EP2085498A1 - Keramische Wärmedämmschichten mit erhöhter Korrosionsbeständigkeit gegen verunreinigte Brennstoffe - Google Patents

Keramische Wärmedämmschichten mit erhöhter Korrosionsbeständigkeit gegen verunreinigte Brennstoffe Download PDF

Info

Publication number
EP2085498A1
EP2085498A1 EP08002050A EP08002050A EP2085498A1 EP 2085498 A1 EP2085498 A1 EP 2085498A1 EP 08002050 A EP08002050 A EP 08002050A EP 08002050 A EP08002050 A EP 08002050A EP 2085498 A1 EP2085498 A1 EP 2085498A1
Authority
EP
European Patent Office
Prior art keywords
coating
layer system
turbine blade
coatings
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08002050A
Other languages
English (en)
French (fr)
Inventor
Jens Birkner
Knut Halberstadt
Eckart Dr. Schumann
Werner Dr. Stamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08002050A priority Critical patent/EP2085498A1/de
Priority to EP08872105A priority patent/EP2238278B1/de
Priority to US12/865,910 priority patent/US8592044B2/en
Priority to PCT/EP2008/066809 priority patent/WO2009097931A1/de
Publication of EP2085498A1 publication Critical patent/EP2085498A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics

Definitions

  • the present invention relates to a ceramic coating for a component which is exposed to high temperatures, in particular ceramic coatings for a turbine blade.
  • Ceramic coatings for turbine blades are, for example, from DE 198 01 424 known.
  • the ceramic coatings described in this application relate to compositions consisting essentially of barium zirconate and / or lanthanum zirconate and / or strontium zirconate.
  • coatings for turbine blades consist of zirconia or by the addition of yttria partially stabilized zirconia.
  • a disadvantage of yttria-stabilized zirconia ceramics is that when used as a coating for turbine blades operated under heavy oil conditions, they may be subject to degradation phenomena.
  • the object of the present invention is to provide a ceramic coating for components of the type mentioned, which have good thermal insulation properties at the same time high stability even in aggressive environments.
  • the object is achieved according to the invention by a ceramic coating which contains one or more compounds selected from Al 2 TiO 5 , alkaline earth silicates, magnesium titanates, ZrV 2 O 7 and Mg 3 (VO 4 ) 2 .
  • the invention is based on the finding that the conventionally used for turbine blades Ceramic coatings based on yttrium-stabilized zirconia are decomposed by the attack of sodium, potassium, vanadium or magnesium. These elements occur primarily in the operation of a gas turbine under heavy oil conditions or in contact with low-purity synthesis gases.
  • the contact of the yttria-stabilized zirconia with the above-mentioned elements in detail leads to a destabilization of the yttria, whereby the destruction of the ceramic is caused.
  • the ceramic coatings according to the invention can generally be used for components which are exposed to high temperatures.
  • a possible method for producing such a coating is that a coating of the type according to the invention is applied to a substrate which predetermines the basic shape of the component.
  • the coating can be effected by physical vapor deposition, which is also referred to as PVD (physical vapor deposition), in particular also by physical electron beam vapor deposition (EB-PVD method, electron beam physical vapor deposition).
  • PVD physical vapor deposition
  • EB-PVD method electron beam physical vapor deposition
  • the coating can also be applied by plasma spraying, in particular by atmospheric plasma spraying.
  • the coating according to the invention contains at least 90 wt.%, In particular at least 95 wt.%, Particularly preferably greater than 99 wt.% Of Al 2 TiO 5 , alkaline earth silicates, magnesium titanates, ZrV 2 O 7 and Mg 3 (VO 4 ) 2 .
  • This is particularly advantageous because ceramics of these compounds already without further additives have good thermal insulation properties and high resistance to aggressive environments.
  • the coating according to the invention consists exclusively of the abovementioned compounds, in particular of a single one of the abovementioned compounds.
  • the presence of small amounts of impurities in particular in the order of less than 1 wt.%, In particular less than 0.1 wt.% Possible.
