EP2087064A1 - Light source - Google Patents
Light sourceInfo
- Publication number
- EP2087064A1 EP2087064A1 EP07819503A EP07819503A EP2087064A1 EP 2087064 A1 EP2087064 A1 EP 2087064A1 EP 07819503 A EP07819503 A EP 07819503A EP 07819503 A EP07819503 A EP 07819503A EP 2087064 A1 EP2087064 A1 EP 2087064A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light source
- phosphor
- primary radiation
- precursor
- source according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005855 radiation Effects 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 43
- 239000002243 precursor Substances 0.000 claims description 32
- 239000012190 activator Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 238000000197 pyrolysis Methods 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 7
- RVNZEJNWTUDQSC-JOCHJYFZSA-N (2r)-n-(6-aminohexyl)-1-tridecanoylpyrrolidine-2-carboxamide Chemical compound CCCCCCCCCCCCC(=O)N1CCC[C@@H]1C(=O)NCCCCCCN RVNZEJNWTUDQSC-JOCHJYFZSA-N 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 238000003618 dip coating Methods 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- YPSXFMHXRZAGTG-UHFFFAOYSA-N 4-methoxy-2-[2-(5-methoxy-2-nitrosophenyl)ethyl]-1-nitrosobenzene Chemical compound COC1=CC=C(N=O)C(CCC=2C(=CC=C(OC)C=2)N=O)=C1 YPSXFMHXRZAGTG-UHFFFAOYSA-N 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 4
- 238000001429 visible spectrum Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 22
- 229910052796 boron Inorganic materials 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000005915 ammonolysis reaction Methods 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005090 crystal field Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- -1 phosphorus halide Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K2/00—Non-electric light sources using luminescence; Light sources using electrochemiluminescence
- F21K2/06—Non-electric light sources using luminescence; Light sources using electrochemiluminescence using chemiluminescence
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Definitions
- the invention relates to a light source comprising a primary radiation source and a phosphor and a method for producing such a light source.
- the invention relates to a method for producing an electric light source using one or more phosphors emitting in the visible spectral range and at least one preferably UV-emitting primary source which is preferably, but not exclusively, an LED.
- Light sources based on at least one LED are realized by combining a UV-emitting primary source and one or more phosphors, which are excited by the UV light of the primary source and emit in the visible spectral range.
- a Ga (In) N LED emitting at about 460 nm and a yellow emitting phosphor YAG: Ce 3+ (WO 98/12757) are used. If a purely white light source is desired, several different phosphors, usually one each red, green and blue emitting material, must be used. This must be set according to the prior art to an optimal particle size and usually provided with a transparent protective layer.
- An object of the present invention was therefore to overcome the above-described disadvantages of the prior art and, in particular, to provide a light source which can be manufactured in a simple manner and which enables the emission of white light.
- This object is achieved according to the invention by a light source comprising (i) a primary radiation source and (ii) a phosphor layer or a phosphor based on an amorphous or partially crystalline network, wherein the network comprises nitrogen (N) and at least two elements selected from P Si 1 B and Al, and wherein at least one activator is incorporated into the network.
- the light source according to the invention comprises as component (i) a primary radiation source.
- This primary radiation source can basically emit light in any wavelength range. It preferably delivers UV-o radiation, in particular in a wavelength range from 250 to 450 nm, more preferably from 300 to 430 nm. Particularly preferred is a peak maximum of the emission of the primary radiation source in the specified ranges.
- the primary radiation source is an LED (light-emitting diode), in particular a GaN or Ga (In) N LED.
- the light emitted by the primary radiation source is also referred to herein as primary radiation.
- the light source according to the invention comprises a phosphor layer or a phosphor based on an amorphous or partially crystalline network, wherein the network comprises N and at least two elements selected from P, Si, B and Al, and wherein at least one Activator is incorporated.
- the phosphors used according to the invention are distinguished, in particular, by the fact that they are not substances based on a crystalline network, but rather substances based on an amorphous or partially crystalline network.
- the base materials used to form the phosphor have networks which are particularly X-ray amorphous, that is, they do not have crystallites with a diameter of ⁇ 300 nm, especially no crystallites with a diameter> 200 nm, and more preferably no crystallites with a diameter ⁇ 100 nm.
- the base material of the phosphors thus has in particular no long-range lattice symmetry.
- at least one activator is further incorporated in the phosphors.
- the base material of the phosphors according to the invention comprises at least two elements selected from P, Si, B, Al and, independently of this, always N.
- the network consists of the elements P, Si, B, Al and N or the respective subsystems P, Si, B and N, P, Si, Al and N, Si, B 1 Al and N, P, B, Al and N, P, Si and N, P, B and N, P , Al and N, Si, B and N, Si, Al and N or B 1 Al and N.
- suitable activators are incorporated and incorporated.
- any metal ions can be introduced into the inorganic amorphous or partially crystalline network as activators.
- Preferred activator elements are Ba, Zn, Mn, Eu, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, Yb, Sn, Sb, Pb or Bi.
- the activators are Mn 2+ , Zn 2+ , Ba 2+ , Ce 3+ , Nd 3+ , Eu 2+ , Eu 3+ , Gd 3+ , Tb 3+ , Sn 2+ , Sb 3+ , Pb 2+ or Bi 3+ .
- the amount of activators in the phosphor is preferably ⁇ 0.1% by weight, in particular ⁇ 0.5% by weight and preferably up to 14% by weight, in particular up to 5% by weight.
- the activators may also have a sensitizer function.
- the phosphor preferably emits at wavelengths between 480 and 740 nm.
- the phosphor absorbs the primary radiation as completely as possible.
- the emitted light of the phosphor has different wavelengths from the absorbed light. Since according to the invention there is no exchange, but rather an introduction of the activator elements, it is also possible for any desired combinations of activator elements to be introduced into the luminescent material, thereby in particular coordinating the emission colors as desired. Most preferably, the activators are combined to emit white light.
- the incorporation of suitable activators into an amorphous three-dimensional network of the composition Si / B / N is particularly preferred.
- This host material has no periodic lattice symmetry.
- the base material structure is preferably nitridic in nature, which may optionally be doped oxide.
- the phosphor or the phosphor layer may further contain fillers.
- fillers Preference is given to solid particles as fillers, which at the same time act as light scattering agents.
- Such solid particles are, for example, SiO 2 , TiO 2 , SnO 2 , ZrO 2 , HfO 2 and / or Ta 2 O 5 .
- the solid particles Preferably, the solid particles have a narrow particle size distribution, wherein the average particle size distribution is preferably chosen depending on the refractive indices of the respective material such that white light is optimally scattered.
- the layer thickness of the phosphor or of the phosphor layer is preferably between 200 and 3000 nm, in particular between 300 and 2000 nm.
- the phosphor layer may be in direct contact with the primary radiation source, i. be applied directly to the primary radiation source.
- the phosphor layer in indirect contact with the primary radiation source, that is to say that further materials or layers are arranged between the primary radiation source and the phosphor layer.
- the intermediate layers or intermediate materials for the primary radiation are completely permeable.
- the invention further relates to a method for producing a light source as described herein, which is characterized in that a phosphor precursor in liquid form or as a suspension is applied directly or indirectly to a primary radiation source and then cured.
- the invention provides a method of liquid-phase coating a primary source having a phosphor emitting in the visible spectral range.
- the inventive method is based on a new family of phosphors consisting of an amorphous matrix, in which all conceivable activators can be introduced in widely variable concentrations. This very advantageous feature is brought about by incorporating the activators non-substitutively, that is to say replacing a matrix atom, but rather additively.
- This new class of phosphors is obtained from molecular precursors via an oligomeric or polymeric intermediate and the final step of pyrolysis.
- the molecular precursors with the activators dissolved therein or the partially crosslinked preceramic oligomers are liquid, they can be applied for example by dip coating (dipcoating), spin coating or spray coating, then fully crosslink by heating in an ammonia atmosphere and transfer by pyrolysis in 5 a firmly adhering ceramic layer.
- a mixture of at least one molecular precursor, at least one activator and optionally fillers is formed and applied to the primary source. Subsequently, a curing takes place, in particular by ammonolysis and subsequent pyrolysis.
- the viscosity of the mixture to be applied to the primary source can be adjusted by the nature and content of the fillers.
