunklere Partikel, welche bei offenen Bränden entstehen, oder eher größere, hellere Partikel, welche bei Schwelbränden entstehen, detektiert werden.
  • Eine wichtige gesetzliche Vorschrift, der ein Rauchmelder genügen muss, ist die Norm EN54-7 für Europa und die im Wesentlichen identische Norm GB4715 für China. Ein wesentlicher Bestandteil dieser Norm sind die sog. Testfeuer TF2 bis TF5, mit denen jeweils das Ansprechverhalten des Gefahrmelders auf unterschiedliche Brandarten getestet wird. Auch die amerikanische Norm UL268 für Brandmelder kennt verschiedene Testfeuer, welche aber abweichend von der EN54-7 Norm sind und deshalb hier nicht weiter behandelt werden. Um einen Brandmelder auf den Markt bringen zu dürfen, müssen jeweils alle entsprechenden Testfeuer mit ihren jeweils unterschiedlichen Charakteristika bestanden werden.
  • Es ist bekannt, dass einfache, "vorwärts streuende" Rauchmelder bei offenen Bränden mit kleinen Rauchpartikeln relativ unempfindlich sind und deshalb erst spät nach dem Beginn eines entsprechenden Brandes einen Alarm generieren können. Dies trifft vor allem auf das Testfeuer TF5 zu. Schwelbrände, die durch das Testfeuer TF2 definiert sind, sind mit einem "vorwärts streuenden" Rauchmelder hingegen relativ gut detektierbar. In diesem Zusammenhang ist unter einem "vorwärts streuenden" Rauchmelder ein Rauchmelder zu verstehen, bei dem der Winkel zwischen dem von der Leuchtdiode ausgesandten Messlicht und dem von dem Lichtempfänger detektierten Messlicht größer als 90°, beispielsweise ca. 150°, ist.
  • Um alle erforderlichen Testfeuer bestehen zu können, ist es prinzipiell möglich, einen optischen Brandmelder so empfindlich abzugleichen, dass alle Testfeuer bestanden werden. Dies hat jedoch den Nachteil, dass die Wahrscheinlichkeit und die Häufigkeit von Falschalarmen beispielsweise infolge von Zigarettenrauch erhöht werden.
  • In der Praxis spricht ein optischer Brandmelder mit lediglich einem optischen Signalpfad und mit einer akzeptablen Rate an Falschalarmen daher in der Regel auf die verschiedenen Testbrände sehr inhomogen an. So wird z.B. bei einem reinen Vorwärtsstreuer das Testfeuer TF2 sehr früh einen Alarm generieren, das Testfeuer TF5 wird jedoch sehr spät einen Alarm auslösen. In diesem Zusammenhang bedeutet "sehr früh" und "sehr spät" immer eine Zeitangabe in Relation zu den in der Norm 54-7 definierten zeitlichen Grenzen.
  • Um alle erforderlichen Testfeuer bestehen zu können, ist es ferner bekannt, zusätzliche Sensoreingänge als Alarmindikatoren zu verwenden. Ein zusätzlicher Sensoreingang kann beispielsweise mit einem Temperatursensor gekoppelt sein. Der entsprechende Kombinationsgefahrmelder wird dann als "O-T" Gefahrmelder bezeichnet. Dabei steht "O" für optisch und "T" für Temperatur. Ebenso ist es möglich einen weiteren optischen Sensor mit einem anderen Streuwinkel und/oder mit einer in einem anderen Spektralbereich emittierenden Leuchtdiode zu verwenden. Derartige Kombinationsmelder werden dementsprechend als "O-O" Gefahrmelder bezeichnet.
  • Ein "O-T" Gefahrmelder hat den Nachteil, dass sein Aufbau relativ kostspielig ist. Bei der Herstellung eines "O-T" Gefahrmelders entstehen nämlich Kosten für Einbau eines temperaturempfindlichen Bauteils und für das temperaturempfindliche Bauteil an sich. Außerdem muss die Gehäuseform des Gefahrmelders an das temperaturempfindliche Bauteil angepasst und mechanische Schutzmaßnahmen wie beispielsweise ein Berührungsschutz getroffen werden.
  • Bei der Herstellung eines "O-O" Gefahrmelders fallen ebenfalls vergleichweise hohe Kosten an, die beispielsweise durch die zusätzliche Lichtquelle, deren Ansteuerlogik, durch einen erforderlichen zusätzlichen Produktionsabgleich und/oder durch Abschirmungsmaßnahmen zwischen den beiden voneinander getrennten optischen Pfaden verursacht werden.
  • Der vorliegenden Erfindung liegt die vorrichtungsbezogene Aufgabe zugrunde, einen möglichst kostengünstigen aber dennoch falschalarmsicheren Gefahrmelder zu schaffen. Der vorliegenden Erfindung liegt die verfahrensbezogene Aufgabe zugrunde, das Erkennen einer Gefahrensituation im Hinblick auf eine geringe Falschalarmrate auf kostengünstige Weise zu verbessern.
  • Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Gemäß einem ersten Aspekt der Erfindung wird ein Gefahrmelder, welcher insbesondere ein optischer Rauchmelder sein kann, beschrieben. Der beschriebene Gefahrmelder weist auf (a) eine Messeinrichtung zum Erfassen einer physikalischen Messgröße und zum Ausgeben eines Messsignals, welche für eine vorgegebene Gefahrensituation indikativ sind, (b) einen Mikrocontroller, welcher der Messeinrichtung nachgeschaltet ist und welcher zum Auswerten des Messsignals eingerichtet ist, und (c) eine Temperaturmesseinrichtung zum Erfassen einer Temperatur und zum Ausgeben eines Temperaturmesssignals, welches für die erfasste Temperatur indikativ ist. Bei dem beschriebenen Gefahrmelder ist erfindungsgemäß die Temperaturmesseinrichtung in dem Mikrocontroller integriert und der Mikrocontroller ist derart eingerichtet, dass bei der Auswertung des Messsignals das Temperaturmesssignal mit berücksichtigt wird.
  • Dem beschriebenen Gefahrmelder liegt die Erkenntnis zugrunde, dass moderne Mikroprozessoren häufig integrierte temperaturabhängige Bauelemente aufweisen, welche ohne oder lediglich mit einem geringen zusätzlichen apparativen Aufbau für eine Temperaturmessung verwendet werden können. Die Temperaturmessung kann dabei beispielsweise mittels eines Analog/Digital Wandlers in einen Temperaturwert übersetzt werden. Dieser Temperaturwert kann dann die Gehäusetemperatur des Mikrocontrollers repräsentieren. Damit kann die Erwärmung des Gehäuses des Mikrocontrollers zusätzlich zu dem Messsignal der Messeinrichtung als zusätzlicher Gefahreneingang für ein Alarmkriterium des Gefahrmelders verwendet werden.
  • Bei dem beschriebenen Gefahrmelder ist die Temperaturmesseinrichtung in dem Mikrocontroller integriert. Dies bedeutet, dass für den Mikrocontroller und die Temperaturmesseinrichtung ein gemeinsames Bauelement-Gehäuse vorgesehen ist. Typischerweise bedeutet "integriert" ferner, dass eine Abtrennung der Temperaturmesseinrichtung von dem Mikrocontroller ohne eine Zerstörung von zumindest einem der beiden Bauteile "Mikrocontroller und Temperaturmesseinrichtung" nicht möglich ist.