  • the alkaline earth silicates are selected from steatite, cordierite, barium silicate and calcium silicate. It is also preferable that the magnesium titanates are selected from MgTiO 3 and Mg 2 TiO 4 . This is particularly advantageous because coatings of ceramic materials of this type have a particularly high resistance to attack by sodium, potassium, vanadium or magnesium.
  • the coating according to the invention has no addition of stabilizers. This is particularly advantageous since the coatings according to the invention can thus be applied as a single-phase system. Possible errors in the weighing of stabilizing additives can be ruled out from the outset. The possibility to dispense with the addition of stabilizers is due to the high resistance of the coatings according to the invention even in aggressive environments.
  • the coatings according to the invention are largely free of yttrium oxide.
  • the coatings according to the invention do not contain yttrium oxide. This is special advantageous, since this stabilizer commonly used in coating ceramics for turbine blades is responsible for the destruction of the ceramic materials under the aggressive conditions described above.
  • the coatings according to the invention do not require the addition of yttrium or yttrium oxide.
  • the coating has a thickness of 200 to 1000 .mu.m, in particular from 200 to 500 .mu.m.
  • Coatings, which are applied with these thicknesses to the components to be coated have the particular advantage that even with coatings of this thickness sufficient thermal insulation of the underlying material is ensured at the same time good stability against aggressive environments.
  • Another object of the present invention relates to a layer system which contains at least one coating of the type according to the invention.
  • a particularly preferred layer system is formed by applying a coating according to the invention to a layer of partially stabilized zirconium oxide already present on the component. If appropriate, further layers, in particular adhesion promoter layers, may be introduced between the layer of partially stabilized zirconium oxide and the component surface.
  • a multilayer coating system of this type is particularly advantageous since possible differences in the coefficients of thermal expansion of the coatings of the invention and the base material can be compensated by the intermediate layer of partially stabilized zirconium oxide, whereby the thermal stability of the coating can be increased. Turbines coated with the layer systems according to the invention can therefore be operated at higher temperatures. This is special This is relevant because the operating efficiency of turbines increases with their operating temperature.
  • Another object of the present invention is the use of a coating according to the invention or a layer system which contains a coating according to the invention, as a thermal barrier coating for a component which is exposed to high temperatures.
  • a coating according to the invention or a layer system which contains a coating according to the invention as a thermal barrier coating for a component which is exposed to high temperatures.
  • the coatings and layer systems according to the invention have good heat-insulating properties combined with high resistance even in aggressive environments. These properties are particularly advantageous when using such a coating or such a layer system as a coating for a turbine blade, in particular a turbine blade for a steam turbine.
  • Another object of the present invention is a turbine blade having a coating according to the invention or a layer system of the type mentioned above. This is particularly advantageous, since turbine blades with such ceramic coatings, especially when used in a steam turbine, have a very high temperature resistance and are operated under severe oil conditions or under contact with low-purity synthesis gases due to the good stability of the coating or the layer systems against aggressive environments at high temperatures can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Die vorliegende Erfindung betrifft keramische Beschichtungen für ein Bauteil, das hohen Temperaturen ausgesetzt ist, insbesondere für eine Turbinenschaufel, enthaltend eine oder mehrere Verbindungen, die ausgewählt sind aus Al 2 TiO 5 , Erdalkalisilikaten, Magnesiumtitanaten, ZrV 2 O 7 und Mg 3 (VO 4 ) 2 .