- a mixture of at least one molecular precursor, at least one activator and optionally fillers is also applied to the primary source, but this mixture was first subjected to partial curing, for example, partial ammonolysis to adjust the viscosity to the desired value , Subsequently, the application to the primary source and subsequently the complete curing, for example by ammonolysis and pyrolysis.
- a preceramic polymer is first formed from the 5 molecular precursors, the activators and optionally fillers. This preceramic polymer is obtained, for example, by complete ammonolysis. This preceramic polymer is then applied to the primary source. Liquid preceramic polymers can be applied directly. If the preceramic polymer is resinous or solid, a finely divided suspension of the preceramic polymer is advantageously formed in a solvent and this suspension is applied to the primary source. The solvent is then evaporated and then the phosphor layer cured, for example by pyrolysis.
- the base material of the phosphors used according to the invention is accessible, in particular, via molecular precursors, which are processed to form a preceramic material, which is then converted by pyrolysis into the final ceramic state.
- the phosphor can be applied to the radiation source in the form of a molecular precursor or can be formed from a molecular precursor.
- the molecular precursors contain the elements of the base material, ie in particular at least two elements, preferably at least three elements selected from P, Si 1 B and Al.
- the concentrations of P 1 Si, B, Al are preferably each set between 0 and 100 atom%, more preferably between 10 and 80 atom%.
- the molecular precursors are halides, preferably chlorides.
- molecular precursors in particular a mixture of molecular precursors, which are then subjected to co-ammonolysis.
- Mixtures of molecular precursors can be obtained, for example, by mixing a silazane and a boron and / or phosphorus halide.
- a molecular precursor is used, which is a one-component precursor.
- a one-component precursor already contains all elements of the product.
- Particularly preferred as the starting point of the production Molecular compound CI 3 Si (NH) BCI 2 (TADB) is used, which already contains the desired end-product linkage Si-NB.
- More preferred molecular component precursors are CI 4 P (N) (BCI 2) SiCl 3, Cl 3 PNSiCI 3, (CI 3 Si) 2 NBCI 2, CI 3 SiN (BCI 2) 2, (H 3 Si) 2 NBCI 2, CI 3 Si (NH) (BCI) (NH) SiCl 3 , CI 3 Si (NH) (AICI) (NH) SiCl 3 , [(CI 3 Si) (NH) (BNH) I 3 , (CI 3 Si ( NH) AICIz) 2 or [CI 3 PN (PCI 2 ) ZN] + [AICI 4 ] -.
- the precursor material is then cured to a phosphor having an amorphous or partially crystalline network.
- Curing preferably takes place via the intermediate stage of a preceramic material.
- the phosphor precursors can by
- Nitrogen can be partially replaced by oxygen, whereby an oxide doping is obtained.
- phosphor layer activators are incorporated, which are preferably introduced via the following routes.
- Those metals which dissolve like europium or barium in liquid ammonia are presented as dissolved in liquid ammonia and the molecular precursor, e.g. TADB, is added dropwise.
- the solution of the metals in ammonia can also be converted into precursors, e.g. TADB, to be dripped.
- the resulting polymeric imidamide contains, besides the base material elements, e.g. in addition to silicon and boron, the or the activator elements homogeneously distributed.
- Activators that do not dissolve elementally in liquid ammonia can be incorporated as complex molecular compounds.
- the ligands used should preferably contain only system-inherent elements such as halide (chloride), hydrogen, silicon or boron. AIIe other elements would not be removed or only with additional effort from the final product.
- Particularly suitable and system compatible are metal complexes with, for example, [CI 3 Si (N) SiCl 3 ] ' and chloride as ligands. Since all metals that can be used as activators form binary chlorides from which the desired complexes can be prepared by reaction with Li [CI 3 Si (N) SiCl 3 ], this approach is universal.
- the complex compounds of the activators are dissolved in the molecular precursor, for example in TADB, or, if appropriate, are dissolved together with the molecular precursor, for example with TADB 1, in a suitable solvent. This mixture or solution is added dropwise for the purpose of ammonolysis in liquid ammonia, and this can also be done in the opposite way.
- the thickness of the polymer / oligomer layer can be adjusted via the viscosity of the solution and the parameters of the coating process.
- the viscosity in turn, can be determined by the degree of polycondensation, i. be adjusted specifically by the average molecular weight of the oligomer, by the addition of solvents, by the addition of fillers and / or by the temperature.
- fillers preferably materials are used, which act at the same time light scattering.
- SiO.sub.2, TiO.sub.2, ZrO.sub.2, SnO.sub.2 or Ta.sub.2O.sub.5 having a narrow particle size distribution can be values which, depending on the calculation index of the respective material, optimally diffuse white light.
- the layer thicknesses are adjusted so that a crack-free ceramic layer is formed during pyrolysis.
- the layer thicknesses are preferably between 200 and 3000 nm, more preferably between 300 and 2000 nm.
- the layer thickness which can be achieved in a coating process depends essentially on the viscosity of the mixture to be applied and on the application method. If necessary for optimum optical performance of the LED-based light source, the entire coating process may be repeated several times to obtain the desired layer thickness.
- the final curing to the phosphor or to the phosphor layer is preferably carried out by pyrolysis, wherein an amorphous or partially crystalline Network is formed.
- pyrolysis the preceramic amide obtained as an intermediate in the ammonolysis at temperatures between 600 0 C and 1500 0 C, preferably between 1000 0 C and 1300 0 C, transferred to the final product.
- the pyrolysis preferably takes place in an atmosphere comprising nitrogen, argon, ammonia or mixtures thereof.
- the applied layer is cured in an ammonia atmosphere at room temperature to 200 0 C. Thereafter, the temperature is gradually increased, for example to 620 ° C, and held at this temperature. Subsequently, a pyrolysis, for example, is carried out at 1050 0 C.
- the heating elements can be electrical resistance furnaces or preferably infrared heaters, Spiegelöfen or lasers are used.
- the entire coating process can be carried out in parallel and continuously (flow-band-like).
- the LEDs to be coated can be processed in parallel in a 100 ⁇ 80 matrix arrangement. Different durations of the individual process steps are compensated for at the same running speed by longer or parallel running distances.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Engineering & Computer Science (AREA)
- Luminescent Compositions (AREA)
Abstract
The invention relates to a light source comprising a primary radiation source and a luminescent substance, and to a method for producing this light source. The invention relates, in particular, to a method for producing an electric light source using one or more luminescent substances emitting in the visible spectrum range, and at least one primary source emitting preferably in the UV range, and which is preferably, but not exclusively, an LED.
Description
Lichtquelle light source
Beschreibungdescription
Die Erfindung betrifft eine Lichtquelle umfassend eine primäre Strahlungsquelle und einen Leuchtstoff sowie ein Verfahren zur Herstellung einer solchen Lichtquelle. Die Erfindung betrifft insbesondere ein Verfahren zur Herstellung einer elektrischen Lichtquelle unter Verwendung eines oder mehrerer im sichtbaren Spektralbereich emittierenden Leuchtstoffe und wenigstens einer bevorzugt im UV emittierenden Primärquelle, die bevorzugt, aber nicht ausschließlich, eine LED ist.The invention relates to a light source comprising a primary radiation source and a phosphor and a method for producing such a light source. In particular, the invention relates to a method for producing an electric light source using one or more phosphors emitting in the visible spectral range and at least one preferably UV-emitting primary source which is preferably, but not exclusively, an LED.
