EP2085731A1 - Geradrohrwärmetauscher mit Kompensator - Google Patents

Geradrohrwärmetauscher mit Kompensator Download PDF

Info

Publication number
EP2085731A1
EP2085731A1 EP09000771A EP09000771A EP2085731A1 EP 2085731 A1 EP2085731 A1 EP 2085731A1 EP 09000771 A EP09000771 A EP 09000771A EP 09000771 A EP09000771 A EP 09000771A EP 2085731 A1 EP2085731 A1 EP 2085731A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
jacket
compensator
medium
ring seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09000771A
Other languages
English (en)
French (fr)
Inventor
Joachim Conrad
Kay Degner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2085731A1 publication Critical patent/EP2085731A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49393Heat exchanger or boiler making with metallurgical bonding

Definitions

  • the invention relates to a heat exchanger with a straight tube bundle, as described in the preamble of claim 1.
  • the invention will be described with reference to a heat exchanger with straight tube bundle, as it is used in a plant for synthesis gas production, without being limited to the application in a synthesis gas plant.
  • the heat exchanger described in the invention can be used in principle for the heat exchange between any two media, each medium can be present either in liquid or gaseous form, regardless of the other medium.
  • synthesis gas In a synthesis gas plant, synthesis gas is usually generated from a fossil energy source by means of thermal fission. The resulting synthesis gas is at a higher temperature than needed for most applications.
  • heat exchangers with an elongated, straight tube bundle are used for the cooling of the hot synthesis gas.
  • feed water which must be preheated for other applications, enters into heat exchange with the hot synthesis gas.
  • the one medium for the heat exchange in the tube space is performed, while the second medium is guided in the jacket space, which surrounds the tube space.
  • the tube space of such a heat exchanger consists essentially of two prechambers with attached nozzles, which are suitable for feeding or discharging the first medium and an elongated, straight tube bundle consisting of at least two tubes.
  • the jacket space encloses the tube space and has at least one feed and an outlet for the second medium. The jacket space is sealed off from the pipe space.
  • the synthesis gas can be conducted both in the tube and in the jacket space in cocurrent or countercurrent to the feed water.
  • the hot synthesis gas is conducted in the tube space and water in the jacket space.
  • the two media involved in the heat exchange have in the case of Synthesis gas plant a very high temperature difference.
  • the heat exchanger is manufactured at room temperature.
  • hot synthesis gas is passed at a temperature between 300 ° C and 450 ° C in cocurrent or countercurrent to water or feed gas at room temperature.
  • the different thermal expansions between pipe and jacket space caused by this temperature difference lead to mechanical stresses. Such mechanical stresses are intercepted by the prior art by a compensator.
  • a compensator is generally formed as a wave-shaped structure consisting of at least one shaft in one or more layers. Due to its wave-shaped structure, the compensator is able to absorb different mechanical expansions at fixed ends well. Similar to a concertina, it can be compressed or pulled apart. According to the prior art, such a compensator can either be installed in the jacket or one uses a straight tube heat exchanger with floating head as in the German patent application "heat exchanger with straight tube bundle and floating head '(file reference 102007017227.5 ) of the Applicant.
  • the heat exchanger When used as a pre-heater in a synthesis gas plant, the heat exchanger would be made of heat-resistant heat-resistant steel, preferably in a chromium-molybdenum alloy, or chromium-nickel steel. Chrome-nickel steel is significantly more expensive than heat-resistant, heat-resistant steel and therefore not to be preferred for economic reasons. However, in the manufacture of a heat exchanger made of heat-resistant steel, the parts are produced in a hot working or welding manner, which requires subsequent annealing to degrade in the production of resultant mechanical stresses.
  • a compensator must be made of chrome-nickel steel. According to the prior art, the entire heat exchanger is thus made of chromium-nickel steel. A similar problem also arises in the sealing of the antechamber with respect to the jacket space.
  • the present invention is therefore based on the object, a heat exchanger of the type mentioned in such a way that the cost of its production is improved without causing an increase in the thermal stresses during use and thus to reduce the life.
  • the present object is achieved in that sheath and compensator made of different materials and are connected by adirectedungssch bulkung and / or the antechambers are sealed by a sealing ring seal against the shell space, wherein the sealing ring seal of a different material than prechamber and / or sheath is and connected to the respective parts via an application weld.
  • the heat exchanger according to the invention consists of various parts of different materials, which are optimized according to operational and economic aspects. Different parts of a heat exchanger must meet different mechanical or thermal requirements. A compensator in the jacket, for example, must be heat-resistant and sufficiently elastic to absorb mechanical deformations. The remaining part of the jacket, however, only has to be heat-resistant, since it transmits its mechanical stresses to the compensator. For the purposes of the invention, the materials of the different parts of a heat exchanger are adapted to these different requirements and conditions of use. The parts made of different materials are joined together according to the invention by means of a surfacing weld. An application weld is a means known and appreciated by those skilled in the art for joining metallic parts or components of different materials.
  • the jacket and / or the antechamber made of a heat-resistant heat-resistant steel, preferably made of a chromium-molybdenum alloy, and the compensator and / or the welding ring seal made of chrome-nickel steel.
  • Heat-resistant, heat-resistant steel preferably a chromium-molybdenum alloy
  • Chrome-nickel steel also knows a high Heat resistance and at the same time still very good elastic properties.
  • the majority of the jacket can be made of inexpensive heat-resistant heat-resistant steel, while only parts with higher demands on the elastic behavior in the heat exchanger from the more expensive chrome-nickel steel are performed. An optimal adaptation of the parts of the heat exchanger to the different requirements is thus given.
  • the build up weld is made of a nickel and / or molybdenum based alloy, preferably Incoloy 825.
  • Plating weld of a nickel and / or molybdenum based alloy, preferably Incoloy 825, is a suitable means to produce different metallic materials and especially a heat resistant heat resistant steel Chrome-nickel steel to connect.
  • the invention further relates to a method for producing a straight-tube heat exchanger according to the invention.
  • a method for producing a straight-tube heat exchanger according to the invention.
  • the invention in the case of two parts of different material which are to be joined by means of application welding, at least one part is provided with the application weld, the part with the build-up weld is led into an annealing process and then connected to the second part via the application weld.
  • consisting of heat-resistant heat-resistant steel shell pieces and / or pre-chambers are provided with afocusedungssch wellung, performed in an annealing process and then welded to the application welding with the respective consisting of chromium-nickel steel parts such as compensator and / or welding ring seal ,
  • the annealing process removes mechanical stresses that inevitably arise in the manufacture of the heat-resistant heat-resistant steel parts in these parts, thereby significantly increasing their service life.
  • the application weld is not influenced by the annealing process and allows a reliable connection of the parts made of heat-resistant heat-resistant steel and chrome-nickel steel.
  • a straight tube heat exchanger in the context of the invention in synthesis gas plants or hydrogen plants, preferably used as a preheater for cooling of hot synthesis gas with simultaneous heating of water.
  • FIG. 1 shows an embodiment of a straight tube heat exchanger 1 according to the invention with a jacket 2, a tube bundle 3 (for clarity, only two tubes of the tube bundle 3 are shown), two opposite antechambers 4a, 4b, means for supply and discharge of the first medium into the tube space 5a , 5b and means for supplying and discharging the second medium in the shell space 6a, 6b and a single-layer compensator 7.
  • a heat exchanger can be used for example as a pre-heater in a plant for syngas production.
  • the hot synthesis gas is fed at a temperature of 450 ° C via the feed 5a and the antechamber 4a in the tubes of the tube bundle 3.
  • the cooled synthesis gas leaves the heat exchanger via the pre-chamber 4b and the outlet 5b at a temperature of about 320 ° C.
  • the synthesis gas is cooled by water flowing in the jacket space 2 in countercurrent flow.
  • Both the jacket 2 and the two pre-chambers 4a, 4b are made of heat-resistant heat-resistant steel, especially a chromium-molybdenum alloy.
  • the compensator 7 is just like the two welding ring seals 8 made of chrome-nickel steel.
  • the compensator 7 made of chrome-nickel steel, the different mechanical stresses resulting from the high temperature of the synthesis gas completely collected.
  • the two prechambers 4a, 4b and, consisting of the two sections 2a, 2b, jacket 2 were provided with a hardfacing and passed into an annealing process.
  • the antechambers 4a, 4b and the two shell pieces 2a, 2b were connected via the application welding with the corresponding chrome-nickel steel parts (welding ring seal 8, compensator 7).
  • the atria 4a, 4b are flanged to the jacket 2.
  • FIG. 2 shows the detailed representation of the compound of the compensator 7 with the casing part 2a.
  • the jacket part 2a has a buildup weld 9.
  • the compensator 7 with a corresponding short jacket-like connecting piece 7a is made of chrome-nickel steel and is connected via the application weld 9 with the shell part 2a of a chromium-molybdenum alloy.
  • FIG. 3 shows the detailed representation of the connection of the prechamber 4b with the welding ring seal 8 and the shell piece 2a.
  • Both the pre-chamber 4a and the shell piece 2a are made of a chromium-molybdenum alloy and are connected via theprocessungssch bulkungen 9 with the consisting of chromium-nickel steel welding ring seal 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

