EP2085488B1 - Vorrichtung zum Blasen von Gas auf eine Fläche von durchlaufendem Bandmaterial - Google Patents

Vorrichtung zum Blasen von Gas auf eine Fläche von durchlaufendem Bandmaterial Download PDF

Info

Publication number
EP2085488B1
EP2085488B1 EP08291203A EP08291203A EP2085488B1 EP 2085488 B1 EP2085488 B1 EP 2085488B1 EP 08291203 A EP08291203 A EP 08291203A EP 08291203 A EP08291203 A EP 08291203A EP 2085488 B1 EP2085488 B1 EP 2085488B1
Authority
EP
European Patent Office
Prior art keywords
profile
strip
plane
variable
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08291203A
Other languages
German (de)
French (fr)
Other versions
EP2085488A1 (en
Inventor
Stéphane Langevin
Patrick Dubois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMI Greenline Europe SAS
Original Assignee
CMI Thermline Services SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMI Thermline Services SAS filed Critical CMI Thermline Services SAS
Publication of EP2085488A1 publication Critical patent/EP2085488A1/en
Application granted granted Critical
Publication of EP2085488B1 publication Critical patent/EP2085488B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/63Continuous furnaces for strip or wire the strip being supported by a cushion of gas

Definitions

  • the present invention relates to a device for blowing gas onto a surface of a moving web material.
  • the invention particularly relates to steel or aluminum strip processing lines using at least one gas jet cooling chamber, or a gas jet cooling section, such as heat treatment lines, in particular particularly the continuous annealing lines, or such as the coating lines, in particular the galvanizing lines.
  • the invention is however not limited to the aforementioned field of use and more generally relates to the blowing of gas on one side of a moving strip material which may be a non-metallic material, for example paper, or plastic material for drying, cooling, or coating treatment as appropriate.
  • a moving strip material which may be a non-metallic material, for example paper, or plastic material for drying, cooling, or coating treatment as appropriate.
  • the aforementioned gas blowing devices thus comprise two hollow boxes, each of which is equipped with a plurality of tubular nozzles directed towards the relevant face of the strip material, each hollow box having, on the side facing the relevant face of the strip material, a flat profile parallel to the plane of the band.
  • the orifices of the tubular nozzles are at a sufficient distance from the band to avoid any risk of contact with the band which could mark the band material and damage it, or possibly tear tubular blowing nozzles.
  • the distance between the orifice of the blow nozzles and the strip rarely drops below a distance of 50 to 100 mm.
  • the invention aims to provide a gas blowing device that does not have the disadvantages and / or limitations of the prior systems mentioned above, and optimizing both the thermal and aerolics aspects of blowing, while minimizing the vibrations or offsets of band during the scrolling thereof, and for a cost of installation remaining reasonable.
  • a gas blowing device on one side of a moving strip material, comprising at least one hollow box equipped with a plurality of tubular nozzles directed towards the face in question.
  • web material wherein the hollow box has, on the side facing the relevant face of the web material, a surface whose profile is variable in at least a given direction, symmetrically by to a median plane perpendicular to the plane of the strip, and the tubular nozzles are fixed at their foot to the variable profile surface so that their respective axis is substantially orthogonal to said variable profile at the point considered, the tubular nozzles having a respective length which is chosen so that the outlets of said nozzles are in a common plane substantially parallel to the plane of the strip.
  • variable profile for the active surface of the hollow box or caissons, it is possible to obtain a very significant improvement in the recovery of the gases, without complicating the placement of the tubular nozzles thanks to their implantation which preserves the orthogonality of their axis relative to the bearing surface, and furthermore the arrangement of the nozzles with their length adapted to the variable profile guarantees an excellent homogeneity of the blowing, and consequently a notable advantage both for the homogeneity of the temperature in the strip material and for the stability of said strip material during the scrolling thereof, and whatever the variable profile retained.
  • the given direction in which the profile is variable may be transverse, or alternatively parallel to the running direction of the web material.
  • the profile may be variable both in a direction transverse to the running direction of the strip material and in a direction parallel to said direction of travel.
  • the variable profile is a dihedral profile, so as to provide a constant inclination of the tubular nozzles on either side of the median plane.
  • the aforementioned dihedral profile may be of convex or concave type, so that the median edge of the variable profile surface then corresponds respectively to the smallest distance or the greatest distance to the plane of the strip, depending on the technical effect sought for the application concerned.
  • the dihedral profile has an apex angle of between 150 ° and 170 °.
  • variable dihedral profile it will be possible to provide a broken line profile, or a curvilinear profile, so as to confer a variable inclination of the tubular nozzles on either side of the median plane.
  • variable profile surface has, on the inner side of the hollow box and at the foot of each tubular nozzle, a tulip-shaped orifice, and that each tubular nozzle has a free bore end con fl icting coniciently, these modalities providing significant advantages for the purpose of reducing pressure drop. This then makes it possible to use a very large number of blowing nozzles for optimum air and thermal efficiency, while using reasonable power.
  • the gas blowing device comprises two hollow boxes between which the strip material is intended to scroll, so that the blowing of gas simultaneously concerns both sides of the moving strip, and at least one of said boxes has a variable profile surface for the implantation of the associated tubular nozzles.
  • the two hollow boxes have a variable profile surface, and these two surfaces are symmetrical with respect to the passage plane of the strip.
  • tubular nozzles of the two hollow boxes are implanted so that the points of impact of the gas blown on the moving strip are staggered on either side of said strip when the given direction in which the profile is variable is transverse to the scroll direction strip material.
  • a staggered arrangement of the points of impact of the gas blown on the moving strip but along the length of said strip, and in the case of a variable profile both in a transverse direction and in a direction parallel to the running direction, we can provide an arrangement of the impact points staggered along the width and length of said strip.
  • FIGS. 1 to 3 illustrate a part of a blowing installation including a gas blowing noted 10 according to the invention.
  • the device 10 comprises, on either side of a scroll tape material marked 15, the running direction being symbolized by the arrow 100, a structural element 11, here in omega form, with wings marked 13, to which is fixed a hollow box 20, the strip material 15 flowing between the two hollow boxes opposite.
  • Each hollow box 20 has a rear face 21 to which a manifold 12 for blowing gas inlet is connected, as well as a front or active surface 22, opposite to the face 21, which is in turn facing the face concerned. web material 15, and two side faces 23.
  • Each hollow box 20 is equipped with a plurality of tubular nozzles 30 which are directed towards the relevant face of the strip material 15.
  • the surface 22 of each hollow box 20, which is turned towards the relevant face of the strip material 15, has a profile P which is variable in at least one given direction D, which is here a single direction transverse to the running direction 100 of the strip material 15, symmetrically with respect to a median plane Q perpendicular to the plane of the strip 15 (as is better visible on the figure 1 ), and the tubular nozzles 30 are fixed at their foot to the surface 22 of variable profile so that their respective axis is substantially orthogonal to said variable profile at the point considered (as is better visible on the detail of the figure 9 ).
  • each of the tubular nozzles 30 is chosen so that the outlet orifices of said nozzles are in a common plane (this common plane, denoted R, is better visible on the detail of the figure 8 ) which is substantially parallel to the plane of the band 15. Thanks to this last provision, we obtain jet distances that are identical over the entire width of the strip, and on both sides (of each side) thereof, which is favorable both for optimal stabilization during the running of said strip, and also for the homogeneity of the temperature in said band.
  • variable lengths (but important in absolute terms) of the tubular nozzles in fact do not substantially change the output velocities of the blown gas, and this is the equidistance of the nozzle orifices. relative to the plane of the strip which preserves the homogeneity of the action exerted by the gas blown on said strip.
  • variable profile P is a dihedral profile, so as to give a constant inclination of the tubular nozzles 30 on either side of the median plane Q, and this dihedral profile here is of convex type, so that the ridge median 24 of the variable profile surface 22 corresponds to the smallest distance to the plane of the strip 15.
  • two hollow caissons 20 are used between which the strip material 15 can pass, so that the blowing of gas simultaneously concerns both sides of the moving strip 15.
  • the two hollow boxes 20 have surfaces 22 with a variable profile P in the form of a convex dihedral, and these two surfaces are symmetrical with respect to the plane of the strip 15.
  • the inclination of each face of the dihedron is indicated by an angle ⁇ , and the apex angle (obtuse angle) is denoted ⁇ .
  • tubular nozzles 30 whose length 1 is from 250 to 300 mm, the tubular nozzles fixed at the edge 24 of the dihedral being species perpendicular to the plane of the strip, in the median plane Q, with a shorter length 1 which is of the order of 100 mm.
  • the interval of between the axes 35 of the adjacent tubular nozzles 30 (better visible on the detail of the figure 8 ) will then be of the order of 60 mm.
  • the convex type dihedral profile P can be very advantageous when one seeks to favor lateral recovery of the blowing gases, these gases escaping laterally along arrows 101 illustrated in FIGS. figures 1 and 5 , the figure 5 showing the divergent effect provided by the inclined arrangement of the two surfaces 22 on each side of the median plane Q, this divergent passage being of course favorable to an optimal lateral recovery of the blowing gases.
  • one of the caissons 20 has a surface 22 with a variable profile P, here in the form of a convex type dihedron, while the other housing 20 is of traditional type, with a surface 22 which is flat and parallel to the plane of the band in scrolling 15.
  • the two facing caissons 20 have a variable P profile surface, which is here a concave type dihedral profile, so that the median edge 24 of the variable profile surface 22 then corresponds to the greatest distance to the plane. of the band 15.
  • This embodiment will be reserved for moderate blowing power, posing fewer gas recovery problems, and for blowing privileging the central zone of the moving strip.
  • variable profiles P in convex or concave dihedron of the embodiments illustrated in FIGS. Figures 5 to 7 corresponds to an angle ⁇ whose value will generally be chosen between 5 ° and 15 °. This then corresponds to an angle at the top of the dihedral profile P, denoted ⁇ , whose value is between 150 ° and 170 °.
  • the tubular nozzles 30 Due to the orthogonality of the axis of each tubular nozzle 30 with respect to the dihedral profile, the tubular nozzles 30 have axes which are all parallel to the same direction on either side of the median plane Q.
  • variable inclination of the tubular nozzles 30 on either side of the median plane Q, towards the edges of the moving strip 15
  • other types of variable profiles can be provided. P, as has been illustrated, for example, in Figures 10 and 11 .
  • FIG 10 there is illustrated a broken line profile P 'which is distinguished three adjacent zones, respectively corresponding to angles ⁇ 1, ⁇ 2, ⁇ 3, with respect to the plane of the band, the angles ⁇ i being preferably increasing as and when that one approaches the edges of the band if one wishes to privilege the obtaining of a divergent effect for an optimal lateral recovery of the gases of blowing, as it was the case for the figure 5 with a convex dihedral profile.
  • FIGS. 8 and 9 provide a better understanding of the location and geometry of the tubular nozzles 30 fitted to a hollow box 20 whose active surface 22 has a variable profile, in this case an inclined active surface forming part of a convex dihedral profile.
  • the nozzles tubular 30 are implanted so that the impact points, denoted 40, of the gas blown on the moving strip 15 are staggered on either side of said strip.
  • Such an arrangement is favorable for the stability of the strip during the running thereof, and also promotes, in the cooling lines of a metal strip, the homogeneity of the cooling, creating adjacent cooling zones with a covering respective sides of the moving strip.
  • FIG. 9 it is better to distinguish the bottom plate 25 of the box 20, with one of its orifices 26 associated with a tubular nozzle 30 whose axis 35 is orthogonal to the plane of the bottom plate 25.
  • Each tubular nozzle 30 is fixed at its foot 33, and the orifice 26 has, at this foot 33, a tulip shape 34 whose radius is chosen to minimize the loss of pressure at the crossing of the orifice 26.
  • the tubular nozzle 30 As such, it further comprises a frustoconical first upstream portion 31 which is fixed, in particular welded, to the bottom plate 25, and a second cylindrical downstream portion 32 whose free end 37 is arranged to present a bore. interior which flares conically to the outlet orifice 36. It may for example opt for a divergence of the order of 15 °. This double taper of the gas passage provides a nozzle effect which is favorable for the flow thereof and also minimizes pressure losses.
  • tubular nozzles such that the axis of said nozzles is also orthogonal to the carrier wall in a longitudinal vertical plane in the direction of the band (as is best seen on the figure 3 ).
  • the direction D in which the profile P is variable is not transverse to the running direction of the web material 100 as was the case in the previously described variants, but parallel to said direction of travel.
  • Such an arrangement makes it possible to better control the frequencies of the vibrations of the band. This will be particularly interesting for application to zinc spin systems on steel strips.
  • the arrangement according to the invention also makes it possible to reduce to a minimum the distance between the band and the orifices of the tubular nozzles, this distance being able for example to be of the order of 50 mm, and sometimes even less for certain sizes. Finally, this arrangement is very favorable with regard to an antivibration and self-stabilizing effect for the moving strip, even for very high speeds of scrolling.
  • the device of the invention can be used with paper strips, which are more fragile as metal strips, for drying, cooling, or coating treatments.

