EP2089552B1 - Method for the continuous production of steel wire or bar - Google Patents

Method for the continuous production of steel wire or bar Download PDF

Info

Publication number
EP2089552B1
EP2089552B1 EP07816241.9A EP07816241A EP2089552B1 EP 2089552 B1 EP2089552 B1 EP 2089552B1 EP 07816241 A EP07816241 A EP 07816241A EP 2089552 B1 EP2089552 B1 EP 2089552B1
Authority
EP
European Patent Office
Prior art keywords
temperature
steel
rolling
carried out
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07816241.9A
Other languages
German (de)
French (fr)
Other versions
EP2089552A1 (en
Inventor
Lotfi Chabbi
Ulrich Urlau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swiss Steel AG
Original Assignee
Swiss Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swiss Steel AG filed Critical Swiss Steel AG
Priority to PL07816241T priority Critical patent/PL2089552T3/en
Publication of EP2089552A1 publication Critical patent/EP2089552A1/en
Application granted granted Critical
Publication of EP2089552B1 publication Critical patent/EP2089552B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the invention relates to a method for the continuous production of wire or bar steel.
  • the above method is characterized in that the final forming always takes place in the two-phase region and that reheating or, at best, holding at the final rolling temperature is always necessary after final shaping.
  • the transition to the heat retention temperature is thus not effected by the cooling process (see transition from (6) to (7) in FIG Fig. 2 from CN 1088265 A ).
  • the object of the invention is to provide an improved process for the continuous production of rod or wire steel, which allows a good control of the properties of the process products and at the same time simplifies the process management.
  • the products produced by the process according to the invention after cooling to room temperature are suitable for further cold processing without annealing. Unlike the conventional method, it is therefore not necessary to reheat the wire or bar steel produced.
  • the heat retention time to be applied in the third method step of the method according to the invention is significantly shorter than the duration of the subsequent heat treatment in the case of the conventional methods. As a result, the process duration and the process chain in the process according to the invention are thus significantly shorter than in the conventional processes.
  • the method according to the invention is suitable, on the one hand, for steels having a comparatively low proportion by weight of 0.02 to 0.2% carbon and up to 0.25% molybdenum and up to 0.008% boron; On the other hand, it is also suitable for steels with a medium to high weight content of 0.2 to 0.65% carbon and 0.25 to 0.50% molybdenum and up to 1.7% chromium.
  • the holding temperature must be selected as explained below.
  • the steel has a weight fraction of 0.02 to 0.2% carbon and up to 0.15% silicon, 0.25 to 1.0% manganese, up to 0.025% phosphorus, up to 0.004% sulfur, up to 0.25% molybdenum, bis to 0.1% chromium, up to 0.25% copper, up to 0.008% boron, up to 0.2% nickel, and up to 0.1% vanadium, the heat hold temperature being essentially at Ar 1 e .
  • the steel in the preferred method according to claim 3 a weight fraction of 0.2 to 0.65% carbon and up to 0.15% silicon, 0.25 to 1.0% manganese, up to 0.035% phosphorus, up to 0.004% sulfur, 0.25 to 0.50% molybdenum up to 1.7% chromium, up to 0.25% copper, up to 0.2% nickel and up to 0.1% vanadium, wherein the holding temperature is substantially in the range of Ar 1 b to Ar 1 e .
  • Ar 1 b and Ar 1 e denote in a known manner the beginning (upper index “b") and the end (upper index “e") of the austenite-pearlite transformation in the cooling direction (where “r” stands for “refroidatorium” ).
  • the final deformation is carried out at a temperature above Ar 3 .
  • the final transformation is carried out at most Ar 3 + 60 ° C.
  • the final forming is carried out at a temperature just below Ar. 3
  • the final deformation is carried out at a temperature in the range of Ar 1 to Ar 3 , wherein the final deformation temperature does not fall below 690 ° C. This allows a further shortening of the required holding time to about one-eighth of the known rolling process.
  • the in the Fig. 1 The rolling device shown has unspecified propulsion means for a steel strand 2, which convey it in a propulsion direction V through the device.
  • propulsion direction V a propulsion direction
  • certain assemblies of the rolling apparatus are used only for certain final dimensions, or depending on the final dimension, a certain function is taken over by one or the other assembly. First, however, the rolling process will be described generally.
  • the steel strand 2 passes to a first hot-forming device 6, where a first hot working takes place by rolling at a temperature above the recrystallization temperature. Depending on the final dimension, the first hot deformation takes place by six to twenty stitches at a temperature above 950 ° C.
  • the steel strand passes through a first cooling device 8 (for bar steel) or 8a (for wire), by means of which it is cooled below the recrystallization temperature. Thereafter, the steel strand passes into a second hot working apparatus 10 (for bar steel) and 10a (for wire), where a final forming is carried out at a temperature in the region of the non-recrystallized austenite.
  • the beam strand is optionally supplied to a wire station 14 or to a bar station 16.
  • These stations are equipped with second cooling devices 18 (for wire) and 20 (for bar steel) and with not shown holding devices for the cut-to-length rolled product in the form of wire rings or rods.
  • the first hot rolling device 6 is formed by a first stand group 22.
  • the first cooling device 8 is a direct water cooling system 24 in the area of the first stand group 22.
  • a waiting loop 26 with continuous cooling 28 is used as the first cooling device 8. If necessary, both cooling variants can be used.
  • the second hot rolling apparatus 10 may be formed by a downstream second stand group 30 as in the arrangement shown here. Subsequently, the rolling stock reaches the bar station 16, which as mentioned includes a second cooling device 20.
  • the first hot rolling device 6 comprises the first stand group 22 and the second stand group 30.
  • the first cooling device 8a is configured as a downstream waiting loop 32, which advantageously comprises a water cooling 34.
  • the second hot rolling apparatus 10 a is formed by a downstream third skeleton group 36. Subsequently, the rolling stock reaches the wire station 14, which includes a second cooling device 18 as mentioned.
  • Fig. 2 to 4 show on the basis of the relevant temperature-time profiles a comparison between a previously known rolling process ( Fig. 2 ) and two variants of the process according to the invention ( Fig. 3 and 4 ).
  • the steel strand is first heated to about 1'150 ° C. Thereafter, a hot working is carried out by rolling at a temperature above 950 ° C, which is above the recrystallization temperature. In the example shown this is done by 6 stitches. Subsequently, the rolling stock, depending on the final size or rolling station, within 5 to 10 s at 820 to 920 ° C and then cooled at a cooling rate of 0.3 to 1.9 ° C / s to room temperature.
  • the product thus obtained is not suitable for cold processing, but it requires a heat treatment lasting several hours. For example, the product must be reheated to a temperature of 680 to 720 ° C and typically held at that temperature for about 14 hours. The product treated in this way can finally be cooled to room temperature and is then available for cold further processing.
  • a first hot working is carried out above the recrystallization temperature, wherein the degree of deformation in this process step is at least 60%.
  • the rolling stock - unlike the previously described method of Fig. 2 - Initially cooled below the recrystallization temperature and then made a final deformation at a temperature in the region of the non-recrystallized austenite.
  • the total degree of deformation in the final forming is at least 30% and is accomplished in the examples shown by two stitches. It is essential that the cooling below the recrystallization temperature is carried out in such a way that no grain growth of the austenite takes place in the rolling stock before the final shaping.
  • the rolling stock is substantially cooled to the Ar 1 temperature, for example at 680 to 720 ° C, and then left at this holding temperature for a certain holding time. A rewarming process is accordingly not required. Finally, the product is cooled to room temperature.
  • the keep-warm time is determined in preliminary tests. It is chosen so that the properties of the products after cooling to room temperature are comparable to those after conventional rolling and additional heat treatment. This ensures that the product is cold processed without further heat treatment.
  • the rolling device is to be dimensioned or set up accordingly.
  • the controlled cooling processes are realized by means of water cooling and possibly by means of waiting loops.
  • different numbers and positions of the rolling stands are selected depending on the type and dimension of the product to be produced (ie wire steel, steel bars) different numbers and positions of the rolling stands are selected. Keeping warm takes place - also depending on the type of product - in suitable holding facilities.
  • a steel with the chemical composition "A" according to Table 1 was heated to 1'150 ° C and then rolled in 6 passes, the initial diameter was 38 mm and the final diameter was 17.2 mm. This matches with a total degree of deformation of 80%.
  • the final rolling temperature was approx. 980 ° C.
  • the rolling stock was cooled within 6 seconds to 820 to 960 ° C and then with a cooling rate of 0.3 to 1.9 ° C / s (depending on the rolling station) to room temperature.
  • the product thus obtained was then subjected to a heat treatment at 680 ° C for 4 hours.
  • a steel having the same composition as in Comparative Example 1 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm. This corresponds to a total degree of deformation at the first hot deformation of 60%.
  • the temperature was after the 4th stitch at about 1'020 ° C. After intensive cooling, the rolling stock was then rolled within 13 seconds in a further 4 passes from 23.8 to 17.2 mm. This corresponds to a total deformation rate of 47% for the final forming.
  • the final rolling temperature was 880 ° C, which is about 20 ° C above Ar 3 . After the last pass, the rolling stock was cooled to 680 ° C within 6 seconds, which essentially corresponds to Ar 1 e , and left at this temperature for 2 hours.
  • a steel having the same composition as in Comparative Example 1 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm.
  • the temperature was after the 4th stitch at about 1'020 ° C.
  • the rolling stock was then rolled within 13 seconds in another 2 passes from 23.8 to 17.2 mm.
  • the final rolling temperature was 850 ° C, which is just under 10 ° C below Ar 3 .
  • the rolling stock was cooled to 680 ° C in 6 seconds, which essentially corresponds to Ar 1 e , and left at this temperature for 1 hour.
  • a steel with the chemical composition "C" according to Table 1 was heated to 1'150 ° C and then rolled in 6 passes, the initial diameter of 38 mm and the final diameter was 17.2 mm. This corresponds to a Monumformgrad of 80%.
  • the final rolling temperature was approx. 980 ° C.
  • the rolling stock was cooled in 5 seconds to about 820 to 970 ° C and then with a cooling rate of 0.3 to 1.9 ° C / s to room temperature.
  • the product thus obtained was then subjected to a heat treatment at 680 ° C for 4 hours.
  • a steel having the same composition as in Comparative Example 2 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm. This matches with a total degree of deformation at the first hot deformation of 60%.
  • the temperature was after the 4th stitch at about 1'020 ° C.
  • the rolling stock was then rolled within 13 seconds in another 2 passes from 23.8 to 17.2 mm. This corresponds to a total deformation rate of 47% for the final forming.
  • the final rolling temperature was 800 ° C, which is above Ar 3 .
  • the rolling stock was cooled to 680 ° C within 6 seconds, which is between Ar 1 b and Ar 1 e , and left at this temperature for 2 hours.
  • a steel having the same composition as in Comparative Example 2 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm.
  • the temperature was after the 4th stitch at about 1'020 ° C.
  • the rolling stock was then rolled within 13 seconds in another 2 passes from 23.8 to 17.2 mm.
  • the final rolling temperature was 690 ° C, which is below Ar 3 .
  • the rolling stock was cooled to 680 ° C within 6 seconds, which is between Ar 1 b and Ar 1 e , and left at this temperature for 0.5 hour.
  • Fig. 5 represents the microstructure of quenched samples after the last pass, depending on the final rolling temperature. It can be seen that the final forming in Comparative Example 2 (see Fig. 5a ) and Example 3 (see Fig. 5b ) in metastable austenite. In contrast, this was done in Example 4 (see Fig. 5c ) in the (ya) two-phase region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von Draht- oder Stabstahl.The invention relates to a method for the continuous production of wire or bar steel.

