EP2078841B1 - Unité et procédé de surveillance - Google Patents

Unité et procédé de surveillance Download PDF

Info

Publication number
EP2078841B1
EP2078841B1 EP08075042.5A EP08075042A EP2078841B1 EP 2078841 B1 EP2078841 B1 EP 2078841B1 EP 08075042 A EP08075042 A EP 08075042A EP 2078841 B1 EP2078841 B1 EP 2078841B1
Authority
EP
European Patent Office
Prior art keywords
engine
template
crank
operational condition
templates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08075042.5A
Other languages
German (de)
English (en)
Other versions
EP2078841A1 (fr
Inventor
Samuel Bailey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi International Operations Luxembourg SARL
Original Assignee
Delphi International Operations Luxembourg SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi International Operations Luxembourg SARL filed Critical Delphi International Operations Luxembourg SARL
Priority to EP08075042.5A priority Critical patent/EP2078841B1/fr
Publication of EP2078841A1 publication Critical patent/EP2078841A1/fr
Application granted granted Critical
Publication of EP2078841B1 publication Critical patent/EP2078841B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques

Definitions

  • the present invention relates to a monitoring unit for determining the operational condition of an engine and a method of monitoring the operational condition of an engine.
  • the torque output of an internal combustion engine is a useful parameter which can be used for engine diagnostics, calibration and safety checks.
  • Knowledge of the torque output can also be used as a proxy measure for the fuel delivered and cylinder pressure, on the basis that a given amount of fuel combusted under a given cylinder pressure should result in predictable torque output.
  • a measured torque output can be compared to the expected torque output and used to determine injector or Engine Control Unit (ECU) errors.
  • ECU Engine Control Unit
  • a known technique for indirectly measuring the torque output of an engine involves measuring the engine speed.
  • Engine speed is not a constant, but follows an approximately sinusoidal pattern throughout successive combustion cycles. This is due to the effective spring-mass-damper system of a piston, con-rod, crankshaft and flywheel. The greater the torque, the higher the force on the piston and the larger the amplitude of the sinusoidal waveform observed.
  • an estimate of the engine torque can be derived.
  • a monitoring unit for determining the operational condition of an engine comprising a plurality of cylinders, each cylinder comprising a combustion chamber into which fuel is injected by an associated fuel injector and a crank wheel comprising a group of regularly spaced crank teeth associated with each cylinder within the engine, the unit comprising:
  • the present invention provides a monitoring unit which can determine the operational characteristic of an engine, such as the torque output of the engine or whether the engine has a fault without the use of a complex mathematical model of engine behaviour or a torque sensor, such as an engine dynamometer.
  • said one or more engine parameters includes an engine torque output value
  • determining the operational condition of the engine comprises determining the torque output of the engine in dependence on the engine torque output value associated with said best matching template.
  • said one or more engine parameters includes an average engine speed.
  • said one or more engine parameters includes fault identification information
  • said processing means is arranged to determine the operational condition of the engine by determining if an engine fault has occurred in dependence on fault identification information associated with said best matching template.
  • said fault identification information comprises one of:
  • the first and second data related to engine rotation comprises data relating to the rotation of a crank wheel within the engine.
  • the crank wheel comprises a group of regularly spaced crank teeth associated with each cylinder within the engine and the processing means is arranged to monitor the time taken for a given crank tooth to move past a crank tooth sensor and to subsequently determine the speed of the crank wheel.