Abstract

The device for blowing a gas on one side of a rolling strip material (15), comprises a hollow box (20) equipped with tubular nozzles (30) directed towards the side of the strip material. The hollow box has a surface (22) on the turned side facing the strip material. The surface has a profile (P) that is variable in a given direction (D) symmetrical to a median plane (Q) perpendicular to the plane of the strip. The tubular nozzles are fixed at the foot of the variable profile so that their respective axis is mainly orthogonal to the variable profile, and have a respective length. The device for blowing a gas on one side of a rolling strip material (15), comprises a hollow box (20) equipped with tubular nozzles (30) directed towards the side of the strip material. The hollow box has a surface (22) on the turned side facing the strip material. The surface has a profile (P) that is variable in a given direction (D) symmetrical to a median plane (Q) perpendicular to the plane of the strip. The tubular nozzles are fixed at the foot of the variable profile so that their respective axis is mainly orthogonal to the variable profile, and have a respective length such that outlet openings of the nozzles are in a common plane (R) parallel to the plane of the strip. The variable profile is a dihedral profile providing a constant inclination of the tubular nozzle on both sides of the median plane, or a broken line (P') or curvilinear profile (P'') providing variable inclinations of tubular nozzle on both sides of the median plane. The dihedral profile is convex so that the partition of the variable profile surface connects the shortest distance at the plane of the strip, and the dihedral profile is concave so that the partition of the variable profile surface connects the largest distance at the plane of the strip. The dihedral profile has a tip angle (alpha ) of 150-170[deg] . The blowing device has a wall including a tulip-shaped opening inside the hollow box and the foot of each tubular nozzle. Each tubular nozzle has a free end with a conical opening. The two variable profile surfaces are symmetrical with respect to the plane of the passage of the strip. The tubular nozzles of the two hollow boxes are implanted so that the points of impact of blown gas on the rolling strip are staggered one after other.

Description

La présente invention concerne un dispositif de soufflage de gaz sur une surface d'un matériau en bande en défilement. L'invention concerne tout particulièrement les lignes de traitement de bande d'acier ou d'aluminium utilisant au moins une chambre de refroidissement par jets de gaz, ou une section de refroidissement par jets de gaz, telles que les lignes de traitement thermique, en particulier les lignes de recuit continu, ou telles que les lignes de revêtement, en particulier les lignes de galvanisation.The present invention relates to a device for blowing gas onto a surface of a moving web material. The invention particularly relates to steel or aluminum strip processing lines using at least one gas jet cooling chamber, or a gas jet cooling section, such as heat treatment lines, in particular particularly the continuous annealing lines, or such as the coating lines, in particular the galvanizing lines.

L'invention n'est cependant pas limitée au domaine d'utilisation précité et concerne plus généralement le soufflage de gaz sur une face d'un matériau en bande en défilement qui peut être un matériau non métallique, par exemple du papier, ou de la matière plastique, en vue d'un traitement de séchage, de refroidissement, ou de revêtement selon le cas.The invention is however not limited to the aforementioned field of use and more generally relates to the blowing of gas on one side of a moving strip material which may be a non-metallic material, for example paper, or plastic material for drying, cooling, or coating treatment as appropriate.

ARRIERE-PLAN DE L'INVENTIONBACKGROUND OF THE INVENTION

Il est connu depuis longtemps d'utiliser des dispositifs de soufflage de gaz sur une ou deux faces d'une bande métallique en défilement, en particulier en vue de son refroidissement. On pourra ainsi se référer aux documents US-A-3 116 788 et US-A-3 262 688 qui décrivent différents systèmes de soufflage de gaz à partir de caissons creux ou d'éléments creux tubulaires disposés dans la direction longitudinale de la bande ou dans une direction transversale à la direction de défilement de celle-ci. Ces documents enseignent d'utiliser des jets de gaz inclinés par rapport à la normale au plan de la bande en défilement afin d'améliorer la stabilité de la bande en cours de défilement.It has long been known to use gas blowing devices on one or both sides of a moving metal strip, in particular for cooling purposes. We will thus be able to refer to the documents US-A-3,116,788 and US-A-3,262,688 which describe various gas blowing systems from hollow boxes or hollow tubular elements arranged in the longitudinal direction of the strip or in a direction transverse to the running direction thereof. These documents teach using gas jets that are inclined relative to the normal to the plane of the moving tape in order to improve the stability of the tape being scrolled.