  • Es wird darauf hingewiesen, dass die Empfindlichkeit und die Ansprechzeit der in dem Mikrocontroller integrierten Temperaturmesseinrichtung in der Regel nicht so gut sein wird wie beispielweise ein separater temperaturempfindlicher Widerstand, der in bekannter Weise für spezielle Temperaturmelder verwendet wird. Derartige temperaturempfindliche Widerstände wie beispielsweise NTC-Widerstände (negative temperature coefficient-Widerstände) werden nämlich bei einem Temperaturmelder in der Regel räumlich so angeordnet, dass sie optimal von der Umgebungsluft angeströmt werden und aufgrund einer bevorzugt geringen thermischen Masse schnell ansprechen. Somit können schnelle Temperaturänderungen schnell detektiert werden. Die in dem Mikrocontroller integrierte Temperaturmesseinrichtung kann somit den NTC-Widerstand eines thermischen Gefahrmelders in der Regel nicht vollständig ersetzen, so dass beispielsweise die für Gefahrmelder relevante thermische Norm EN54-5 nicht erfüllt werden könnte. Ein von der integrierten Temperaturmesseinrichtung erfasster Anstieg der Gehäusetemperatur des Mikrocontrollers kann jedoch dazu beitragen, auf einfache Weise und insbesondere ohne einen zusätzlichen apparativen Mehraufwand sowohl die Empfindlichkeit des Gefahrmelders zu erhöhen als auch die Wahrscheinlichkeit für das Auslösen eines Fehlalarms zu reduzieren.
  • Bei dem beschriebenen Gefahrmelder wird somit das Temperaturmesssignal der in den Mikrocontroller integrierten Temperaturmesseinrichtung zusätzlich zu dem Messsignal der eigentlichen Messeinrichtung als weiterer bzw. als zusätzlicher Gefahrmeldeeingang verwendet. Zur Realisierung dieses zusätzlichen Gefahrmeldeeingangs ist somit auf vorteilhafte Weise in der Regel kein zusätzlicher aparativer Aufwand erforderlich. Dies gilt jedenfalls für solche Mikrocontroller, welche ohnehin eine geeignete Temperaturmesseinrichtung aufweisen.
  • Die Messeinrichtung kann beispielsweise eine Gasmesseinrichtung sein, welche einen chemischen Sensor aufweist, an dem Gasmoleküle aus der Umgebungsluft auf der Sensoroberfläche chemisch gebunden werden. Dabei können die gebundenen Gasmoleküle elektrische Ladungen abgeben, die den elektrischen Leitwert des Halbleitermaterials des Sensors verändern. Die zu detektierenden Gase können Brandgase wie beispielsweise CO2 sein. Ab einer gewissen Konzentration in einem überwachten Raum wird dann von dem beschriebenen Gefahrmelder eine Gefahrmeldung bzw. eine Alarmmeldung generiert.
  • Es wird darauf hingewiesen, dass der Gefahrmelder selbstverständlich auch mehrere Messeinrichtungen aufweisen kann, wobei zumindest eine der Messeinrichtungen mit der beschriebenen Temperaturmesseinrichtung im Hinblick auf eine gemeinsame Signalverarbeitung kombiniert wird. Bevorzugt werden jedoch die von allen Messeinrichtungen bereit gestellten Messsignale miteinander kombiniert.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Tempraturmesseinrichtung eine Temperaturmessdiode. Die Verwendung einer Temperaturmessdiode als in den Mikrocontroller integrierte Temperaturmesseinrichtung hat den Vorteil, dass diese ohne zusätzliche Verfahrensschritte bei einer halbleitertechnischen Herstellung des Mikrocontrollers mit hergestellt werden kann.
  • Temperaturmessdioden sind ohnehin in vielen modernen Mikrocontrollern bereits vorhanden. Daher kann der beschriebene Gefahrmelder mit einfachen elektronischen Standardkomponenten aufgebaut und somit auf preiswerte Weise realisiert werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Messeinrichtung eine optische Messeinrichtung, welche aufweist (a) einen Lichtsender, eingerichtet zum Aussenden eines Messlichts und (b) einen Lichtempfänger, eingerichtet zum Empfangen von zumindest eines Teils des Messlichts. Dies bedeutet, dass der beschriebene Gefahrmelder analog zu bekannten sog. O-T (Optisch-Temperatur) Gefahrmeldern arbeitet, wobei jedoch ein üblicherweise verwendeter temperaturempfindlicher Widerstand durch die in den Mikrocontroller integrierte Temperaturmesseinrichtung ersetzt wird. Dadurch wird in der Regel zwar die Genauigkeit der Temperaturmessung reduziert und das zeitliche Ansprechverhalten bei Temperaturänderungen verlangsamt. Das Temperaturmesssignal kann jedoch trotzdem für die Auswertung des Messsignals der primären Messeinrichtung verwendet werden und so im Vergleich zu Gefahrmeldern mit lediglich einer einzigen Messeinrichtung zu einer höheren Empfindlichkeit und gleichzeitig zu einer geringeren Falschalarmwahrscheinlichkeit beitragen. Auf alle Fälle kann der beschriebene Gefahrmelder jedoch im Vergleich zu bekannten O-T Gefahrmeldern deutlich preiswerter hergestellt werden.
  • Wie oben bereits beschrieben, wird durch die Temperaturmesseinrichtung im Wesentlichen der Anstieg der Gehäusetemperatur des Mikrocontrollers erfasst. Auch wenn die Temperaturmesseinrichtung damit zwangsläufig mit einer vergleichsweise großen thermischen Masse gekoppelt ist, kann in einem Brandfall die Berücksichtigung des Anstiegs der Gehäusetemperatur dazu beitragen, die für optische Brandmelder relevante Vorschrift EN54-7 auch mit einem wenig empfindlichen optischen Abgleich zu erfüllen und deshalb die Falschalarmsicherheit erheblich zu erhöhen.
  • Es wird darauf hingewiesen, dass mit der optischen Messeinrichtung eine durch Rauchpartikel verursachte Lichtstreuung und/oder eine durch Rauchpartikel verursachte Abschattung gemessen werden kann. Im Falle der Messung von Lichtstreuung ist der Lichtempfänger bevorzugt in einem Winkel von beispielsweise größer als 10° relativ zu der optischen Achse des von dem Lichtsender emittierten Messlichts angeordnet. Dies bedeutet, dass lediglich gestreutes Messlicht den Lichtempfänger erreicht, der in der Gegenwart von Rauchpartikeln ein entsprechendes Messsignal erzeugt. Im Falle der Messung von Lichtabsorption ist der Lichtempfänger relativ zu dem Lichtsender bevorzugt so angeordnet, dass zumindest ein Teil von ungestreutem Messlicht den Lichtempfänger auch dann erreicht, wenn kein Rauch vorhanden ist. Die durch den Lichtempfänger gemessene Lichtintensität wird in diesem Fall durch die Anwesenheit von Licht absorbierenden oder auch von Licht streuenden Rauchpartikeln reduziert.