Die Erfindung beschreibt einen Geradrohrwärmetauschers 1 mit einem Mantel 2, einem Rohrbündel 3 (aus Gründen der Übersichtlichkeit sind nur zwei Rohre des Rohrbündels 3 dargestellt), zwei entgegengesetzten Vorkammern 4a, 4b, Mitteln zur Zu- und Abführung des ersten Mediums in den Rohrraum 5a, 5b und Mitteln zur Zu- und Abführung des zweiten Mediums in den Mantelraum 6a, 6b sowie einen einlagigen Kompensator 7, wie er beispielsweise als Preheater in einer Anlage zur Synthesegasherstellung eingesetzt wird. Sowohl der Mantel 2 als auch die beiden Vorkammern 4a, 4b sind aus hitzebeständigen warmfesten Stahl speziell einer Chrom-Molybdän Legierung. Der Kompensator 7 besteht ebenso wie die beiden Schweißringdichtungen 8 aus Chrom-Nickel Stahl. Durch den Kompensator aus Chrom-Nickel Stahl werden die unterschiedlichen mechanischen Spannungen durch die hohe Temperatur komplett aufgefangen. Bei der Herstellung wurden die beiden Vorkammern 4a, 4b sowie der aus den beiden Teilstücken 2a, 2b bestehende Mantel 2 mit einer Auftragsschweißung versehen und in ein Glühverfahren geführt. Nach dem Glühverfahren wurden die Vorkammern 4a, 4b und die beiden Mantelstücke 2a, 2b über die Auftragungsschweißung mit den entsprechenden Chrom-Nickel Stahlteilen (Schweißringdichtung 8, Kompensator 7) verbunden. Die Vorkammern 4a, 4b sind an den Mantel 2 angeflanscht.