On pourra également se référer aux documents GB-A-940881 , DE-A-4406846 , FR-A-1 410 686 et WO-A-2007/014 406 qui décrivent des caissons de soufflage à face active trouée.We can also refer to the documents GB-A-940881 , DE-A-4406846 , FR-A-1,410,686 and WO-A-2007/014406 which describe perforated active-face blast boxes.

On a également proposé des ensembles à deux tubes de refroidissement d'inclinaison réglable par rapoprt au plan de la bande, comme décrit dans les documents JP-A-58 185 717 et JP-A-58 157 914 .It has also been proposed to provide two tilting cooling tube assemblies that can be adjusted to the web plane as described in the documents. JP-A-58 185717 and JP-A-58 157 914 .

Plus récemment, il a été proposé de canaliser le flux du gaz soufflé en prévoyant des caissons équipés de tubes de soufflage, avec une inclinaison des tubes de soufflage vers les bords de la bande, principalement pour éviter les vibrations de la bande en défilement lors de son refroidissement par soufflage de jets de gaz, comme cela est décrit dans le document WO-A-01/09397 .More recently, it has been proposed to channel the flow of the blown gas by providing caissons equipped with blowing tubes, with an inclination of the blowing tubes towards the edges of the strip, mainly to avoid the vibrations of the moving strip during its cooling by blowing gas jets, as described in the document WO-A-01/09397 .

Le document US-A-6 054 095 enseigne également d'incliner vers les bords de la bande des tubes de soufflage équipant des caissons, l'agencement des tubes de soufflage étant choisi pour avoir une meilleure homogénéité de la température de la bande.The document US-A-6,054,095 teaches also to incline to the edges of the strip blowing tubes equipping boxes, the arrangement of the blowing tubes being chosen to have a better homogeneity of the temperature of the strip.

Les dispositifs de soufflage de gaz précités comportent ainsi deux caissons creux qui sont chacun équipés d'une pluralité de buses tubulaires dirigées vers la face concernée du matériau en bande, chaque caisson creux présentant, du côté tourné vers la face concernée du matériau en bande un profil plat parallèle au plan de la bande.The aforementioned gas blowing devices thus comprise two hollow boxes, each of which is equipped with a plurality of tubular nozzles directed towards the relevant face of the strip material, each hollow box having, on the side facing the relevant face of the strip material, a flat profile parallel to the plane of the band.

Dans les dispositifs précités, les orifices des buses tubulaires sont à une distance suffisante de la bande pour éviter tout risque d'un contact de celle-ci qui risquerait de marquer le matériau en bande et de l'endommager, ou éventuellement d'arracher des buses tubulaires de soufflage. Ainsi, dans la pratique, même avec les systèmes à buses de soufflage inclinées vers les bords de la bande, la distance entre l'orifice des buses de soufflage et la bande descend rarement en dessous d'une distance de 50 à 100 mm.In the aforementioned devices, the orifices of the tubular nozzles are at a sufficient distance from the band to avoid any risk of contact with the band which could mark the band material and damage it, or possibly tear tubular blowing nozzles. Thus, in practice, even with blow nozzle systems inclined towards the edges of the strip, the distance between the orifice of the blow nozzles and the strip rarely drops below a distance of 50 to 100 mm.

Pour améliorer les performances de refroidissement, il est nécessaire soit de diminuer cette distance de façon sensible, soit d'organiser le système de soufflage pour avoir des débits très élevés, ce qui induit un coût élevé, soit encore d'adopter les deux solutions ci-dessus, mais cela augmente encore les risques de contact entre la bande et les buses de soufflage en raison des oscillations difficiles à contrôler de la bande lors du défilement de celle-ci. On se heurte donc dans la pratique à une limitation structurelle qui est communément admise par les spécialistes du domaine.To improve the cooling performance, it is necessary either to reduce this distance significantly, or to organize the blowing system to have very high flow rates, which leads to a high cost, or to adopt both solutions. above, but this further increases the risks of contact between the band and the blowing nozzles due to oscillations difficult to control the band during the scroll thereof. In practice, therefore, there is a structural limitation which is commonly accepted by specialists in the field.

L'arrière-plan technologique peut enfin être complété en citant le document JP-A-2005 089772 , qui décrit un tube d'aspersion cintré en V équipé de buses tubulaires, qui ont toutes la même longueur, projetant de l'eau de refroidissement sur une bande d'acier verticale.The technological background can finally be completed by quoting the document JP-A-2005 089772 , which describes a V-shaped bent spray tube equipped with tubular nozzles, all of which are the same length, projecting cooling water onto a vertical steel strip.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

L'invention vise à proposer un dispositif de soufflage de gaz ne présentant pas les inconvénients et/ou limitations des systèmes antérieurs mentionnés plus haut, et optimisant à la fois les aspects thermiques et aéroliques du soufflage, tout en minimisant les vibrations ou les déports de bande lors du défilement de celle-ci, et ce pour un coût d'installation restant raisonnable.The invention aims to provide a gas blowing device that does not have the disadvantages and / or limitations of the prior systems mentioned above, and optimizing both the thermal and aerolics aspects of blowing, while minimizing the vibrations or offsets of band during the scrolling thereof, and for a cost of installation remaining reasonable.

DESCRIPTION GENERALE DE L'INVENTIONGENERAL DESCRIPTION OF THE INVENTION

Le problème technique précité est résolu conformément à l'invention grâce à un dispositif de soufflage de gaz sur une face d'un matériau en bande en défilement, comportant au moins un caisson creux équipé d'une pluralité de buses tubulaires dirigées vers la face concernée du matériau en bande, dans lequel le caisson creux présente, du côté tourné vers la face concernée du matériau en bande, une surface dont le profil est variable dans au moins une direction donnée, symétriquement par rapport à un plan médian perpendiculaire au plan de la bande, et les buses tubulaires sont fixées au niveau de leur pied à la surface à profil variable de telle façon que leur axe respectif soit essentiellement orthogonal audit profil variable au point considéré, les buses tubulaires ayant une longueur respective qui est choisie pour que les orifices de sortie desdites buses soient dans un plan commun sensiblement parallèle au plan de la bande.The aforementioned technical problem is solved in accordance with the invention by means of a gas blowing device on one side of a moving strip material, comprising at least one hollow box equipped with a plurality of tubular nozzles directed towards the face in question. web material, wherein the hollow box has, on the side facing the relevant face of the web material, a surface whose profile is variable in at least a given direction, symmetrically by to a median plane perpendicular to the plane of the strip, and the tubular nozzles are fixed at their foot to the variable profile surface so that their respective axis is substantially orthogonal to said variable profile at the point considered, the tubular nozzles having a respective length which is chosen so that the outlets of said nozzles are in a common plane substantially parallel to the plane of the strip.

Du fait de l'organisation d'un profil variable pour la surface active du ou des caissons creux, on peut obtenir une amélioration très sensible de la reprise des gaz, sans pour autant compliquer la mise en place des buses tubulaires grâce à leur implantation préservant l'orthogonalité de leur axe par rapport à la surface porteuse, et de plus l'agencement des buses avec leur longueur adaptée au profil variable garantit une excellente homogénéité du soufflage, et par suite une avantage notable à la fois pour l'homogénéité de la température dans le matériau en bande et pour la stabilité dudit matériau en bande lors du défilement de celui-ci, et ce quel que soit le profil variable retenu.Due to the organization of a variable profile for the active surface of the hollow box or caissons, it is possible to obtain a very significant improvement in the recovery of the gases, without complicating the placement of the tubular nozzles thanks to their implantation which preserves the orthogonality of their axis relative to the bearing surface, and furthermore the arrangement of the nozzles with their length adapted to the variable profile guarantees an excellent homogeneity of the blowing, and consequently a notable advantage both for the homogeneity of the temperature in the strip material and for the stability of said strip material during the scrolling thereof, and whatever the variable profile retained.

La direction donnée dans laquelle le profil est variable pourra être transversale, ou en variante parallèle, à la direction de défilement du matériau en bande. Dans une autre variante, le profil pourra être variable à la fois dans une direction transversale à la direction de défilement du matériau en bande et dans une direction parallèle à ladite direction de défilement.The given direction in which the profile is variable may be transverse, or alternatively parallel to the running direction of the web material. In another variant, the profile may be variable both in a direction transverse to the running direction of the strip material and in a direction parallel to said direction of travel.