  • said first and second data related to engine rotation may comprise crank tooth times for one group of crank teeth associated with a particular engine cylinder.
  • said first and second data related to engine rotation may comprise crank tooth times for each crank tooth on the crank wheel.
  • said processing means is arranged to compare said first and second data by calculating a correlation factor for each of said plurality of templates using the following equation;
  • j a crank tooth index
  • i a template number index
  • crk crank tooth time received at the input
  • temp a crank tooth time stored in a particular template
  • the processing means is arranged to determine said best matching template by selecting the template having the lowest calculated correlation factor.
  • a method of monitoring the operational condition of an engine comprising a plurality of cylinders, each cylinder comprising a combustion chamber into which fuel is injected by an associated fuel injector and a crank wheel comprising a group of regularly spaced crank teeth associated with each cylinder within the engine, the method comprising:
  • the invention also relates to a data carrier as claimed in claim 13.
  • the computer program may be arranged to configure a torque estimating unit to implement the method according to the second aspect of the invention, wherein said one or more engine parameters includes an engine torque output value, and determining the operational condition of the engine comprises determining the torque output of the engine in dependence on the engine torque output value associated with said best matching template.
  • the templates may be generated by the following steps:
  • combustion takes place within one or more combustion chambers or cylinders, each chamber being defined partly by a reciprocating piston and partly by the walls of a cylinder bore formed in a cylinder head.
  • the piston slides within the cylinder so that, when the engine is running, the volume of the combustion chamber cyclically increases and decreases.
  • TDC top dead centre
  • BDC bottom dead centre
  • the piston is connected to a cranked portion of a crankshaft by way of a connecting rod and a flywheel (or crank wheel) is mounted on one end of the crankshaft.
  • the reciprocating motion of the piston therefore corresponds to rotary motion of the crankshaft, and it is customary in the art to define the position of the piston according to the angle of the cranked portion of the crankshaft, with TDC corresponding to a crank angle of zero degrees.
  • FIG 1 illustrates a typical flywheel 2. It can be seen that the flywheel 2 comprises a number of teeth 4 on its outer periphery which are arranged in three groups 6, 8, 10. Each group 6, 8, 10 is associated with an injector (injector X, injector X+1 and injector X+2 respectively) and each group comprises 18 teeth which are regularly spaced at 6-degree intervals. In Figure 2 , the group of teeth associated with injector X are partially numbered (teeth 1, 11 and 18 are numbered).
  • Three regions 12, 14, 16 on the flywheel are not machined, i.e. have no teeth.
  • the sensor 18, which may be a variable reluctance sensor, is shown opposite tooth 11 in group 6.
  • the sensor 18 is used to detect motion of the crank teeth 4 and the decoded signal output from the sensor 18 is used to provide position information which is used for engine speed measurement. It will be appreciated by those skilled in the art that any suitable sensor may be used to measure crank tooth motion, e.g. an optical based sensor may be used.
  • crank tooth time is the time between successive crank teeth. This is illustrated in Figure 2 which shows the decoded signal output from the sensor of Figure 1 .
  • an apparatus 30 for generating templates for use in a torque estimating device comprises a test engine 32, an engine speed sensor 18, a torque sensor 34, a processor 36 and storage means 38.
  • the test engine 32 is an engine having the same specification as that with which the generated templates will be used to make torque estimates.
  • the engine speed sensor 18 is of the kind described above with reference to Figures 1 and 2 . Accordingly, the engine speed sensor 18 outputs a signal comprising information relating to the rotational speed of the test engine crankshaft when the engine is running.