Stand der TechnikState of the art

Bei der Herstellung von Draht- und Stabstählen besteht ein fortwährendes Bedürfnis nach verbesserten Prozessen, welche insbesondere bezüglich Kosten, Logistik aber auch bezüglich der Eigenschaften der Erzeugnisse optimiert sind. Ein wichtiger Ansatz für die Prozessoptimierung liegt in der Verkürzung des Produktionsverfahrens, welche sich zum Beispiel durch Einsparung von Wärmebehandlungen erreichen lässt (siehe Ball, J. et al., "Prozessverkürzung durch Einsparung von Wärmebehandlungen bei der Herstellung von Draht und Stab", Stahl und Eisen 11(1997) Nr. 4, S. 59 - 67 ). Insbesondere wurde gezeigt, dass durch temperaturkontrolliertes Walzen bei bestimmten Stählen die Wärmebehandlung zur GKZ-Glühung eingespart werden kann oder ein qualitativ besseres Glühgefüge erhältlich ist, und dass bei gewissen Stählen die Vergütungsbehandlung entfallen kann. "Energy saving production of medium carbon steel wires with spherical cementite", 22.06.194, offenbart ein Verfahren bei dem Stähle mit einem mittelhohen Kohlenstoffgehalt von 0.2 bis 0.5 Gew.-% wie folgt verarbeitet werden: a) zunächst wird eine erste Warmumformung durch Walzen bei einer Temperatur zwischen Ac3 + 1000 und Ac3 durchgeführt, wobei der Gesamtumformgrad mindestens 50% beträgt; b) danach wird das Walzgut auf eine Temperatur zwischen Ac3 + 1000 und Ac3 abgekühlt und eine zweite Warmumformung durchgeführt, wobei der Gesamtumformgrad mindestens 20% beträgt; c) danach wird das Walzgut auf eine Temperatur zwischen Ac3 + 1000 und Ar1 abgekühlt und eine dritte Warmumformung auf die Endabmessung durchgeführt, wobei der Gesamtumformgrad mindestens 25% beträgt; d) schließlich wird das Walzgut in einen Ofen mit einer Temperatur zwischen Ac1 und Ac1 - 1000 gebracht und dort mindestens 30 Minuten gehalten, um danach auf Raumtemperatur abgekühlt zu werden.In the production of wire and bar steels there is a continuing need for improved processes, which are optimized in particular in terms of cost, logistics but also with respect to the properties of the products. An important approach for process optimization lies in the shortening of the production process, which can be achieved, for example, by saving heat treatment (see Ball, J. et al., "Process Shortening by Saving Heat Treatments in the Production of Wire and Rod", Stahl and Eisen 11 (1997) No. 4, pp. 59-67 ). In particular, it has been shown that temperature-controlled rolling in certain steels can save on the heat treatment for GKZ annealing or that a better quality annealing structure is available, and that in certain steels the tempering treatment can be omitted. "Energy saving production of medium carbon steel wires with spherical cementite", 22.06.194, discloses a method in which steels having a medium carbon content of 0.2 to 0.5% by weight are processed as follows: a) first, a first hot working by rolling carried out at a temperature between A c3 + 1000 and A c3 , wherein the Gesamtumformgrad is at least 50%; b) then the rolling stock is cooled to a temperature between A c3 + 1000 and A c3 and a second hot working is carried out, the total degree of deformation being at least 20%; c) thereafter cooled + the rolling stock to a temperature between 1000 and A c3 A r1 and performed a third hot forming to the final dimension, wherein the cumulative reduction ratio is at least 25%; d) Finally, the rolling stock is placed in an oven with a temperature between A c1 and A c1 - 1000 and held there for at least 30 minutes, after which it is cooled to room temperature.

In der CN 1088265 A ist ein gattungsgemässes Verfahren beschrieben, bei dem Stähle mit einem mittelhohen Kohlenstoffgehalt von 0.26 bis 0.5 Gew.-% wie folgt verarbeitet werden:

  1. a) zunächst wird eine erste Warmumformung durch Walzen bei einer Temperatur zwischen Ac3 + 100°C und Ac3 durchgeführt, wobei der Gesamtumformgrad mindestens 50% beträgt;
  2. b) danach wird das Walzgut auf eine Temperatur zwischen Ar3 + 100°C und Ar3 abgekühlt und eine zweite Warmumformung durchgeführt, wobei der Gesamtumformgrad mindestens 20% beträgt;
  3. c) danach wird das Walzgut auf eine Temperatur zwischen Ar3 und Ar1 abgekühlt und eine dritte Warmumformung auf die Endabmessung durchgeführt, wobei der Gesamtumformgrad mindestens 25% beträgt;
  4. d) schliesslich wird das Walzgut in einen Ofen mit einer Temperatur zwischen Ac1 und Ac1 - 100°C gebracht und dort mindestens 30 Minuten gehalten, um danach auf Raumtemperatur abgekühlt zu werden.
In the CN 1088265 A a generic method is described in which steels with a medium high carbon content of 0.26 to 0.5 wt .-% are processed as follows:
  1. a) first, a first hot working by rolling at a temperature between Ac 3 + 100 ° C and Ac 3 is performed, the Gesamtumformgrad is at least 50%;
  2. b) then the rolling stock is cooled to a temperature between Ar 3 + 100 ° C and Ar 3 and a second hot working carried out, the Gesamtumformgrad is at least 20%;
  3. c) thereafter the rolling stock is cooled to a temperature between Ar 3 and Ar 1 and a third hot working is carried out to the final dimension, the total degree of deformation being at least 25%;
  4. d) Finally, the rolling stock is placed in an oven with a temperature between Ac 1 and Ac 1 - 100 ° C and held there for at least 30 minutes, after which it is cooled to room temperature.