Lichtquellen basierend auf wenigstens einer LED sind realisiert durch Kombination einer im UV emittierenden Primärquelle und einem oder mehrerer Leuchtstoffe, die durch das UV Licht der Primärquelle angeregt werden und im sichtbaren Spektralbereich emittieren. In einer beispielhaften Realisierung werden eine bei etwa 460 nm emittierende Ga(In)N-LED und ein gelb emittierender Leuchtstoff YAG: Ce3+ (WO 98/12757) verwendet. Wird eine rein weiße Lichtquelle angestrebt, so müssen mehrere verschiedene Leuchtstoffe, in der Regel je ein rot, grün und blau emittierendes Material, eingesetzt werden. Dies müssen nach Stand der Technik auf eine jeweils optimale Teilchengröße eingestellt und in der Regel mit einer transparenten Schutzschicht versehen werden. Schließlich werden sie als Gemenge oder einzeln in eine Polymermatrix eingebettet auf die Primärquelle, beispielsweise eine Ga(In)N-LED1 aufgebracht (WO 2006/061778 A1 und U.S. 2003/0052595 A1). Dieses Verfahren umfasst mehrere unabhängige Teilschritte und ist offensichtlich sehr aufwändig. Darüber hinaus sind im Interesse einer hohen Lebensdauer der Leuchtkörper hohe Anforderungen an die UV- und Temperaturbeständigkeit sowie die optische Transparenz der Schutzschichten und Polymermatrix zu stellen. Vor allem sollte das Herstellungsverfahren in Anbetracht der Tatsache, dass die neuen LED basierten Lichtquellen Massenprodukte sein
werden, ein hohes Potenzial für eine automatisierte und damit kostengünstige Produktion aulweisen.Light sources based on at least one LED are realized by combining a UV-emitting primary source and one or more phosphors, which are excited by the UV light of the primary source and emit in the visible spectral range. In an exemplary implementation, a Ga (In) N LED emitting at about 460 nm and a yellow emitting phosphor YAG: Ce 3+ (WO 98/12757) are used. If a purely white light source is desired, several different phosphors, usually one each red, green and blue emitting material, must be used. This must be set according to the prior art to an optimal particle size and usually provided with a transparent protective layer. Finally, they are applied as a mixture or individually embedded in a polymer matrix onto the primary source, for example a Ga (In) N LED 1 (WO 2006/061778 A1 and US 2003/0052595 A1). This method comprises several independent substeps and is obviously very expensive. Moreover, in the interests of a long service life of the luminous elements, high demands must be placed on the UV and temperature resistance and the optical transparency of the protective layers and polymer matrix. Above all, the manufacturing process should be in light of the fact that the new LED based light sources are mass-produced will have high potential for automated and therefore cost-effective production.
Eine Aufgabe der vorliegenden Erfindung bestand somit darin, die 5 geschilderten Nachteile des Standes der Technik zu überwinden und insbesondere eine Lichtquelle bereitzustellen, die auf einfache Weise hergestellt werden kann, und welche die Emission von weißem Licht ermöglicht. o Diese Aufgabe wird erfindungsgemäß gelöst durch eine Lichtquelle umfassend (i) eine primäre Strahlungsquelle und (ii) eine Leuchtstoff-Schicht oder einen Leuchtstoff auf Basis eines amorphen oder teilkristallinen Netzwerkes, wobei das Netzwerk Stickstoff (N) und wenigstens zwei Elemente, ausgewählt aus P, Si1 B und AI, umfasst, und wobei in das5 Netzwerk wenigstens ein Aktivator inkorporiert ist.An object of the present invention was therefore to overcome the above-described disadvantages of the prior art and, in particular, to provide a light source which can be manufactured in a simple manner and which enables the emission of white light. This object is achieved according to the invention by a light source comprising (i) a primary radiation source and (ii) a phosphor layer or a phosphor based on an amorphous or partially crystalline network, wherein the network comprises nitrogen (N) and at least two elements selected from P Si 1 B and Al, and wherein at least one activator is incorporated into the network.
Die erfindungsgemäße Lichtquelle umfasst als Bestandteil (i) eine primäre Strahlungsquelle. Diese primäre Strahlungsquelle kann grundsätzlich Licht in einem beliebigen Wellenlängenbereich abgeben. Bevorzugt liefert sie UV-o Strahlung, insbesondere in einem Wellenlängenbereich von 250 bis 450 nm, mehr bevorzugt von 300 bis 430 nm. Besonders bevorzugt liegt ein Peak- Maximum der Emission der primären Strahlungsquelle in den angegebenen Bereichen. Besonders bevorzugt handelt es sich bei der primären Strahlungsquelle um eine LED (Licht emittierende Diode), insbesondere um5 eine GaN oder Ga(In)N-LED. Das von der primären Strahlungsquelle abgegebene Licht wird hierin auch als Primärstrahlung bezeichnet.The light source according to the invention comprises as component (i) a primary radiation source. This primary radiation source can basically emit light in any wavelength range. It preferably delivers UV-o radiation, in particular in a wavelength range from 250 to 450 nm, more preferably from 300 to 430 nm. Particularly preferred is a peak maximum of the emission of the primary radiation source in the specified ranges. Particularly preferably, the primary radiation source is an LED (light-emitting diode), in particular a GaN or Ga (In) N LED. The light emitted by the primary radiation source is also referred to herein as primary radiation.
Weiterhin umfasst die erfindungsgemäße Lichtquelle eine Leuchtstoff- Schicht bzw. einen Leuchtstoff auf der Basis eines amorphen odero teilkristallinen Netzwerkes, wobei das Netzwerk N sowie wenigstens zwei Elemente, ausgewählt aus P, Si, B und AI, umfasst, und wobei in das Netzwerk wenigstens ein Aktivator inkorporiert ist.
Die erfindungsgemäß eingesetzten Leuchtstoffe zeichnen sich insbesondere dadurch aus, dass es sich nicht um Stoffe auf Basis eines kristallinen Netzwerkes, sondern vielmehr um Stoffe auf Basis eines amorphen oder teilkristallinen Netzwerkes handelt. Die zur Bildung des Leuchtstoffes eingesetzten Basismaterialien weisen Netzwerke auf, die insbesondere röntgenamorph sind, das heisst, dass sie keine Kristallite mit einem Durchmesser von ≥ 300 nm, insbesondere keine Kristallite mit einem Durchmesser > 200 nm, und noch mehr bevorzugt keine Kristallite mit einem Durchmesser ≥ 100 nm aufweisen. Das Basismaterial der Leuchtstoffe weist somit insbesondere keinerlei langreichweitige Gittersymmetrie auf. In das Netzwerk des Basismaterials ist bei den Leuchtstoffen weiterhin wenigstens ein Aktivator inkorporiert. Im Gegensatz zu herkömmlichen kristallinen Leuchtstoffen erfolgt dabei kein Austausch von zuvor im Basismaterial enthaltenen Ionen gegen Aktivatoren, sondern die Aktivatoren werden zusätzlich eingebaut. Dies bringt den wesentlichen Vorteil mit sich, dass beliebige Aktivatoren in die gleiche Matrix eingebaut werden können, und somit Leuchtstoffe bereitgestellt werden können, welche unterschiedliche Aktivatoren enthalten.Furthermore, the light source according to the invention comprises a phosphor layer or a phosphor based on an amorphous or partially crystalline network, wherein the network comprises N and at least two elements selected from P, Si, B and Al, and wherein at least one Activator is incorporated. The phosphors used according to the invention are distinguished, in particular, by the fact that they are not substances based on a crystalline network, but rather substances based on an amorphous or partially crystalline network. The base materials used to form the phosphor have networks which are particularly X-ray amorphous, that is, they do not have crystallites with a diameter of ≥300 nm, especially no crystallites with a diameter> 200 nm, and more preferably no crystallites with a diameter ≥ 100 nm. The base material of the phosphors thus has in particular no long-range lattice symmetry. In the network of the base material at least one activator is further incorporated in the phosphors. In contrast to conventional crystalline phosphors, there is no exchange of ions previously contained in the base material for activators, but the activators are additionally incorporated. This has the significant advantage that any activators can be incorporated into the same matrix, and thus phosphors can be provided which contain different activators.