De préférence, le profil variable est un profil en dièdre, de façon à conférer une inclinaison constante des buses tubulaires de part et d'autre du plan médian. Le profil en dièdre précité pourra être de type convexe ou concave, de sorte que l'arête médiane de la surface à profil variable correspond alors respectivement à la plus petite ou à la plus grande distance au plan de la bande, en fonction de l'effet technique recherché pour l'application concernée. En particulier, on pourra prévoir que le profil en dièdre a un angle au sommet compris entre 150° et 170°.Preferably, the variable profile is a dihedral profile, so as to provide a constant inclination of the tubular nozzles on either side of the median plane. The aforementioned dihedral profile may be of convex or concave type, so that the median edge of the variable profile surface then corresponds respectively to the smallest distance or the greatest distance to the plane of the strip, depending on the technical effect sought for the application concerned. In particular, it can be provided that the dihedral profile has an apex angle of between 150 ° and 170 °.

En variante du profil variable en dièdre, on pourra prévoir un profil en ligne brisée, ou un profil curviligne, de façon à conférer une inclinaison variable des buses tubulaires de part et d'autre du plan médian.As a variant of the variable dihedral profile, it will be possible to provide a broken line profile, or a curvilinear profile, so as to confer a variable inclination of the tubular nozzles on either side of the median plane.

De préférence encore, il sera intéressant de prévoir que la surface à profil variable présente, du côté intérieur du caisson creux et au niveau du pied de chaque buse tubulaire, un orifice de forme tulipée, et que chaque buse tubulaire présente une extrémité libre à alésage s'évasant coniquement, ces modalités procurant des avantages sensibles en vue de la diminution des pertes de charge. Ceci permet alors d'utiliser un très grand nombre de buses de soufflage en vue d'une efficacité optimale tant sur le plan aérolique que sur le plan thermique, tout en mettant en oeuvre une puissance raisonnableMore preferably, it will be advantageous to provide that the variable profile surface has, on the inner side of the hollow box and at the foot of each tubular nozzle, a tulip-shaped orifice, and that each tubular nozzle has a free bore end con fl icting coniciently, these modalities providing significant advantages for the purpose of reducing pressure drop. This then makes it possible to use a very large number of blowing nozzles for optimum air and thermal efficiency, while using reasonable power.

Conformément à un mode d'exécution particulièrement avantageux, le dispositif de soufflage de gaz comporte deux caissons creux entre lesquels le matériau en bande est destiné à défiler, de façon que le soufflage de gaz concerne simultanément les deux faces de la bande en défilement, et l'un au moins desdits caissons a une surface à profil variable pour l'implantation des buses tubulaires associées.According to a particularly advantageous embodiment, the gas blowing device comprises two hollow boxes between which the strip material is intended to scroll, so that the blowing of gas simultaneously concerns both sides of the moving strip, and at least one of said boxes has a variable profile surface for the implantation of the associated tubular nozzles.

De préférence alors, les deux caissons creux ont une surface à profil variable, et ces deux surfaces sont symétriques par rapport au plan de passage de la bande.Preferably then, the two hollow boxes have a variable profile surface, and these two surfaces are symmetrical with respect to the passage plane of the strip.

On pourra enfin également prévoir que les buses tubulaires des deux caissons creux sont implantées de façon que les points d'impact du gaz soufflé sur la bande en défilement soient en quinconce de part et d'autre de ladite bande lorsque la direction donnée dans laquelle le profil est variable est transversale à la direction de défilement du matériau en bande. Dans le cas d'une direction parallèle à la direction de défilement, on pourra aussi prévoir un agencement en quinconce des points d'impact du gaz soufflé sur la bande en défilement, mais suivant la longueur de ladite bande, et dans le cas d'un profil variable à la fois dans une direction transversale et dans une direction parallèle à la direction de défilement, on pourra prévoir un agencement des points d'impact en quinconce suivant la largeur et la longueur de ladite bande.Finally, it is also possible to provide that the tubular nozzles of the two hollow boxes are implanted so that the points of impact of the gas blown on the moving strip are staggered on either side of said strip when the given direction in which the profile is variable is transverse to the scroll direction strip material. In the case of a direction parallel to the direction of travel, it will also be possible to provide a staggered arrangement of the points of impact of the gas blown on the moving strip, but along the length of said strip, and in the case of a variable profile both in a transverse direction and in a direction parallel to the running direction, we can provide an arrangement of the impact points staggered along the width and length of said strip.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lumière de la description qui va suivre et des dessins annexés.Other features and advantages of the invention will appear more clearly in the light of the description which follows and the accompanying drawings.

BREVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

Il sera fait référence dans la suite aux figures des dessins annexés, où :

  • la figure 1 est une vue en perspective d'un dispositif de soufflage de gaz conforme à l'invention, comportant ici deux caissons creux entre lesquels circule un matériau en bande, chaque caisson creux ayant une surface active équipée de buses tubulaires et présentant un profil variable en dièdre convexe ici dans une direction transversale à la direction de défilement dudit matériau en bande ;
  • la figure 2 est une vue de dessus du dispositif de la figure 1, permettant de mieux distinguer les deux surfaces en regard à profil variable en dièdre convexe ;
  • la figure 3 est une vue latérale du dispositif de la figure 1 ;
  • la figure 4 est une vue de la surface active de l'un des caissons creux, laquelle surface est équipée d'une pluralité de buses tubulaires et présente un profil variable, ici en forme de dièdre dont on distingue l'arête médiane ;
  • la figure 5 est une vue partielle des deux caissons du dispositif de soufflage précédent, permettant
Reference will be made hereinafter to the figures of the accompanying drawings, in which:
  • the figure 1 is a perspective view of a gas blowing device according to the invention, here comprising two hollow boxes between which a web material circulates, each hollow box having an active surface equipped with tubular nozzles and having a variable dihedral profile; convexly here in a direction transverse to the running direction of said web material;
  • the figure 2 is a top view of the device of the figure 1 , making it possible to better distinguish the two facing surfaces with variable profile in convex dihedron;
  • the figure 3 is a side view of the device of the figure 1 ;
  • the figure 4 is a view of the active surface of one of the hollow boxes, which surface is equipped with a plurality of tubular nozzles and has a variable profile, here in the form of dihedron which is distinguished the median edge;
  • the figure 5 is a partial view of the two boxes of the preceding blowing device, allowing

de bien distinguer les deux profils en dièdre convexe qui sont en vis-à-vis ;

  • les figures 6 et 7, analogues à la figure 5, illustrent deux autres variantes dans lesquelles respectivement l'un des caissons présente une surface active de type traditionnel (face plane), ou les deux caissons ont une surface active présentant un profil en dièdre qui n'est plus de type convexe mais de type concave ;
  • la figure 8 est une vue partielle à plus grande échelle permettant de mieux distinguer l'agencement des buses tubulaires, et en particulier la disposition en quinconce de leurs points d'impact sur la bande en défilement ;
  • la figure 9 est une vue en coupe d'une buse tubulaire, permettant de mieux distinguer la géométrie et l'implantation de ladite buse en vue de minimiser les pertes de charge ;
  • les figures 10 et 11 sont des vues partielles analogues à celles de la figure 8, visant à illustrer d'autres types de profils variables, ici respectivement un profil en ligne brisée et un profil curviligne, afin de conférer une inclinaison variable des buses tubulaires ;
  • les figures 12 et 13, qui sont à rapprocher des figures 1 et 2, illustrent une variante où la direction dans laquelle le profil est variable est parallèle à la direction de défilement du matériau en bande, et les figures 14 et 15 illustrent de la même façon une autre variante où le profil est variable à la fois dans une direction transversale et dans une direction parallèle à ladite direction de défilement.
to distinguish the two profiles in convex dihedron which are vis-à-vis;
  • the Figures 6 and 7 , analogous to the figure 5 , illustrate two other variants in which respectively one of the boxes has an active surface of traditional type (flat face), or the two boxes have an active surface having a dihedral profile which is no longer convex type but concave type ;
  • the figure 8 is a partial view on a larger scale to better distinguish the arrangement of the tubular nozzles, and in particular the staggered arrangement of their impact points on the moving strip;
  • the figure 9 is a sectional view of a tubular nozzle, to better distinguish the geometry and the implantation of said nozzle to minimize the pressure losses;
  • the Figures 10 and 11 are partial views similar to those of the figure 8 , to illustrate other types of variable profiles, here respectively a broken line profile and a curvilinear profile, to give a variable inclination of the tubular nozzles;
  • the Figures 12 and 13 , which are to be compared Figures 1 and 2 , illustrate a variant where the direction in which the profile is variable is parallel to the running direction of the strip material, and the Figures 14 and 15 illustrate in the same way another variant where the profile is variable both in a transverse direction and in a direction parallel to said running direction.

DESCRIPTION DETAILLEE DU MODE DE REALISATION PREFERE DE L'INVENTIONDETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION

Les figures 1 à 3 illustrent une partie d'une installation de soufflage incluant un dispositif de soufflage de gaz noté 10 conforme à l'invention.The Figures 1 to 3 illustrate a part of a blowing installation including a gas blowing noted 10 according to the invention.