Description

  • Die vorliegende Erfindung betrifft eine keramische Beschichtung für ein Bauteil, das hohen Temperaturen ausgesetzt ist, insbesondere keramische Beschichtungen für eine Turbinenschaufel.
  • Keramische Beschichtungen für Turbinenschaufeln sind beispielsweise aus der DE 198 01 424 bekannt. Die in dieser Anmeldung beschriebenen keramischen Beschichtungen betreffen Zusammensetzungen bestehend im Wesentlichen aus Bariumzirkonat und/oder Lanthanzirkonat und/oder Strontiumzirkonat.
  • Weiterhin sind Beschichtungen für Turbinenschaufeln bekannt, die auf Zirkondioxid oder durch Zusatz von Yttriumoxid teilstabilisiertem Zirkondioxid bestehen.
  • Nachteilig bei Yttrium-stabilisierten Zirkon-Keramiken ist, dass diese, wenn sie als Beschichtung für Turbinenschaufeln verwendet werden, die unter Schwerölbedingungen betrieben werden, Zersetzungserscheinungen unterliegen können.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, eine keramische Beschichtung für Bauteile der eingangs genannten Art zu schaffen, welche gute Wärmedämmeigenschaften bei gleichzeitig hoher Stabilität auch in aggressiven Umgebungen aufweisen.
  • Die Aufgabe ist erfindungsgemäß gelöst durch eine keramische Beschichtung, welche eine oder mehrere Verbindungen enthält, die ausgewählt sind aus Al2TiO5, Erdalkalisilikaten, Magnesiumtitanaten, ZrV2O7 und Mg3(VO4)2.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass die üblicherweise für Turbinenschaufeln eingesetzten Keramikbeschichtungen auf Basis von Yttrium-stabilisiertem Zirkonoxid durch den Angriff von Natrium, Kalium, Vanadium oder Magnesium zersetzt werden. Diese Elemente treten vornehmlich beim Betrieb einer Gasturbine unter Schwerölbedingungen oder bei Kontakt mit gering gereinigten Synthesegasen auf. Dabei führt der Kontakt der Yttriumoxidstabilisierten Zirkonkeramik mit den oben genannten Elementen im Detail zu einer Destabilisierung des Yttriumoxids, wodurch die Zerstörung der Keramik hervorgerufen wird.
  • Mit Hilfe der in der vorliegenden Erfindung beschriebenen keramischen Beschichtungen ist es nunmehr möglich, Gasturbinenschaufeln mit Wärmedämmschichten auszurüsten, die auch unter den oben genannten aggressiven Bedingungen betrieben werden können, ohne dass die keramischen Beschichtungen angegriffen werden.
  • Die erfindungsgemäßen keramischen Beschichtungen können allgemein für Bauteile verwendet werden, die hohen Temperaturen ausgesetzt werden.
  • Ein mögliches Verfahren zur Herstellung einer derartigen Beschichtung besteht darin, dass auf ein die Grundform des Bauteils vorgebendes Substrat eine Beschichtung der erfindungsgemäßen Art aufgebracht wird.
  • Die Beschichtung kann dabei durch physikalisches Aufdampfen, das auch als PVD-Verfahren (physical vapour deposition) bezeichnet wird, insbesondere auch durch physikalisches Elektronenstrahl-Aufdampfen (EB-PVD-Verfahren; electron beam physical vapour deposition) erfolgen. Die Beschichtung kann darüber hinaus auch durch Plasmaspritzen, insbesondere durch atmosphärisches Plasmaspritzen aufgebracht werden.
  • Nach einer bevorzugten Ausführungsform der erfindungsgemäßen Beschichtung enthält diese wenigstens 90 Gew.%, insbesondere wenigstens 95 Gew.%, besonders bevorzugt größer 99 Gew.% an Al2TiO5, Erdalkalisilikaten, Magnesiumtitanaten, ZrV2O7 und Mg3(VO4)2. Dies ist besonders vorteilhaft, da Keramiken aus diesen Verbindungen bereits ohne weitere Zusätze gute Wärmedämmeigenschaften bei gleichzeitig hoher Beständigkeit gegenüber aggressiven Umgebungen aufweisen. Es ist insbesondere vorteilhaft, wenn die erfindungsgemäße Beschichtung ausschließlich aus den oben genannten Verbindungen besteht, insbesondere aus einer einzigen der oben genannten Verbindungen. Hierbei ist das Vorhandensein geringer Mengen Verunreinigungen insbesondere in der Größenordnung kleiner als 1 Gew.%, insbesondere kleiner als 0,1 Gew.% möglich.
  • Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Beschichtung werden die Erdalkalisilikate aus Steatit, Cordierit, Bariumsilikat und Calciumsilikat ausgewählt. Es ist ebenso bevorzugt, dass die Magnesiumtitanate ausgewählt sind aus MgTiO3 und Mg2TiO4 ausgewählt werden. Dies ist besonders vorteilhaft, da Beschichtungen aus keramischen Materialien dieser Art eine besonders hohe Resistenz gegenüber einem Angriff von Natrium, Kalium, Vanadium oder Magnesium aufweisen.
