EP2084008B1 - Tête d'impression jets d'encre à réglage des impulsions de bulles - Google Patents

Tête d'impression jets d'encre à réglage des impulsions de bulles Download PDF

Info

Publication number
EP2084008B1
EP2084008B1 EP06790346.8A EP06790346A EP2084008B1 EP 2084008 B1 EP2084008 B1 EP 2084008B1 EP 06790346 A EP06790346 A EP 06790346A EP 2084008 B1 EP2084008 B1 EP 2084008B1
Authority
EP
European Patent Office
Prior art keywords
printhead
drive
bubble
pulse
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06790346.8A
Other languages
German (de)
English (en)
Other versions
EP2084008A4 (fr
EP2084008A1 (fr
Inventor
Angus John North
Jennifer Mia Fishburn
Samuel James Myers
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memjet Technology Ltd
Original Assignee
Zamtec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zamtec Ltd filed Critical Zamtec Ltd
Publication of EP2084008A1 publication Critical patent/EP2084008A1/fr
Publication of EP2084008A4 publication Critical patent/EP2084008A4/fr
Application granted granted Critical
Publication of EP2084008B1 publication Critical patent/EP2084008B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles

Definitions

  • the present invention relates to inkjet printers and in particular, inkjet printheads that generate vapor bubbles to eject droplets of ink.
  • the present invention involves the ejection of ink drops by way of forming gas or vapor bubbles in a bubble forming liquid.
  • This principle is generally described in US 3,747,120 to Stemme .
  • These devices have heater elements in thermal contact with ink that is disposed adjacent the nozzles, for heating the ink thereby forming gas bubbles in the ink.
  • the gas bubbles generate pressures in the ink causing ink drops to be ejected through the nozzles.
  • the resistive heaters operate in an extremely harsh environment. They must heat and cool in rapid succession to form bubbles in the ejectable liquid, usually a water soluble ink. These conditions are highly conducive to the oxidation and corrosion of the heater material. Dissolved oxygen in the ink can attack the heater surface and oxidise the heater material. In extreme circumstances, the heaters 'burn out' whereby complete oxidation of parts of the heater breaks the heating circuit.
  • the heater can also be eroded by 'cavitation' caused by the severe hydraulic forces associated with the surface tension of a collapsing bubble.
  • the heater i.e. the heater material and the protective coatings
  • the heater must be heated to the superheat limit of the liquid ( ⁇ 300°C for water). This requires a large amount of energy to be supplied to the heater. However, only a portion of this energy is used to vaporize ink. Most of the 'excess' energy must be dissipated by the printhead and or a cooling system. The heat from the excess energy of successive droplet ejections can not raise the steady state temperature of the ink above its boiling point and thereby cause unintentional bubbles. This limits the density of the nozzles on the printhead, the nozzle firing rate and usually necessitates an active cooling system. This in turn has an impact on the print resolution, the printhead size, the print speed and the manufacturing costs.
  • Inkjet printheads can also suffer from a problem commonly referred to as 'decap'. This term is defined below.
  • 'decap' This term is defined below.
  • evaporation of the volatile component of the bubble forming liquid will occur at the liquid-air interface in the nozzle. This will decrease the concentration of the volatile component in the liquid near the heater and increase the viscosity of the liquid in the chamber. The decrease in concentration of the volatile component will result in the production of less vapor in the bubble, so the bubble impulse (pressure integrated over area and time) will be reduced: this will decrease the momentum of ink forced through the nozzle and the likelihood of drop break-off.
  • the increase in viscosity will also decrease the momentum of ink forced through the nozzle and increase the critical wavelength for the Rayleigh Taylor instability governing drop break-off, decreasing the likelihood of drop break-off. If the nozzle is left idle for too long, these phenomena will result in a "decapped nozzle” i.e. a nozzle that is unable to eject the liquid in the chamber.
  • the "decap time” refers to the maximum time a nozzle can remain unfired before evaporation will decap the nozzle.
  • US 57 81205 A discloses an inkjet printhead having the features of the preamble of claim 1.
  • the present invention aims to overcome or ameliorate some of the problems of the prior art, or at least provide a useful alternative.
  • the present invention provides an inkjet printhead for printing a media substrate according to claim 1.
  • the power supplied to each heater determines the time scale for heating it to the 309°C ink superheat limit, where film boiling on the surface of the heater spontaneously nucleates a bubble.
  • the time scale for reaching the superheat limit determines two things: the energy required to nucleate the bubble and the impulse delivered by the bubble (impulse being pressure integrated over area and time).
  • the power supplied to the heaters in printing mode is sufficient to cause nucleation in less than 1 ⁇ s, and more preferably between 0.4 ⁇ s and 0.5 ⁇ s, and the power supplied to the heaters in maintenance mode results in nucleation times above 1 ⁇ s.