Description

  • Die Erfindung betrifft ein Wärmetauscher mit einem geraden Rohrbündel, wie im Oberbegriff des Anspruches 1 beschrieben. Die Erfindung wird anhand eines Wärmetauschers mit geradem Rohrbündel beschrieben, wie er in einer Anlage zur Synthesegaserzeugung eingesetzt wird, ohne auf die Anwendung in einer Synthesegasanlage beschränkt zu sein. Der in der Erfindung beschriebene Wärmetauscher kann prinzipiell für den Wärmeaustausch zwischen zwei beliebigen Medien genutzt werden, wobei jedes Medium unabhängig von dem anderen Medium entweder in flüssiger oder gasförmiger Form vorliegen kann.
  • In einer Synthesegasanlage wird Synthesegas meist aus einem fossilen Energieträger mittels thermischer Spaltung erzeugt. Das dabei entstehende Synthesegas liegt bei einer höheren Temperatur vor, als es für die meisten Anwendungen benötigt wird. Zur Abkühlung des heißen Synthesegases werden nach dem Stand der Technik hauptsächlich Wärmetauscher mit einem längserstreckten, geraden Rohrbündel eingesetzt. In diesen so genannten Geradrohrwärmetauschern tritt beispielsweise Speisewasser, welches für andere Anwendungen vorgewärmt werden muss, in Wärmetausch mit dem heißen Synthesegas. In einem derartigen Wärmetauscher mit einem längserstreckten, geraden Rohrbündel wird das eine Medium für den Wärmetausch im Rohrraum geführt, während das zweite Medium im Mantelraum geführt wird, welcher den Rohrraum umschließt. Der Rohrraum eines solchen Wärmetauscher besteht im Wesentlichen aus zwei Vorkammern mit aufgesetzten Stutzen, welcher zur Zu- oder Abführung des ersten Mediums geeignet sind und einem längserstreckten, geraden Rohrbündel, bestehend aus mindestens zwei Rohren. Der Mantelraum umschließt den Rohrraum und weist mindestens eine Zuführung und eine Abführung für das zweite Medium auf. Der Mantelraum ist gegenüber dem Rohrraum abgedichtet.
  • Das Synthesegas kann sowohl im Rohr- als auch im Mantelraum im Gleich- oder Gegenstrom zum Speisewasser geführt werden. Gewöhnlich werden in einer Synthesegasanlage das heiße Synthesegas im Rohrraum und Wasser im Mantelraum geführt. Die beiden am Wärmetausch beteiligten Medien weisen im Fall einer Synthesegasanlage eine sehr hohe Temperaturdifferenz auf. Der Wärmetauscher wird bei Raumtemperatur gefertigt. Bei dem Einsatz als Preheater in einer Synthesegasanlage wird heißes Synthesegas mit einer Temperatur zwischen 300°C und 450°C im Gleich- oder Gegenstrom zu Wasser beziehungsweise Einsatzgas mit Raumtemperatur geführt. Die durch diese Temperaturdifferenz hervorgerufenen unterschiedlichen Wärmeausdehnungen zwischen Rohr- und Mantelraum führen zu mechanischen Spannungen. Derartige mechanische Spannungen werden nach dem Stand der Technik durch einen Kompensator abgefangen. Ein Kompensator ist in der Regel als wellenförmige Struktur bestehend aus mindestens einer Welle in einer oder mehreren Lagen ausgebildet. Durch seine wellenförmige Struktur ist der Kompensator in der Lage, unterschiedliche mechanische Ausdehnungen bei fixierten Enden gut aufzunehmen. Ähnlich einer Ziehharmonika kann er zusammengedrückt oder auseinander gezogen werden. Nach dem Stand der Technik kann ein solcher Kompensator entweder in den Mantel eingebaut werden oder man verwendet einen Geradrohrwärmetauscher mit Schwimmkopf wie in der deutschen Patentanmeldung "Wärmetauscher mit geradem Rohrbündel und Schwimmkopf' (Aktenzeichen 102007017227.5 ) der Anmelderin.
  • Als Materialien zur Herstellung eines Geradrohrwärmetauschers kommen, je nach geplanten Einsatz und den sich daraus ergebenden Drücken, Temperaturen und am Wärmeaustausch teilnehmenden Medien, die verschiedensten Sorten von Stahl- oder Aluminiumlegierungen in Frage. Bei einem Einsatz als Preheater in einer Synthesegasanlage würde man den Wärmeaustauscher aus hitzebeständigem warmfesten Stahl, bevorzugt in einer Chrom-Molybdän Legierung, oder Chrom-Nickel Stahl ausführen. Chrom-Nickel Stahl ist deutlich teurer als hitzebeständiger warmfester Stahl und daher aus wirtschaftlichen Gründen nicht zu bevorzugen. Bei der Herstellung eines Wärmetauschers aus warmfesten Stahl werden die Teile jedoch in einem Warmumformungsverfahren bzw. in geschweißter Art hergestellt, was ein anschließendes Glühen zum Abbau bei der Herstellung entstehender mechanischer Spannungen erfordert. Ein derartiges Glühverfahren lässt sich mit einem Kompensator im Mantel nicht durchführen bzw. der Kompensator würde durch das Glühverfahren an Elastizität verlieren. Daher muss ein Kompensator aus Chrom-Nickel Stahl hergestellt werden. Nach dem Stand der Technik wird somit der gesamte Wärmetauscher aus Chrom-Nickel Stahl hergestellt. Ein ähnliches Problem ergibt sich auch bei der Abdichtung der Vorkammern gegenüber dem Mantelraum.