  • Gemäß einer weiteren bevorzugten Ausführungsform weist die erfindungsgemäße Beschichtung keinen Zusatz von Stabilisatoren auf. Dies ist besonders vorteilhaft, da die erfindungsgemäßen Beschichtungen somit als einphasiges System aufgebracht werden können. Mögliche Fehler beim Einwiegen von stabilisierenden Zusatzstoffen lassen sich dadurch von vornherein ausschließen. Die Möglichkeit auf den Zusatz von Stabilisatoren zu verzichten ist in der hohen Beständigkeit der erfindungsgemäßen Beschichtungen selbst in aggressiven Umgebungen begründet.
  • Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung sind die erfindungsgemäßen Beschichtungen weitestgehend frei von Yttriumoxid. Ganz besonders bevorzugt enthalten die erfindungsgemäßen Beschichtungen kein Yttriumoxid. Dies ist besonders vorteilhaft, da dieser üblicherweise in Beschichtungskeramiken für Turbinenschaufeln eingesetzte Stabilisator für die Zerstörung der keramischen Werkstoffe unter den oben beschriebenen aggressiven Bedingungen verantwortlich ist. Die erfindungsgemäßen Beschichtungen kommen hingegen ohne den Zusatz von Yttrium oder Yttriumoxid aus.
  • Nach einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung weist die Beschichtung eine Dicke von 200 bis 1000 µm, insbesondere von 200 bis 500 µm auf. Beschichtungen, welche mit diesen Dicken auf die zu beschichtenden Bauteile aufgebracht werden, weisen den besonderen Vorteil auf, dass bereits bei Beschichtungen dieser Stärke eine ausreichende Wärmedämmung des darunterliegenden Materials bei gleichzeitig guter Stabilität gegenüber aggressiven Umgebungen gewährleistet ist.
  • Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Schichtsystem, welches wenigstens eine Beschichtung der erfindungsgemäßen Art enthält.
  • Ein besonders bevorzugtes Schichtsystem wird dadurch gebildet, dass eine erfindungsgemäße Beschichtung auf eine bereits auf dem Bauteil befindliche Schicht aus teilstabilisiertem Zirkonoxid aufgebracht wird. Zwischen die Schicht aus teilstabilisiertem Zirkonoxid und der Bauteiloberfläche können gegebenenfalls weitere Schichten, insbesondere Haftvermittlerschichten eingebracht sein. Ein mehrlagiges Schichtsystem dieser Art ist besonders vorteilhaft, da durch die Zwischenschicht aus teilstabilisiertem Zirkonoxid mögliche Unterschiede in den thermischen Ausdehnungskoeffizienten der erfindungsgemäßen Beschichtungen und dem Grundwerkstoff kompensiert werden können, wodurch sich die thermische Stabilität der Beschichtung steigern lässt. Mit den erfindungsgemäßen Schichtsystemen beschichtete Turbinen können deshalb bei höheren Temperaturen betrieben werden. Dies ist insbesondere deshalb relevant, da die Betriebseffizienz von Turbinen mit deren Betriebstemperatur steigt.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung einer erfindungsgemäßen Beschichtung oder eines Schichtsystems, welches eine erfindungsgemäße Beschichtung enthält, als Wärmedämmschicht für ein Bauteil, das hohen Temperaturen ausgesetzt ist. Dies ist besonders vorteilhaft, da die erfindungsgemäßen Beschichtungen und Schichtsysteme gute Wärmedämmeigenschaften bei gleichzeitig hoher Beständigkeit auch in aggressiven Umgebungen besitzen. Diese Eigenschaften sind insbesondere vorteilhaft bei einer Verwendung einer solchen Beschichtung oder eines solchen Schichtsystems als Beschichtung für eine Turbinenschaufel, insbesondere einer Turbinenschaufel für eine Dampfturbine.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Turbinenschaufel, die eine erfindungsgemäße Beschichtung oder ein Schichtsystem der oben genannten Art aufweist. Dies ist besonders vorteilhaft, da Turbinenschaufeln mit solchen keramischen Beschichtungen insbesondere beim Einsatz in einer Dampfturbine eine sehr hohe Temperaturbeständigkeit aufweisen und aufgrund der guten Stabilität der Beschichtung oder der Schichtsysteme gegenüber aggressiven Umgebungen bei hohen Temperaturen auch unter Schwerölbedingungen oder unter Kontakt mit gering gereinigten Synthesegasen betrieben werden können.