Das obige Verfahren ist dadurch gekennzeichnet, dass die Endumformung immer im Zweiphasengebiet erfolgt und dass nach der Endumformung stets eine Wiedererwärmung oder bestenfalls ein Halten bei der Endwalztemperatur nötig ist. Der Übergang zur Warmehaltetemperatur erfolgt also nicht durch den Abkühlprozess (vgl. Übergang von (6) nach (7) in Fig. 2 von CN 1088265 A ).The above method is characterized in that the final forming always takes place in the two-phase region and that reheating or, at best, holding at the final rolling temperature is always necessary after final shaping. The transition to the heat retention temperature is thus not effected by the cooling process (see transition from (6) to (7) in FIG Fig. 2 from CN 1088265 A ).

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es, ein verbessertes Verfahren zur kontinuierlichen Herstellung von Stab- oder Drahtstahl anzugeben, welches eine gute Kontrolle der Eigenschaften der Verfahrenserzeugnisse erlaubt und gleichzeitig die Prozessführung vereinfacht.The object of the invention is to provide an improved process for the continuous production of rod or wire steel, which allows a good control of the properties of the process products and at the same time simplifies the process management.

Gelöst wird diese Aufgabe durch das im Anspruch 1 definierte Verfahren.This object is achieved by the method defined in claim 1.

Das erfindungsgemässe Verfahren beinhaltet die folgenden Verfahrensstufen:

  1. a) in einem ersten Verfahrensschritt wird ein Stahl mit einem Gewichtsanteil von 0.02 bis 0.65% Kohlenstoff und bis zu 0.15% Silizium, 0.25 bis zu 1.5% Mangan, bis zu 0.035% Phosphor, bis zu 0.004% Schwefel, bis zu 0.5% Molybdän, bis zu 1.7% Chrom, bis zu 0.25% Kupfer, bis zu 0.008% Bor, bis zu 0.2% Nickel und bis zu 0.25% Vanadium sowie weiteren stahlüblichen Beimengungen auf 1'050 bis 1'200°C erhitzt, anschliessend wird eine erste Warmumformung durch Walzen bei einer Temperatur oberhalb der Rekristallisationstemperatur durchgeführt, wobei der Gesamtumformgrad bei der ersten Warmumformung mindestens 60% beträgt;
  2. b) in einem zweiten Verfahrensschritt wird das Walzgut unterhalb die Rekristallisationstemperatur abgekühlt und danach eine Endumformung bei einer Temperatur im Bereich des nicht-rekristallisierten Austenits vorgenommen, wobei das Abkühlen derart durchgeführt wird, dass im Walzgut vor der Endumformung ein mögliches Kornwachstum des Austenits verhindert wird und wobei der Gesamtumformgrad bei der Endumformung mindestens 30% beträgt; und
  3. c) in einem dritten Verfahrensschritt wird das Walzgut ohne Wiedererwärmung bis zu einer vorbestimmten Warmhaltetemperatur um die Ar1 Temperatur abgekühlt und während einer vorbestimmten Warmhaltezeit bei der besagten Warmhaltetemperatur belassen.
The process according to the invention comprises the following process stages:
  1. a) in a first process step, a steel with a weight fraction of 0.02 to 0.65% carbon and up to 0.15% silicon, 0.25 to 1.5% Manganese, up to 0.035% phosphorus, up to 0.004% sulfur, up to 0.5% molybdenum, up to 1.7% chromium, up to 0.25% copper, up to 0.008% boron, up to 0.2% nickel and up to 0.25% vanadium as well further admixtures customary in the steel are heated to from 1050 to 1200 ° C., after which a first hot working is carried out by rolling at a temperature above the recrystallization temperature, the total hot working degree being at least 60% in the first hot working;
  2. b) in a second process step, the rolling stock is cooled below the recrystallization temperature and then a final deformation at a temperature in the region of the non-recrystallized austenite, wherein the cooling is carried out such that in the rolling stock before the final forming a possible grain growth of austenite is prevented and the total degree of deformation in the final forming is at least 30%; and
  3. c) in a third process step, the rolling stock is reheated without reheating to a predetermined holding temperature by the Ar 1 temperature and left for a predetermined holding time at said holding temperature.

Überraschenderweise wurde gefunden, dass die mit dem erfindungsgemässen Verfahren hergestellten Erzeugnisse nach dem Abkühlen auf Raumtemperatur für eine weitere Kaltverarbeitung ohne Glühung geeignet sind. Anders als bei den herkömmlichen Verfahren ist es also nicht erforderlich, den erzeugten Draht- oder Stabstahl wieder aufzuwärmen. Darüber hinaus hat sich herausgestellt, dass die im dritten Verfahrensschritt des erfindungsgemässen Verfahrens aufzubringende Warmhaltezeit deutlich kürzer ist als die Dauer der nachträglichen Wärmebehandlung bei den herkömmlichen Verfahren. Im Ergebnis ist somit die Prozessdauer und die Prozesskette beim erfindungsgemässen Verfahren deutlich kürzer als bei den herkömmlichen Verfahren.Surprisingly, it has been found that the products produced by the process according to the invention after cooling to room temperature are suitable for further cold processing without annealing. Unlike the conventional method, it is therefore not necessary to reheat the wire or bar steel produced. In addition, it has been found that the heat retention time to be applied in the third method step of the method according to the invention is significantly shorter than the duration of the subsequent heat treatment in the case of the conventional methods. As a result, the process duration and the process chain in the process according to the invention are thus significantly shorter than in the conventional processes.

Im Gegensatz zu dem in CN 1088265 A beschriebenen Verfahren sind beim erfindungsgemässen Verfahren nur zwei statt drei Umformschritte erforderlich. Damit wird zunächst einmal erreicht, dass zwischen den Umformschritten nur eine einzige kontrollierte Zwischenkühlung statt zwei solcher Kühlungen benötigt wird. Dies vereinfacht das Verfahren und die dazu erforderliche Anlage. Darüber hinaus erfolgt beim erfindungsgemässen Verfahren der Übergang zur Warmhaltetemperatur direkt im Zuge des Abkühlprozesses. Eine Wiedererwärmung auf die Warmhaltetemperatur ist deshalb nicht erforderlich, was nicht nur eine Vereinfachung des Prozesses, sondern auch eine Energieeinsparung erlaubt.Unlike the in CN 1088265 A described method only two instead of three forming steps are required in the inventive method. This first of all ensures that only one controlled intermediate cooling is required instead of two such cooling operations between the forming steps. This simplifies the process and the required facility. Moreover, in the process according to the invention, the transition to the holding temperature takes place directly in the course of the cooling process. Reheating to the holding temperature is therefore not required, which not only simplifies the process, but also allows energy savings.

Bevorzugte Ausführungsformen des Verfahrens sind in den abhängigen Ansprüchen definiert.Preferred embodiments of the method are defined in the dependent claims.

Insbesondere ist das erfindungsgemässe Verfahren einerseits für Stähle mit einen vergleichsweise niedrigen Gewichtsanteil von 0.02 bis 0.2% Kohlenstoff sowie bis zu 0.25% Molybdän und bis zu 0.008% Bor geeignet; andererseits ist es aber auch für Stähle mit einem mittleren bis hohen Gewichtsanteil von 0.2 bis 0.65% Kohlenstoff sowie 0.25 bis 0.50% Molybdän und bis zu 1.7% Chrom geeignet. Dabei ist die Warmhaltetemperatur wie nachfolgend erläutert zu wählen.In particular, the method according to the invention is suitable, on the one hand, for steels having a comparatively low proportion by weight of 0.02 to 0.2% carbon and up to 0.25% molybdenum and up to 0.008% boron; On the other hand, it is also suitable for steels with a medium to high weight content of 0.2 to 0.65% carbon and 0.25 to 0.50% molybdenum and up to 1.7% chromium. The holding temperature must be selected as explained below.