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Wärmetauscher der eingangs erwähnten Art derart auszugestalten, dass die Wirtschaftlichkeit seiner Herstellung verbessert wird ohne das es zu einer Erhöhung der thermischen Spannungen während des Einsatzes und damit zu einer Verringerung der Lebensdauer kommt.
  • Die vorliegende Aufgabe wird dadurch gelöst, dass Mantel und Kompensator aus verschiedenen Materialien bestehen und mittels einer Auftragungsschweißung verbunden sind und/oder die Vorkammern mittels einer Schweißringdichtung gegenüber dem Mantelraum abgedichtet sind, wobei die Schweißringdichtung aus einem anderen Material als Vorkammer und/oder Mantel besteht und über eine Auftragungsschweißung mit den jeweiligen Teilen verbunden ist.
  • Der erfindungsgemäße Wärmetauscher besteht aus verschiedenen Teilen unterschiedlicher Materialien, die nach einsatztechnischen und wirtschaftlichen Gesichtspunkten optimiert sind. Unterschiedliche Teile eines Wärmetauschers müssen unterschiedlichen mechanischen oder thermischen Anforderungen genügen. Ein Kompensator im Mantel beispielsweise muss hitzebeständig und hinreichend elastisch sein, um mechanische Verformungen aufzunehmen. Der restliche Teil des Mantels dagegen muss lediglich hitzebeständig sein, da er ja seine mechanischen Spannungen auf den Kompensator überträgt. Im Sinne der Erfindung werden die Materialien der unterschiedlichen Teile eines Wärmetauschers diesen unterschiedlichen Anforderungen und Einsatzbedingungen angepasst. Die Teile aus unterschiedlichen Materialien werden erfindungsgemäß mittels einer Auftragungsschweißung miteinander verbunden. Eine Auftragungsschweißung ist ein dem Fachmann bekanntes und erprobtes Mittel zur Verbindung von metallischen Teilen oder Komponenten aus unterschiedlichen Materialien.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung bestehen der Mantel und/oder die Vorkammer aus einem hitzebeständigen warmfesten Stahl, bevorzugt aus einer Chrom-Molybdän Legierung, und der Kompensator und/oder die Schweißringdichtung aus Chrom-Nickel Stahl. Hitzebeständiger warmfester Stahl, bevorzugt eine Chrom-Molybdän Legierung, hat sich für den Einsatz in Wärmetauschern bei hohen Temperaturen bewährt. Chrom-Nickel Stahl weißt ebenfalls eine hohe Hitzebeständigkeit und dabei zusätzlich noch sehr gute elastische Eigenschaften auf. In dieser Ausgestaltung der Erfindung kann der überwiegende Teil des Mantels aus günstigem hitzebeständigem warmfestem Stahl ausgeführt werden, während nur Teile mit höheren Anforderungen an das elastische Verhalten im Wärmetauscher aus dem teureren Chrom-Nickel Stahl ausgeführt werden. Eine optimale Anpassung der Teile des Wärmetauschers auf die unterschiedlichen Anforderungen ist somit gegeben.
  • Vorteilhafterweise besteht die Auftragungsschweißung aus einer Nickel und/oder Molybdän basierten Legierung, bevorzugt Incoloy 825. Eine Auftragungsschweißung aus einer Nickel und/oder Molybdän basierten Legierung, bevorzugt Incoloy 825, ist ein geeignetes Mittel, um unterschiedliche metallische Materialien und speziell einen hitzebeständigen warmfesten Stahl und Chrom-Nickel Stahl zu verbinden.
  • Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines erfindungsgemäßen Geradrohrwärmetauschers. Erfindungsgemäß wird bei zwei Teilen unterschiedlichen Materials, welche mittels Auftragungsschweißung verbunden werden sollen, mindestens ein Teil mit der Auftragungsschweißung versehen, das Teil mit der Auftragsschweißung in ein Glühverfahren geführt und anschließend mit dem zweiten Teil über die Auftragungsschweißung verbunden.
  • Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung werden die aus hitzebeständigen warmfesten Stahl bestehenden Mantelstücke und/oder Vorkammern mit einer Auftragungsschweißung versehen, in ein Glühverfahren geführt und anschließend über die Auftragungsschweißung mit den jeweiligen aus Chrom-Nickel Stahl bestehenden Teilen wie Kompensator und/oder Schweißringdichtung verschweißt. Durch das Glühverfahren werden mechanische Spannungen, die bei der Herstellung der Teile aus hitzebeständigem warmfesten Stahl zwangsläufig entstehen, in diesen Teilen abgebaut, wodurch sich deren Lebensdauer deutlich erhöht. Die Auftragungsschweißung wird durch das Glühverfahren nicht beeinflusst und ermöglicht eine zuverlässige Verbindung der Teile aus hitzebeständigen warmfesten Stahl und Chrom-Nickel Stahl.
  • Vorteilhafterweise wird ein Geradrohrwärmetauscher im Sinne der Erfindung in Synthesegasanlagen oder Wasserstoffanlagen, bevorzugt als Preheater zur Abkühlung von heißen Synthesegas bei gleichzeitiger Erwärmung von Wasser, verwendet.
  • Mit der vorliegenden Erfindung gelingt es insbesondere die unterschiedlichen Teile eines Wärmetauschers optimal auf die unterschiedlichen mechanischen und thermischen Anforderungen anzupassen. Die Wirtschaftlichkeit der Herstellung eines derartigen Wärmetauschers wird dabei deutlich erhöht, ohne das damit Verluste an mechanischer oder thermischer Stabilität einhergehen.
  • Im Folgenden soll die Erfindung anhand eines in den Figuren dargestellten Ausführungsbeispieles näher erläutert werden.
  • Es zeigen
  • Figur 1
    ein Ausführungsbeispiel eines erfindungsgemäßen Wärmetauschers,
    Figur 2
    eine Detailzeichnung der Verbindung von Mantel und Kompensator und
    Figur 3
    eine Detailzeichnung der Verbindung zwischen Schweißringdichtung und Vorkammer.
  • Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Geradrohrwärmetauschers 1 mit einem Mantel 2, einem Rohrbündel 3 (aus Gründen der Übersichtlichkeit sind nur zwei Rohre des Rohrbündels 3 dargestellt), zwei entgegengesetzten Vorkammern 4a, 4b, Mitteln zur Zu- und Abführung des ersten Mediums in den Rohrraum 5a, 5b und Mitteln zur Zu- und Abführung des zweiten Mediums in den Mantelraum 6a, 6b sowie einen einlagigen Kompensator 7. Ein derartiger Wärmetauscher kann beispielsweise als Preheater in einer Anlage zur Synthesegasherstellung eingesetzt werden. In dieser Ausführungsform wird das heiße Synthesegas mit einer Temperatur von 450°C über die Zuführung 5a und die Vorkammer 4a in die Rohre des Rohrbündels 3 geführt. Das abgekühlte Synthesegas verlässt mit einer Temperatur von rund 320°C den Wärmetauscher über die Vorkammer 4b und die Abführung 5b. Das Synthesegas wird durch im Mantelraum 2 im Gegenstrom fließendes Wasser abgekühlt. Das Zu- bzw. Abfuhr des Wassers in den Mantelraum erfolgt über die Zu- bzw. Abführung 6a bzw. 6b. Sowohl der Mantel 2 als auch die beiden Vorkammern 4a, 4b sind aus hitzebeständigen warmfesten Stahl, speziell einer Chrom-Molybdän Legierung. Der Kompensator 7 besteht ebenso wie die beiden Schweißringdichtungen 8 aus Chrom-Nickel Stahl. Durch den Kompensator 7 aus Chrom-Nickel Stahl werden die unterschiedlichen mechanischen Spannungen resultierend aus der hohe Temperatur des Synthesegases komplett aufgefangen. Bei der Herstellung wurden die beiden Vorkammern 4a, 4b sowie der, aus den beiden Teilstücken 2a, 2b, bestehende Mantel 2 mit einer Auftragsschweißung versehen und in ein Glühverfahren geführt. Nach dem Glühverfahren wurden die Vorkammern 4a, 4b und die beiden Mantelstücke 2a, 2b über die Auftragungsschweißung mit den entsprechenden Chrom-Nickel Stahlteilen (Schweißringdichtung 8, Kompensator 7) verbunden. Die Vorkammern 4a, 4b sind an den Mantel 2 angeflanscht.
  • Figur 2 zeigt die Detaildarstellung der Verbindung des Kompensators 7 mit dem Mantelteil 2a. Der Mantelteil 2a weißt eine Auftragungsschweißung 9 auf. Der Kompensator 7 mit einem entsprechenden kurzen mantelähnlichen Verbindungsstück 7a besteht aus Chrom-Nickel Stahl und wird über die Auftragungsschweißung 9 mit dem Mantelteil 2a aus einer Chrom-Molybdän Legierung verbunden.
  • Figur 3 zeigt die Detaildarstellung der Verbindung der Vorkammer 4b mit der Schweißringdichtung 8 und dem Mantelstück 2a. Sowohl die Vorkammer 4a als auch das Mantelstück 2a bestehen aus einer Chrom-Molybdän Legierung und werden über die Auftragungsschweißungen 9 mit der aus Chrom-Nickel Stahl bestehenden Schweißringdichtung 8 verbunden.