  • the torque sensor 34 is a conventional engine dynamometer and is coupled to the test engine 32. Accordingly, the torque sensor 34 outputs a signal relating to the torque output of the engine when running.
  • the processor 36 is coupled to and receives the respective signals output from the engine speed sensor 18 and the torque sensor 34.
  • the processor 36 is further coupled to a storage means 38.
  • the storage means 38 may be any suitable memory device, such as a hard disk drive, a flash memory, an optical disk etc.
  • step S100 the test engine 32 is operated at a constant average engine speed.
  • the test engine 32 is also controlled so as to operate at a constant torque output.
  • step S110 the torque output of the test engine is determined by the processor in dependence on the signal output from the torque sensor 34.
  • the test engine may be driven at an average speed of 1000rpm and produce a torque output of 40Nm.
  • the engine speed sensor 18 outputs a series of measurements of the instantaneous engine speed, i.e. the crank tooth times, in step S120.
  • step S130 the processor 36 stores the measured engine speed data in the storage means 38 in association with the torque value determined by the torque sensor 34, thereby defining a template.
  • a first template may comprise crank tooth times recorded at a torque output of 40Nm and average engine speed of 1000rpm. Further templates may be generated for different torque outputs at the same average engine speeds. Subsequently, the average engine speed may be incremented and the whole process may be repeated, thereby generating templates for a range of torque values and average engine speeds. In this way it is possible to build up a library of templates which cover the operational range of the engine.
  • a template may consist of crank tooth times measured over one injection cycle, i.e. corresponding to a 120° rotation of the crankshaft of a 6 cylinder engine.
  • a template would consist of the crank tooth times for each of the eighteen crank teeth associated with a single injector.
  • measurements may be made over 2 revolutions of the crankshaft, i.e. a 720° rotation, in which case the measured torque output corresponds to an average torque output for all six engine cylinders.
  • the torque estimating unit 50 for estimating the torque output of an engine 52 comprises an engine speed sensor 18, a processor 56 and a memory 58.
  • the processor 56 is the Engine Control Unit (ECU) of the vehicle in which the engine 50 is installed.
  • the engine speed sensor 18 outputs a signal to the ECU 56, which is used to determine the crank tooth times over the desired angular range of motion.
  • the memory 58 which may be formed integrally with the ECU, stores a copy of the library of templates generated using the apparatus shown in Figure 3 .
  • step S200 measurements of the crank tooth times are made over a predetermined angular range. More specifically, during running of the engine 52, the ECU 56 records the instantaneous engine speed for either 120 degrees or 2 revolutions, in dependence on the angular range over which the template data was collected using the test apparatus 30.
  • step S210 a correlation measure between the measured engine speed data and each of the templates stored in the memory 58 is calculated using equation (1) shown below.
  • j indicates the index of the instantaneous engine speed
  • i indicates the template number.
  • the angular range over which the measurements are taken is 120 degrees j will have a value of 18, since each template will comprise eighteen crank tooth times, temp , corresponding respectively to each of the crank teeth associated with a single Injector.
  • there will be eighteen crank tooth measurements, crk to compare to each of the eighteen temp values in each template.
  • step S220 the calculated correlation measures for each template are compared.
  • the template with the highest value of the correlation measure C, is selected for use in the determination of the torque output of the engine 52.
  • step S230 an estimate of the torque output of the engine 52 is determined using the template selected in step S220.
  • the estimate of the torque output is equal to the measured torque value associated with the closest matching template.
  • the actual torque will more usually be between the points at which the templates were measured.