Beim bevorzugten Verfahren nach Anspruch 2 weist der Stahl einen Gewichtsanteil von 0.02 bis 0.2% Kohlenstoff und bis zu 0.15% Silizium, 0.25 bis zu 1.0% Mangan, bis zu 0.025% Phosphor, bis zu 0.004% Schwefel, bis zu 0.25% Molybdän, bis zu 0.1% Chrom, bis zu 0.25% Kupfer, bis zu 0.008% Bor, bis zu 0.2% Nickel und bis zu 0.1% Vanadium auf, wobei die Warmhaltetemperatur im Wesentlichen bei Ar1 e liegt.In the preferred process of claim 2, the steel has a weight fraction of 0.02 to 0.2% carbon and up to 0.15% silicon, 0.25 to 1.0% manganese, up to 0.025% phosphorus, up to 0.004% sulfur, up to 0.25% molybdenum, bis to 0.1% chromium, up to 0.25% copper, up to 0.008% boron, up to 0.2% nickel, and up to 0.1% vanadium, the heat hold temperature being essentially at Ar 1 e .

Demgegenüber weist der Stahl beim bevorzugten Verfahren nach Anspruch 3 einen Gewichtsanteil von 0.2 bis 0.65% Kohlenstoff und bis zu 0.15% Silizium, 0.25 bis zu 1.0% Mangan, bis zu 0.035% Phosphor, bis zu 0.004% Schwefel, 0.25 bis zu 0.50% Molybdän, bis zu 1.7% Chrom, bis zu 0.25% Kupfer, bis zu 0.2% Nickel und bis zu 0.1% Vanadium auf, wobei die Warmhaltetemperatur im Wesentlichen im Bereich von Ar1 b bis Ar1 e liegt.In contrast, the steel in the preferred method according to claim 3, a weight fraction of 0.2 to 0.65% carbon and up to 0.15% silicon, 0.25 to 1.0% manganese, up to 0.035% phosphorus, up to 0.004% sulfur, 0.25 to 0.50% molybdenum up to 1.7% chromium, up to 0.25% copper, up to 0.2% nickel and up to 0.1% vanadium, wherein the holding temperature is substantially in the range of Ar 1 b to Ar 1 e .

Dabei bezeichnen Ar1 b und Ar1 e in bekannter Weise den Beginn (oberer Index "b") bzw. das Ende (oberer Index "e") der Austenit-Perlit-Umwandlung in Abkühlungsrichtung (wobei "r" für "refroidissement" steht).Here, Ar 1 b and Ar 1 e denote in a known manner the beginning (upper index "b") and the end (upper index "e") of the austenite-pearlite transformation in the cooling direction (where "r" stands for "refroidissement" ).

Gemäss einer bevorzugten Ausführungsform wird die Endumformung bei einer Temperatur oberhalb von Ar3 durchgeführt. Insbesondere wird gemäss Anspruch 4 die Endumformung bei höchstens Ar3 + 60°C durchgeführt. Dadurch lässt sich die erforderliche Warmhaltezeit im Vergleich zu den bekannten Walzverfahren auf ungefähr die Hälfte senken.According to a preferred embodiment, the final deformation is carried out at a temperature above Ar 3 . In particular, according to claim 4, the final transformation is carried out at most Ar 3 + 60 ° C. As a result, the required holding time can be reduced to about half compared to the known rolling process.

Gemäss einer weiteren Ausführungsform wird die Endumformung bei einer Temperatur knapp unterhalb von Ar3 durchgeführt. Insbesondere wird gemäss Anspruch 5 die Endumformung bei einer Temperatur im Bereich von Ar1 bis Ar3 durchgeführt, wobei die Endumformtemperatur 690°C nicht unterschreitet. Dies erlaubt eine weitere Verkürzung der erforderlichen Warmhaltezeit auf bis zu ungefähr ein Achtel gegenüber den bekannten Walzverfahren.According to a further embodiment, the final forming is carried out at a temperature just below Ar. 3 In particular, according to claim 5, the final deformation is carried out at a temperature in the range of Ar 1 to Ar 3 , wherein the final deformation temperature does not fall below 690 ° C. This allows a further shortening of the required holding time to about one-eighth of the known rolling process.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher beschrieben, dabei zeigen:

Fig. 1
eine Vorrichtung zur kontinuierlichen Herstellung von Draht- oder Stabstahl, in schematischer Darstellung, in Draufsicht;
Fig. 2
ein Temperatur-Zeit-Profil für ein Walzverfahren nach dem Stand der Technik;
Fig. 3
ein Temperatur-Zeit-Profil für eine erste Ausführungsform des erfindungsgemässen Walzverfahrens;
Fig. 4
ein Temperatur-Zeit-Profil für eine zweite Ausführungsform des erfindungsgemässen Walzverfahrens; und
Fig. 5
Gefüge abgeschreckter Proben nach dem letzten Stich in Abhängigkeit von der Endwalztemperatur (Stahl C).
Exemplary embodiments of the invention will be described in greater detail below with reference to the drawings, in which:
Fig. 1
a device for the continuous production of wire or bar steel, in a schematic representation, in plan view;
Fig. 2
a temperature-time profile for a rolling process according to the prior art;
Fig. 3
a temperature-time profile for a first embodiment of the inventive rolling process;
Fig. 4
a temperature-time profile for a second embodiment of the inventive rolling process; and
Fig. 5
Structure of quenched samples after the last pass depending on the final rolling temperature (steel C).

Wege zur Ausführung der ErfindungWays to carry out the invention

Die in der Fig. 1 gezeigte Walzvorrichtung weist nicht näher dargestellte Vortriebsmittel für einen Stahlstrang 2 auf, welche diesen in einer Vortriebsrichtung V durch die Vorrichtung hindurch befördern. Wie nachfolgend noch näher erläutert wird, kommen gewisse Baugruppen der Walzvorrichtung nur für gewisse Endabmessungen zum Einsatz, bzw. je nach Endabmessung wird eine gewisse Funktion von der einen oder der anderen Baugruppe übernommen. Zunächst wird jedoch der Walzvorgang allgemein beschrieben.The in the Fig. 1 The rolling device shown has unspecified propulsion means for a steel strand 2, which convey it in a propulsion direction V through the device. As will be explained in more detail below, certain assemblies of the rolling apparatus are used only for certain final dimensions, or depending on the final dimension, a certain function is taken over by one or the other assembly. First, however, the rolling process will be described generally.

Ausgehend von einem Ofen 4 mit einer Temperatur von 1'050 bis 1'200°C gelangt der Stahlstrang 2 zu einer ersten Warmverformungsvorrichtung 6, wo eine erste Warmumformung durch Walzen bei einer Temperatur oberhalb der Rekristallisationstemperatur stattfindet. Je nach Endabmessung erfolgt die erste Warmverformung durch sechs bis zwanzig Stiche bei einer Temperatur oberhalb von 950°C.Starting from a furnace 4 with a temperature of 1'050 to 1'200 ° C, the steel strand 2 passes to a first hot-forming device 6, where a first hot working takes place by rolling at a temperature above the recrystallization temperature. Depending on the final dimension, the first hot deformation takes place by six to twenty stitches at a temperature above 950 ° C.

Anschliessend durchläuft der Stahlstrang eine erste Kühlvorrichtung 8 (für Stabstahl) bzw. 8a (für Draht), mittels welcher er unter die Rekristallisationstemperatur abgekühlt wird. Danach gelangt der Stahlstrang in eine zweite Warmverformungsvorrichtung 10 (für Stabstahl) bzw. 10a (für Draht), wo eine Endumformung bei einer Temperatur im Bereich des nicht-rekristallisierten Austenits vorgenommen wird.Subsequently, the steel strand passes through a first cooling device 8 (for bar steel) or 8a (for wire), by means of which it is cooled below the recrystallization temperature. Thereafter, the steel strand passes into a second hot working apparatus 10 (for bar steel) and 10a (for wire), where a final forming is carried out at a temperature in the region of the non-recrystallized austenite.

Schliesslich wird der Strahlstrang wahlweise zu einer Drahtstation 14 oder zu einer Stabstation 16 zugeführt. Diese Stationen sind mit zweiten Kühlvorrichtungen 18 (für Draht) bzw. 20 (für Stabstahl) sowie mit nicht näher dargestellten Warmhaltevorrichtungen für das abgelängte Walzerzeugnis in Form von Drahtringen oder von Stäben ausgestattet.Finally, the beam strand is optionally supplied to a wire station 14 or to a bar station 16. These stations are equipped with second cooling devices 18 (for wire) and 20 (for bar steel) and with not shown holding devices for the cut-to-length rolled product in the form of wire rings or rods.