Claims (7)

  1. Geradrohrwärmetauscher (1) zum Wärmeaustausch zwischen zwei Medien in der flüssigen und/oder gasförmigen Phase welcher aus
    a) einem Rohrbündel (3) zur Führung eines Mediums,
    b) einem das Rohrbündel (3) umgebenden Mantelraum (2) zur Führung des zweiten Mediums,
    c) zwei entgegengesetzten Vorkammern (4a, 4b) mit Mitteln zur Zu- bzw. Abführung des ersten Mediums in bzw. aus dem Rohrbündel, wobei die Vorkammern (4a, 4b) an den Mantel (2) befestigt werden,
    d) Mitteln zur Zu- bzw. Abführung des ersten Mediums in die Vorkammern (5a, 5b) sowie Mitteln zur Zu- bzw. Abführung des zweiten Mediums in den Mantelraum (6a, 6b), sowie
    e) mindestens einem Kompensator (7) im Mantel (2), welcher mindestens einlagig ist,
    besteht,
    dadurch gekennzeichnet, dass
    Mantel (2) und Kompensator (7) aus verschiedenen Materialien bestehen und mittels einer Auftragungsschweißung (9) verbunden sind
    und/oder
    die Vorkammern (4a, 4b) mittels einer Schweißringdichtung (8) gegenüber dem Mantelraum (2) abgedichtet sind, wobei die Schweißringdichtung (8) aus einem anderen Material als Vorkammer (4a, 4b) und/oder Mantel (2) besteht.
  2. Geradrohrwärmetauscher (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Mantel (2) und/oder die Vorkammer (4a, 4b) aus einem hitzebeständigen warmfesten Stahl, bevorzugt aus einer Chrom-Molybdän Legierung, bestehen.
  3. Geradrohrwärmetauscher (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, der Kompensator (7) und/oder die Schweißringdichtung (8) aus Chrom-Nickel Stahl bestehen.
  4. Geradrohrwärmetauscher (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Auftragungsschweißung (9) aus einer Nickel und/oder Molybdän basierten Legierung, bevorzugt Incoloy 825, besteht.
  5. Verfahren zur Herstellung eines Geradrohrwärmetauschers (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei zwei Teilen unterschiedlichen Materials, welche mittels Auftragungsschweißung (9) verbunden werden sollen, mindestens ein Teil mit der Auftragungsschweißung (9) versehen wird, das Teil mit der Auftragsschweißung (9) in ein Glühverfahren geführt wird und anschließend mit dem zweiten Teil über die Auftragungsschweißung (9) verbunden wird.
  6. Verfahren zur Herstellung eines Geradrohrwärmetauschers (1) nach Anspruch 5, dadurch gekennzeichnet, dass die aus hitzebeständigen warmfesten Stahl bestehenden Mantelstücke (2a, 2b) und/oder Vorkammern (4a, 4b) mit einer Auftragungsschweißung (9) versehen werden, in ein Glühverfahren geführt werden und anschließend über die Auftragungsschweißung (9) mit den jeweiligen aus Chrom-Nickel Stahl bestehenden Teilen wie Kompensator (7) und/oder Schweißringdichtung (8) verschweißt werden.
  7. Verwendung eines Geradrohrwärmetauschers (1) nach einem der Ansprüche 1 bis 4, in Synthesegasanlagen oder Wasserstoffanlagen, bevorzugt als Preheater zur Abkühlung von heißen Synthesegas bei gleichzeitiger Erwärmung von Wasser.
EP09000771A 2008-01-29 2009-01-20 Geradrohrwärmetauscher mit Kompensator Withdrawn EP2085731A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008006559A DE102008006559A1 (de) 2008-01-29 2008-01-29 Geradrohrwärmetauscher mit Kompensator