Claims (12)

  1. Keramische Beschichtung für ein Bauteil, das hohen Temperaturen ausgesetzt ist, insbesondere für eine Turbinenschaufel, enthaltend eine oder mehrere Verbindungen, die ausgewählt sind aus Al2TiO5, Erdalkalisilikaten, Magnesiumtitanaten, ZrV2O7 und Mg3(VO4)2.
  2. Beschichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Gehalt an Al2TiO5, Erdalkalisilikaten, Magnesiumtitanaten, ZrV2O7 und Mg3(VO4)2 in der Beschichtung wenigstens 90 Gew.-%, insbesondere wenigstens 95 Gew.-% beträgt.
  3. Beschichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Erdalkalisilikate ausgewählt sind aus Steatit, Cordierit, Bariumsilikat und Calciumsilikat.
  4. Beschichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Magnesiumtitanate ausgewählt sind aus MgTiO3 und Mg2TiO4.
  5. Beschichtung nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Beschichtung keine Stabilisatoren aufweist.
  6. Beschichtung nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Beschichtung weitestgehend frei von Yttrium ist.
  7. Beschichtung nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Beschichtung eine Dicke von 200 bis 1000 µm und insbesondere 200 bis 500 µm aufweist.
  8. Schichtsystem enthaltend wenigstens eine Beschichtung gemäß einem der vorstehenden Ansprüche.
  9. Schichtsystem nach Anspruch 8, dadurch gekennzeichnet, dass die Beschichtung auf einer Schicht aus teilstabilisiertem Zirkonoxid aufgebracht ist.
  10. Verwendung einer Beschichtung oder eines Schichtsystems nach einem der vorstehenden Ansprüche als Wärmedämmschicht für ein Bauteil, das hohen Temperaturen ausgesetzt ist.
  11. Verwendung nach Anspruch 10,
    dadurch gekennzeichnet, dass
    das Bauteil eine Turbinenschaufel, insbesondere einer Dampfturbine ist.
  12. Turbinenschaufel, die eine Beschichtung oder ein Schichtsystem nach einem der Ansprüche 1 bis 9 aufweist.
EP08002050A 2008-02-04 2008-02-04 Keramische Wärmedämmschichten mit erhöhter Korrosionsbeständigkeit gegen verunreinigte Brennstoffe Withdrawn EP2085498A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08002050A EP2085498A1 (de) 2008-02-04 2008-02-04 Keramische Wärmedämmschichten mit erhöhter Korrosionsbeständigkeit gegen verunreinigte Brennstoffe
EP08872105A EP2238278B1 (de) 2008-02-04 2008-12-04 Keramische wärmedämmschichten mit erhöhter korrosionsbeständigkeit gegen verunreinigte brennstoffe
US12/865,910 US8592044B2 (en) 2008-02-04 2008-12-04 Ceramic heat-insulating layers having increased corrosion resistance to contaminated fuels
PCT/EP2008/066809 WO2009097931A1 (de) 2008-02-04 2008-12-04 Keramische wärmedämmschichten mit erhöhter korrosionsbeständigkeit gegen verunreinigte brennstoffe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08002050A EP2085498A1 (de) 2008-02-04 2008-02-04 Keramische Wärmedämmschichten mit erhöhter Korrosionsbeständigkeit gegen verunreinigte Brennstoffe