Bei der Herstellung von Stabstahl wird die erste Warmwalzvorrichtung 6 durch eine erste Gerüstgruppe 22 gebildet. Im Falle von vergleichsweise dickem Stabstahl dient als erste Kühlvorrichtung 8 eine direkte Wasserkühlung 24 im Bereich der ersten Gerüstgruppe 22. Für vergleichsweise dünnen Stabstahl wird als erste Kühlvorrichtung 8 eine Warteschlaufe 26 mit Durchlaufkühlung 28 eingesetzt. Erforderlichenfalls können auch beide Kühlvarianten zum Einsatz kommen. Die zweite Warmwalzvorrichtung 10 kann wie bei der hier gezeigten Anordnung durch eine nachgeordnete zweite Gerüstgruppe 30 gebildet sein. Anschliessend gelangt der Walzgutstrang zur Stabstation 16, welche wie erwähnt eine zweite Kühlvorrichtung 20 beinhaltet.In the production of bar steel, the first hot rolling device 6 is formed by a first stand group 22. In the case of a comparatively thick steel bar, the first cooling device 8 is a direct water cooling system 24 in the area of the first stand group 22. For comparatively thin bar steel, a waiting loop 26 with continuous cooling 28 is used as the first cooling device 8. If necessary, both cooling variants can be used. The second hot rolling apparatus 10 may be formed by a downstream second stand group 30 as in the arrangement shown here. Subsequently, the rolling stock reaches the bar station 16, which as mentioned includes a second cooling device 20.

Bei der Herstellung von Draht mit einem Durchmesser von beispielsweise bis zu 22 mm umfasst die erste Warmwalzvorrichtung 6 die erste Gerüstgruppe 22 und die zweite Gerüstgruppe 30. Die erste Kühlvorrichtung 8a ist dabei als nachgeordnete Warteschlaufe 32 ausgestaltet, die vorteilhafterweise eine Wasserkühlung 34 umfasst. Die zweite Warmwalzvorrichtung 10a wird durch eine nachgeordnete dritte Gerüstgruppe 36 gebildet. Anschliessend gelangt der Walzgutstrang zur Drahtstation 14, welche wie erwähnt eine zweite Kühlvorrichtung 18 beinhaltet.In the production of wire with a diameter of, for example, up to 22 mm, the first hot rolling device 6 comprises the first stand group 22 and the second stand group 30. The first cooling device 8a is configured as a downstream waiting loop 32, which advantageously comprises a water cooling 34. The second hot rolling apparatus 10 a is formed by a downstream third skeleton group 36. Subsequently, the rolling stock reaches the wire station 14, which includes a second cooling device 18 as mentioned.

Die Fig. 2 bis 4 zeigen anhand der massgeblichen Temperatur-Zeitprofile einen Vergleich zwischen einem vorbekannten Walzverfahren (Fig. 2) und zwei Varianten des erfindungsgemässen Verfahrens (Fig. 3 und 4).The Fig. 2 to 4 show on the basis of the relevant temperature-time profiles a comparison between a previously known rolling process ( Fig. 2 ) and two variants of the process according to the invention ( Fig. 3 and 4 ).

Beim vorbekannten Verfahren gemäss Fig. 2 wird der Stahlstrang zunächst auf rund 1'150°C erhitzt. Danach wird eine Warmumformung durch Walzen bei einer Temperatur oberhalb 950°C durchgeführt, was oberhalb der Rekristallisationstemperatur liegt. Im gezeigten Beispiel erfolgt dies durch 6 Stiche. Anschliessend wird das Walzgut, je nach Endabmessung bzw. Walzstation, innerhalb von 5 bis 10 s auf 820 bis 920°C und dann mit einer Abkühlrate von 0.3 bis 1.9°C/s auf Raumtemperatur abgekühlt. Das so gewonnene Erzeugnis eignet sich nicht für die kalte Weiterverarbeitung, sondern es ist hierfür eine mehrstündige Wärmebehandlung erforderlich. Beispielsweise muss das Erzeugnis wieder auf eine Temperatur von 680 bis 720°C aufgeheizt werden und typischerweise etwa 14 Stunden bei dieser Temperatur gehalten werden. Das derart nachbehandelte Erzeugnis kann schliesslich auf Raumtemperatur abgekühlt werden und steht danach für die kalte Weiterverarbeitung zur Verfügung.In the known method according to Fig. 2 The steel strand is first heated to about 1'150 ° C. Thereafter, a hot working is carried out by rolling at a temperature above 950 ° C, which is above the recrystallization temperature. In the example shown this is done by 6 stitches. Subsequently, the rolling stock, depending on the final size or rolling station, within 5 to 10 s at 820 to 920 ° C and then cooled at a cooling rate of 0.3 to 1.9 ° C / s to room temperature. The product thus obtained is not suitable for cold processing, but it requires a heat treatment lasting several hours. For example, the product must be reheated to a temperature of 680 to 720 ° C and typically held at that temperature for about 14 hours. The product treated in this way can finally be cooled to room temperature and is then available for cold further processing.

Bei den Verfahren der Fig. 3 und 4 wird zunächst eine erste Warmumformung oberhalb der Rekristallisationstemperatur durchgeführt, wobei der Umformgrad in diesem Verfahrensschritt mindestens 60% beträgt. Anschliessend wird das Walzgut jedoch - anders als im zuvor geschilderten Verfahren der Fig. 2 - zunächst unterhalb die Rekristallisationstemperatur abgekühlt und danach eine Endumformung bei einer Temperatur im Bereich des nicht-rekristallisierten Austenits vorgenommen. Der Gesamtumformgrad bei der Endumformung beträgt mindestens 30% und wird in den gezeigten Beispielen durch zwei Stiche bewerkstelligt. Wesentlich ist, dass die Abkühlung unterhalb die Rekristallisationstemperatur derart durchgeführt wird, dass im Walzgut vor der Endumformung kein Kornwachstum des Austenits stattfindet.In the procedures of Fig. 3 and 4 First, a first hot working is carried out above the recrystallization temperature, wherein the degree of deformation in this process step is at least 60%. Subsequently, however, the rolling stock - unlike the previously described method of Fig. 2 - Initially cooled below the recrystallization temperature and then made a final deformation at a temperature in the region of the non-recrystallized austenite. The total degree of deformation in the final forming is at least 30% and is accomplished in the examples shown by two stitches. It is essential that the cooling below the recrystallization temperature is carried out in such a way that no grain growth of the austenite takes place in the rolling stock before the final shaping.

Bei der Variante von Fig. 3 erfolgt die Endumformung bei einer Temperatur, die oberhalb von Ar3 liegt; bei der Variante von Fig. 4 ist die Endwalztemperatur noch niedriger und liegt knapp unterhalb von Ar3 im Bereich zwischen Ar1 und Ar3. Wie in den Fig. 3 und 4 schematisch angedeutet, könnte die Endumformung je nach Walzstation, Abmessung bzw. Walzgeschwindigkeit eine Wiedererwärmung des Walzgutes bewirken. Dieser Umstand muss berücksichtigt werden, d.h. es gilt zu vermeiden, dass die Temperatur vorübergehend wieder über die gewünschte Endwalztemperatur ansteigt.In the variant of Fig. 3 the final transformation takes place at a temperature which is above Ar 3 ; in the variant of Fig. 4 the final rolling temperature is even lower and is just below Ar 3 in the range between Ar 1 and Ar 3 . As in the Fig. 3 and 4 indicated schematically, could the Endumformung Depending on the rolling station, dimension or rolling speed cause re-heating of the rolling stock. This circumstance must be taken into account, ie it is necessary to avoid that the temperature temporarily rises again above the desired final rolling temperature.

In einem dritten Verfahrensschritt wird das Walzgut im Wesentlichen auf die Ar1 Temperatur, zum Beispiel auf 680 bis 720°C, abgekühlt und danach bei dieser Warmhaltetemperatur während einer bestimmten Warmhaltezeit belassen. Ein Wiedererwärmungsprozess ist dementsprechend nicht erforderlich. Schliesslich wird das Erzeugnis auf Raumtemperatur abgekühlt.In a third process step, the rolling stock is substantially cooled to the Ar 1 temperature, for example at 680 to 720 ° C, and then left at this holding temperature for a certain holding time. A rewarming process is accordingly not required. Finally, the product is cooled to room temperature.

Die Warmhaltezeit wird in Vorversuchen bestimmt. Sie wird so gewählt, dass die Eigenschaften der Erzeugnisse nach dem Abkühlen auf Raumtemperatur mit denjenigen nach konventioneller Walzung und zusätzlicher Wärmebehandlung vergleichbar sind. Damit wird erreicht, dass das Erzeugnis ohne weitere Wärmebehandlung kalt weiterverarbeitbar ist.The keep-warm time is determined in preliminary tests. It is chosen so that the properties of the products after cooling to room temperature are comparable to those after conventional rolling and additional heat treatment. This ensures that the product is cold processed without further heat treatment.