  • the torque estimate can be found from a weighted sum of the torques of the best matching template and its most closely matching neighbour.
  • step S210 The greater the number of templates used for comparison in step S210, the greater the precision with which the torque output of the engine 52 can be estimated.
  • the number of templates used for comparison increases, so the load on the ECU 56 increases, as does the memory space required to store the templates and the time required to obtain the templates using the test cell. Accordingly, the number of templates used may be selected so as to achieve the optimum balance between the precision required and the constraints imposed by the processor speed, memory size and available calibration time.
  • each template comprises a series of measurements of instantaneous engine speed (i.e. crank tooth times), measured at a particular average engine speed and at a particular measured torque output.
  • the templates may be scaled to interpolate between the particular values of average engine speed.
  • the torque output of an engine can be estimated without the need for an individual dynamometer to be connected to the engine.
  • the estimated torque output can be used in a number of ways, e.g. diagnostics, calibration and safety checks.
  • the correlation measure calculated in step S210 may be determined as a square of differences using equation (2) shown below;
  • step S220 the best matching template is determined by selecting the template having the lowest calculated correlation factor.
  • equation (1) becomes equation (3) as shown below;
  • the correlation function may be based purely on the magnitude of the approximately sinusoidal crank tooth time pattern, calculated by subtracting the minimum crank tooth time in one combustion cycle from the maximum tooth time in the cycle as shown in equation (5) below;
  • step S220 the best matching template is determined by selecting the template having the lowest calculated correlation measure.
  • a zero torque datum may be subtracted from each set of crank tooth times.
  • the zero torque datum may be calculated as follows;
  • fault diagnosis may be performed utilising templates which correspond to specific engine faults.
  • the process for diagnosing an engine fault using template comparison is similar to the processes shown in Figures 4 and 6 and will be described In more detail below.
  • faults may arise from variations in the fuel injection quantity, cylinder pressure or the injection timing.
  • a misfire can be caused by either a total failure to inject fuel or a loss of cylinder pressure.
  • Faults of this nature are associated with a deceleration in the rotational speed of the engine.
  • failure modes that cause an increase in the engine's rotational speed, such as a fuel injector needle being stuck open.
  • the test engine may be operated so as to simulate a fault, such as one of those described above. Accordingly, engine speed measurements may be recorded in step S120, over a predetermined range of rotation of the crankshaft, which are characteristic of the simulated engine fault. The engine speed measurements may then be stored in the storage means 38 in association with fault identification information thereby defining a template.
  • templates may be created corresponding to a range of average engine speeds and a range of torque outputs.
  • the generated templates may subsequently be transferred to the memory 58 of the ECU 56 of a vehicle engine for fault diagnosis.
  • fault diagnosis is performed by carrying out steps S200, S210 and S220 as described previously.
  • step S200 engine speed measurements are recorded during running of the engine 52.
  • step 210 the measured engine data is compared to the templates stored in the memory 58, which include the fault specific templates.
  • step S220 the template with the highest calculated correlation factor is selected. In the event that a fault specific template has the highest correlation factor, the ECU 56 diagnoses that the engine is suffering from a fault corresponding to the fault identification information which is associated with the best matching template.
  • crank teeth is taken to cover both projections from the crank wheel as shown in Figure 1 or alternatively drilled holes in the crank wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (14)