Das Basismaterial der erfindungsgemäßen Leuchtstoffe, welches ein amorphes oder teilkristallines Netzwerk aufweist, umfasst wenigstens zwei Elemente, ausgewählt aus P, Si, B, AI und sowie davon unabhängig stets N. Insbesondere besteht das Netzwerk aus den Elementen P, Si, B, AI und N oder den jeweiligen Subsystemen P, Si, B und N, P, Si, AI und N, Si, B1 AI und N, P, B, AI und N, P, Si und N, P, B und N, P, AI und N, Si, B und N, Si, AI und N oder B1 AI und N. In dieses Netzwerk werden geeignete Aktivatoren eingebaut und inkorporiert. Als Aktivatoren können insbesondere beliebige Metallionen in das anorganische amorphe oder teilkristalline Netzwerk eingebracht werden. Bevorzugte Aktivatorelemente sind Ba, Zn, Mn, Eu, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, Yb, Sn, Sb, Pb oder Bi. Bevorzugt handelt es sich bei den Aktivatoren um Mn2+, Zn2+, Ba2+, Ce3+, Nd3+, Eu2+, Eu3+, Gd3+, Tb3+, Sn2+, Sb3+, Pb2+ oder Bi3+. Die Menge an Aktivatoren im Leuchtstoff beträgt vorzugsweise ≥ 0,1 Gew.-%,
insbesondere ≥ 0,5 Gew.-% und vorzugsweise bis zu 14 Gew.-%, insbesondere bis zu 5 Gew.-%. Die Aktivatoren können auch eine Sensibilisatorfunktion aufweisen.The base material of the phosphors according to the invention, which has an amorphous or partially crystalline network, comprises at least two elements selected from P, Si, B, Al and, independently of this, always N. In particular, the network consists of the elements P, Si, B, Al and N or the respective subsystems P, Si, B and N, P, Si, Al and N, Si, B 1 Al and N, P, B, Al and N, P, Si and N, P, B and N, P , Al and N, Si, B and N, Si, Al and N or B 1 Al and N. In this network suitable activators are incorporated and incorporated. In particular, any metal ions can be introduced into the inorganic amorphous or partially crystalline network as activators. Preferred activator elements are Ba, Zn, Mn, Eu, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, Yb, Sn, Sb, Pb or Bi. Preferably, the activators are Mn 2+ , Zn 2+ , Ba 2+ , Ce 3+ , Nd 3+ , Eu 2+ , Eu 3+ , Gd 3+ , Tb 3+ , Sn 2+ , Sb 3+ , Pb 2+ or Bi 3+ . The amount of activators in the phosphor is preferably ≥ 0.1% by weight, in particular ≥ 0.5% by weight and preferably up to 14% by weight, in particular up to 5% by weight. The activators may also have a sensitizer function.
Der Leuchtstoff emittiert vorzugsweise bei Wellenlängen zwischen 480 und 740 nm. Bevorzugt absorbiert der Leuchtstoff die Primärstrahlung möglichst vollständig. Weiterhin ist es bevorzugt, dass das emittierte Licht des Leuchtstoffes vom absorbierten Licht verschiedene Wellenlängen aufweist. Da erfindungsgemäß kein Austausch, sondern eine Einbringung der Aktivatorelemente stattfindet, können in den Leuchtstoff auch beliebige Kombinationen von Aktivatorelementen eingebracht werden und dadurch insbesondere die Emissionsfarben beliebig abgestimmt werden. Besonders bevorzugt werden die Aktivatoren so kombiniert, dass weißes Licht emittiert wird.The phosphor preferably emits at wavelengths between 480 and 740 nm. Preferably, the phosphor absorbs the primary radiation as completely as possible. Furthermore, it is preferable that the emitted light of the phosphor has different wavelengths from the absorbed light. Since according to the invention there is no exchange, but rather an introduction of the activator elements, it is also possible for any desired combinations of activator elements to be introduced into the luminescent material, thereby in particular coordinating the emission colors as desired. Most preferably, the activators are combined to emit white light.
Erfindungsgemäß besonders bevorzugt erfolgt der Einbau von geeigneten Aktivatoren in ein amorphes dreidimensionales Netzwerk der Zusammensetzung Si/B/N. Dieses Wirtsmaterial weist keinerlei periodische Gittersymmetrie auf.According to the invention, the incorporation of suitable activators into an amorphous three-dimensional network of the composition Si / B / N is particularly preferred. This host material has no periodic lattice symmetry.
Aufgrund von vorteilhaften Auswirkungen auf die Kristallfeldstärken für die Aktivatoren und um eine hohe mechanische und thermische Stabilität zu erreichen, ist die Basismaterialstruktur vorzugsweise nitridischer Natur, welche gegebenenfalls oxidisch dotiert sein kann.Due to advantageous effects on the crystal field strengths for the activators and to achieve high mechanical and thermal stability, the base material structure is preferably nitridic in nature, which may optionally be doped oxide.
Erfindungsgemäß kann der Leuchtstoff bzw. die Leuchtstoff-Schicht weiterhin Füllstoffe enthalten. Bevorzugt sind Festpartikel als Füllstoffe, die zugleich Licht streuend wirken. Solche Festpartikel sind beispielsweise SiO2, TiO2, SnO2, ZrO2, HfO2 und/oder Ta2O5. Bevorzugt weisen die Festpartikel eine enge Teilchengrößenverteilung auf, wobei das Mittel der Teilchengrößenverteilung abhängig vom Brechungsindes des jeweiligen Materials bevorzugt so gewählt wird, dass weißes Licht optimal gestreut wird.
Die Schichtdicke des Leuchtstoffes bzw. der Leuchtstoff-Schicht beträgt vorzugsweise zwischen 200 und 3000 nm, insbesondere zwischen 300 und 2000 nm.According to the invention, the phosphor or the phosphor layer may further contain fillers. Preference is given to solid particles as fillers, which at the same time act as light scattering agents. Such solid particles are, for example, SiO 2 , TiO 2 , SnO 2 , ZrO 2 , HfO 2 and / or Ta 2 O 5 . Preferably, the solid particles have a narrow particle size distribution, wherein the average particle size distribution is preferably chosen depending on the refractive indices of the respective material such that white light is optimally scattered. The layer thickness of the phosphor or of the phosphor layer is preferably between 200 and 3000 nm, in particular between 300 and 2000 nm.
Erfindungsgemäß kann die Leuchtstoff-Schicht in direktem Kontakt mit der primären Strahlungsquelle stehen, d.h. direkt auf die primäre Strahlungsquelle aufgebracht sein. Es ist aber auch möglich, die Leuchtstoff- Schicht in indirektem Kontakt zur primären Strahlungsquelle anzuordnen, das heisst also, dass weitere Materialien oder Schichten zwischen der primärenn Strahlungsquelle und der Leuchtstoff-Schicht angeordnet sind. Vorzugsweise sind die Zwischenschichten bzw. Zwischenmaterialien für die Primärstrahlung vollständig durchlässig.According to the invention, the phosphor layer may be in direct contact with the primary radiation source, i. be applied directly to the primary radiation source. However, it is also possible to arrange the phosphor layer in indirect contact with the primary radiation source, that is to say that further materials or layers are arranged between the primary radiation source and the phosphor layer. Preferably, the intermediate layers or intermediate materials for the primary radiation are completely permeable.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung einer wie hierin beschriebenen Lichtquelle, welches dadurch gekennzeichnet ist, dass ein Leuchtstoffvorläufer in flüssiger Form oder als Suspension auf eine primäre Strahlungsquelle direkt oder indirekt aufgebracht und anschließend ausgehärtet wird.The invention further relates to a method for producing a light source as described herein, which is characterized in that a phosphor precursor in liquid form or as a suspension is applied directly or indirectly to a primary radiation source and then cured.
Die Erfindung stellt insbesondere ein Verfahren zur Flüssigphasenbeschichtung einer Primärquelle mit einem im sichtbaren Spektralbereich emittierenden Leuchtstoff bereit. Das erfindungsgemäße Verfahren beruht auf einer neuen Familie von Leuchtstoffen bestehend aus einer amorphen Matrix, in die alle denkbaren Aktivatoren in breit variabler Konzentrationen eingebracht werden können. Dieses sehr vorteilhafte Merkmal wird dadurch herbeigeführt, dass die Aktivatoren nicht substitutiv, also ein Matrixatom ersetzend, eingebaut werden, sondern vielmehr additiv.In particular, the invention provides a method of liquid-phase coating a primary source having a phosphor emitting in the visible spectral range. The inventive method is based on a new family of phosphors consisting of an amorphous matrix, in which all conceivable activators can be introduced in widely variable concentrations. This very advantageous feature is brought about by incorporating the activators non-substitutively, that is to say replacing a matrix atom, but rather additively.
Diese neue Klasse von Leuchtstoffen wird ausgehend von molekularen Vorstufen über eine oligomere bzw. polymere Zwischenstufe und dem abschließenden Schritt einer Pyrolyse gewonnen. Soweit die molekularen Vorstufen mit den darin gelösten Aktivatoren bzw. die teilvernetzten
präkeramischen Oligomeren flüssig sind, lassen sie sich beispielsweise durch Tauchbeschichtung (dipcoating), Schleuderbeschichtung oder Spraybeschichtung aufbringen, durch Erwärmen in einer Ammoniakatmosphäre anschließend vollvernetzen und durch Pyrolyse in 5 eine festhaftende keramische Schicht überführen.This new class of phosphors is obtained from molecular precursors via an oligomeric or polymeric intermediate and the final step of pyrolysis. As far as the molecular precursors with the activators dissolved therein or the partially crosslinked preceramic oligomers are liquid, they can be applied for example by dip coating (dipcoating), spin coating or spray coating, then fully crosslink by heating in an ammonia atmosphere and transfer by pyrolysis in 5 a firmly adhering ceramic layer.