Publications (1)

Publication Number Publication Date
EP2085731A1 true EP2085731A1 (de) 2009-08-05

Family

ID=40512501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09000771A Withdrawn EP2085731A1 (de) 2008-01-29 2009-01-20 Geradrohrwärmetauscher mit Kompensator

Country Status (3)

Country Link
US (1) US20090194266A1 (de)
EP (1) EP2085731A1 (de)
DE (1) DE102008006559A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131922A3 (de) * 2012-03-06 2013-10-31 Babcock Borsig Steinmüller Gmbh Korrosionsbeständiger wärmetauscher

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8978740B2 (en) * 2006-06-22 2015-03-17 Modine Manufacturing Company Heat exchanger
US9403204B2 (en) * 2010-01-29 2016-08-02 Modine Manufacturing Company Heat exchanger assembly and method
DE102009020306A1 (de) * 2008-05-12 2010-02-11 Modine Manufacturing Co., Racine Wärmetauscher und Verfahren zum Zusammenbau
CN102564166A (zh) * 2012-02-17 2012-07-11 合肥通用机械研究院 一种柔性连接环的碟形管板换热器
US9528777B2 (en) 2012-06-29 2016-12-27 Dana Canada Corporation Heat exchangers with floating headers
US9217610B2 (en) * 2012-07-16 2015-12-22 Caterpillar Inc. Heat exchanger for exhaust gas recirculation
US9540714B2 (en) 2013-03-15 2017-01-10 Ut-Battelle, Llc High strength alloys for high temperature service in liquid-salt cooled energy systems
US9377245B2 (en) 2013-03-15 2016-06-28 Ut-Battelle, Llc Heat exchanger life extension via in-situ reconditioning
CA2916995C (en) * 2013-05-20 2018-01-02 Fluor Technologies Corporation Duct assemblies with internally bolted expansion joint
US9702494B2 (en) 2013-05-20 2017-07-11 Fluor Technologies Corporation Duct assemblies with internally bolted expansion joint
US10017842B2 (en) 2013-08-05 2018-07-10 Ut-Battelle, Llc Creep-resistant, cobalt-containing alloys for high temperature, liquid-salt heat exchanger systems
US9435011B2 (en) 2013-08-08 2016-09-06 Ut-Battelle, Llc Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems
US9683280B2 (en) 2014-01-10 2017-06-20 Ut-Battelle, Llc Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems
CN103934654A (zh) * 2014-02-28 2014-07-23 宁夏宝塔石化科技实业发展有限公司 一种换热器支持圈的加工方法
GB2525025A (en) * 2014-04-10 2015-10-14 Linde Ag Improved gasket for heat exchanger
US9683279B2 (en) 2014-05-15 2017-06-20 Ut-Battelle, Llc Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems
US9605565B2 (en) 2014-06-18 2017-03-28 Ut-Battelle, Llc Low-cost Fe—Ni—Cr alloys for high temperature valve applications
CN104634138B (zh) * 2015-02-15 2016-05-04 卢晓丽 一种列管式换热器
CN104634141B (zh) * 2015-02-15 2016-06-08 中国计量学院 一种列管式换热器
GB2542217A (en) * 2015-09-10 2017-03-15 Linde Ag A partition plate tightening element for a heat exchanger
US10167982B2 (en) 2016-07-08 2019-01-01 Fluor Technologies Corporation Stacked duct assemblies
CN111238286A (zh) * 2018-11-29 2020-06-05 南京利德盛机械有限公司 一种管壳式换热器壳体防腐处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1720912A (en) * 1927-08-01 1929-07-16 Carbondale Machine Company Heat interchanger
WO2003036214A1 (de) * 2001-10-24 2003-05-01 Behr Gmbh & Co. Wärmeübertrager
GB2417067A (en) * 2004-08-12 2006-02-15 Senior Uk Ltd Gas heat exchanger with a bypass conduit
EP1788341A1 (de) * 2005-11-18 2007-05-23 Behr GmbH & Co. KG Wärmetauscher für einen Verbrennungsmotor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2232936A (en) * 1940-05-02 1941-02-25 Allis Chaimers Mfg Company Expansion joint
US4066201A (en) * 1976-11-10 1978-01-03 Richard Bleckmann Method of joining metal parts
US4255497A (en) * 1979-06-28 1981-03-10 Amax Inc. Ferritic stainless steel
US4278277A (en) * 1979-07-26 1981-07-14 Pieter Krijgsman Structure for compensating for different thermal expansions of inner and outer concentrically mounted pipes
US5019184A (en) * 1989-04-14 1991-05-28 Inco Alloys International, Inc. Corrosion-resistant nickel-chromium-molybdenum alloys
US5172848A (en) * 1991-09-25 1992-12-22 General Motors Corporation Method and apparatus for convection brazing of aluminum heat exchangers
US5711369A (en) * 1996-12-16 1998-01-27 Ford Global Technologies, Inc. Heat exchanger manifold having a solder strip
US20070204981A1 (en) * 2006-03-02 2007-09-06 Barnes Terry W Modular manifolds for heat exchangers
DE102007017227A1 (de) 2007-04-12 2008-10-16 Linde Ag Wärmetauscher mit geradem Rohrbündel und Schwimmkopf
US8959769B2 (en) * 2007-07-26 2015-02-24 General Electric Company Method and apparatus for heat recovery within a syngas cooler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1720912A (en) * 1927-08-01 1929-07-16 Carbondale Machine Company Heat interchanger
WO2003036214A1 (de) * 2001-10-24 2003-05-01 Behr Gmbh & Co. Wärmeübertrager
GB2417067A (en) * 2004-08-12 2006-02-15 Senior Uk Ltd Gas heat exchanger with a bypass conduit
EP1788341A1 (de) * 2005-11-18 2007-05-23 Behr GmbH & Co. KG Wärmetauscher für einen Verbrennungsmotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131922A3 (de) * 2012-03-06 2013-10-31 Babcock Borsig Steinmüller Gmbh Korrosionsbeständiger wärmetauscher