  • Der beschriebene primär optische Gefahrmelder kann Dank des zusätzlichen thermischen Gefahreneinganges im Vergleich zu einem bekannten rein optischen Gefahrmelder weniger empfindlich abgeglichen werden. Dies hat den Vorteil, dass das Abgleichverfahren für die Generierung bzw. die Initiierung einer Gefahrmeldung erheblich einfacher wird. Dies liegt daran, dass für empfindlichere Gefahrmelder die vorgegebenen Toleranzen erheblich enger sind und derartige empfindliche Gefahrmelder somit deutlich schwieriger innerhalb der engen vorgeschriebenen Toleranzen der Norm EN54-7 zu fertigen sind. Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Gefahrmelder zusätzlich ein Meldergehäuse auf, in dessen räumlicher Mitte der Mikrocontroller angeordnet ist. Dies hat den Vorteil, dass die thermische Richtungsabhängigkeit des beschriebenen Gefahrmelders gering ist. Dies wiederum bedeutet, dass eine von einer Wärmequelle verursachte Temperaturänderung unabhängig von der Richtung, in der sich die Wärmequelle ausgehend von dem beschriebenen Gefahrmelder befindet, mit einer gleichbleibenden Empfindlichkeit detektiert werden kann.
  • Es wird darauf hingewiesen, dass es nicht zwingend erforderlich ist, dass das Gehäuse eine perfekt symmetrische Form aufweist. Im Falle einer asymmetrischen Form wird der Mikrocontroller dann bevorzugt an der Stelle innerhalb des Gehäuses angeordnet, an der sich Wärmequellen wie beispielsweise ein Brand möglichst richtungsunabhängig detektieren lassen.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Gefahrmelder zusätzlich zumindest ein Wärmeleitelement auf, welches mit einem Gehäuse des Mikrocontrollers verbunden ist.
  • Durch eine thermische Ankopplung von gut Wärme leitenden Materialien, die bevorzugt mit der Außenluft des Gefahrmelders in thermischen Kontakt treten können, kann die Temperaturmesseinrichtung des Mikrocontrollers besser Temperaturänderungen in der den Gefahrmelder umgebenden Luft erfassen. Die gut Wärme leitenden Materialien und/oder das zumindest eine Wärmeleitelement können dabei derart angeordnet sein, dass sie von der Außenluft des Gefahrmelders umströmt bzw. angeströmt werden. Das Wärmeleitelement kann auch als sog. thermisches Ableitpad bezeichnet werden.
  • Die beschriebene Verwendung von zumindest einem Wärmeleitelement hat den Vorteil, dass eine bessere thermische Ankopplung des Mikrocontrollers an seine Umgebung und somit eine kürzere Ansprechzeit des Mikrocontrollergehäuses an Temperaturänderungen gewährleistet werden kann.
  • Das Wärmeelement kann beispielsweise dazu verwendet werden, um ein Abschirmblech der als Lichtsender dienenden Photodiode mit dem Gehäuse des Mikrocontrollers thermisch zu koppeln. Da sich das Abschirmbleich der Photodiode typischerweise innerhalb des von Luft durchströmten Labyrinths bzw. innerhalb der optischen Messkammer des Gefahrmelders befindet, wird auf einfache und effiziente Weise die thermische Ankopplung der Temperaturmesseinrichtung an die Umgebungsluft verbessert und somit die thermische Zeitkonstante des Gehäuses wirksam reduziert.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Erkennen einer Gefahrensituation, insbesondere zum Erkennen von Rauch, angegeben. Das angegebene Verfahren weist auf (a) ein Erfassen einer physikalischen Messgröße und Ausgeben eines Messsignals, welche für eine vorgegebene Gefahrensituation indikativ sind, mittels einer Messeinrichtung, (b) ein Erfassen einer Temperatur und Ausgeben eines Temperaturmesssignals, welches für die erfasste Temperatur indikativ ist, mittels einer im Mikrocontroller integrierten Temperaturmesseinrichtung, und (c) ein Auswerten des Messsignals unter Berücksichtigung des Temperaturmesssignals mittels des Mikrocontrollers, welcher der Messeinrichtung nachgeschaltet ist.
  • Dem angegebenen Verfahren liegt die Erkenntnis zugrunde, dass einfache Gefahrmelder mit lediglich einem Sensoreingang auf einfache Weise und insbesondere ohne apparativen Zusatzaufwand dadurch aufgewertet werden können, dass eine Temperaturmesseinrichtung, welche in vielen modernen Mikrocontroller-Bauelementen ohnehin vorhanden ist, für eine Temperaturmessung verwendet wird. Ein dadurch erzielter Temperaturmesswert wird dann bei der Auswertung des primären Messsignals der Messeinrichtung mit berücksichtigt. Damit hängt eine von dem Mikrocontroller veranlasste Gefahrmeldung nicht mehr ausschließlich von dem ausgegebenen primären Messsignal der Messeinrichtung sondern auch von dem Temperaturmesssignal der in dem Mikrocontroller integrierten Temperaturmesseinrichtung ab.
  • Das beschriebene Verfahren hat den Vorteil, dass es ohne jegliche apparative Umbauten von vielen herkömmlichen Gefahrmeldern ausgeführt werden kann. Dies gilt auch für Gefahrmelder, welche zunächst lediglich einen einzigen Gefahrmeldeeingang oder zunächst zumindest keinem thermischen Gefahrmeldeeingang aufweisen. Einzige Voraussetzung für die Implementierung des angegebenen Verfahrens ist das Vorhandensein eines Mikrocontrollers, welcher eine integrierte Temperaturmesseinrichtung aufweist. In diesem Fall kann das beschriebene Verfahren durch eine einfache Programmierung, d.h. mittels Software realisiert werden.
  • Gemäß einem Ausführungsbeispiel der Erfindung weist das Verfahren zusätzlich auf ein Verstärken der zeitlichen Änderungen des Messsignals und/oder des Temperaturmesssignals. Dies bedeutet, dass beispielsweise im Falle eines Temperaturanstiegs der zeitliche Anstieg der von der Temperaturmesseinrichtung erfassten Temperaturmesskurve verstärkt wird. Anders ausgedrückt bedeutet dies, dass die Steigung der Temperaturmesskurve erhöht wird. Dies kann in bekannter Weise beispielsweise durch einen geeigneten Software-Algorithmus und/oder durch eine entsprechend ausgebildete elektronische Schaltung und damit in Hardware erfolgen.
  • Die beschriebene Verstärkung der zeitlichen Änderungen hat den Vorteil, dass das zeitliche Ansprechverhalten der integrierten Temperaturmesseinrichtung, welches im Vergleich zu einem externen NTC sehr stark verlangsamt ist, nach der Verstärkung zumindest annähernd an die Response eines externen Temperatursensors, beispielsweise ein NTC, angenähert werden kann.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung wird bei der Auswertung des Messsignals durch den Mikrocontroller lediglich eine relative Änderung des Temperaturmesssignals berücksichtigt.
  • Die Berücksichtigung lediglich von relativen Temperaturänderungen hat den Vorteil, dass auf eine Kalibrierung der Temperaturmesseinrichtung verzichtet werden kann. Dies gilt sowohl während der Herstellung des Gefahrmelders als auch während eines beispielsweise längeren Betriebs des Gefahrmelders.