  1. Unité de surveillance pour déterminer l'état de fonctionnement d'un moteur, le moteur comprenant une pluralité de cylindres, chaque cylindre comprenant une chambre de combustion dans laquelle du carburant est injecté par un injecteur de carburant associé et un volant de vilebrequin (2) comprenant un groupe (6 ; 8 ; 10) de dents de vilebrequin régulièrement espacées (4) associées à chaque cylindre dans le moteur (52), l'unité étant caractérisée en ce qu'elle comprend :
    des entrées pour recevoir des premières données relatives à la rotation du moteur ;
    un moyen de stockage (58) stockant une pluralité de modèles, chaque modèle comprenant des secondes données relatives à la rotation du moteur, lesdites secondes données étant caractéristiques d'un état de fonctionnement particulier, et un ou plusieurs paramètres de moteur associés audit état de fonctionnement, les premières et secondes données relatives à la rotation du moteur comprenant une pluralité de temps de dent de vilebrequin ; et
    un moyen de traitement (56) configuré : i) pour comparer lesdites premières données reçues auxdites secondes données afin de déterminer un modèle correspondant le mieux sélectionné parmi ladite pluralité de modèles, et ii) pour déterminer l'état de fonctionnement du moteur en fonction desdits un ou plusieurs paramètres de moteur associés audit modèle correspondant le mieux.
  2. Unité de surveillance selon la revendication 1, dans laquelle lesdits un ou plusieurs paramètres de moteur incluent une valeur de couple de sortie du moteur, et l'opération consistant à déterminer l'état de fonctionnement du moteur comprend l'opération consistant à déterminer le couple de sortie du moteur en fonction de la valeur de couple de sortie du moteur associée audit modèle correspondant le mieux.
  3. Unité de surveillance selon la revendication 1 ou 2, dans laquelle lesdits un ou plusieurs paramètres de moteur incluent un régime moyen du moteur.
  4. Unité de surveillance selon l'une quelconque des revendications 1, 2 et 3, dans laquelle lesdits un ou plusieurs paramètres de moteur comprennent des informations d'identification de défaut, et ledit moyen de traitement (56) est agencé pour déterminer l'état de fonctionnement du moteur en déterminant si un défaut de moteur s'est produit en fonction des informations d'identification de défaut associées audit modèle correspondant le mieux.
  5. Unité de surveillance selon la revendication 5, dans laquelle lesdites informations d'identification de défaut comprennent :
    une indication d'un raté d'allumage de cylindre de moteur ; ou
    une indication d'une aiguille d'injecteur de carburant coincée en position ouverte.
  6. Unité de surveillance selon l'une quelconque des revendications 1 à 5, dans laquelle lesdites premières et secondes données relatives à la rotation du moteur comprennent des temps de dent de vilebrequin pour un groupe (6 ; 8 ; 10) de dents de vilebrequin associées à un cylindre de moteur particulier.
  7. Unité de surveillance selon la revendication 6, dans laquelle lesdites premières et secondes données relatives à la rotation du moteur comprennent des temps de dent de vilebrequin pour chaque dent de vilebrequin (4) sur le volant de vilebrequin (2).
  8. Unité de surveillance selon l'une quelconque des revendications précédentes, dans laquelle ledit moyen de traitement (56) est agencé pour comparer lesdites premières et secondes données en calculant un facteur de corrélation pour chacun de ladite pluralité de modèles en utilisant l'équation suivante : C i = j = 1 : N cr k j × tem p ij
    Figure imgb0019
    j = indice de dent de vilebrequin, i = indice de numéro de modèle, crk = temps de dent de vilebrequin reçu à l'entrée, et temp = temps de dent de vilebrequin stocké dans un modèle particulier ; et
    dans laquelle le moyen de traitement (56) est agencé pour déterminer ledit modèle correspondant le mieux en sélectionnant le modèle ayant le facteur de corrélation calculé le plus élevé.
  9. Unité de surveillance selon l'une quelconque des revendications 1 à 7, dans laquelle ledit moyen de traitement (56) est agencé pour comparer lesdites premières et secondes données en calculant un facteur de corrélation pour chacun de ladite pluralité de modèles en utilisant l'équation suivante : C i = j = 1 : N cr k j tem p ij 2
    Figure imgb0020
    j = indice de dent de vilebrequin, i = indice de numéro de modèle, crk = temps de dent de vilebrequin reçu à l'entrée, et temp = temps de dent de vilebrequin stocké dans un modèle particulier ; et
    dans laquelle le moyen de traitement (56) est agencé pour déterminer ledit modèle correspondant le mieux en sélectionnant le modèle ayant le facteur de corrélation calculé le plus bas.