Publications (1)

Publication Number Publication Date
EP2085498A1 true EP2085498A1 (de) 2009-08-05

Family

ID=39535650

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08002050A Withdrawn EP2085498A1 (de) 2008-02-04 2008-02-04 Keramische Wärmedämmschichten mit erhöhter Korrosionsbeständigkeit gegen verunreinigte Brennstoffe
EP08872105A Not-in-force EP2238278B1 (de) 2008-02-04 2008-12-04 Keramische wärmedämmschichten mit erhöhter korrosionsbeständigkeit gegen verunreinigte brennstoffe

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08872105A Not-in-force EP2238278B1 (de) 2008-02-04 2008-12-04 Keramische wärmedämmschichten mit erhöhter korrosionsbeständigkeit gegen verunreinigte brennstoffe

Country Status (3)

Country Link
US (1) US8592044B2 (de)
EP (2) EP2085498A1 (de)
WO (1) WO2009097931A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366813A3 (de) * 2010-03-05 2011-12-21 General Electric Company Mehrschichtiger Artikel
EP2428765A1 (de) 2010-09-14 2012-03-14 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Behandlung von Turbinenschaufeln
CN117265452A (zh) * 2023-11-22 2023-12-22 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479846B2 (en) 2014-01-07 2022-10-25 Honeywell International Inc. Thermal barrier coatings for turbine engine components
FR3110003A1 (fr) 2020-05-11 2021-11-12 Institut Mines Telecom Ecran pour l’affichage d’une image projetée comportant un revêtement structuré.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644664A1 (de) * 1986-12-30 1988-07-14 Didier Werke Ag Aluminiumtitanatkeramik und ihre verwendung
EP0494389A1 (de) * 1991-01-07 1992-07-15 Westinghouse Electric Corporation Korrosionsfeste Magnesiumtitanatbeschichtungen für Gasturbinen
US5236787A (en) * 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
US5667898A (en) * 1989-01-30 1997-09-16 Lanxide Technology Company, Lp Self-supporting aluminum titanate composites and products relating thereto
DE19801424A1 (de) 1998-01-16 1999-07-29 Forschungszentrum Juelich Gmbh Wärmedämmstoff für hohe Temperaturen
US20070248764A1 (en) * 2004-05-26 2007-10-25 Mtu Aero Engines Gmbh Heat-Insulating Layer System

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832245A (en) * 1971-06-14 1974-08-27 Asea Ab Method of manufacturing an object of silicon steel having low sulphur content
US4255495A (en) * 1979-10-31 1981-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Corrosion resistant thermal barrier coating
US4761346A (en) * 1984-11-19 1988-08-02 Avco Corporation Erosion-resistant coating system
AU678075B2 (en) * 1993-11-16 1997-05-15 Bluescope Steel Limited Anticorrosion treatment of metal coated steel having coatings of aluminium, zinc or alloys thereof
BR0212163A (pt) * 2001-08-28 2004-12-07 Eden Reseaech Plc Composição para tratamento ou prevenção de infecção em plantas
US7226668B2 (en) * 2002-12-12 2007-06-05 General Electric Company Thermal barrier coating containing reactive protective materials and method for preparing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644664A1 (de) * 1986-12-30 1988-07-14 Didier Werke Ag Aluminiumtitanatkeramik und ihre verwendung
US5667898A (en) * 1989-01-30 1997-09-16 Lanxide Technology Company, Lp Self-supporting aluminum titanate composites and products relating thereto
EP0494389A1 (de) * 1991-01-07 1992-07-15 Westinghouse Electric Corporation Korrosionsfeste Magnesiumtitanatbeschichtungen für Gasturbinen
US5236787A (en) * 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
DE19801424A1 (de) 1998-01-16 1999-07-29 Forschungszentrum Juelich Gmbh Wärmedämmstoff für hohe Temperaturen
US20070248764A1 (en) * 2004-05-26 2007-10-25 Mtu Aero Engines Gmbh Heat-Insulating Layer System