  • Durch den Verzicht auf eine Kalibrierung der Temperaturmesseinrichtung kann die Herstellung des gesamten Gefahrmelders genauso schnell erfolgen wie die Herstellung eines weniger leistungsfähigen herkömmlichen Gefahrmelders, welcher lediglich einen Sensoreingang aufweist und ggf. eine in einem Mikrocontroller integrierte Temperaturmesseinrichtung gar nicht zur Auswertung und zum Initiieren einer Gefahrmeldung verwendet.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist das Temperaturmesssignal indikativ für eine absolute Temperatur.
  • Die Berücksichtigung eines Temperaturmesssignals, welches für einen absoluten Temperaturwert indikativ ist, hat den Vorteil, dass nicht nur Temperaturänderungen sondern auch absolute Temperaturwerte bei der Auswertung des primären Messsignals berücksichtigt werden können. Dadurch kann der Gefahrmelder noch spezifischer an bestimmte Umgebungsbedingungen angepasst und dabei zum einen eine hohe Empfindlichkeit und zum anderen eine geringe Falschalarmwahrscheinlichkeit des Gefahrmelders erreicht werden.
  • Selbstverständlich erfordert eine Berücksichtigung eines absoluten Temperaturwertes vor und ggf. auch während des Betriebs des Gefahrmelders eine Kalibrierung oder eine Eichung der Temperaturmesseinrichtung. Dazu muss die Temperaturmesseinrichtung mit einer Referenztemperatur abgeglichen werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Messeinrichtung eine optische Messeinrichtung und das Temperaturmesssignal wird für eine Kompensation von temperaturabhängigen Effekten der optischen Messeinrichtung verwendet.
  • Bevorzugt können mittels des absoluten Temperaturmesssignals thermische Effekte innerhalb des gesamten temperaturabhängigen optischen Pfades kompensiert werden. Unter dem Begriff optischer Pfad ist in diesem Zusammenhang nicht nur der gesamte optische Weg zwischen Lichtsender und Lichtempfänger zu verstehen, der optische Pfad umfasst ferner auch optische bzw. optoelektronische Komponenten wie beispielsweise den Lichtsender und den Lichtempfänger. Bei Temperaturänderungen kann sich nämlich nicht nur die Lichtausbeute des Lichtsenders sondern auch die Empfindlichkeit des Lichtempfängers ändern. Ebenso kann sich ggf. eine eingestellte relative Justierung zwischen Lichtsender und Lichtempfänger beispielsweise durch thermische Verspannungen von Halteelementen des Gefahrmelders ändern. All diese thermischen Effekte können, soweit reproduzierbar und vorab bekannt, bei der Auswertung des primären Messsignals berücksichtigt und in geeigneter Weise kompensiert werden.
  • Wie oben bereits erläutert, spiegelt das Temperaturmesssignals im Wesentlichen die Gehäusetemperatur des Mikrocontrollers wider. Somit wird bei dem beschriebenen Verfahren die Gehäusetemperatur zur Temperaturkompensation des optischen Pfades verwendet. Dies verbessert das Ansprechverhalten des Gefahrmelders insbesondere bei sehr kalten und sehr heißen Temperaturen.
  • In diesem Zusammenhang wird noch auf einen weiteren Bestandteil der Norm EN54-7 hingewiesen. Demnach darf das Ansprechverhalten des Gefahrmelders bei 55 Grad um maximal einen bestimmten Faktor von dem Ansprechverhalten bei 25 Grad abweichen. Damit trägt die beschriebene Kompensation von temperaturabhängigen Effekten dazu bei, dass die entsprechende optische Messeinrichtung die Norm EN54-7 leichter erfüllen kann.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein computerlesbares Speichermedium beschrieben, in dem ein Programm zum Erkennen einer Gefahrensituation gespeichert ist. Das Programm ist, wenn es von einem Mikrocontroller eines Gefahrmelders des oben beschriebenen Typs ausgeführt wird, zum Durchführen des oben angegebenen Verfahrens zum Erkennen einer Gefahrensituation eingerichtet.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Programm-Element zum Erkennen einer Gefahrensituation beschrieben. Das Programm-Element ist, wenn es von einem Mikrocontroller eines Gefahrmelders des oben beschriebenen Typs ausgeführt wird, zum Durchführen des oben angegebenen Verfahrens zum Erkennen einer Gefahrensituation eingerichtet.
  • Das Programm und/oder das Programm-Element kann als computerlesbarer Anweisungscode in jeder geeigneten Programmiersprache wie beispielsweise in JAVA, C++ etc. implementiert sein. Das Programm und/oder das Programm-Element kann auf einem computerlesbaren Speichermedium (CD-Rom, DVD, Wechsellaufwerk, flüchtiger oder nicht-flüchtiger Speicher, eingebauter Speicher/Prozessor etc.) abgespeichert sein. Der Anweisungscode kann einen Computer oder andere programmierbare Geräte derart programmieren, dass die gewünschten Funktionen ausgeführt werden. Ferner kann das Programm und/oder das Programm-Element in einem Netzwerk wie beispielsweise dem Internet bereitgestellt werden, von dem es bei Bedarf von einem Nutzer herunter geladen werden kann.
  • Die Erfindung kann sowohl mittels eines Computerprogramms, d.h. einer Software, als auch mittels einer oder mehrerer spezieller elektrischer Schaltungen, d.h. in Hardware oder in beliebig hybrider Form, d.h. mittels Software-Komponenten und Hardware-Komponenten, realisiert werden.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung einer derzeit bevorzugten Ausführungsform.
  • Figur 1
    zeigt in einer schematischen Darstellung den Aufbau eines Gefahrmelders gemäß einem Ausführungsbeispiel der Erfindung
    Figur 2
    zeigt ein experimentell gemessenes Ansprechverhalten des in Figur 1 dargestellten Gefahrmelders für ein Testfeuer TF5 gemäß der Norm EN54-7.
  • An dieser Stelle bleibt anzumerken, dass in der Zeichnung für gleiche Komponenten die gleichen Bezugszeichen verwendet werden.
  • Figur 1 zeigt eine schematische Darstellung eines vorwärts streuenden, optischen Gefahrmelders 100. Der obere Teil von Figur 1 zeigt den Gefahrmelder 100 in einer Seitenansicht parallel zu einer Montageebene. Die Montageebene kann beispielsweise die Decke eines zu überwachenden Raumes sein. Der untere Teil von Figur 1 zeigt den Gefahrmelder 100 in einer Draufsicht, wobei die Blickrichtung senkrecht zu der Montageebene orientiert ist.
  • Der Gefahrmelder 100 weist eine primäre optische Messeinrichtung auf, die einen als Leuchtdiode ausgebildeten Lichtsender 110 und einen als Photodiode ausgebildeten Lichtempfänger 115 aufweist. Gemäß dem hier dargestellten Ausführungsbeispiel arbeitet die optische Messeinrichtung nach dem bekannten Streulichtprinzip. Dabei wird in bekannter Weise von dem Lichtempfänger 115 lediglich dann ein Messlicht detektiert, wenn dieses Messlicht an Aerosolen bzw. Rauchpartikeln gestreut wird. Der in Figur 1 dargestellte Gefahrmelder ist somit ein Rauchmelder 100, welcher auch geeignet ist Brände zu detektieren. Gemäß dem hier dargestellten Ausführungsbeispiel ist die Leuchtdiode 110 zum Aussenden von Messlicht im infraroten Spektralbereich eingerichtet.