Wie aus dem Vergleich der Fig. 3 und 4 hervorgeht, lässt sich durch Senken der Endwalztemperatur kombiniert mit einem gezielten modifizierten Abkühlprozess eine Verkürzung der erforderlichen Warmhaltezeit erreichen, welche im Fall der Fig. 3 ungefähr 7 Stunden und im Fall der Fig. 4 lediglich noch 2 bis 4 Stunden beträgt.As from the comparison of Fig. 3 and 4 can be achieved by lowering the final rolling temperature combined with a specific modified cooling process to achieve a shortening of the required holding time, which in the case of Fig. 3 about 7 hours and in the case of Fig. 4 only 2 to 4 hours.

Es versteht sich, dass zum Einstellen der beschriebenen Bedingungen die Walzvorrichtung entsprechend zu dimensionieren bzw. einzurichten ist. Insbesondere werden die kontrollierten Abkühlungsvorgänge mittels Wasserkühlungen und gegebenenfalls mittels Warteschlaufen realisiert. Darüber hinaus werden je nach Art und Dimension des zu produzierenden Erzeugnisses (d.h. Drahtstahl, Stabstahl) unterschiedliche Anzahlen und Positionen der Walzgerüste gewählt. Das Warmhalten erfolgt - ebenfalls abhängig von der Art des Erzeugnisses - in geeigneten Warmhalteeinrichtungen.It is understood that to set the described conditions, the rolling device is to be dimensioned or set up accordingly. In particular, the controlled cooling processes are realized by means of water cooling and possibly by means of waiting loops. In addition, depending on the type and dimension of the product to be produced (ie wire steel, steel bars) different numbers and positions of the rolling stands are selected. Keeping warm takes place - also depending on the type of product - in suitable holding facilities.

Grundsätzlich lässt sich das beschriebene Verfahren für Stähle mit einem Gewichtsanteil von 0.02 bis 0.65% Kohlenstoff und bis zu 0.15% Silizium, 0.25 bis zu 1.5% Mangan, bis zu 0.035% Phosphor, bis zu 0.004% Schwefel, bis zu 0.5% Molybdän, bis 1.7% Chrom, bis zu 0.25% Kupfer, bis zu 0.008% Bor, bis zu 0.2% Nickel und bis zu 0.25% Vanadium sowie weiteren stahlüblichen Beimengungen verwenden. Drei Beispiele für solche Zusammensetzungen sind in der Tabelle 1 angegeben. Tabelle 1: Stahlzusammensetzungen in Gew.-% Stahl C Si Mn P S Ni Cr Mo Al Cu B N A 0.09 0.08 0.36 0.004 0.005 0.06 0.06 0.008 0.026 0.07 - 0.011 B 0.21 0.05 0.97 0.005 0.009 0.05 0.03 0.007 0.021 0.08 0.003 0.008 C 0.43 0.08 0.74 0.005 0.030 0.06 1.07 0.215 0.021 0.08 - 0.009 Basically, the method described for steels with a weight fraction of 0.02 to 0.65% carbon and up to 0.15% silicon, 0.25 to 1.5% manganese, up to 0.035% phosphorus, up to 0.004% sulfur, up to 0.5% molybdenum, up Use 1.7% chromium, up to 0.25% copper, up to 0.008% boron, up to 0.2% nickel and up to 0.25% vanadium and other common steel admixtures. Three examples of such compositions are given in Table 1. <u> Table 1: </ u> Steel compositions in wt% stole C Si Mn P S Ni Cr Not a word al Cu B N A 12:09 12:08 12:36 0004 0005 12:06 12:06 0008 0026 12:07 - 0011 B 12:21 12:05 0.97 0005 0009 12:05 12:03 0007 0021 12:08 0003 0008 C 12:43 12:08 0.74 0005 0030 12:06 1:07 0215 0021 12:08 - 0009

BeispieleExamples

Die folgenden Beispiele wurden auf einer Versuchsanlage durchgeführt. In allen Fällen wurde die in Vorversuchen bestimmte minimal erforderliche Wärmebehandlungszeit bzw. Warmhaltezeit eingehalten, die zu einem kalt verarbeitbaren Erzeugnis führt. Da jedoch auf der Versuchsanlage am Schluss keine Drahtringe oder lange Stäbe abgelegt werden, sind die nötigen Wärmebehandlungszeiten bzw. Warmhaltezeiten in den vorliegenden Beispielen deutlich kürzer als in einer entsprechenden Produktionsanlage. Demnach sind die nachfolgend angegebenen Wärmebehandlungszeiten bzw. Warmhaltezeiten etwa um den Faktor 3.5 kürzer als auf einer Produktionsanlage.The following examples were carried out on a pilot plant. In all cases, the minimum required heat treatment time or holding time was determined in preliminary tests, which leads to a cold processable product. However, since at the end no wire rings or long bars are laid down on the test facility, the necessary heat treatment times or holding times in the present examples are significantly shorter than in a corresponding production facility. Accordingly, the following heat treatment times or holding times are about 3.5 times shorter than on a production line.

Vergleichsbeispiel 1 (Stand der Technik)Comparative Example 1 (prior art)

Ein Stahl mit der chemischen Zusammensetzung "A" gemäss Tabelle 1 wurde auf 1'150°C erhitzt und anschliessend in 6 Stichen gewalzt, wobei der Anfangsdurchmesser 38 mm und der Enddurchmesser 17.2 mm betrug. Dies entspricht einem Gesamtumformgrad von 80%. Dabei lag die Endwalztemperatur bei ca. 980°C. Anschliessend wurde das Walzgut innerhalb von 6 Sekunden auf 820 bis 960°C und dann mit einer Abkühlrate von 0.3 bis 1.9 °C/s (je nach Walzstation) auf Raumtemperatur abgekühlt. Das so gewonnene Erzeugnis wurde anschliessend einer Wärmebehandlung bei 680°C während 4 Stunden unterzogen.A steel with the chemical composition "A" according to Table 1 was heated to 1'150 ° C and then rolled in 6 passes, the initial diameter was 38 mm and the final diameter was 17.2 mm. This matches with a total degree of deformation of 80%. The final rolling temperature was approx. 980 ° C. Subsequently, the rolling stock was cooled within 6 seconds to 820 to 960 ° C and then with a cooling rate of 0.3 to 1.9 ° C / s (depending on the rolling station) to room temperature. The product thus obtained was then subjected to a heat treatment at 680 ° C for 4 hours.

Beispiel 1example 1

Ein Stahl mit derselben Zusammensetzung wie im Vergleichsbeispiel 1 wurde auf 1'150°C erhitzt und anschliessend in 4 Stichen gewalzt, wobei der Anfangsdurchmesser 38 mm und der Enddurchmesser 23.8 mm betrug. Dies entspricht einem Gesamtumformgrad bei der ersten Warmverformung von 60%. Dabei lag die Temperatur nach dem 4. Stich bei ca. 1'020°C. Anschliessend wurde das Walzgut nach einer intensiven Kühlung innerhalb von 13 Sekunden in weiteren 4 Stichen von 23.8 auf 17.2 mm gewalzt. Dies entspricht einem Gesamtumformgrad bei der Endumformung von 47%. Dabei betrug die Endwalztemperatur 880°C, was ca. 20°C oberhalb von Ar3 liegt. Nach dem letzten Stich wurde das Walzgut innerhalb von 6 Sekunden auf 680°C abgekühlt, was im Wesentlichen Ar1 e entspricht, und während 2 Stunden bei dieser Temperatur belassen.A steel having the same composition as in Comparative Example 1 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm. This corresponds to a total degree of deformation at the first hot deformation of 60%. The temperature was after the 4th stitch at about 1'020 ° C. After intensive cooling, the rolling stock was then rolled within 13 seconds in a further 4 passes from 23.8 to 17.2 mm. This corresponds to a total deformation rate of 47% for the final forming. The final rolling temperature was 880 ° C, which is about 20 ° C above Ar 3 . After the last pass, the rolling stock was cooled to 680 ° C within 6 seconds, which essentially corresponds to Ar 1 e , and left at this temperature for 2 hours.