Le dispositif 10 comporte, de part et d'autre d'un matériau en bande de défilement noté 15, la direction de défilement étant symbolisée par la flèche 100, un élément structurel 11, ici en forme de oméga, avec des ailes notées 13, auquel est fixé un caisson creux 20, le matériau en bande 15 circulant entre les deux caissons creux en regard.The device 10 comprises, on either side of a scroll tape material marked 15, the running direction being symbolized by the arrow 100, a structural element 11, here in omega form, with wings marked 13, to which is fixed a hollow box 20, the strip material 15 flowing between the two hollow boxes opposite.

Chaque caisson creux 20 comporte une face arrière 21 à laquelle se raccorde une tubulure 12 d'admission de gaz de soufflage, ainsi qu'une surface frontale ou active 22, opposée à la face 21, qui est quant à elle tournée vers la face concernée du matériau en bande 15, et deux faces latérales 23.Each hollow box 20 has a rear face 21 to which a manifold 12 for blowing gas inlet is connected, as well as a front or active surface 22, opposite to the face 21, which is in turn facing the face concerned. web material 15, and two side faces 23.

Chaque caisson creux 20 est équipé d'une pluralité de buses tubulaires 30 qui sont dirigées vers la face concernée du matériau en bande 15.Each hollow box 20 is equipped with a plurality of tubular nozzles 30 which are directed towards the relevant face of the strip material 15.

Conformément à une caractéristique de l'invention, la surface 22 de chaque caisson creux 20, qui est tournée vers la face concernée du matériau en bande 15, présente un profil P qui est variable dans au moins une direction donnée D, qui est ici une direction unique transversale à la direction 100 de défilement du matériau en bande 15, symétriquement par rapport à un plan médian Q perpendiculaire au plan de la bande 15 (comme cela est mieux visible sur la figure 1), et les buses tubulaires 30 sont fixées au niveau de leur pied à la surface 22 à profil variable de telle façon que leur axe respectif soit essentiellement orthogonal audit profil variable au point considéré (comme cela est mieux visible sur le détail de la figure 9). De plus, la longueur respective 1 de chacune des buses tubulaires 30 est choisie pour que les orifices de sortie desdites buses soient dans un plan commun (ce plan commun, noté R, est mieux visible sur le détail de la figure 8) qui est sensiblement parallèle au plan de la bande 15. Grâce à cette dernière disposition, on obtient des distances de jets qui sont identiques sur toute la largeur de la bande, et de part et d'autre (de chaque côté) de celle-ci, ce qui est favorable à la fois pour une stabilisation optimale lors du défilement de ladite bande, et aussi pour l'homogénéité de la température dans ladite bande. Ceci peut paraître surprenant pour l'homme de métier, car les longueurs variables (mais importantes en absolu) des buses tubulaires ne modifient en fait pratiquement pas les vitesses de sortie du gaz soufflé, et c'est donc l'équidistance des orifices de buses par rapport au plan de la bande qui préserve l'homogénéité de l'action exercée par le gaz soufflé sur ladite bande.According to a characteristic of the invention, the surface 22 of each hollow box 20, which is turned towards the relevant face of the strip material 15, has a profile P which is variable in at least one given direction D, which is here a single direction transverse to the running direction 100 of the strip material 15, symmetrically with respect to a median plane Q perpendicular to the plane of the strip 15 (as is better visible on the figure 1 ), and the tubular nozzles 30 are fixed at their foot to the surface 22 of variable profile so that their respective axis is substantially orthogonal to said variable profile at the point considered (as is better visible on the detail of the figure 9 ). In addition, the respective length 1 of each of the tubular nozzles 30 is chosen so that the outlet orifices of said nozzles are in a common plane (this common plane, denoted R, is better visible on the detail of the figure 8 ) which is substantially parallel to the plane of the band 15. Thanks to this last provision, we obtain jet distances that are identical over the entire width of the strip, and on both sides (of each side) thereof, which is favorable both for optimal stabilization during the running of said strip, and also for the homogeneity of the temperature in said band. This may seem surprising to those skilled in the art, because the variable lengths (but important in absolute terms) of the tubular nozzles in fact do not substantially change the output velocities of the blown gas, and this is the equidistance of the nozzle orifices. relative to the plane of the strip which preserves the homogeneity of the action exerted by the gas blown on said strip.

Comme cela a été illustré pour le mode de réalisation des figures 1 à 5, le profil variable P est un profil en dièdre, de façon à conférer une inclinaison constante des buses tubulaires 30 de part et d'autre du plan médian Q, et ce profil en dièdre est ici de type convexe, de sorte que l'arête médiane 24 de la surface à profil variable 22 correspond à la plus petite distance au plan de la bande 15.As illustrated for the embodiment of the Figures 1 to 5 , the variable profile P is a dihedral profile, so as to give a constant inclination of the tubular nozzles 30 on either side of the median plane Q, and this dihedral profile here is of convex type, so that the ridge median 24 of the variable profile surface 22 corresponds to the smallest distance to the plane of the strip 15.

On utilise en l'espèce deux caissons creux 20 entre lesquels le matériau en bande 15 peut défiler, de façon que le soufflage de gaz concerne simultanément les deux faces de la bande en défilement 15. Sur les figures 1 à 5, les deux caissons creux 20 ont des surfaces 22 à profil variable P en forme de dièdre convexe, et ces deux surfaces sont symétriques par rapport au plan de la bande 15. L'inclinaison de chaque face du dièdre est repérée par un angle β, et l'angle au sommet (angle obtus) est noté α. En particulier, avec un angle β de l'ordre de 10°, on pourra ainsi prévoir des buses tubulaires 30 dont la longueur 1 va de 250 à 300 mm, les buses tubulaires fixées au niveau de l'arête 24 du dièdre étant en l'espèce perpendiculaires au plan de la bande, dans le plan médian Q, avec une longueur 1 plus courte qui est de l'ordre de 100 mm. L'intervalle d entre les axes 35 des buses tubulaires 30 adjacentes (mieux visible sur le détail de la figure 8) sera alors de l'ordre de 60 mm.In this case, two hollow caissons 20 are used between which the strip material 15 can pass, so that the blowing of gas simultaneously concerns both sides of the moving strip 15. On Figures 1 to 5 , the two hollow boxes 20 have surfaces 22 with a variable profile P in the form of a convex dihedral, and these two surfaces are symmetrical with respect to the plane of the strip 15. The inclination of each face of the dihedron is indicated by an angle β, and the apex angle (obtuse angle) is denoted α. In particular, with an angle β of the order of 10 °, it will be possible to provide tubular nozzles 30 whose length 1 is from 250 to 300 mm, the tubular nozzles fixed at the edge 24 of the dihedral being species perpendicular to the plane of the strip, in the median plane Q, with a shorter length 1 which is of the order of 100 mm. The interval of between the axes 35 of the adjacent tubular nozzles 30 (better visible on the detail of the figure 8 ) will then be of the order of 60 mm.

Le profil en dièdre P de type convexe peut s'avérer très avantageux lorsque l'on cherche à privilégier la reprise latérale des gaz de soufflage, ces gaz s'échappant en effet latéralement selon des flèches 101 illustrées aux figures 1 et 5, la figure 5 montrant l'effet de divergent procuré par la disposition inclinée des deux surfaces 22 de chaque côté du plan médian Q, ce couloir divergent étant bien entendu favorable à une reprise latérale optimale des gaz de soufflage.The convex type dihedral profile P can be very advantageous when one seeks to favor lateral recovery of the blowing gases, these gases escaping laterally along arrows 101 illustrated in FIGS. figures 1 and 5 , the figure 5 showing the divergent effect provided by the inclined arrangement of the two surfaces 22 on each side of the median plane Q, this divergent passage being of course favorable to an optimal lateral recovery of the blowing gases.

On pourra naturellement en variante prévoir un agencement différent des deux caissons 20 en regard, comme cela est illustré sur les figures 6 et 7.Naturally, it will be possible alternatively to provide a different arrangement of the two boxes 20 facing each other, as illustrated on the Figures 6 and 7 .

Sur la figure 6, l'un seulement des caissons 20 présente une surface 22 à profil variable P, ici en forme de dièdre de type convexe, tandis que l'autre caisson 20 est de type traditionnel, avec une surface 22 qui est plane et parallèle au plan de la bande en défilement 15. On retrouve l'effet précité d'un passage de reprise latérale divergent, mais l'effet est moins marqué que dans la variante de la figure 5.On the figure 6 only one of the caissons 20 has a surface 22 with a variable profile P, here in the form of a convex type dihedron, while the other housing 20 is of traditional type, with a surface 22 which is flat and parallel to the plane of the band in scrolling 15. We find the aforementioned effect of a passage of divergent lateral recovery, but the effect is less marked than in the variant of the figure 5 .