  • Der Rauchmelder 100 weist ein Meldergehäuse 140 auf. Innerhalb des Gehäuses 140 befindet sich ein als Leiterplatte ausgebildetes Substrat 130. Unterhalb der Leiterplatte 130 wird durch das Meldergehäuse 140 eine optische Kammer 142 gebildet, in welche die zu detektierenden Rauchpartikel über einen Luftstrom 150 eintreten können. Um einen möglichst ungestörten Lufteintritt zu ermöglichen, sind in dem Meldergehäuse 140 nicht dargestellte Luftschlitze ausgebildet.
  • Der Rauchmelder 100 weist ferner einen Mikrocontroller 120 auf, welcher in bekannter Weise sowohl mit dem Lichtsender 110 als auch mit dem Lichtempfänger 115 gekoppelt ist. Der Mikrocontroller 120 ist zum einen zur Ansteuerung der Leuchtdiode 110 ggf. über in Figur 1 nicht dargestellte Treiberschaltungen eingerichtet. Der Mikrocontroller 120 ist zum anderen zum Auswerten eines von der Photodiode 115 erzeugten optischen Messsignals eingerichtet.
  • Gemäß dem hier dargestellten Ausführungsbeispiel weist der Mikrocontroller 120 eine als Temperaturmessdiode ausgebildete Temperaturmesseinrichtung 125 auf. Die Temperaturmessdiode 125 ist in dem Mikrocontroller 120 integriert. Dies bedeutet, dass der Mikrocontroller 120 und die Temperaturmessdiode 125 in einem gemeinsamen Gehäuse angeordnet sind.
  • Der Mikrocontroller 120 ist beispielsweise durch eine geeignete Programmierung derart eingerichtet, dass bei der Auswertung eines von der Photodiode 115 erzeugten Messsignals ein Temperaturmesssignal der Temperaturmessdiode 125 mit berücksichtigt wird. Dies bedeutet, dass die Auswertung durch den Mikrocontroller 120 der Auswertung für einen bekannten sog. O-T Gefahrmelder entspricht. Der beschriebene Gefahrmelder 100 unterscheidet sich jedoch von einem bekannten sog. O-T Gefahrmelder unter anderem dadurch, dass anstelle eines separaten Temperaturmesswiderstandes wie beispielsweise ein NTC-Widerstand eine in dem Mikrocontroller 120 integrierte Temperaturmesseinrichtung 125 für die Temperaturmessung verwendet wird.
  • Gemäß dem hier dargestellten Ausführungsbeispiel dient die Leiterplatte 130 nicht nur der elektrischen Verdrahtung bzw. der elektrischen Kontaktierung von elektronischen und optoelektronischen Komponenten des Rauchmelders 100. Gemäß dem hier dargestellten Ausführungsbeispiel dient die Leiterplatte 130 ferner als mechanische Halterung für diese Komponenten.
  • Um eine gute thermische Ankopplung der Temperaturmessdiode 125 an die einströmende Umgebungsluft 150 zu gewährleisten, sind Wärmeleitelemente 134 vorgesehen. Die Wärmeleitelemente 134, welche auch als thermische Pads bezeichnet werden, stellen eine Wärme leitende Verbindung zwischen der Temperaturmessdiode 125 und einem Wärmeaustauschelement 116 dar. Die Wärme leitende Verbindung erfolgt dabei über eine Lötverbindung durch ein Durchgangslochs 132 hindurch zu dem Wärmeaustauschelement 116. Gemäß dem hier dargestellten Ausführungsbeispiel ist das Wärmeaustauschelement eine metallische Abschirmung 116 der Photodiode 115. Wie aus Figur 1 ersichtlich, wird die metallische Abschirmung 116 von der Umgebungsluft 150 angeströmt bzw. umströmt, so dass eine Erwärmung der Umgebungsluft 150 insbesondere durch einen externen Brandherd zügig von der integrierten Temperaturmesseinrichtung 125 detektiert wird.
  • Figur 2 zeigt ein Diagramm 260, in dem das Ansprechverhalten des in Figur 1 dargestellten optischen Gefahrmelders 100 für ein Testfeuer TF5 gemäß der Norm EN54-7 dargestellt ist. Mit dem Bezugszeichen 270 ist das von der optischen Messeinrichtung erfasste optische Messsignal als Funktion der Zeit dargestellt. Dabei markiert der Zeitnullpunkt den Beginn des Testfeuers TF5. Das optische Messsignal 270 ist in relativen Einheiten dargestellt (siehe die Ordinate auf der linken Seite des Diagramms 260).
  • Mit dem Bezugszeichen 280 ist das von der Temperaturmesseinrichtung 125 erfasste Temperaturmesssignal als Funktion der Zeit dargestellt. Die Zeitachsen des optischen Messsignals 270 und des Temperaturmesssignals 280 sind identisch. Das Temperaturmesssignal 280 ist in der Einheit Grad Celsius dargestellt (siehe die Ordinate auf der rechten Seite des Diagramms 260).
  • Wie aus Figur 2 ersichtlich, hinkt der gemessenen Temperaturanstieg 280 zeitlich dem Anstieg des optischen Messsignals 270 hinterher. Trotzdem kann die durch das Temperaturmesssignal 280 bereitgestellte Information für die Auswertung des optischen Messsignals 270 mit berücksichtigt werden. Der gemessenen Temperaturanstieg ΔT beträgt nämlich 200 Sekunden nach Beginn des Testfeuers TF5 immerhin schon ca. 4 Grad Celsius. Durch eine kombinierte Auswertung des optischen Messsignals 270 und des Temperaturmesssignals 280 kann beispielsweise die Wahrscheinlichkeit für die Auslösung eines Falschalarms bei einer trotzdem hohen Zuverlässigkeit für die Erkennung eines tatsächlichen Brandes erheblich reduziert werden. Dies gilt zumindest im Vergleich zu einem einfachen optischen Rauchmelder mit lediglich einem optischen Gefahrmeldeeingang.
  • Die mit dem Bezugszeichen 290 gekennzeichnete vertikale Linie in dem Diagramm 290 stellt dabei die obere Grenze des gemessenen Testfeuer TF5 gemäß der Norm EN54-7 dar. Im gemessenen, abgebildeten Testfeuer liegt diese Grenze bei 200 Sekunden. Erfolgt eine Alarmmeldung erst zu einem späteren Zeitpunkt, dann erfüllt in dem dargestellten Fall der entsprechende Brandmelder die Norm EN54-7 nicht.
  • Es wird darauf hingewiesen, dass der Anstieg des Temperaturmesssignals 280 auch zunächst verstärkt und erst dann für eine gemeinsame Signalauswertung verwendet werden kann. Dies bedeutet, dass die Steigung des Temperaturmesssignals 280 künstlich erhöht wird. Dies kann in bekannter Weise beispielsweise durch einen geeigneten Software-Algorithmus und/oder durch eine entsprechend ausgebildete elektronische Schaltung und damit in Hardware erfolgen.
  • Selbstverständlich kann auch der Anstieg des optischen Messsignals 270 verstärkt werden. Außerdem kann auch zusätzlich zu dem gemessenen Anstieg der verstärkte Anstieg als zusätzliches Alarmkriterium benutzt werden. Damit kann die Alarmierzeit des entsprechenden Gefahrmelders weiter reduziert werden. Ferner kann der falschalarmträchtige optische Kanal noch unempfindlicher ausgelegt werden.