In einer ersten bevorzugten Ausführungsform wird eine Mischung aus wenigstens einem molekularen Vorläufer, wenigstens einem Aktivator und ggf. Füllstoffen gebildet und auf die Primärquelle aufgetragen. Anschließendo erfolgt eine Aushärtung, insbesondere durch Ammonolyse und anschließende Pyrolyse. Die Viskosität der auf die Primärquelle aufzutragenden Mischung kann hierbei durch die Art und den Gehalt der Füllstoffe eingestellt werden. 5 In einer weiteren bevorzugten Ausführungsform wird ebenfalls eine Mischung aus wengistens einem molekularen Vorläufer, wenigstens einem Aktivator und ggf. Füllstoffen auf die Primärquelle aufgetragen, wobei diese Mischung jedoch zuerst einer Teilhärtung, beispielsweise einer Teilammonolyse unterzogen wurde, um die Viskosität auf den gewünschteno Wert einzustellen. Anschließend erfolgt das Aufbringen auf die Primärquelle und daran nachfolgend das vollständige Aushärten, beispielsweise durch Ammonolyse und Pyrolyse.In a first preferred embodiment, a mixture of at least one molecular precursor, at least one activator and optionally fillers is formed and applied to the primary source. Subsequently, a curing takes place, in particular by ammonolysis and subsequent pyrolysis. The viscosity of the mixture to be applied to the primary source can be adjusted by the nature and content of the fillers. In a further preferred embodiment, a mixture of at least one molecular precursor, at least one activator and optionally fillers is also applied to the primary source, but this mixture was first subjected to partial curing, for example, partial ammonolysis to adjust the viscosity to the desired value , Subsequently, the application to the primary source and subsequently the complete curing, for example by ammonolysis and pyrolysis.
In einer weiteren bevorzugten Ausführungsform wird zunächst aus den5 molekularen Vorläufern, den Aktivatoren und ggf. Füllstoffen ein präkeramisches Polymer gebildet. Dieses präkeramische Polymer wird beispielsweise durch eine vollständige Ammonolyse erhalten. Dieses präkeramische Polymer wird dann auf die Primärquelle aufgetragen. Flüssige präkeramische Polymere können direkt aufgetragen werden. Fallso das präkeramische Polymer harzig oder fest ist, wird vorteilhafterweise eine feinteilige Suspension des präkeramischen Polymers in einem Lösungsmittel gebildet und diese Suspension auf die Primärquelle aufgetragen. Das Lösungsmittel wird dann verdampft und anschließend wird
die Leuchtstoff-Schicht ausgehärtet, beispielsweise durch Pyrolyse.In a further preferred embodiment, a preceramic polymer is first formed from the 5 molecular precursors, the activators and optionally fillers. This preceramic polymer is obtained, for example, by complete ammonolysis. This preceramic polymer is then applied to the primary source. Liquid preceramic polymers can be applied directly. If the preceramic polymer is resinous or solid, a finely divided suspension of the preceramic polymer is advantageously formed in a solvent and this suspension is applied to the primary source. The solvent is then evaporated and then the phosphor layer cured, for example by pyrolysis.
Weiterhin ist es erfindungsgemäß möglich, den Ausgangsmaterialien für die Leuchtstoff-Schicht herkömmliche feste pulverförmige Leuchtstoffe zuzumischen. Durch eine solche Zumischung kann eine Feinabstimmung der Emission erhalten werden.Furthermore, it is possible according to the invention to mix in the starting materials for the phosphor layer conventional solid powdered phosphors. By such admixture, fine tuning of the emission can be obtained.
Das Basismaterial der erfindungsgemäß eingesetzten Leuchtstoffe ist insbesondere über molekulare Vorläufer zugänglich, die zu einem präkeramischen Material verarbeitet werden, das dann durch Pyrolyse in den endgültigen keramischen Zustand überführt wird. Der Leuchtstoff kann auf die Strahlungsquelle in Form eines molekularen Vorläufers aufgebracht bzw. aus einem molekularen Vorläufer gebildet werden.The base material of the phosphors used according to the invention is accessible, in particular, via molecular precursors, which are processed to form a preceramic material, which is then converted by pyrolysis into the final ceramic state. The phosphor can be applied to the radiation source in the form of a molecular precursor or can be formed from a molecular precursor.
Dazu werden zunächst ein oder mehrere molekulare Vorläufer bereitgestellt. Die molekularen Vorläufer enthalten dabei die Elemente des Basismaterials, also insbesondere wengistens zwei Elemente, bevorzugt wenigstens drei Elemente, ausgewählt aus P, Si1 B und AI. Die Konzentrationen an P1 Si, B, AI werden dabei vorzugsweise jeweils zwischen 0 und 100 Atom-%, mehr bevorzugt zwischen 10 und 80 Atom-% eingestellt. Besonders bevorzugt handelt es sich bei den molekularen Vorläufern um Halogenide, vorzugsweise um Chloride.First, one or more molecular precursors are provided. The molecular precursors contain the elements of the base material, ie in particular at least two elements, preferably at least three elements selected from P, Si 1 B and Al. The concentrations of P 1 Si, B, Al are preferably each set between 0 and 100 atom%, more preferably between 10 and 80 atom%. Most preferably, the molecular precursors are halides, preferably chlorides.
Es ist möglich als Ausgangsmaterial mehrere molekulare Vorläufer, insbesondere ein Gemisch von molekularen Vorläufern einzusetzen, die dann einer Co-Ammonolyse unterzogen werden. Gemische molekularer Vorläufer können beispielsweise durch Vermischen eines Silazans und eines Bor- und/oder Phosphorhalogenids gewonnen werden.It is possible to use as starting material several molecular precursors, in particular a mixture of molecular precursors, which are then subjected to co-ammonolysis. Mixtures of molecular precursors can be obtained, for example, by mixing a silazane and a boron and / or phosphorus halide.
In einer weiteren Ausführungsform wird ein molekularer Vorläufer eingesetzt, bei dem es sich um einen Einkomponentenvorläufer handelt. Ein solcher Einkomponentenvorläufer enthält bereits alle Elemente des Produkts. Besonders bevorzugt wird als Ausgangspunkt der Herstellung die
Molekülverbindung CI3Si(NH)BCI2 (TADB) eingesetzt, die bereits die im Endprodukt angestrebte Verknüpfung Si-N-B enthält.In a further embodiment, a molecular precursor is used, which is a one-component precursor. Such a one-component precursor already contains all elements of the product. Particularly preferred as the starting point of the production Molecular compound CI 3 Si (NH) BCI 2 (TADB) is used, which already contains the desired end-product linkage Si-NB.
Weitere bevorzugte molekulare Einkomponentenvorläufer sind CI4P(N)(BCI2) SiCI3, CI3PNSiCI3, (CI3Si)2NBCI2, CI3SiN(BCI2)2, (H3Si)2NBCI2, CI3Si(NH)(BCI) (NH)SiCI3, CI3Si(NH)(AICI)(NH)SiCI3, [(CI3Si)(NH)(BNH)I3, (CI3Si(NH)AICIz)2 oder [CI3PN(PCI2)ZN]+[AICI4]-.More preferred molecular component precursors are CI 4 P (N) (BCI 2) SiCl 3, Cl 3 PNSiCI 3, (CI 3 Si) 2 NBCI 2, CI 3 SiN (BCI 2) 2, (H 3 Si) 2 NBCI 2, CI 3 Si (NH) (BCI) (NH) SiCl 3 , CI 3 Si (NH) (AICI) (NH) SiCl 3 , [(CI 3 Si) (NH) (BNH) I 3 , (CI 3 Si ( NH) AICIz) 2 or [CI 3 PN (PCI 2 ) ZN] + [AICI 4 ] -.
Das Vorläufermaterial wird dann zu einem Leuchtstoff, welcher ein amorphes oder teilkristallines Netzwerk aufweist, ausgehärtet. DieThe precursor material is then cured to a phosphor having an amorphous or partially crystalline network. The
Aushärtung erfolgt vorzugsweise über die Zwischenstufe eines präkeramischen Materials. Die Leuchtstoffvorläufer können durchCuring preferably takes place via the intermediate stage of a preceramic material. The phosphor precursors can by
Ammonolyse, Polykondensation und Pyrolyse in amorphe Netzwerke aus den entsprechenden Elementen, die durch Stickstoff miteinander verknüpft sind, überführt werden. Stickstoff kann partiell durch Sauerstoff ersetzt werden, wodurch eine oxidische Dotierung erhalten wird.Ammonolysis, polycondensation and pyrolysis in amorphous networks from the corresponding elements, which are linked together by nitrogen, are transferred. Nitrogen can be partially replaced by oxygen, whereby an oxide doping is obtained.