Sur la figure 7, les deux caissons en regard 20 présentent une surface à profil P variable, lequel est ici un profil en dièdre de type concave, de sorte que l'arête médiane 24 de la surface à profil variable 22 correspond alors à la plus grande distance au plan de la bande 15. Ce mode de réalisation sera réservé à des puissances de soufflage modérées, posant moins de problèmes de reprise des gaz, et en vue d'un soufflage privilégiant la zone centrale de la bande en défilement.On the figure 7 the two facing caissons 20 have a variable P profile surface, which is here a concave type dihedral profile, so that the median edge 24 of the variable profile surface 22 then corresponds to the greatest distance to the plane. of the band 15. This embodiment will be reserved for moderate blowing power, posing fewer gas recovery problems, and for blowing privileging the central zone of the moving strip.

Pour les profils variables P en dièdre convexe ou concave des modes de réalisation illustrés aux figures 5 à 7, l'inclinaison par rapport au plan de la bande 15, de part et d'autre du plan médian Q, correspond à un angle β dont la valeur sera en général choisie entre 5° et 15°. Ceci correspond alors à un angle au sommet du profil en dièdre P, noté α, dont la valeur est comprise entre 150° et 170°.For the variable profiles P in convex or concave dihedron of the embodiments illustrated in FIGS. Figures 5 to 7 , the inclination relative to the plane of the strip 15, on either side of the median plane Q, corresponds to an angle β whose value will generally be chosen between 5 ° and 15 °. This then corresponds to an angle at the top of the dihedral profile P, denoted α, whose value is between 150 ° and 170 °.

Du fait de l'orthogonalité de l'axe de chaque buse tubulaire 30 par rapport au profil en dièdre, les buses tubulaires 30 ont des axes qui sont tous parallèles à une même direction de part et d'autre du plan médian Q.Due to the orthogonality of the axis of each tubular nozzle 30 with respect to the dihedral profile, the tubular nozzles 30 have axes which are all parallel to the same direction on either side of the median plane Q.

Dans certains cas, si l'on cherche à avoir une inclinaison variable des buses tubulaires 30 de part et d'autre du plan médian Q, en direction des bords de la bande en défilement 15, on pourra prévoir d'autres types de profils variables P, comme cela a été par exemple illustré aux figures 10 et 11.In some cases, if one seeks to have a variable inclination of the tubular nozzles 30 on either side of the median plane Q, towards the edges of the moving strip 15, other types of variable profiles can be provided. P, as has been illustrated, for example, in Figures 10 and 11 .

Sur la figure 10, on a illustré un profil en ligne brisée P' dont on distingue trois zones adjacentes, correspondant respectivement à des angles β1, β2, β3, par rapport au plan de la bande, les angles βi étant de préférence croissants au fur et à mesure que l'on se rapproche des bords de la bande si l'on veut privilégier l'obtention d'un effet divergent pour une reprise latérale optimale des gaz de soufflage, comme cela était le cas pour la figure 5 avec un profil en dièdre convexe.On the figure 10 , there is illustrated a broken line profile P 'which is distinguished three adjacent zones, respectively corresponding to angles β1, β2, β3, with respect to the plane of the band, the angles β i being preferably increasing as and when that one approaches the edges of the band if one wishes to privilege the obtaining of a divergent effect for an optimal lateral recovery of the gases of blowing, as it was the case for the figure 5 with a convex dihedral profile.

Sur la figure 11, on a illustré un autre profil P" qui est curviligne, par exemple elliptique, l'orthogonalité étant préservée localement au pied de chacune des buses tubulaires 30.On the figure 11 another profile P "which is curvilinear, for example elliptical, is illustrated, the orthogonality being preserved locally at the foot of each of the tubular nozzles 30.

Les figures 8 et 9 permettent de mieux appréhender l'implantation et la géométrie des buses tubulaires 30 équipant un caisson creux 20 dont la surface active 22 présente un profil variable, en l'espèce une surface active inclinée faisant partie d'un profil en dièdre convexe.The Figures 8 and 9 provide a better understanding of the location and geometry of the tubular nozzles 30 fitted to a hollow box 20 whose active surface 22 has a variable profile, in this case an inclined active surface forming part of a convex dihedral profile.

On constate sur la figure 8 que les buses tubulaires 30 sont implantées de façon que les points d'impact, notés 40, du gaz soufflé sur la bande en défilement 15 soient en quinconce de part et d'autre de ladite bande. Une telle disposition est favorable pour la stabilité de la bande lors du défilement de celle-ci, et favorise aussi, dans les lignes de refroidissement d'une bande métallique, l'homogénéité du refroidissement, en créant des zones de refroidissement adjacentes avec un recouvrement respectif de part et d'autre de la bande en défilement.We see on the figure 8 that the nozzles tubular 30 are implanted so that the impact points, denoted 40, of the gas blown on the moving strip 15 are staggered on either side of said strip. Such an arrangement is favorable for the stability of the strip during the running thereof, and also promotes, in the cooling lines of a metal strip, the homogeneity of the cooling, creating adjacent cooling zones with a covering respective sides of the moving strip.

Sur la figure 9, on peut mieux distinguer la plaque de fond 25 du caisson 20, avec l'un de ses orifices 26 associé à une buse tubulaire 30 dont l'axe 35 est orthogonal au plan de cette plaque de fond 25. Chaque buse tubulaire 30 est fixée au niveau de son pied 33, et l'orifice 26 présente, au niveau de ce pied 33, une forme tulipée 34 dont le rayon est choisi pour minimiser la perte de charge au niveau du franchissement de l'orifice 26. La buse tubulaire 30 proprement dite comporte en outre une première partie amont de forme tronconique 31 qui est fixée, en particulier soudée, à la plaque de fond 25, et une deuxième partie aval de forme cylindrique 32, dont l'extrémité libre 37 est agencée pour présenter un alésage intérieur qui s'évase coniquement jusqu'à l'orifice de sortie 36. On pourra par exemple opter pour un divergent de l'ordre de 15°. Cette double conicité du passage de gaz confère un effet de tuyère qui est favorable pour l'écoulement de celui-ci et permet aussi de minimiser les pertes de charge.On the figure 9 , it is better to distinguish the bottom plate 25 of the box 20, with one of its orifices 26 associated with a tubular nozzle 30 whose axis 35 is orthogonal to the plane of the bottom plate 25. Each tubular nozzle 30 is fixed at its foot 33, and the orifice 26 has, at this foot 33, a tulip shape 34 whose radius is chosen to minimize the loss of pressure at the crossing of the orifice 26. The tubular nozzle 30 As such, it further comprises a frustoconical first upstream portion 31 which is fixed, in particular welded, to the bottom plate 25, and a second cylindrical downstream portion 32 whose free end 37 is arranged to present a bore. interior which flares conically to the outlet orifice 36. It may for example opt for a divergence of the order of 15 °. This double taper of the gas passage provides a nozzle effect which is favorable for the flow thereof and also minimizes pressure losses.

On pourra encore prévoir une autre variante (non représentée ici) où la partie amont tronconique 31 sera remplacée par une partie de forme tulipée (ou en trompette) se raccordant tangentiellement à la partie aval cylindrique 32, ceci pour diminuer encore plus les pertes de charge.It will also be possible to provide another variant (not shown here) where the frustoconical upstream portion 31 will be replaced by a portion of tulip shape (or trumpet) connecting tangentially to the cylindrical downstream portion 32, to further reduce the pressure losses. .

Enfin, plus généralement, on a illustré ici des implantations de buses tubulaires telles que l'axe desdites buses est également orthogonal à la paroi porteuse dans un plan vertical longitudinal dans la direction de la bande (comme cela est mieux visible sur la figure 3). On pourra cependant, dans une autre variante (non illustrée ici) prévoir que les axes de certaines buses tubulaires, tout en étant essentiellement orthogonaux au profil variable (c'est-à-dire dans une direction transversale à la direction de défilement de la bande), présentent une inclinaison vers l'amont ou vers l'aval, par référence à la direction de défilement de la bande. Ceci complique quelque peu la mise en place des buses tubulaires concernées, mais permet d'améliorer encore la stabilité de la bande.Finally, more generally, we have illustrated here implanting tubular nozzles such that the axis of said nozzles is also orthogonal to the carrier wall in a longitudinal vertical plane in the direction of the band (as is best seen on the figure 3 ). However, in another variant (not shown here), it is possible to provide the axes of certain tubular nozzles while at the same time being substantially orthogonal to the variable profile (ie in a direction transverse to the direction of travel of the strip ), have an inclination upstream or downstream, with reference to the running direction of the band. This complicates somewhat the installation of tubular nozzles involved, but can further improve the stability of the band.