  10. Unité de surveillance selon la revendication 8 ou la revendication 9, dans laquelle ledit moyen de traitement (56) est agencé pour calculer un facteur de corrélation normalisé pour chacun de ladite pluralité de modèles en divisant ledit facteur de corrélation par l'expression suivante : j = 1 : N cr k j 2 + tem p ij 2
    Figure imgb0021
  11. Unité de surveillance selon l'une des revendications 1 à 7, dans laquelle ledit moyen de traitement (56) est agencé pour comparer lesdites premières et secondes données en calculant un facteur de corrélation pour chacun de ladite pluralité de modèles en utilisant l'équation suivante : C i = j = 1 : N max cr k j min cr k j max tem p j min tem p j i
    Figure imgb0022
    j = indice de dent de vilebrequin, i = indice de numéro de modèle, crk = temps de dent de vilebrequin reçu à l'entrée, et temp = temps de dent de vilebrequin stocké dans un modèle particulier ; et
    dans laquelle le moyen de traitement (56) est agencé pour déterminer ledit modèle correspondant le mieux en sélectionnant le modèle ayant le facteur de corrélation calculé le plus bas.
  12. Procédé de surveillance de l'état de fonctionnement d'un moteur, le moteur comprenant une pluralité de cylindres, chaque cylindre comprenant une chambre de combustion dans laquelle du carburant est injecté par un injecteur de carburant associé et un volant de vilebrequin (2) comprenant un groupe (6 ; 8 ; 10 ; 10) de dents de vilebrequin régulièrement espacées (4) associées à chaque cylindre dans le moteur (52), le procédé comprenant les étapes consistant à :
    recevoir des premières données relatives à la rotation du moteur (S200) ;
    stocker une pluralité de modèles, chaque modèle comprenant des secondes données relatives à la rotation du moteur, lesdites secondes données étant caractéristiques d'un état de fonctionnement particulier, et un ou plusieurs paramètres de moteur associés audit état de fonctionnement, lesdites premières et secondes données relatives à la rotation du moteur comprenant une pluralité de temps de dent de vilebrequin ;
    comparer lesdites premières données auxdites secondes données (S210) ;
    déterminer un modèle correspondant le mieux en fonction du résultat de ladite étape de comparaison (S220), ledit modèle correspondant le mieux étant choisi parmi ladite pluralité de modèles ; et
    déterminer l'état de fonctionnement du moteur en fonction desdits un ou plusieurs paramètres de moteur associés audit modèle correspondant le mieux.
  13. Support de données sur lequel est stocké un programme informatique comprenant des instructions qui, lorsque le programme est exécuté par une unité de commande de moteur, amènent l'unité de commande à mettre en oeuvre le procédé selon la revendication 12, lesdits un ou plusieurs paramètres de moteur incluant de préférence une valeur de couple de sortie du moteur, et la détermination de l'état de fonctionnement du moteur comprenant la détermination du couple de sortie du moteur en fonction de la valeur de couple de sortie du moteur associée au modèle correspondant le mieux.
  14. Procédé selon la revendication 12, dans lequel les modèles sont générés par les étapes suivantes consistant à :
    faire fonctionner un moteur conformément à un état de fonctionnement particulier, le moteur comprenant une pluralité de cylindres, chaque cylindre comprenant une chambre de combustion dans laquelle du carburant est injecté par un injecteur de carburant associé et un volant de vilebrequin (2) comprenant un groupe (6 ; 8 ; 10 ; 10) de dents de vilebrequin régulièrement espacées (4) associées à chaque cylindre dans le moteur (52) ;
    recevoir des données relatives à la rotation du moteur, lesdites données relatives à la rotation du moteur comprenant une pluralité de temps de dent de vilebrequin ;
    recevoir un signal relatif au couple de sortie du moteur ; et
    stocker lesdites données relatives à la rotation du moteur en association avec un ou plusieurs paramètres de moteur associés audit état de fonctionnement, définissant ainsi un modèle, lesdits un ou plusieurs paramètres de moteur comprenant une valeur de couple de sortie du moteur ;
    répéter les étapes de réception et de stockage pour un état de fonctionnement différent du moteur afin de définir un autre modèle.
EP08075042.5A 2008-01-14 2008-01-14 Unité et procédé de surveillance Active EP2078841B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08075042.5A EP2078841B1 (fr) 2008-01-14 2008-01-14 Unité et procédé de surveillance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08075042.5A EP2078841B1 (fr) 2008-01-14 2008-01-14 Unité et procédé de surveillance