  • the energy in each printing pulse is less than the maximum amount of thermal energy that can be removed by the drop, being the energy required to heat a volume of the ejectable liquid equivalent to the drop volume from the temperature at which the liquid enters the printhead to the heterogeneous boiling point of the ejectable liquid.
  • the printhead is "self cooling", a mode of operation in which the nozzle density and nozzle fire rate are unconstrained by conductive heatsinking, an advantage that facilitates integrating the printhead into a pagewidth printer.
  • the power delivered to each heater may be adjusted by changing the voltage level of the pulse supplied to the heater. In other forms, the power is adjusted using pulse width modulation of the voltage pulse, to adjust the time averaged power of the pulse.
  • the drive circuitry is configured to operate in a normal printing mode and a high impulse mode such that the drive pulses are less than 1 microsecond long in the normal printing mode and greater than 1 microsecond long in the high impulse mode.
  • the high impulse mode is a maintenance mode used to recover nozzles affected by decap.
  • the high impulse mode is used to increase the volume of the ejected drops of printing fluid.
  • the high impulse mode is used to compensate for printing fluid with higher viscosity than other printing fluid ejected during the normal printing mode, to provide more consistent drop volumes.
  • each of the drive pulses has less energy than the energy required to heat a volume of the printing fluid equivalent to the drop volume, from the temperature at which the printing fluid enters the printhead to the heterogeneous boiling point of the printing fluid.
  • the drive pulse power is adjusted in response to temperature feedback from the array of nozzles.
  • the drive pulse power is adjusted by changing its voltage.
  • the drive pulse power is adjusted using pulse width modulation to change the time averaged power of the drive pulse.
  • the maintenance mode operates before the printhead prints to a sheet of media substrate.
  • the maintenance mode operates after the printhead prints a sheet of media substrate and before it prints a subsequent sheet of media substrate.
  • a MEMS vapour bubble generator comprising:
  • the heating pulse is shaped to increase the heating rate prior to the end of the pulse, bubble stability can be greatly enhanced, allowing access to a regime where large, repeatable bubbles can be produced by small heaters.
  • the first portion of the pulse is a pre-heat section for heating the liquid but not nucleating the vapour bubble and the second portion is a trigger section for nucleating the vapour bubble.
  • the pre-heat section has a longer duration than the trigger section.
  • the pre-heat section is at least two micro-seconds long.
  • the trigger section is less than a micro-section long.
  • the drive circuitry shapes the pulse using pulse width modulation.
  • the pre-heat section is a series of sub-nucleating pulses.
  • the drive circuitry shapes the pulse using voltage modulation.
  • the time averaged power in the pre-heat section is constant and the time averaged power in the trigger section is constant.
  • the MEMS vapour bubble generator is used in an inkjet printhead to eject printing fluid from nozzle in fluid communication with the chamber.
  • the first portion of the pulse is a pre-heat section for heating the liquid but not nucleating the vapour bubble and the second portion is a trigger section for superheating some of the liquid to nucleate the vapour bubble.
  • the pre-heat section has a longer duration than the trigger section.
  • the pre-heat section is at least two micro-seconds long.
  • the trigger section is less than one micro-section long.
  • the drive circuitry shapes the pulse using pulse width modulation.
  • the pre-heat section is a series of sub-nucleating pulses.
  • the drive circuitry shapes the pulse using voltage modulation.
  • the time averaged power in the pre-heat section is constant and the time averaged power in the trigger section is constant.
  • a MEMS vapour bubble generator used in an inkjet printhead to eject printing fluid from a nozzle in fluid communication with the chamber.
  • the heater is suspended in the chamber for immersion in a printing fluid.
  • the pulse is generated for recovering a nozzle clogged with dried or overly viscous printing fluid.
  • Power in the context of this specification is defined as the energy required to nucleate a bubble, divided by the nucleation time of the bubble.
  • references to 'self cooled' or 'self cooling' nozzles will be understood to be nozzles in which the energy required to eject a drop of the ejectable liquid is less than the maximum amount of thermal energy that can be removed by the drop, being the energy required to heat a volume of the ejectable fluid equivalent to the drop volume from the temperature at which the fluid enters the printhead to the heterogeneous boiling point of the ejectable fluid.
  • decap is a reference to the phenomenon whereby evaporation from idle nozzles reduces the concentration of water in the vicinity of the heater (reducing bubble impulse) and increases the viscosity of the ink (increasing flow resistance).
  • decap time is well known and often used in this field. Throughout this specification, “the decap time” is the maximum interval that a nozzle can remain unfired before evaporation of the volatile component of the bubble forming liquid will render the nozzle incapable of ejecting the bubble forming liquid.