Comme cela est illustré sur les figures 12 et 13, on pourra prévoir que la direction D dans laquelle le profil P est variable est non pas transversal à la direction de défilement du matériau en bande 100 comme c'était le cas dans les variantes précédemment décrites, mais parallèle à ladite direction de défilement. Dans ce cas, c'est surtout l'effet aéraulique qui est intéressant, car le dispositif constitue un excellent stabilisateur longitudinal pour la bande en défilement. Un tel agencement permet en effet de mieux maîtriser les fréquences des vibrations de la bande. Ceci sera tout particulièrement intéressant pour une application aux systèmes d'essorage du zinc sur les bandes d'acier.As illustrated on the Figures 12 and 13 it can be provided that the direction D in which the profile P is variable is not transverse to the running direction of the web material 100 as was the case in the previously described variants, but parallel to said direction of travel. In this case, it is especially the aerodynamic effect that is interesting because the device is an excellent longitudinal stabilizer for the moving tape. Such an arrangement makes it possible to better control the frequencies of the vibrations of the band. This will be particularly interesting for application to zinc spin systems on steel strips.

On pourra dans ce cas prévoir le même effet que celui illustré aux figures 8, 10, 11 pour les points d'impact 40 du gaz soufflé sur la bande, l'agencement en quinconce étant alors suivant la longueur de ladite bande.In this case, the same effect as that illustrated in figures 8 , 10, 11 for the impact points 40 of the gas blown onto the strip, the staggered arrangement then being along the length of said strip.

Comme cela est illustré sur les figures 14 et 15, on pourra aussi utiliser des caissons creux ayant à la fois un profil P variable dans une direction transversale D1 et un profil P variable dans une direction longitudinale D2, par exemple avec des faces en pointe de diamant (pointe 24') comme illustré ici, ou à plateforme centrale, ce qui permet alors de conjuguer les effets techniques précités dans les deux directions de la bande.As illustrated on the Figures 14 and 15 it is also possible to use hollow boxes having both a variable P profile in a transverse direction D1 and a variable P profile in a longitudinal direction D2, for example with diamond-pointed faces (tip 24 ') as shown here, or central platform, which then allows to combine the aforementioned technical effects in both directions of the band.

On est ainsi parvenu à réaliser un dispositif de soufflage de gaz très performant tout en restant de fabrication simple pour un coût raisonnable. L'agencement selon l'invention permet aussi de réduire au minimum la distance entre la bande et les orifices des buses tubulaires, cette distance pouvant par exemple être de l'ordre de 50 mm, voire parfois encore moins pour certains dimensionnements. Enfin, cet agencement s'avère très favorable au regard d'un effet antivibratoire et auto-stabilisant pour la bande en défilement, et ce même pour des vitesses de défilement très élevées.It has thus managed to achieve a high-performance gas blowing device while remaining simple to manufacture for a reasonable cost. The arrangement according to the invention also makes it possible to reduce to a minimum the distance between the band and the orifices of the tubular nozzles, this distance being able for example to be of the order of 50 mm, and sometimes even less for certain sizes. Finally, this arrangement is very favorable with regard to an antivibration and self-stabilizing effect for the moving strip, even for very high speeds of scrolling.

Par ailleurs, il est naturellement possible d'équiper des installations existantes en remplaçant les caissons creux à surface active plane par des caissons creux à surface active à profil variable conforme à l'invention, ce qui permet d'obtenir les performances de l'invention.Moreover, it is naturally possible to equip existing installations by replacing the planar active surface hollow boxes with hollow caissons with variable profile active surface according to the invention, which makes it possible to obtain the performances of the invention. .

Comme cela a été dit plus haut, bien que le domaine d'utilisation préféré soit celui des lignes de refroidissement ou de revêtement d'une bande métallique, le dispositif de l'invention pourra être utilisé avec des bandes de papier, qui sont plus fragiles que les bandes métalliques, pour des traitements de séchage, de refroidissement, ou de revêtement.As has been said above, although the preferred field of use is that of the cooling or coating lines of a metal strip, the device of the invention can be used with paper strips, which are more fragile as metal strips, for drying, cooling, or coating treatments.

Claims (15)

  1. A gas blower device for blowing gas onto a face of a traveling strip of material, the device comprising at least one hollow box (20) fitted with a plurality of tubular nozzles (30) pointing towards the face in question of the strip (15) of material and characterized in that, on the side facing towards the face in question of the strip (15) of material, the hollow box (20) presents a surface (22) of profile (P) that varies in at least one given direction (D) symmetrically about a midplane (Q) perpendicular to the plane of the strip (15), and the tubular nozzles (30) are fastened via their roots (33) to the varying-profile surface (22) in such a manner that their respective axes (35) are essentially orthogonal to said varying profile at the point in question, the tubular nozzles having respective lengths (1) that are selected so that the outlet orifices (36) of said nozzles lie in a common plane (R) substantially parallel to the plane of the strip (15).
  2. A gas blower device according to claim 1, characterized in that the given direction (D) in which the profile (P) varies extends transversely to the travel direction (100) of the strip (15) of material.
  3. A gas blower device according to claim 1, characterized in that the given direction (D) in which the profile (P) varies extends parallel to the travel direction (100) of the strip (15) of material.
  4. A gas blower device according to claim 1, characterized in that the profile (P) varies both in a direction (D1) that extends transversely to the travel direction (100) of the strip (15) of material and in a direction (D2) that extends parallel to said travel direction.
  5. A gas blower device according to any one of claims 1 to 4, characterized in that the varying profile (P) is a dihedral profile so as to confer constant slope to the tubular nozzles (30) on either side of the midplane (Q).
  6. A gas blower device according to claim 5, characterized in that the dihedral profile (P) is of convex type, such that the middle ridge (24) of the varying profile surface (22) corresponds to the smallest distance from the plane of the strip (15).
  7. A gas blower device according to claim 5, characterized in that the dihedral profile (P) is of concave type, such that the middle ridge (24) of the varying profile surface (22) corresponds to the greatest distance from the plane of the strip (15).
  8. A gas blower device according to claim 6 or claim 7, characterized in that the dihedral profile (P) presents an angle at the apex (α) lying in the range 150° to 170°.
  9. A gas blower device according to any one of claims 1 to 4, characterized in that the varying profile (P) is a broken-line profile (P') or a curvilinear profile (P"), thereby conferring varying slope to the tubular nozzles (30) on either side of the midplane (Q).
  10. A gas blower device according to any one of claims 1 to 9, characterized in that the wall (25) of outside surface constituting the varying-profile surface (22) presents, on the inside of the hollow box (20) and in association with the root (33) of each tubular nozzle (30), a bell-mouth shaped orifice (34), and each tubular nozzle (30) presents a free end (37) with a conically flaring bore.
  11. A gas blower device according to any one of claims 1 to 10, having two hollow boxes (20) between which the strip (15) of material is designed to travel, such that gas is blown simultaneously onto both faces of the traveling strip (15), the device being characterized in that at least one of said boxes has a surface (22) of varying profile (P) for implanting the associated tubular nozzles (30).
  12. A blower device according to claim 11, characterized in that each of the two hollow boxes (20) has a surface (22) of varying profile (P), and these two surfaces are symmetrical about the travel plane of the strip (15).
  13. A blower device according to claims 2 and 11, characterized in that the tubular nozzles (30) of the two hollow boxes (20) are implanted in such a manner that the points of impact (40) of the gas blown onto the traveling strip (15) are in a configuration that is staggered on opposite sides of said strip.
  14. A blower device according to claims 3 and 11, characterized in that the tubular nozzles (30) of the two hollow boxes (20) are implanted in such a manner that the points of impact (40) of the gas blown onto the traveling strip (15) are in a configuration that is staggered lengthwise along said strip.
  15. A blower device according to claims 4 and 11, characterized in that the tubular nozzles (30) of the two hollow boxes (20) are implanted in such a manner that the points of impact (40) of the gas blown onto the traveling strip (15) are in a configuration that is staggered crosswise and lengthwise across and along said strip.
EP08291203A 2007-12-28 2008-12-17 Vorrichtung zum Blasen von Gas auf eine Fläche von durchlaufendem Bandmaterial Active EP2085488B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0709166A FR2925919B1 (en) 2007-12-28 2007-12-28 DEVICE FOR BLOWING GAS ON A FACE OF A THREADED STRIP MATERIAL
FR0805843A FR2925920A1 (en) 2007-12-28 2008-10-22 DEVICE FOR BLOWING GAS ON A FACE OF A FLAG STRIP MATERIAL

Publications (2)

Publication Number Publication Date
EP2085488A1 EP2085488A1 (en) 2009-08-05
EP2085488B1 true EP2085488B1 (en) 2010-09-22