Claims (7)

  1. Brandmelder mit
    • einer Messeinrichtung (110, 115) zum Erfassen einer physikalischen Messgröße und zum Ausgeben eines Messsignals (270), welche für eine vorgegebene Gefahrensituation indikativ sind,
    • einer Temperaturmesseinrichtung (125) zum Erfassen einer Temperatur und zum Ausgeben eines Temperaturmesssignals (280), welches für die erfasste Temperatur indikativ ist, und
    • einem Mikrocontroller (120), welcher der Messeinrichtung (110, 115) nachgeschaltet ist und welcher derart zum Auswerten des Messsignals (270) eingerichtet ist, dass bei der Auswertung des Messsignals (270) das Temperaturmesssignal (280) mit berücksichtigt wird,
    dadurch gekennzeichnet,
    dass die Temperaturmesseinrichtung (125) in dem Mikrocontroller (120) integriert ist, wobei das Temperaturmesssignal als zusätzlicher Gefahrmeldeeingang für ein Alarmkriterium des Brandmelders verwendet wird.
  2. Brandmelder nach Anspruch 1, wobei die Temperaturmesseinrichtung eine Temperaturmessdiode (125) ist.
  3. Brandmelder nach einem der Ansprüche 1 bis 2, zusätzlich aufweisend
    • ein Meldergehäuse (140),
    wobei der Mikrocontroller (120) räumlich in der Mitte des Meldergehäuses (140) angeordnet ist.
  4. Gefahrmelder nach einem der Ansprüche 1 bis 3, zusätzlich aufweisend
    • zumindest ein Wärmeleitelement (134), welches mit einem Gehäuse des Mikrocontrollers (120) verbunden ist.
  5. Brandmelder nach einem der Anspruche 1 bis 4, wobei der Brandmelder ein optischer Rauchmelder ist und wobei die Messeinrichtung eine optische Messeinrichtung ist, welche aufweist
    - einen Lichtsender (110), eingerichtet zum Aussenden eines Messlichts, und
    - einen Lichtempfänger (115), eingerichtet zum Empfangen von zumindest eines Teils des Messlichts.
  6. Brandmelder nach einem der Ansprüche 1 bis 4, wobei die Messeinrichtung eine Gasmesseinrichtung zum Erkennen von Brandgasen ist.
  7. Brandmelder nach Anspruch 6, wobei die Gasmesseinrichtung einen chemischen Sensor mit einem Halbleitermaterial zum Erkennen der Brandgase aufweist, wobei Gasmoleküle aus der Umgebungsluft auf einer Sensoroberfläche des chemischen Sensors gebunden werden, und wobei die gebundenen Gasmoleküle elektrische Ladungen abgeben können, die den elektrischen Leitwert des Halbleitermaterials des chemischen Sensors verändern.
EP08101643.8A 2008-02-15 2008-02-15 Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung Active EP2091029B2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT08101643T ATE493724T1 (de) 2008-02-15 2008-02-15 Gefahrenerkennung mit einbezug einer in einem mikrocontroller integrierten temperaturmesseinrichtung
DE502008002126T DE502008002126D1 (de) 2008-02-15 2008-02-15 Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung
EP08101643.8A EP2091029B2 (de) 2008-02-15 2008-02-15 Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung
PCT/EP2009/051730 WO2009101187A1 (de) 2008-02-15 2009-02-13 Gefahrenerkennung mit einbezug einer in einem mikrocontroller integrierten temperaturmesseinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08101643.8A EP2091029B2 (de) 2008-02-15 2008-02-15 Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung

Publications (3)

Publication Number Publication Date
EP2091029A1 EP2091029A1 (de) 2009-08-19
EP2091029B1 EP2091029B1 (de) 2010-12-29
EP2091029B2 true EP2091029B2 (de) 2020-11-18

Family

ID=39683670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08101643.8A Active EP2091029B2 (de) 2008-02-15 2008-02-15 Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung

Country Status (4)

Country Link
EP (1) EP2091029B2 (de)
AT (1) ATE493724T1 (de)
DE (1) DE502008002126D1 (de)
WO (1) WO2009101187A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015467B4 (de) * 2010-04-16 2012-09-27 Winrich Hoseit Brandmelder zur Überwachung eines Raumes
DE202010017770U1 (de) * 2010-04-16 2012-11-23 Winrich Hoseit Überwachungsvorrichtung zur Überwachung eines Raumes
EP2463837A1 (de) * 2010-12-09 2012-06-13 Nxp B.V. Rauchdetektor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654770A1 (de) 1993-11-22 1995-05-24 Cerberus Ag Anordnung zur Früherkennung von Bränden
WO1997014092A1 (en) 1995-10-10 1997-04-17 Microchip Technology Incorporated Microcontroller with on-chip linear temperature sensor
US5691704A (en) 1996-01-29 1997-11-25 Engelhard Sensor Technologies, Inc. Practical and improved fire detector
WO1998020615A2 (en) 1996-10-21 1998-05-14 Electronics Development Corporation Smart sensor module
DE20219524U1 (de) 2002-12-17 2003-03-27 Brecht Thomas Akkumulator-Ladestation für Mobiltelefone mit integriertem Rauchgas-Meldesystem
DE102004024284A1 (de) 2003-07-17 2005-02-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Durchführung von Gefahrabwendungsmassnahmen für Lebewesen in Kraftfahrzeugen
DE60010411T2 (de) 1999-11-05 2005-05-19 E.I. Technology Ltd., Shannon Rauchalarmvorrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338218B1 (de) * 1988-03-30 1993-09-15 Cerberus Ag Verfahren zur Brandfrüherkennung
JPH06288917A (ja) 1993-03-31 1994-10-18 Nohmi Bosai Ltd 煙式火災感知器
DE59912047D1 (de) * 1999-11-19 2005-06-16 Siemens Building Tech Ag Brandmelder
JP3972597B2 (ja) * 2001-04-24 2007-09-05 松下電工株式会社 複合型火災感知器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654770A1 (de) 1993-11-22 1995-05-24 Cerberus Ag Anordnung zur Früherkennung von Bränden
WO1997014092A1 (en) 1995-10-10 1997-04-17 Microchip Technology Incorporated Microcontroller with on-chip linear temperature sensor
US5691704A (en) 1996-01-29 1997-11-25 Engelhard Sensor Technologies, Inc. Practical and improved fire detector
WO1998020615A2 (en) 1996-10-21 1998-05-14 Electronics Development Corporation Smart sensor module
DE60010411T2 (de) 1999-11-05 2005-05-19 E.I. Technology Ltd., Shannon Rauchalarmvorrichtung
DE20219524U1 (de) 2002-12-17 2003-03-27 Brecht Thomas Akkumulator-Ladestation für Mobiltelefone mit integriertem Rauchgas-Meldesystem
DE102004024284A1 (de) 2003-07-17 2005-02-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Durchführung von Gefahrabwendungsmassnahmen für Lebewesen in Kraftfahrzeugen