  • the printhead according to the invention comprises a plurality of nozzles, as well as a chamber and one or more heater elements corresponding to each nozzle.
  • Each portion of the printhead pertaining to a single nozzle, its chamber and its one or more elements, is referred to herein as a "unit cell”.
  • the term "printing fluid” is used to signify any ejectable liquid, and is.not limited to conventional inks containing colored dyes.
  • non-colored inks include fixatives, infra-red absorbant inks, functionalized chemicals, adhesives, biological fluids, water and other solvents, and so on.
  • the ink or ejectable liquid also need not necessarily be a strictly a liquid, and may contain a suspension of solid particles or be solid at room temperature and liquid at the ejection temperature.
  • Figure 1 shows the MEMS bubble generator of the present invention applied to an inkjet printhead.
  • a detailed description of the fabrication and operation of some of the Applicant's thermal printhead IC's is provided in USSN 11/097,308 and USSN 11/246,687 . In the interests of brevity, the contents of these documents are incorporated herein by reference.
  • a single unit cell 30 is shown in Figure 1 . It will be appreciated that many unit cells are fabricated in a close-packed array on a supporting wafer substrate 28 using lithographic etching and deposition techniques common within in the field semi-conductor/MEMS fabrication.
  • the chamber 20 holds a quantity of ink.
  • the heater 10 is suspended in the chamber 20 such that it is in electrical contact with the CMOS drive circuitry 22. Drive pulses generated by the drive circuitry 22 energize the heater 10 to generate a vapour bubble 12 that forces a droplet of ink 24 through the nozzle 26.
  • Using the drive circuitry 22 to shape the pulse in accordance with the present invention gives the designer a broader range of bubble impulses from a single heater and drive voltage.
  • Figure 2 is a line drawing of a stroboscopic photograph of a bubble 12 formed on a heater 10 during open pool testing (the heater is immersed in water and pulsed).
  • the heater 10 is 30 microns by 4 microns by 0.5 microns and formed from TiAl mounted on a silicon wafer substrate.
  • the pulse was 3.45 V for 0.4 microseconds making the energy consumed 127 nJ.
  • the strobe captures the bubble at it's maximum extent, prior to condensing and collapsing to a collapse point. It should be noted that the dual lobed appearance is due to reflection of the bubble image from the wafer surface.
  • the time taken for the bubble to nucleate is the key parameter. Higher power (voltages) imply higher heating rates, so the heater reaches the bubble nucleation temperature more quickly, giving less time for heat to conduct into the heater's surrounds, resulting in a reduction in thermal energy stored in the ink at nucleation. This in turn reduces the amount of water vapor produced and therefore the bubble impulse. However, less energy is required to form the bubble because less heat is lost from the heater prior to nucleation. This is, therefore, how the printer should operate during normal printing in order to be as efficient as possible.
  • Figure 3 shows the bubble 12 from the same heater 10 when the pulse is 2.20 V for 1.5 microseconds. This has an energy requirement of 190 nJ but the bubble generated is much larger. The bubble has a greater bubble impulse and so can be used for a maintenance pulse or to eject bigger than normal drops. This permits the printhead to have multiple modes of operation which are discussed in more detail below.
  • Figure 4 shows the variation of the drive pulse using amplitude modulation.
  • the normal printing mode pulse 16 has a higher power and therefore shorter duration as nucleation is reached quickly.
  • the large bubble mode pulse 18 has lower power and a longer duration to match the increased nucleation time.
  • Figure 5 shows the variation of the drive pulse using pulse width modulation.
  • the normal printing pulse 16 is again 3.45 V for 0.4 microseconds.
  • the large bubble pulse 18 is a series of short pulses 32, all at the same voltage (3.45 V) but only 0.1 microseconds long with 0.1 microsecond breaks between.
  • the power during one of the short pulses 32 is the same as that of the normal printing pulse 16, but the time averaged power of the entire large bubble pulse is lower.
  • a primary objective for the printhead designer is low energy ejection, particularly if the nozzle density and nozzle fire rate (print speed) are high.
  • the Applicant's MTC001US referenced above provides a detailed discussion of the benefits of low energy ejection as well as a comprehensive analysis of energy consumption during the ejection process.
  • the energy of ejection affects the steady state temperature of the printhead, which must be kept within a reasonable range to control the ink viscosity and prevent the ink from boiling in the steady state.
  • the low bubble impulse resulting from low energy operation makes the nozzles particularly sensitive to decap.
  • temperature feedback from the printhead can be used as an indication of the ink temperature and therefore, the ink viscosity. Modulating the drive pulses can be used to ensure consistent drop volumes.
  • the printhead IC disclosed in the co-pending PUA001US to PUA015US (cross referenced above) describe how 'on chip' temperature sensors can be incorporated into the nozzle array and drive circuitry.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Claims (6)