In die Leuchtstoff-Schicht sind Aktivatoren inkorporiert, welche bevorzugt über die folgenden Routen eingebracht werden.In the phosphor layer activators are incorporated, which are preferably introduced via the following routes.
Diejenigen Metalle, die sich wie Europium oder Barium in flüssigem Ammoniak lösen, werden in flüssigem Ammoniak gelöst vorgelegt und der molekulare Vorläufer, z.B. TADB, wird zugetropft. Umgekehrt kann auch die Lösung der Metalle in Ammoniak in vorgelegte Vorläufer, z.B. TADB, eingetropft werden. Das entstehende polymere Imidamid enthält neben den Basismaterialelementen, z.B. neben Silicium und Bor, auch das oder die Aktivatorelemente homogen verteilt. Durch Pyrolyse wird daraus der keramische Leuchtkörper gewonnen.Those metals which dissolve like europium or barium in liquid ammonia are presented as dissolved in liquid ammonia and the molecular precursor, e.g. TADB, is added dropwise. Conversely, the solution of the metals in ammonia can also be converted into precursors, e.g. TADB, to be dripped. The resulting polymeric imidamide contains, besides the base material elements, e.g. in addition to silicon and boron, the or the activator elements homogeneously distributed. By pyrolysis of the ceramic luminous body is obtained.
Aktivatoren, die sich in elementarer Form nicht in flüssigem Ammoniak lösen, können in Form von komplexen Molekülverbindungen eingebracht werden. Die verwendeten Liganden sollten bevorzugt nur systemimmanente Elemente wie Halogenid (Chlorid), Wasserstoff, Silicium oder Bor enthalten.
AIIe anderen Elemente wären nicht oder nur mit zusätzlichem Aufwand aus dem Endprodukt zu entfernen. Besonders gut geeignet und systemverträglich sind Metallkomplexe beispielsweise mit [CI3Si(N)SiCI3]' und Chlorid als Liganden. Da alle als Aktivatoren in Frage kommenden Metalle binäre Chloride bilden, aus denen die gewünschten Komplexe durch Reaktion mit Li[CI3Si(N)SiCI3] darstellbar sind, ist dieser Zugang universell. Die Komplexverbindungen der Aktivatoren werden im molekularen Vorläufer, z.B. in TADB, gelöst oder ggf. mit dem molekularen Vorläufer, z.B. mit TADB1 gemeinsam in einem geeigneten Lösungsmittel gelöst. Diese Mischung bzw. Lösung wird zwecks Ammonolyse in flüssiges Ammoniak eingetropft, wobei dies auch in umgekehrter Weise erfolgen kann.Activators that do not dissolve elementally in liquid ammonia can be incorporated as complex molecular compounds. The ligands used should preferably contain only system-inherent elements such as halide (chloride), hydrogen, silicon or boron. AIIe other elements would not be removed or only with additional effort from the final product. Particularly suitable and system compatible are metal complexes with, for example, [CI 3 Si (N) SiCl 3 ] ' and chloride as ligands. Since all metals that can be used as activators form binary chlorides from which the desired complexes can be prepared by reaction with Li [CI 3 Si (N) SiCl 3 ], this approach is universal. The complex compounds of the activators are dissolved in the molecular precursor, for example in TADB, or, if appropriate, are dissolved together with the molecular precursor, for example with TADB 1, in a suitable solvent. This mixture or solution is added dropwise for the purpose of ammonolysis in liquid ammonia, and this can also be done in the opposite way.
Die Dicke der Polymer/Oligomerschicht kann über die Viskosität der Lösung und die Parameter des Beschichtungsprozesses eingestellt werden. Die Viskosität ihrerseits kann über den Grad der Polykondensation, d.h. durch die mittlere Molmasse des Oligomers, durch Zusatz von Lösemitteln, durch Zusatz von Füllstoffen und/oder durch die Temperatur gezielt eingestellt werden. Als Füllstoffe kommen bevorzugt Materialien zum Einsatz, die zugleich lichtstreuend wirken. In Frage kommen beispielsweise SiO2, TiO2, ZrO2, SnO2 oder Ta2O5 mit einer engen Teilchengrößenverteilung um Werte, die abhängig vom Berechnungsindex des jeweiligen Materials weißes Licht opitmal streuen. Die Schichtdicken werden so eingestellt, dass bei der Pyrolyse eine rissfreie keramische Schicht entsteht. Bevorzugt liegen die Schichtdicken zwischen 200 und 3000 nm, besonders bevorzugt zwischen 300 und 2000 nm. Die in einem Beschichtungsvorgang erzielbare Schichtdicke hängt im Wesentlichen von der Viskosität der aufzubringenden Mischung sowie vom Aufbringungsverfahren ab. Falls für eine optimale optische Performance der LED-basierten Lichtquelle erforderlich, wird der ganze Beschichtungsprozess ggf. mehrfach wiederholt, um die gewünschte Schichtdicke zu erhalten.The thickness of the polymer / oligomer layer can be adjusted via the viscosity of the solution and the parameters of the coating process. The viscosity, in turn, can be determined by the degree of polycondensation, i. be adjusted specifically by the average molecular weight of the oligomer, by the addition of solvents, by the addition of fillers and / or by the temperature. As fillers preferably materials are used, which act at the same time light scattering. For example, SiO.sub.2, TiO.sub.2, ZrO.sub.2, SnO.sub.2 or Ta.sub.2O.sub.5 having a narrow particle size distribution can be values which, depending on the calculation index of the respective material, optimally diffuse white light. The layer thicknesses are adjusted so that a crack-free ceramic layer is formed during pyrolysis. The layer thicknesses are preferably between 200 and 3000 nm, more preferably between 300 and 2000 nm. The layer thickness which can be achieved in a coating process depends essentially on the viscosity of the mixture to be applied and on the application method. If necessary for optimum optical performance of the LED-based light source, the entire coating process may be repeated several times to obtain the desired layer thickness.
Die abschließende Aushärtung zum Leuchtstoff bzw. zur Leuchtstoff-Schicht erfolgt bevorzugt durch Pyrolyse, wobei ein amorphes oder teilkristallines
Netzwerk gebildet wird. Bei der Pyrolyse wird das als Zwischenstufe bei der Ammonolyse erhaltene präkeramische Imidamid bei Temperaturen zwischen 600 0C und 1500 0C, bevorzugt zwischen 1000 0C und 1300 0C, in das Endprodukt überführt. Die Pyrolyse findet vorzugsweise in einer Atmosphäre umfassend Stickstoff, Argon, Ammoniak oder Gemische davon statt.The final curing to the phosphor or to the phosphor layer is preferably carried out by pyrolysis, wherein an amorphous or partially crystalline Network is formed. In pyrolysis, the preceramic amide obtained as an intermediate in the ammonolysis at temperatures between 600 0 C and 1500 0 C, preferably between 1000 0 C and 1300 0 C, transferred to the final product. The pyrolysis preferably takes place in an atmosphere comprising nitrogen, argon, ammonia or mixtures thereof.
In einer bevorzugten Ausführungsform wird die aufgetragene Schicht in einer Ammoniakatmosphäre bei Raumtemperatur bis 200 0C gehärtet. Danach wird die Temperatur schrittweise erhöht, z.B. auf 620 °C, und bei dieser Temperatur gehalten. Anschließend erfolgt eine Pyrolyse, z.B. bei 1050 0C. Als Heizelemente können elektrische Widerstandsöfen oder bevorzugt Infrarotheizungen, Spiegelöfen oder Laser eingesetzt werden. Der ganze Beschichtungsprozess kann parallel und kontinuierlich (fließbandartig) durchgeführt werden. Beispielsweise können die zu beschichtenden LED's in einer 100 x 80 Matrixanordnung parallel bearbeitet werden. Unterschiedliche Dauern der einzelnen Prozessschritte werden bei gleicher Laufgeschwindigkeit durch längere oder parallele Laufstrecken ausgeglichen.