Family

ID=39569927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08291203A Active EP2085488B1 (en) 2007-12-28 2008-12-17 Vorrichtung zum Blasen von Gas auf eine Fläche von durchlaufendem Bandmaterial

Country Status (10)

Country Link
US (1) US20100269367A1 (en)
EP (1) EP2085488B1 (en)
CN (1) CN101910424B (en)
AT (1) ATE482293T1 (en)
BR (1) BRPI0821703B1 (en)
CA (1) CA2710590C (en)
DE (1) DE602008002696D1 (en)
FR (2) FR2925919B1 (en)
RU (1) RU2437944C1 (en)
WO (1) WO2009103891A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE494968T1 (en) * 2008-03-14 2011-01-15 Arcelormittal France METHOD AND DEVICE FOR BLOWING GAS ONTO A MOVING BELT
ES2524406T3 (en) * 2012-02-21 2014-12-09 Cockerill Maintenance & Ingenierie S.A. Cleaning nozzle for coating thickness and distribution control with excellent pressure uniformity
CN103567238B (en) * 2013-11-07 2015-08-26 杨海西 Cooling device of steel plate
FR3030705A1 (en) * 2014-12-17 2016-06-24 Andritz Perfojet Sas INSTALLATION FOR DRYING A WET NON-WOVEN NET
CN104630435B (en) * 2015-03-17 2016-09-07 中冶南方(武汉)威仕工业炉有限公司 For the spray box device suppressing gas cooling procedure band steel to vibrate
EP3173495A1 (en) * 2015-11-25 2017-05-31 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EA032952B1 (en) * 2015-05-07 2019-08-30 Кокрий Ментенанс Эт Энженьери С.А. Method and device for reaction control
FR3069553B1 (en) * 2017-07-26 2020-05-22 Stephane LANGEVIN DEVICE FOR BLOWING A GASEOUS FLUID ONTO A SURFACE
EP3874070A1 (en) * 2018-10-30 2021-09-08 Tata Steel IJmuiden B.V. Annealing line for a steel strip
ES2951333T3 (en) 2019-07-11 2023-10-19 John Cockerill S A Cooling device for blowing gas onto a moving belt surface
CN113237317B (en) * 2021-04-15 2022-12-23 重庆市开州区荣邦服饰有限公司 Difficult steam drying equipment for fabrics that blocks up

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1143474B (en) * 1960-02-08 1963-02-14 Artos Maschb Dr Ing Meier Wind Nozzle housing arrangement for the treatment and non-contact guidance of railway goods
US3116788A (en) 1961-07-13 1964-01-07 Midland Ross Corp Convective cooling of continuously moving metal strip
US3216129A (en) * 1962-02-15 1965-11-09 Spooner Dryer & Eng Co Ltd Apparatus for gaseous treatment of materials
FR1410686A (en) * 1963-10-15 1965-09-10 Device for heating a strip of material
US3262688A (en) 1965-06-03 1966-07-26 Midland Ross Corp Jet convection heat transfer
US3462851A (en) * 1966-12-09 1969-08-26 Midland Ross Corp Web treating apparatus
BE873060A (en) * 1978-12-22 1979-06-22 Centre Rech Metallurgique METHOD AND DEVICE FOR ACCELERATED COOLING OF THIN BANDS
JPS58157914A (en) * 1982-03-16 1983-09-20 Kawasaki Steel Corp Adjusting mechanism of distribution of water flow rate in laminar flow nozzle
JPS58185717A (en) * 1982-04-24 1983-10-29 Kawasaki Steel Corp Mechanish for controlling cooling capacity of spray nozzle
JPS60130413A (en) * 1983-12-19 1985-07-11 Kawasaki Steel Corp Cooling device for sheet material
US5201132A (en) * 1991-04-26 1993-04-13 Busch Co. Strip cooling, heating or drying apparatus and associated method
DE4406846C1 (en) * 1994-03-03 1995-05-04 Koenig & Bauer Ag Device for drying printed sheets or webs in printing machines
BR9702207A (en) 1996-05-23 1999-07-20 Nippon Steel Corp Cooling system to cool a strip evenly in the direction of the strip width in a continuous strip heat treatment process
BR9804782A (en) * 1997-03-14 1999-08-17 Nippon Steel Corp Heat treatment device for conducting heat treatment on steel strip by gas jet blast
GB2352731A (en) 1999-07-29 2001-02-07 British Steel Plc Strip cooling apparatus
JP4000100B2 (en) * 2003-09-12 2007-10-31 新日本製鐵株式会社 Drainer
BRPI0614131B1 (en) * 2005-08-01 2014-04-15 Ebner Ind Ofenbau DEVICE FOR COOLING A METAL RIBBON

Also Published As

Publication number Publication date
CN101910424A (en) 2010-12-08
WO2009103891A2 (en) 2009-08-27
WO2009103891A3 (en) 2009-11-12
BRPI0821703A8 (en) 2016-11-01
FR2925919B1 (en) 2010-06-11
CA2710590C (en) 2012-03-13
CA2710590A1 (en) 2009-08-27
FR2925919A1 (en) 2009-07-03
BRPI0821703B1 (en) 2017-06-06
US20100269367A1 (en) 2010-10-28
FR2925920A1 (en) 2009-07-03
RU2437944C1 (en) 2011-12-27
ATE482293T1 (en) 2010-10-15
BRPI0821703A2 (en) 2015-06-16
CN101910424B (en) 2012-09-05
DE602008002696D1 (en) 2010-11-04
EP2085488A1 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
EP2085488B1 (en) Vorrichtung zum Blasen von Gas auf eine Fläche von durchlaufendem Bandmaterial
EP1270101B1 (en) Thin webbed tubular structure and method for making the same
EP2870410B1 (en) Surface-combustion gas burner
EP2283165B1 (en) Device for blowing a gas on the surface of a material in the form of a running strip
EP2271835B1 (en) Device with secondary jets reducing the noise generated by an aircraft jet engine
EP2002962B1 (en) Installation for heating bodies of preformed elements for blowing containers
EP1232944A1 (en) Deicing method with forced circulaion for jet engine intake fairing and device for the implementation of said method
FR2510662A1 (en) STRUCTURE OF FOLDED TUYERES
EP3295009B1 (en) Lobed mixer with scoops
WO2009133271A2 (en) Device for reducing noise generated by an aircraft jet engine with curve ducts
EP0128842A1 (en) Tempering of glass
CA2639724A1 (en) Method for forming raised areas to disrupt boundary layer
EP0044529B1 (en) Deflecting means for a fluid current and its use in an apparatus
EP0013230B1 (en) Device for removing a fluid from the surface of a long and continuously moving product
WO2020174162A1 (en) Expandable cellular system for a sandwich panel
CA2489717C (en) Drain specifically for jet engine support strut
CA2921915A1 (en) Afterbody for a turbojet engine comprising a nozzle provided with a thrust reverser system that incorporates a crown of noise-reducing chevrons
EP0414739B1 (en) Linear water spray device for cooling sheet metal
EP0972574B1 (en) Liquid spray nozzle
EP3234473B1 (en) Lateral aerator and ventilation duct provided with at least one such aerator
EP0730498B1 (en) Surface treatment nozzle and method and device for surface treatment using such a nozzle
EP3847342B1 (en) Pressurized-air supply unit for an air-jet cooling device
WO2006072691A1 (en) Sieve for bio-impactor, bio-impactor equipped with same
EP3434796A1 (en) Device for heating or cooling a substantially planar surface by blowing a gaseous fluid
WO2021105022A1 (en) Air inlet and method for de-icing an air inlet into a nacelle of an aircraft turbojet engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANGEVIN, STEPHANE

Inventor name: DUBOIS, PATRICK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602008002696

Country of ref document: DE

Date of ref document: 20101104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100922

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110102

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008002696

Country of ref document: DE

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: COCKERILL MAINTENANCE & INGENIERIE SA, BE

Effective date: 20120119

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120223 AND 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: SCHAUMBURG, THOENES, THURN, LANDSKRON, ECKERT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: PATENTANWAELTE SCHAUMBURG, THOENES, THURN, LAN, DE

Effective date: 20120326

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008002696

Country of ref document: DE

Owner name: COCKERILL MAINTENANCE & INGENIERIE SA, BE

Free format text: FORMER OWNER: CMI THERMLINE SERVICES, AVON, FR

Effective date: 20120326

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE

Effective date: 20120326

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

Effective date: 20120326

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20120326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131219

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 482293

Country of ref document: AT

Kind code of ref document: T

Owner name: COCKERILL MAINTENANCE & INGENIERIE SA, BE

Effective date: 20131219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008002696

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE MBB, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 16

Ref country code: DE

Payment date: 20231214

Year of fee payment: 16

Ref country code: AT

Payment date: 20231214

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231218

Year of fee payment: 16