  1. Tête d'impression à jet d'encre pour impression d'un substrat de support, la tête d'impression comprenant :
    - une pluralité de buses ;
    - une pluralité de dispositifs de chauffage correspondant respectivement à chacune des buses, chaque dispositif de chauffage étant configuré pour chauffer du fluide d'impression pour produire par nucléation une bulle de vapeur qui éjecte une goutte du fluide d'impression à travers la buse correspondante ; et
    - des circuits de commande pour générer une impulsion de commande électrique pour exciter les dispositifs de chauffage ;
    caractérisée par le fait que :
    les circuits de commande sont configurés pour fonctionner selon :
    - un mode d'impression normale dans lequel des impulsions de commande sont d'une longueur de moins de 1 microseconde ; et
    - un mode de maintenance à mode à impulsions élevées utilisé pour restaurer des buses affectées par une latence, les impulsions de commande étant d'une longueur supérieure à 1 microseconde dans le mode de maintenance.
  2. Tête d'impression à jet d'encre selon la revendication 1, dans laquelle les circuits de commande sont configurés pour régler une puissance d'impulsion de commande par changement d'une tension d'impulsion de commande.
  3. Tête d'impression à jet d'encre selon la revendication 1, dans laquelle les circuits de commande sont configurés pour régler une puissance d'impulsion de commande à l'aide d'une modulation de largeur d'impulsion pour changer la puissance moyennée dans le temps de l'impulsion de commande.
  4. Tête d'impression à jet d'encre selon la revendication 1, dans laquelle le mode de maintenance fonctionne avant que la tête d'impression n'imprime sur une feuille de substrat de support.
  5. Tête d'impression à jet d'encre selon la revendication 1, dans laquelle le mode de maintenance fonctionne après que la tête d'impression a imprimé sur une feuille de substrat de support et avant qu'elle n'imprime sur une feuille suivante de substrat de support.
  6. Procédé de fonctionnement d'une tête d'impression à jet d'encre selon la revendication 1, ledit procédé comprenant les étapes consistant à :
    - faire fonctionner la tête d'impression selon le mode d'impression normale dans lequel des impulsions de commande sont d'une longueur de moins de 1 microseconde ; et
    - faire fonctionner ensuite la tête d'impression selon le mode de maintenance à mode à impulsions élevées pour restaurer des buses affectées par une latence, les impulsions de commande étant d'une longueur supérieure à 1 microseconde dans le mode de maintenance.
EP06790346.8A 2006-10-09 2006-10-09 Tête d'impression jets d'encre à réglage des impulsions de bulles Not-in-force EP2084008B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2006/001476 WO2008043121A1 (fr) 2006-10-09 2006-10-09 Tête d'impression jets d'encre à réglage des impulsions de bulles