Publications (2)

Publication Number Publication Date
EP2078841A1 EP2078841A1 (fr) 2009-07-15
EP2078841B1 true EP2078841B1 (fr) 2018-10-31

Family

ID=39577536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08075042.5A Active EP2078841B1 (fr) 2008-01-14 2008-01-14 Unité et procédé de surveillance

Country Status (1)

Country Link
EP (1) EP2078841B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107111941A (zh) * 2014-09-01 2017-08-29 韩国交通研究院 交通链路速度预测方法及用于其的装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896312A1 (fr) * 2006-01-18 2007-07-20 Toyota Motor Co Ltd Dispositif de calcul de couple estime d'un moteur a combusion interne et procede de calcul

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19928664B4 (de) 1999-06-23 2006-08-31 Robert Bosch Gmbh Verfahren zum Bestimmen des Moments einer Brennkraftmaschine
DE10214833A1 (de) * 2002-04-04 2003-10-16 Volkswagen Ag Verfahren zum Bestimmen eines indizierten Ist-Motormomentes einer Brennkraftmaschine
DE10232806B4 (de) * 2002-07-19 2008-10-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung oder Regelung einer Betriebsgröße einer Brennkraftmaschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896312A1 (fr) * 2006-01-18 2007-07-20 Toyota Motor Co Ltd Dispositif de calcul de couple estime d'un moteur a combusion interne et procede de calcul

Also Published As

Publication number Publication date
EP2078841A1 (fr) 2009-07-15

Similar Documents

Publication Publication Date Title
US7530261B2 (en) Fourier-based misfire detection strategy
US7536902B2 (en) Misfire detecting apparatus for internal combustion engine
US7623955B1 (en) Method for estimation of indicated mean effective pressure for individual cylinders from crankshaft acceleration
EP2375038B1 (fr) Dispositif et procédé de diagnostic utilisant un capteur de pression dans un cylindre pour moteur à combustion interne
US7761223B2 (en) Fuel system diagnostics by analyzing engine cylinder pressure signal and crankshaft speed signal
US11591981B2 (en) System and method for detecting malfunctioning turbo-diesel cylinders
US7415351B2 (en) Method and device for detecting an angular position signal for an internal-combustion engine
US8256278B2 (en) Engine misfire detection systems and methods using discrete fourier transform approximation
EP1918688B1 (fr) Appareil de détection de raté d'allumage pour moteur à combustion interne
JPS60201232A (ja) 出力クランクシヤフトを持つ内燃エンジンのシリンダ内のピ−ク圧縮圧を診断する方法
US6223120B1 (en) Cylinder torque estimation using crankshaft angular response measurements
US8170777B2 (en) Indicating system and method for determining an engine parameter
EP3561475B1 (fr) Appareil et methode d'analyse de combustion pour moteur de grande dimension et a faible vitesse
Hamedović et al. IMEP-estimation and in-cylinder pressure reconstruction for multicylinder SI-engine by combined processing of engine speed and one cylinder pressure
US6212945B1 (en) Method and apparatus for combustion quality diagnosis and control utilizing synthetic measures of combustion quality
Chen et al. Misfire detection in a dynamic skip fire engine
EP1972769B1 (fr) Dispositif et procédé de diagnostic d'un système de distribution de carburant dans un moteur à combustion interne
WO2007067102A1 (fr) Procede permettant de determiner la pression d'injection de carburant
JP4934049B2 (ja) 平均エンジントルクを求める方法
EP2078841B1 (fr) Unité et procédé de surveillance
JP4340284B2 (ja) 燃焼異常指数の変化をフィルタリングすることにより内燃機関におけるミスファイヤを検出する方法
JP4340285B2 (ja) 燃焼異常指数を結合することにより内燃機関のミスファイヤを検出する方法
Dereszewski et al. Processing of long lasting signals of torsional vibrations measured using incremental encoders
Rogers A model based approach for determining data quality metrics in combustion pressure measurement. A study into a quantitative based improvement in data quality

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100115

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: AL

Payment date: 20100115

Extension state: RS

Payment date: 20100115

Extension state: MK

Payment date: 20100115

Extension state: BA

Payment date: 20100115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI TECHNOLOGIES HOLDING S.A.R.L.

17Q First examination report despatched

Effective date: 20110913

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A.R.L

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1059705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008057639

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008057639

Country of ref document: DE

Owner name: DELPHI TECHNOLOGIES IP LIMITED, BB

Free format text: FORMER OWNER: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A R.L., BASCHARAGE, LU

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190222 AND 20190227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1059705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008057639

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190114

26N No opposition filed

Effective date: 20190801

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210125

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210127

Year of fee payment: 14

Ref country code: GB

Payment date: 20210128

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008057639

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131