Beispiel 2Example 2

Ein Stahl mit derselben Zusammensetzung wie im Vergleichsbeispiel 1 wurde auf 1'150°C erhitzt und anschliessend in 4 Stichen gewalzt, wobei der Anfangsdurchmesser 38 mm und der Enddurchmesser 23.8 mm betrug. Dabei lag die Temperatur nach dem 4. Stich bei ca. 1'020°C. Anschliessend wurde das Walzgut nach einer intensiven Kühlung innerhalb von 13 Sekunden in weiteren 2 Stichen von 23.8 auf 17.2 mm gewalzt. Die Endwalztemperatur lag bei 850°C was knapp ca. 10°C unterhalb von Ar3 liegt. Nach dem letzten Stich wurde das Walzgut innerhalb 6 Sekunden auf 680°C abgekühlt was im Wesentlichen Ar1 e entspricht, und während 1 Stunde bei dieser Temperatur belassen.A steel having the same composition as in Comparative Example 1 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm. The temperature was after the 4th stitch at about 1'020 ° C. After intensive cooling, the rolling stock was then rolled within 13 seconds in another 2 passes from 23.8 to 17.2 mm. The final rolling temperature was 850 ° C, which is just under 10 ° C below Ar 3 . After the last pass, the rolling stock was cooled to 680 ° C in 6 seconds, which essentially corresponds to Ar 1 e , and left at this temperature for 1 hour.

Die mechanischen Eigenschaften der Walzerzeugnisse aus Stahl A sind in Tabelle 2 zusammengestellt. Es ist eindeutig zu erkennen, dass durch gezielte Endumformung um Ar3 kombiniert mit einer gesteuerten Abkühlung um Ar1 ohne vorherige Wiedererwärmung und das Halten bei dieser Temperatur ein Eigenschaftsniveau erreicht werden kann, das mit demjenigen nach konventioneller Umformung gefolgt von aufwändiger Wärmebehandlung vergleichbar ist. Dabei konnte die benötigte Warmhaltezeit auf die Hälfte bis ein Viertel der üblichen Glühdauer reduziert werden. Das Erzeugnis kann im diesem Zustand kalt verarbeitet werden. Tabelle 2: Mechanische Eigenschaften der Walzerzeugnisse aus Stahl A Vergleichsbeispiel 1 Beispiel 1 Beispiel 2 Zugfestigkeit RM [MPa] 375 395 392 Brucheinschnürung Z [%] 76.0 75.8 74.2 The mechanical properties of steel A rolled products are summarized in Table 2. It can clearly be seen that targeted level conversion to Ar 3 combined with controlled cooling by Ar 1 without prior reheating and holding at that temperature can achieve a level of properties comparable to that after conventional forming followed by expensive heat treatment. The required holding time was reduced to half to one quarter of the usual annealing time. The product can be processed cold in this condition. <u> Table 2 </ u>: Mechanical properties of steel rolled products A Comparative Example 1 example 1 Example 2 Tensile strength R M [MPa] 375 395 392 Fracture Z [%] 76.0 75.8 74.2

Vergleichsbeispiel 2 (Stand der Technik)Comparative Example 2 (prior art)

Ein Stahl mit der chemischen Zusammensetzung "C" gemäss Tabelle 1 wurde auf 1'150°C erhitzt und anschliessend in 6 Stichen gewalzt, wobei der Anfangsdurchmesser 38 mm und der Enddurchmesser 17.2 mm betrug. Dies entspricht einem Gesamtumformgrad von 80%. Dabei lag die Endwalztemperatur bei ca. 980°C. Anschliessend wurde das Walzgut in 5 Sekunden auf ca. 820 bis 970°C und dann mit einer Abkühlrate von 0.3 bis 1.9°C/s auf Raumtemperatur abgekühlt. Das so gewonnene Erzeugnis wurde anschliessend einer Wärmebehandlung bei 680°C während 4 Stunden unterzogen.A steel with the chemical composition "C" according to Table 1 was heated to 1'150 ° C and then rolled in 6 passes, the initial diameter of 38 mm and the final diameter was 17.2 mm. This corresponds to a Gesamtumformgrad of 80%. The final rolling temperature was approx. 980 ° C. Subsequently, the rolling stock was cooled in 5 seconds to about 820 to 970 ° C and then with a cooling rate of 0.3 to 1.9 ° C / s to room temperature. The product thus obtained was then subjected to a heat treatment at 680 ° C for 4 hours.

Beispiel 3Example 3

Ein Stahl mit derselben Zusammensetzung wie im Vergleichsbeispiel 2 wurde auf 1'150°C erhitzt und anschliessend in 4 Stichen gewalzt, wobei der Anfangsdurchmesser 38 mm und der Enddurchmesser 23.8 mm betrug. Dies entspricht einem Gesamtumformgrad bei der ersten Warmverformung von 60%. Dabei lag die Temperatur nach dem 4. Stich bei ca. 1'020 °C. Anschliessend wurde das Walzgut nach einer intensiven Kühlung innerhalb von 13 Sekunden in weiteren 2 Stichen von 23.8 auf 17.2 mm gewalzt. Dies entspricht einem Gesamtumformgrad bei der Endumformung von 47%. Dabei betrug die Endwalztemperatur 800°C, was oberhalb von Ar3 liegt. Nach dem letzten Stich wurde das Walzgut innerhalb von 6 Sekunden auf 680°C abgekühlt, was zwischen Ar1 b und Ar1 e liegt, und während 2 Stunden bei dieser Temperatur belassen.A steel having the same composition as in Comparative Example 2 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm. This matches with a total degree of deformation at the first hot deformation of 60%. The temperature was after the 4th stitch at about 1'020 ° C. After intensive cooling, the rolling stock was then rolled within 13 seconds in another 2 passes from 23.8 to 17.2 mm. This corresponds to a total deformation rate of 47% for the final forming. The final rolling temperature was 800 ° C, which is above Ar 3 . After the last pass, the rolling stock was cooled to 680 ° C within 6 seconds, which is between Ar 1 b and Ar 1 e , and left at this temperature for 2 hours.

Beispiel 4Example 4

Ein Stahl mit derselben Zusammensetzung wie im Vergleichsbeispiel 2 wurde auf 1'150°C erhitzt und anschliessend in 4 Stichen gewalzt, wobei der Anfangsdurchmesser 38 mm und der Enddurchmesser 23.8 mm betrug. Dabei lag die Temperatur nach dem 4. Stich bei ca. 1'020°C. Anschliessend wurde das Walzgut nach einer intensiven Kühlung innerhalb von 13 Sekunden in weiteren 2 Stichen von 23.8 auf 17.2 mm gewalzt. Die Endwalztemperatur lag bei 690°C, was unterhalb von Ar3 liegt. Nach dem letzten Stich wurde das Walzgut innerhalb von 6 Sekunden auf 680°C abgekühlt, was zwischen Ar1 b und Ar1 e liegt, und während 0.5 Stunden bei dieser Temperatur belassen.A steel having the same composition as in Comparative Example 2 was heated to 1'150 ° C and then rolled in 4 passes, the initial diameter being 38 mm and the final diameter being 23.8 mm. The temperature was after the 4th stitch at about 1'020 ° C. After intensive cooling, the rolling stock was then rolled within 13 seconds in another 2 passes from 23.8 to 17.2 mm. The final rolling temperature was 690 ° C, which is below Ar 3 . After the last pass, the rolling stock was cooled to 680 ° C within 6 seconds, which is between Ar 1 b and Ar 1 e , and left at this temperature for 0.5 hour.

Fig. 5 stellt das Gefüge abgeschreckter Proben nach dem letzten Stich in Abhängigkeit von der Endwalztemperatur dar. Es ist zu sehen, dass die Endumformung im Vergleichsbeispiel 2 (siehe Fig. 5a) und im Beispiel 3 (siehe Fig. 5b) im metastabilen Austenit stattfand. Demgegenüber erfolgte diese im Beispiel 4 (siehe Fig. 5c) im (y-a)-Zweiphasengebiet. Fig. 5 represents the microstructure of quenched samples after the last pass, depending on the final rolling temperature. It can be seen that the final forming in Comparative Example 2 (see Fig. 5a ) and Example 3 (see Fig. 5b ) in metastable austenite. In contrast, this was done in Example 4 (see Fig. 5c ) in the (ya) two-phase region.