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366813A3 (de) * 2010-03-05 2011-12-21 General Electric Company Mehrschichtiger Artikel
EP2428765A1 (de) 2010-09-14 2012-03-14 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Behandlung von Turbinenschaufeln
WO2012035060A1 (de) 2010-09-14 2012-03-22 Siemens Aktiengesellschaft Verfahren zur behandlung von turbinenschaufeln sowie vorrichtung dafür
US9403245B2 (en) 2010-09-14 2016-08-02 Siemens Aktiengesellschaft Method for treating turbine blades and device therefor
CN117265452A (zh) * 2023-11-22 2023-12-22 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法
CN117265452B (zh) * 2023-11-22 2024-02-06 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法

Also Published As

Publication number Publication date
WO2009097931A1 (de) 2009-08-13
US8592044B2 (en) 2013-11-26
US20100329882A1 (en) 2010-12-30
EP2238278B1 (de) 2012-10-17
EP2238278A1 (de) 2010-10-13

Similar Documents

Publication Publication Date Title
EP2238278B1 (de) Keramische wärmedämmschichten mit erhöhter korrosionsbeständigkeit gegen verunreinigte brennstoffe
DE60114495T2 (de) Umwelt/thermische Sperrschicht für einen Substrat auf der Basis von Silizium
DE69719701T2 (de) Wärmesperrschichtsysteme und -materialien
DE60310851T2 (de) Umwelt/Wärmedämmschicht für siliziumhaltiges Substrat
EP0386486B1 (de) Bauteil aus einer Titanlegierung mit einer Schutzschicht
DE60205204T2 (de) Barriereschicht für siliziumhaltiges Substrat
EP2251457B1 (de) NiCoCrAl- oder CoCrAl-Schicht mit Re
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
US20090155554A1 (en) Environmental barrier coating and related articles and methods
EP2824220B1 (de) CMAS-inerte Wärmedämmschicht und Verfahren zur ihrer Herstellung
DE69909700T2 (de) Beschichtung für Turbinenkomponenten
DE102004053959B4 (de) Keramikmaterial und seine Verwendung sowie Verfahren zur Herstellung von Beschichtungen mit dem Keramikmaterial
EP3728695B1 (de) Korrosions- und erosionsbeständige beschichtung für turbinenschaufeln von gasturbinen
DE102006030235B4 (de) Verfahren zum Schutz von Heißgaskorrosion von keramischen Oberflächen oder eines Körpers, hochtemperaturbeständiger Körper und deren Verwendung
EP3738942A1 (de) Keramik mit korrosionsschutzschicht, verfahren zu deren herstellung und deren verwendung
WO2008110161A1 (de) Schichtsystem und verfahren zu dessen herstellung
DE10200803A1 (de) Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht
EP3078649B1 (de) Verbundkeramik mit korrosionsschutzschicht und verfahren zur herstellung
EP1141437A1 (de) Wärmedämmende glas-metall/keramik-schichten
WO2017076583A1 (de) Verfahren zur herstellung einer korrosionsschutzschicht für wärmedämmschichten aus hohlen aluminiumoxidkugeln und äusserster glasschicht und bauteil sowie materialmischung
DE112009004855T5 (de) Beständige Wärmebarrierenbeschichtungszusammensetzungen, beschichtete Komponenten und Beschichtungsverfahren
DE4028173C2 (de) Verwendung von Yttriumoxid dotiertem Cerdioxid
EP1554230B1 (de) Schutzschichtsystem für nichtoxidische, si-haltige substrate
WO2003097901A1 (de) Wärmedämmschicht
DE102015206332A1 (de) Verfahren zur Herstellung einer Korrosionsschutzschicht für Wärmedämmschichten aus hohlen Aluminiumoxidkugeln und äußerster Glasschicht und Bauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100206

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566