Also Published As

Publication number Publication date
US20090194266A1 (en) 2009-08-06
DE102008006559A1 (de) 2009-07-30

Similar Documents

Publication Publication Date Title
EP2085731A1 (de) Geradrohrwärmetauscher mit Kompensator
EP0042028B1 (de) Vorrichtung zum Wärmetausch zwischen einen Ammoniak-Konverter verlassendem Kreislaufgas und Kühlwasser
DE102017203058A1 (de) Wärmeübertrager und Reaktor
DE2007528A1 (de) Verfahren und Vorrichtung zur Gas fuhrung in Hochdruckwarmetauschern
EP0752569A2 (de) Wärmetauscher
DE2430771C2 (de) Verfahren zum Herstellen eines Wärmeaustauschers
AT515245B1 (de) Rohrbündel-Wärmetauschergruppe und Apparat, insbesondere Reaktor für die Erzeugung von Melamin umfassend eine solche Wärmetauschergruppe
EP2999936A1 (de) Wärmeübertrager, verfahren zur wartung bzw. herstellung und zum betreiben eines wärmeübertragers, kraftwerk und verfahren zur erzeugung elektrischer energie
DE69505138T2 (de) Vorrichtung zur kühlung von heissem gas
EP2278248A2 (de) Wärmetauscher zum Kühlen von Spaltgas
DE3803948C2 (de)
WO2007131568A1 (de) Sammelleitung für röhrenspaltöfen
DE102016218438A1 (de) Verfahren und Anordnung zur Wärmeenergierückgewinnung in Anlagen umfassend wenigstens einen Reformer
DE102007017227A1 (de) Wärmetauscher mit geradem Rohrbündel und Schwimmkopf
EP3054259B1 (de) Verfahren zur herstellung eines wärmetauschers
DE3136860C2 (de) Abkühlwärmetauscher
DE202017107810U1 (de) Druckfeste Brennerspitze
DE2504343C2 (de) Verfahren und Reaktor zur Durchführung exothermer katalytischer Reaktionen
DE102011103635A1 (de) Wärmeübertrager
WO2015028123A1 (de) Sammlerleitung zur gemeinsamen abfuhr von aus mehreren reformerrohren zugeleiteten prozessgasen eines reformers
DE3529457A1 (de) Waermetauscher-gasturbine
WO2014044650A1 (de) Verfahren und anlage zum aufheizen von erdgas
DE3502116A1 (de) Roehrenbuendelwaermeaustauscher mit dehnungsausgleich fuer den waermeaustausch von gasen
DE102013109925A1 (de) Abgaswärmetauscher
DE102022200863A1 (de) Rohrleitungsanordnung zum Stoppen einer in der Rohrleitungsanordnung ablaufenden Reaktion und eine die Rohrleitungsanordnung aufweisende Prozessanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

17P Request for examination filed

Effective date: 20100126

17Q First examination report despatched

Effective date: 20100302

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140801