In a preferred embodiment, the applied layer is cured in an ammonia atmosphere at room temperature to 200 0 C. Thereafter, the temperature is gradually increased, for example to 620 ° C, and held at this temperature. Subsequently, a pyrolysis, for example, is carried out at 1050 0 C. The heating elements can be electrical resistance furnaces or preferably infrared heaters, Spiegelöfen or lasers are used. The entire coating process can be carried out in parallel and continuously (flow-band-like). For example, the LEDs to be coated can be processed in parallel in a 100 × 80 matrix arrangement. Different durations of the individual process steps are compensated for at the same running speed by longer or parallel running distances.
Claims
1. Lichtquelle, umfassend (i) eine primäre Strahlungsquelle undA light source comprising (i) a primary radiation source and
(ii) eine Leuchtstoff-Schicht auf Basis eines amorphen oder teilkristallinen Netzwerkes, wobei das Netzwerk N und wenigstens zwei Elemente ausgewählt aus P, Si und AI umfasst, und wobei in das Netzwerk wenigstens ein Aktivator inkorporiert ist.(ii) a phosphor layer based on an amorphous or semi-crystalline network, the network comprising N and at least two elements selected from P, Si and Al, and wherein at least one activator is incorporated in the network.
2. Lichtquelle nach Anspruch 1 , dadurch gekennzeichnet, dass der Aktivator ausgewählt ist aus Ba, Zn, Mn, Eu, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, Yb, Sn, Sb, Pb oder/und Bi.2. Light source according to claim 1, characterized in that the activator is selected from Ba, Zn, Mn, Eu, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, Yb, Sn, Sb, Pb or / and Bi.
3. Lichtquelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Leuchtstoff-Schicht auf der Basis eines Netzwerkes der Zusammensetzung Si3B3N7 beruht.3. Light source according to claim 1 or 2, characterized in that the phosphor layer is based on a network of the composition Si 3 B 3 N 7 .
4. Lichtquelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die primäre Strahlungsquelle Licht im Wellenlängenbereich von 250 bis 450 nm emittiert.4. Light source according to one of the preceding claims, characterized in that the primary radiation source emits light in the wavelength range of 250 to 450 nm.
5. Lichtquelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die primäre Strahlungsquelle eine LED ist.5. Light source according to one of the preceding claims, characterized in that the primary radiation source is an LED.
6. Lichtquelle nach Anspruch 5, dadurch gekennzeichnet, dass die primäre Strahlungsquelle eine GaN" oder eine Ga(In)N-LED ist. 6. Light source according to claim 5, characterized in that the primary radiation source is a GaN " or a Ga (In) N-LED.
7. Lichtquelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leuchtstoff-Schicht in direktem oder indirektem Kontakt mit 5 der primären Strahlungsquelle steht.7. Light source according to one of the preceding claims, characterized in that the phosphor layer is in direct or indirect contact with 5 of the primary radiation source.
8. Lichtquelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leuchtstoff-Schicht einen Leuchtstoff umfasst, der Licht beio einer Wellenlänge zwischen 480 und 740 nm emittiert.8. Light source according to one of the preceding claims, characterized in that the phosphor layer comprises a phosphor which emits light at a wavelength between 480 and 740 nm.
9. Lichtquelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leuchtstoff-Schicht weiterhin Festpartikel enthält. 59. Light source according to one of the preceding claims, characterized in that the phosphor layer further contains solid particles. 5
10. Lichtquelle nach Anspruch 9, dadurch gekennzeichnet, dass die Festpartikel ausgewählt sind aus SiO2, TiO2, SnO2, ZrO2, HfO2 oder/und Ta2O5. 010. Light source according to claim 9, characterized in that the solid particles are selected from SiO 2 , TiO 2 , SnO 2 , ZrO 2 , HfO 2 or / and Ta 2 O 5 . 0
11. Lichtquelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leuchtstoff-Schicht eine Schichtdicke zwischen 200 und 3000 nm aufweist. 511. Light source according to one of the preceding claims, characterized in that the phosphor layer has a layer thickness between 200 and 3000 nm. 5
12. Verfahren zur Herstellung einer Lichtquelle nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass ein Leuchtstoffvorläufer in flüssiger Form oder als Suspension aufo eine primäre Strahlungsquelle direkt oder indirekt aufgebracht und anschließend ausgehärtet wird. 12. A method for producing a light source according to any one of claims 1 to 11, characterized in that a phosphor precursor is applied directly or indirectly in liquid form or as a suspension aufo a primary radiation source and then cured.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Leuchtstoff als präkeramisches Material, insbesondere als präkeramisches Oligomer, aufgebracht wird.13. The method according to claim 12, characterized in that the phosphor is applied as a preceramic material, in particular as a preceramic oligomer.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Leuchtstoff aus einem molekularen Vorläufer gebildet wird.14. The method according to claim 12 or 13, characterized in that the phosphor is formed from a molecular precursor.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass der molekulare Vorläufer ein Einkomponentenvorläufer ist, insbesondere ausgewählt aus CI3Si(NH)BCI2(TABD), CI3PNSiCI3, CI4P(N)(BCI2)SiCI3, (CI3Si)2NBCI2, CI3SiN(BCI2)2, (H3Si)2NBCI2,15. The method according to claim 14, characterized in that the molecular precursor is a one-component precursor, in particular selected from CI 3 Si (NH) BCl 2 (TABD), CI 3 PNSiCl 3 , CI 4 P (N) (BCI 2 ) SiCl 3 , (CI 3 Si) 2 NBCI 2 , CI 3 SiN (BCI 2 ) 2 , (H 3 Si) 2 NBCI 2 ,
CI3Si(NH)(BCI)(NH)SiCI3 , [(CI3Si)(NH)(BNH)]3 ,CI 3 Si (NH) (BCI) (NH) SiCl 3 , [(CI 3 Si) (NH) (BNH)] 3 ,
CI3Si(NH)(AICI)(NH)SiCI3, (CI3Si(NH)AICI2)2 oder [CI3PN(PCI2)2N]+[AICI4]- ist.CI 3 Si (NH) (AICI) (NH) SiCI 3 , (CI 3 Si (NH) AICI 2 ) 2 or [CI 3 PN (PCI 2 ) 2 N] + [AICI 4 ] -.
16. Verfahren nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass der Leuchtstoffvorläufer durch Tauchbeschichtung, durch Schleuderbeschichtung oder durch Sprühbeschichtung aufgebracht wird.16. The method according to any one of claims 12 to 15, characterized in that the phosphor precursor is applied by dip coating, by spin coating or by spray coating.
17. Verfahren nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass die Viskosität des Leuchtstoffvorläufers auf 0,01 bis 10 Pa • s eingestellt wird.17. The method according to any one of claims 12 to 16, characterized in that the viscosity of the phosphor precursor is adjusted to 0.01 to 10 Pa · s.
18. Verfahren nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass der Leuchtstoff in mehreren Schichten aufgetragen wird. 18. The method according to any one of claims 12 to 17, characterized in that the phosphor is applied in several layers.
19. Verfahren nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass der Leuchtstoffvorläufer durch Pyrolyse gehärtet wird.19. The method according to any one of claims 12 to 18, characterized in that the phosphor precursor is cured by pyrolysis.