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Application Note zum 56F83xx Temperaturesensor von Freescale Semiconductor
Texas Instruments,'Application Notes fpr 4xx 8/16MHz LCD series, M5P430(TM) 16-bit Ultra-Low Power MCUs', gefunden am 23092011, Fundsstelle : (http://focus.ti.com/mcu/docs/mcutechdocs.tsp)
Thomas Net News,'Microcontrollers include internal temperature sensor', (02032005, Fundstelle:http://news.thomasnet./fullstory/, gefunden am 23092011.
Wikimedia Foundation Inc.,'Anwendungsspezifische integrierte Schaltung' (26012008, gefunden am 20092011, Fundstelle:http://de.wikipedia.org/wiki/Anwendungsspedifische_integrierte_Schaltung)
Wikimedia Foundation Inc.,'Die (Halbleitertechnik)' (gefunden am 20092011, Fundstelle:http://de.wikipedia.org/wiki/Die_(Halbleitertechnik)
Wikimedia Foundation Inc.,'Mikrocontroller' (21012008, gefunden am 20092011, Fundstelle:http://de.wikipedia.org/wiki/Mikrocontroller)
Wikimedia Foundation Inc.,'Multi-Chip-Modul' (26062007, gefunden am 20092011, Fundstelle:http://de.wikipedia.org/wiki/Multi-Chip-Modul)
Wu, Randy, 'Digital Fan Control with Tachometer using MSP43O.Application report SLAA259-November 2005'

Also Published As

Publication number Publication date
EP2091029B1 (de) 2010-12-29
DE502008002126D1 (de) 2011-02-10
WO2009101187A1 (de) 2009-08-20
ATE493724T1 (de) 2011-01-15
EP2091029A1 (de) 2009-08-19

Similar Documents

Publication Publication Date Title
DE102011119431B4 (de) Streustrahlungsbrandmelder und Verfahren zur automatischen Erkennung einer Brandsituation
TWI654417B (zh) 粒子偵測系統及相關方法
EP1709428B1 (de) Verfahren zur auswertung eines streulichtsignals und streulichtdetektor zur durchführung des verfahrens
US5497144A (en) Testing and adjustment of scattered-light smoke detectors
EP1022700B1 (de) Streulichtbrandmelder
US5523744A (en) Device for testing the operation of smoke detectors
EP1332773B1 (de) Verfahren zur Steuerung von stationären Löschanlagen
DE102004021663A1 (de) Umgebungsbedingungsdetektor mit mehreren Sensoren und einer einzelnen Steuereinheit
EP2091029B2 (de) Gefahrenerkennung mit Einbezug einer in einem Mikrocontroller integrierten Temperaturmesseinrichtung
WO2011104040A1 (de) Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes
WO2007025126A2 (en) Digital gas detector and noise reduction techniques
WO2002095705A1 (de) Selbstansaugende brandmeldeeinrichtung
EP2043068B1 (de) Vorrichtung zur Überwachung eines Brandmelders und Konfigurierungsverfahren und Brandmelder
EP1062647A1 (de) Brandmelder
DE102012215212A1 (de) Brandmeldevorrichtung zur Detektion und Meldung eines Brandes und Verfahren zur Funktionsprüfung der Brandmeldevorrichtung
DE102006045055B3 (de) Gasmeldeeinrichtung und Verfahren zum Überprüfen einer solchen
DE4301457A1 (de) Detektor für brennbare Gase insbesondere Methan
EP3158322B1 (de) Vorrichtung und verfahren zum kalibrieren eines streulichtmessgerätes
EP2759994B1 (de) Brandmelder
DE4023649A1 (de) Verfahren und vorrichtung zum erkennen von gefahrenzustaenden in einem raum
EP0421100A1 (de) Verfahren und Vorrichtung zum Erkennen von Gefahrenzuständen in einem Raum
DE102004030855A1 (de) Verfahren zur Reduzierung von Kondenswasser bei Gassensoranordnungen
DE112020002849T5 (de) Optischer Partikelsensor
WO2021077158A1 (en) Improvements related to particle, including sars‑cov‑2, detection and methods therefor
DE102020127219A1 (de) Vorrichtung und Verfahren zur messtechnischen Erfassung feuerartiger Erscheinungen, sowie System zur Beseitigung eines durch eine feuerartige Erscheinung erzeugten Gefahrenzustands

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100208

17Q First examination report despatched

Effective date: 20100310

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008002126

Country of ref document: DE

Date of ref document: 20110210

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008002126

Country of ref document: DE

Effective date: 20110210

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110409

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HEKATRON VERTRIEBS GMBH

Effective date: 20110929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008002126

Country of ref document: DE

Effective date: 20110929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

R26 Opposition filed (corrected)

Opponent name: HEKATRON VERTRIEBS GMBH

Effective date: 20110929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 493724

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008002126

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20160202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

POAG Date of filing of petition for review recorded

Free format text: ORIGINAL CODE: EPIDOSNPRV3

POAH Number of petition for review recorded

Free format text: ORIGINAL CODE: EPIDOSNPRV1

POAI Petitioner in petition for review recorded

Free format text: ORIGINAL CODE: EPIDOSNPRV2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: G08B 29/18 20060101ALI20191127BHEP

Ipc: G08B 17/06 20060101AFI20191127BHEP

Ipc: G08B 29/24 20060101ALI20191127BHEP

Ipc: G08B 17/107 20060101ALI20191127BHEP

Ipc: G08B 17/113 20060101ALI20191127BHEP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

27A Patent maintained in amended form

Effective date: 20201118

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502008002126

Country of ref document: DE

APBC Information on closure of appeal procedure deleted

Free format text: ORIGINAL CODE: EPIDOSDNOA9O

POAD Information related to date of filing of petition for review deleted

Free format text: ORIGINAL CODE: EPIDOSDPRV3

POAK Decision taken: petition for review obviously unsubstantiated

Free format text: ORIGINAL CODE: 0009255

PRVG Petition for review allowed and appeal procedure re-opened

Free format text: PETITION FOR REVIEW ALLOWED AND RE-OPENING OF THE APPEAL PROCEDURE WITH TOTAL REFUND OF THE FEE FOR THE PETITION FOR REVIEW

Effective date: 20210315

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAD Information related to the publication of a b2 document modified or deleted

Free format text: ORIGINAL CODE: 0009399EPPU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 16

D27A Patent maintained in amended form (deleted)
DB2 B2 document published (deleted)
PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230504

Year of fee payment: 16

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240109

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240304

Year of fee payment: 17