Publications (3)

Publication Number Publication Date
EP2084008A1 EP2084008A1 (fr) 2009-08-05
EP2084008A4 EP2084008A4 (fr) 2010-12-01
EP2084008B1 true EP2084008B1 (fr) 2014-05-07

Family

ID=39282325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06790346.8A Not-in-force EP2084008B1 (fr) 2006-10-09 2006-10-09 Tête d'impression jets d'encre à réglage des impulsions de bulles

Country Status (5)

Country Link
EP (1) EP2084008B1 (fr)
JP (1) JP2010504227A (fr)
CA (1) CA2662724C (fr)
TW (1) TWI380911B (fr)
WO (1) WO2008043121A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10632742B2 (en) 2017-02-27 2020-04-28 Hewlett-Packard Development Company, L.P. Nozzle sensor evaluation
WO2020117199A1 (fr) 2018-12-03 2020-06-11 Hewlett-Packard Development Company, L.P. Niveaux d'énergie d'éjection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781205A (en) * 1995-04-12 1998-07-14 Eastman Kodak Company Heater power compensation for temperature in thermal printing systems
JPH09136414A (ja) * 1995-11-14 1997-05-27 Matsushita Electric Ind Co Ltd インクジェット装置
US7111755B2 (en) * 2002-07-08 2006-09-26 Canon Kabushiki Kaisha Liquid discharge method and apparatus and display device panel manufacturing method and apparatus
JP2004050766A (ja) * 2002-07-23 2004-02-19 Canon Inc インクジェット記録装置及びインクジェット記録方法
US6736489B1 (en) * 2002-11-23 2004-05-18 Silverbrook Research Pty Ltd Thermal ink jet printhead with low heater mass
US6755509B2 (en) * 2002-11-23 2004-06-29 Silverbrook Research Pty Ltd Thermal ink jet printhead with suspended beam heater
US7086718B2 (en) * 2002-11-23 2006-08-08 Silverbrook Research Pty Ltd Thermal ink jet printhead with high nozzle areal density
US7328978B2 (en) * 2002-11-23 2008-02-12 Silverbrook Research Pty Ltd Printhead heaters with short pulse time
US7101025B2 (en) * 2004-07-06 2006-09-05 Silverbrook Research Pty Ltd Printhead integrated circuit having heater elements with high surface area
US7448729B2 (en) * 2005-04-04 2008-11-11 Silverbrook Research Pty Ltd Inkjet printhead heater elements with thin or non-existent coatings

Also Published As

Publication number Publication date
CA2662724C (fr) 2013-09-03
TW200817193A (en) 2008-04-16
JP2010504227A (ja) 2010-02-12
CA2662724A1 (fr) 2008-04-17
EP2084008A4 (fr) 2010-12-01
WO2008043121A1 (fr) 2008-04-17
TWI380911B (zh) 2013-01-01
EP2084008A1 (fr) 2009-08-05

Similar Documents

Publication Publication Date Title
US8899721B2 (en) Method of operating inkjet printhead in printing and maintenance modes
US7547084B2 (en) Wide array fluid ejection device
EP2563597B1 (fr) Dispositif d'éjection de fluide
US7491911B2 (en) MEMS bubble generator for large stable vapor bubbles
JPH07266562A (ja) インク・ジェット・プリンタのための電圧降下用修正装置
JP2017537000A (ja) 流体噴射装置
US5483265A (en) Minimization of missing droplets in a thermal ink jet printer by drop volume control
EP1033249B1 (fr) Procédé de commande pour une tête d'enregistrement à jet d'encre et dispositif d'enregistrement pour effectuer ce procédé
EP2084008B1 (fr) Tête d'impression jets d'encre à réglage des impulsions de bulles
JP4284109B2 (ja) 液滴噴射方法及び装置
JP6964676B2 (ja) 成形体内に成形された流体吐出ダイ
JP6615303B2 (ja) 流体噴射装置
JP2013067176A (ja) 調整可能な気泡衝撃を伴うインクジェットプリントヘッド
WO2008043122A1 (fr) Générateur de bulles en technologie mems pour la production grosses bulles de vapeur stables
JPH0441242A (ja) インクジェット記録装置
KR20070010800A (ko) 열구동 방식의 잉크젯 프린트헤드
JP2004345326A (ja) インクジェットプリントヘッドの液滴噴射方法及び装置
Meyer Thermal ink jet: current status and future prospects
JPH071735A (ja) インクジェットペンおよびインクジェットペンの製造方法
JP2001150679A (ja) インクジェットプリントヘッド
KR100327255B1 (ko) 잉크젯 프린트헤드
Lee Overview of Thermal Ink Jet Technology

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20101102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZAMTEC LIMITED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006041498

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B41J0002050000

Ipc: B41J0002045000

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 2/045 20060101AFI20130731BHEP

Ipc: B41J 2/05 20060101ALI20130731BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZAMTEC LIMITED

INTG Intention to grant announced

Effective date: 20140121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 666299

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006041498

Country of ref document: DE

Effective date: 20140618

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MEMJET TECHNOLOLGY LIMITED

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 666299

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140507

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MEMJET TECHNOLOGY LIMITED

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140507

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006041498

Country of ref document: DE

Owner name: MEMJET TECHNOLOGY LIMITED, IE

Free format text: FORMER OWNER: ZAMTEC LTD., DUBLIN, IE

Effective date: 20141106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006041498

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006041498

Country of ref document: DE

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061009

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201026

Year of fee payment: 15

Ref country code: IE

Payment date: 20201027

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211027

Year of fee payment: 16

Ref country code: GB

Payment date: 20211027

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006041498

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221009