20. Wellenlängen-konvertierendes Material, umfassend eine Leuchtstoff- Schicht wie in Anspruch 1 definiert. 20. A wavelength converting material comprising a phosphor layer as defined in claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006051756A DE102006051756A1 (en) | 2006-11-02 | 2006-11-02 | light source |
PCT/EP2007/009471 WO2008052772A1 (en) | 2006-11-02 | 2007-10-31 | Light source |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2087064A1 true EP2087064A1 (en) | 2009-08-12 |
Family
ID=38786858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07819503A Withdrawn EP2087064A1 (en) | 2006-11-02 | 2007-10-31 | Light source |
Country Status (7)
Country | Link |
---|---|
US (1) | US8339032B2 (en) |
EP (1) | EP2087064A1 (en) |
JP (1) | JP5328657B2 (en) |
KR (1) | KR20090087899A (en) |
CN (1) | CN101528891B (en) |
DE (1) | DE102006051756A1 (en) |
WO (1) | WO2008052772A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2163593A1 (en) | 2008-09-15 | 2010-03-17 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Production of nitride-based phosphors |
JP2011238778A (en) * | 2010-05-11 | 2011-11-24 | Konica Minolta Opto Inc | Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device |
DE102014107473A1 (en) * | 2014-05-27 | 2015-12-03 | Osram Opto Semiconductors Gmbh | Converter element for converting a wavelength, optoelectronic component with converter element and method for producing a converter element |
WO2020183618A1 (en) * | 2019-03-12 | 2020-09-17 | 日立化成株式会社 | Wavelength conversion member, backlight unit, image display device, and wavelength conversion resin composition |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4241287A1 (en) * | 1992-12-08 | 1994-06-09 | Bayer Ag | Silicon aluminum nitride ceramic and precursor compounds, process for their preparation and their use |
EP0659806B1 (en) * | 1993-12-23 | 2000-09-27 | Bayer Ag | Preceramic polyborosilazanes, process for their preparation and ceramic products obtainable therefrom |
DE19530390A1 (en) * | 1995-08-18 | 1997-02-20 | Bayer Ag | Infusible polyborosilazanes for prodn of ceramic powders, fibres and mouldings |
DE19638667C2 (en) | 1996-09-20 | 2001-05-17 | Osram Opto Semiconductors Gmbh | Mixed-color light-emitting semiconductor component with luminescence conversion element |
JP2002076434A (en) * | 2000-08-28 | 2002-03-15 | Toyoda Gosei Co Ltd | Light emitting device |
DE50106404D1 (en) * | 2000-09-14 | 2005-07-07 | Fraunhofer Ges Forschung | SILICONBORK CARBONITRIC CERAMICS AND TEMPLATE COMPOUNDS, PROCESS FOR THEIR PREPARATION AND USE |
ATE293153T1 (en) | 2001-01-10 | 2005-04-15 | Banque De France | POLYCRYSTALLINE, POORLY CRYSTALLIZED OR AMORPHIC PHOSPHORUS AND PRODUCTION PROCESS |
DE10146719A1 (en) | 2001-09-20 | 2003-04-17 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Lighting unit with at least one LED as a light source |
AU2003221442A1 (en) * | 2002-03-22 | 2003-10-08 | Nichia Corporation | Nitride phosphor and method for preparation thereof, and light emitting device |
JP2003298116A (en) * | 2002-03-29 | 2003-10-17 | Stanley Electric Co Ltd | White light emitting diode and method of manufacturing the same |
TWI359187B (en) | 2003-11-19 | 2012-03-01 | Panasonic Corp | Method for preparing nitridosilicate-based compoun |
JP3837588B2 (en) | 2003-11-26 | 2006-10-25 | 独立行政法人物質・材料研究機構 | Phosphors and light emitting devices using phosphors |
JP2005225942A (en) * | 2004-02-12 | 2005-08-25 | Sumitomo Electric Ind Ltd | Fluorescent substance |
JP4414821B2 (en) * | 2004-06-25 | 2010-02-10 | Dowaエレクトロニクス株式会社 | Phosphor, light source and LED |
WO2006061778A1 (en) | 2004-12-06 | 2006-06-15 | Philips Intellectual Property & Standards Gmbh | Illumination system comprising a radiation source and a blue-emitting phospor |
JP4565985B2 (en) * | 2004-12-13 | 2010-10-20 | トヨタ自動車株式会社 | Amorphous composite oxide particles, method for producing the same, fluorescent material and phosphor |
EP1837386B1 (en) * | 2004-12-28 | 2016-11-23 | Nichia Corporation | Nitride phosphor, method for producing same and light-emitting device using nitride phosphor |
WO2006095285A1 (en) * | 2005-03-09 | 2006-09-14 | Philips Intellectual Property & Standards Gmbh | Illumination system comprising a radiation source and a fluorescent material |
JP4892861B2 (en) * | 2005-04-27 | 2012-03-07 | 日亜化学工業株式会社 | Nitride phosphor and light emitting device using the same |
DE102006051757A1 (en) * | 2006-11-02 | 2008-05-08 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | phosphors |
-
2006
- 2006-11-02 DE DE102006051756A patent/DE102006051756A1/en not_active Withdrawn
-
2007
- 2007-10-31 KR KR1020097011342A patent/KR20090087899A/en not_active Application Discontinuation
- 2007-10-31 US US12/513,465 patent/US8339032B2/en not_active Expired - Fee Related
- 2007-10-31 EP EP07819503A patent/EP2087064A1/en not_active Withdrawn
- 2007-10-31 CN CN2007800403674A patent/CN101528891B/en not_active Expired - Fee Related
- 2007-10-31 JP JP2009535024A patent/JP5328657B2/en not_active Expired - Fee Related
- 2007-10-31 WO PCT/EP2007/009471 patent/WO2008052772A1/en active Application Filing
Non-Patent Citations (2)
Title |
---|
GRAAF D D ET AL: "Mixed oxidation states of Yb and Sm in Si-Al-O-N glasses", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER SCIENCE PUBLISHERS, BARKING, ESSEX, GB, vol. 26, no. 13, 1 January 2006 (2006-01-01), pages 2497 - 2501, XP024960404, ISSN: 0955-2219, [retrieved on 20060101], DOI: 10.1016/J.JEURCERAMSOC.2005.05.010 * |
See also references of WO2008052772A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008052772A1 (en) | 2008-05-08 |
CN101528891B (en) | 2012-09-12 |
US20100067215A1 (en) | 2010-03-18 |
DE102006051756A1 (en) | 2008-05-08 |
KR20090087899A (en) | 2009-08-18 |
JP2010508665A (en) | 2010-03-18 |
CN101528891A (en) | 2009-09-09 |
US8339032B2 (en) | 2012-12-25 |
JP5328657B2 (en) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Darshan et al. | Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material | |
DE112005000044B4 (en) | Phosphor, process for its production and its use | |
EP2576725B1 (en) | Luminescent substances | |
EP2274248B1 (en) | Conversion material, especially for a white or colored light source comprising a semiconductor light source, method for producing the same and light source comprising said conversion material | |
DE112006001722B4 (en) | Phosphor and process for its production and use of the phosphor | |
EP2324096B1 (en) | Codoped 1-1-2 nitrides | |
DE102010034322A1 (en) | Surface modified silicate phosphors | |
DE112013000135B4 (en) | Device for providing electromagnetic radiation | |
EP2401342A1 (en) | Nitridosilicates co-doped with zirconium and hafnium | |
DE112017002922B4 (en) | FLUORESCENT POWDER, PROCESS FOR MANUFACTURE THEREOF AND LUMINOUS DEVICE WITH SUCH FLUORESCENT POWDER | |
WO2008107062A1 (en) | Luminophores made of doped garnet for pcleds | |
DE112007001645T5 (en) | Phosphorus, process for its preparation and light emitting apparatus | |
DE102009044255A1 (en) | Alkaline earth metal silicate phosphors and methods for improving their long-term stability | |
DE112015001628B4 (en) | Hydrophobic phosphor and light emitting device | |
DE102010031755A1 (en) | Aluminate phosphors | |
US20170152438A1 (en) | Clustered nanocrystal networks and nanocrystal composites | |
DE112018000135T5 (en) | Nitride luminescent material and luminescent device with this nitride luminescent material | |
WO2008052772A1 (en) | Light source | |
DE112021001021T5 (en) | WAVELENGTH CONVERTERS; PROCESS FOR ITS MANUFACTURE AND LIGHT-EMITTING DEVICE CONTAINING THIS ELEMENT | |
DE102006051757A1 (en) | phosphors | |
DE112019003634T5 (en) | OPTOELECTRONIC COMPONENT AND THE METHOD OF MANUFACTURING AN OPTOECLEECTRONIC COMPONENT | |
DE102012220656A1 (en) | Manufacturing phosphor ceramic useful as wavelength converter in light-emitting device, comprises coating doping element on surface of matrix material, and distributing doping element within matrix material using thermal process step | |
Salazar-Valenzuela et al. | Color Tunable Emission of Y3Al5O12: Ce3+ and Sm3+‐Doped Zinc–Germanate–Tellurite Glass Nanocomposite Powders and Coatings for Light‐Emitting Diodes Applications | |
DE112021002238T5 (en) | SINTERED BODY, LIGHT-EMITTING DEVICE, WAVELENGTH CONVERSION COMPONENT, AND METHOD FOR MANUFACTURING THE SINTERED BODY | |
DE102017121339B4 (en) | Fluorescent and conversion LED |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090514 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20091012 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150505 |