Die mechanischen Eigenschaften der Walzerzeugnisse aus Stahl C sind in Tabelle 3 zusammengestellt. Tabelle 3: Mechanische Eigenschaften der Walzerzeugnisse aus Stahl C Vergleichsbeispiel 2 Beispiel 3 Beispiel 4 Zugfestigkeit RM [MPa] 695 685 695 Brucheinschnürung Z [%] 60.9 56.6 57.7 The mechanical properties of steel C rolled products are summarized in Table 3. <u> Table 3 </ u>: Mechanical properties of steel rolled products C Comparative Example 2 Example 3 Example 4 Tensile strength R M [MPa] 695 685 695 Fracture Z [%] 60.9 56.6 57.7

SchlussbemerkungenClosing remarks

Die obigen Vergleichsmessungen zeigen, dass das kontinuierliche Walzen mit gezielter Einstellung der Endwalztemperatur um Ar3 kombiniert mit einem gezielten modifizierten Abkühlprozess und einer gezielt gewählten Warmhaltetemperatur zu Erzeugnissen führt, deren mechanische Eigenschaften mit denen nach einer konventionellen Wärmebehandlung vergleichbar sind. Insbesondere können die Erzeugnisse ohne Glühbehandlung kalt weiterverarbeitet werden.The above comparison measurements show that the continuous rolling with targeted setting of the final rolling temperature by Ar 3 combined with a specific modified cooling process and a deliberately selected holding temperature leads to products whose mechanical properties are comparable to those after a conventional heat treatment. In particular, the products can be processed cold without annealing.

Claims (5)

  1. A method for the continuous production of steel wire or steel bar, which comprises the following process steps:
    a) in a first process step, a steel with a weight proportion consisting of 0.02 to 0.65% carbon, more than 0 and up to 0.15% silicon, 0.25 to 1.5% manganese, up to 0.035% phosphorus, up to 0.004% sulfur, more than 0 and up to 0.5% molybdenum, more than 0 and up to 1.7% chromium, more than 0 and up to 0.25% copper, up to 0.008% boron, more than 0 and up to 0.2% nickel and up to 0.25% vanadium, more than 0 and up to 0.026% aluminium and further admixtures usually contained in steel is heated to 1'050 to 1'200°C, subsequently a first hot forming is carried out by rolling at a temperature above the recrystallization temperature, wherein the total deformation degree in the first hot forming is at least 60%;
    b) in a second process step, the rolled material is cooled to below the recrystallization temperature and subsequently an end forming at a temperature in the range of non-recrystallized austenite is carried out, wherein the cooling is carried out in such manner that in the rolled material a possible grain growth is prevented before the end forming and wherein the total deformation degree in the end forming is at least 30%; and
    c) in a third process step, the rolled material is cooled without reheating down to a soaking temperature in the range of Ar1 b to Ar1 e around the Ar1 temperature, and is maintained at the said soaking temperature during a soaking time.
  2. The method according to claim 1, characterized in that the steel comprises a weight proportion of 0.02 to 0.2% carbon and up to 0.15% silicon, 0.25 to 1.0% manganese, up to 0.025% phosphorus, up to 0.004% sulfur, up to 0.25% molybdenum, up to 0.1% chromium, up to 0.25% copper, up to 0.008% boron, up to 0.2% nickel, up to 0.026 aluminium and up to 0.1% vanadium and that the soaking temperature is substantially at Ar1 e.
  3. The method according to claim 1, characterized in that the steel comprises a weight proportion of 0.2 to 0.65% carbon and up to 0.15% silicon, 0.25 to 1.0% manganese, up to 0.035% phosphorus, up to 0.004% sulfur, 0.25 up to 0.50% molybdenum, up to 1.7% chromium, up to 0.25% copper, up to 0.2% nickel, up to 0.026 aluminium and up to 0.1% vanadium and that the soaking temperature is in the range of Ar1 b to Ar1 e.
  4. The method according to one of claims 1 to 3, characterized in that the end forming is carried out at a temperature of at most Ar3 + 60°C.
  5. The method according to one of claims 1 to 3, characterized in that the end forming is carried out at a temperature in the range of Ar1 to Ar3 with the provision that the end forming temperature does not fall below 690°C.
EP07816241.9A 2006-11-17 2007-11-12 Method for the continuous production of steel wire or bar Not-in-force EP2089552B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07816241T PL2089552T3 (en) 2006-11-17 2007-11-12 Method for the continuous production of steel wire or bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18482006 2006-11-17
PCT/CH2007/000558 WO2008058410A1 (en) 2006-11-17 2007-11-12 Method for the continuous production of steel wire or bar

Publications (2)

Publication Number Publication Date
EP2089552A1 EP2089552A1 (en) 2009-08-19
EP2089552B1 true EP2089552B1 (en) 2017-01-25

Family

ID=37771001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07816241.9A Not-in-force EP2089552B1 (en) 2006-11-17 2007-11-12 Method for the continuous production of steel wire or bar

Country Status (4)

Country Link
EP (1) EP2089552B1 (en)
ES (1) ES2623430T3 (en)
PL (1) PL2089552T3 (en)
WO (1) WO2008058410A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171526A (en) * 1982-03-31 1983-10-08 Nippon Steel Corp Manufacturing method for cryogenic steel
ES8505413A1 (en) * 1984-01-13 1985-05-16 Sumitomo Metal Ind PROCEDURE FOR PRODUCING STEEL BAR OR WIRE
US4619714A (en) * 1984-08-06 1986-10-28 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
EP1371737A1 (en) * 2002-06-10 2003-12-17 Von Moos Stahl AG Process and device for manufacturing steel wire or rod

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2008058410A1 (en) 2008-05-22
PL2089552T3 (en) 2017-07-31
EP2089552A1 (en) 2009-08-19
ES2623430T3 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
EP1613783B1 (en) Method for the thermomechanical treatment of steel
DE112017007384T5 (en) An X80 high carbon equivalent, high-temperature, high-temperature, ductile steel plate used for bent tubes, and a manufacturing method therefor
DE1508416B2 (en) Process for the production of steel parts such as bolts, screws, pins and the like
DE3650255T2 (en) High-strength low-carbon steel wire rod and method for producing this wire.
EP0136613A2 (en) Rail having a high wear resistance in the head and a high resistance to rupture in the base
EP1613449B1 (en) Method for producing helical springs or stabilisers
EP2356262B1 (en) Method and apparatus for producing steel pipes having particular properties
DE3616518C2 (en)
EP0422378A1 (en) Method of improving the cold workability of hardenable steels
DE19546204C1 (en) High strength steel object prodn.,esp. leaf spring
DE69115392T2 (en) Process for the manufacture of highly unbreakable products from unstable austenitic steel and products manufactured in this way
EP2089552B1 (en) Method for the continuous production of steel wire or bar
DE3033501A1 (en) METHOD FOR THE DIRECT HEAT TREATMENT OF RODWIRE FROM AUSTENITIC, STAINLESS STEEL
DE102017215699A1 (en) Process for producing a hot-formed and press-hardened sheet steel component
EP0013331A1 (en) Method for making profiles and the use of a fine grained steel for profiles
EP0367360B1 (en) Process for manufacturing seamless pressure vessels
DE102011051682B4 (en) Method and apparatus for treating a steel product and steel product
DE4101220C2 (en) Process for the production of a semi-finished product or workpiece
DE3507124A1 (en) Oil-drilling pipe welded by electric resistance welding, and method for the manufacture thereof
DE2344027C3 (en) Method of manufacturing bolts or screws
EP3783120B1 (en) Spring wire, clamp formed from same and method for producing such a spring wire
DE102012017143B3 (en) Manufacturing component with bainitic microstructure, comprises preparing component blank comprising steel having manganese, cooling component blank at cooling rate to suppress ferrite and/or perlite formation, and bainite hardening
DE19921286A1 (en) Heat treatment process for the production of surface-hardened long and flat products from unalloyed or low-alloy steels
DE3136722A1 (en) &#34;METHOD FOR PRODUCING FINISHED PARTS FROM HIGH ALLOY FERRITIC MATERIALS&#34;
DE1508454A1 (en) Method of dehulling steal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007015412

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0008060000

Ipc: C22C0038000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/02 20060101ALI20160711BHEP

Ipc: C22C 38/42 20060101ALI20160711BHEP

Ipc: C22C 38/00 20060101AFI20160711BHEP

Ipc: C22C 38/06 20060101ALI20160711BHEP

Ipc: C22C 38/44 20060101ALI20160711BHEP

Ipc: C21D 8/06 20060101ALI20160711BHEP

Ipc: C22C 38/04 20060101ALI20160711BHEP

INTG Intention to grant announced

Effective date: 20160808

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 864187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015412

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2623430

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170425

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015412

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171112

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181212

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007015412

Country of ref document: DE

Representative=s name: REBLE & KESSELHUT PARTNERSCHAFTSGESELLSCHAFT V, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211118

Year of fee payment: 15

Ref country code: AT

Payment date: 20211119

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211119

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220121

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007015412

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 864187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221112

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221113