EP2078824B1 - Aube à pales dédoublées, roue aubagée et turbomachine associées - Google Patents

Aube à pales dédoublées, roue aubagée et turbomachine associées Download PDF

Info

Publication number
EP2078824B1
EP2078824B1 EP09150327.6A EP09150327A EP2078824B1 EP 2078824 B1 EP2078824 B1 EP 2078824B1 EP 09150327 A EP09150327 A EP 09150327A EP 2078824 B1 EP2078824 B1 EP 2078824B1
Authority
EP
European Patent Office
Prior art keywords
blade
airfoil
blades
trailing edge
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09150327.6A
Other languages
German (de)
English (en)
Other versions
EP2078824A1 (fr
Inventor
Pascal Routier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2078824A1 publication Critical patent/EP2078824A1/fr
Application granted granted Critical
Publication of EP2078824B1 publication Critical patent/EP2078824B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/146Shape, i.e. outer, aerodynamic form of blades with tandem configuration, split blades or slotted blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs

Definitions

  • the present invention relates to a blade having a leading edge and a trailing edge.
  • leading edge and trailing edge are defined relative to the direction of normal air flow along the blade.
  • the air is compressed by several stages of blades arranged axially along the main axis P of the turbomachine, each stage comprising a series of blades arranged along a circumference around this main axis P
  • a stage is called a bladed wheel.
  • the blades extend from a circumferential platform centered on the main axis P, substantially radially outwardly to an annular housing.
  • the height of a blade is the radial dimension of this blade, that is to say substantially the difference between the radius of the casing and the radius of the platform.
  • each blade 1 of this bladed wheel extends between the radially outer surface (wall) 81 of the platform 80 and the radially inner surface (wall) 91 of the casing 90.
  • This blade 1 consisting of a single blade, is called a single blade.
  • the radially inner end 8 of the blade 1 is integral with the platform 80.
  • the radially outer end 9 of the blade 1 is fixed to the casing 90 if it is a fixed blade, and is free. it is a moving dawn.
  • the bladed wheel therefore comprises this wall 81 of the platform 80, the blades 1, and this wall 91 of the casing 90 according to whether it is blades 1 fixed or mobile.
  • Each blade 1 has a leading edge 2 and a trailing edge 3, the axis A (axis of the blade) connecting these two edges being substantially parallel to the main axis P of the turbomachine, or making an acute angle with this main axis P.
  • Each blade 1 is curved with respect to its axis A so that one of the faces connecting its leading edge 2 to its trailing edge 3 is convex (convex face 4), while the another face connecting its leading edge to its trailing edge is concave (concave face 5).
  • the number of blades on a bladed wheel is a compromise between the reduction of the weight of this bladed wheel, the mechanical strength of a blade (subjected to thermal stresses, and mechanical stresses due to the high speed rotation of the blade). the bladed wheel), and the aerodynamic efficiency of a blade and consequently the performance aerodynamic of the bladed wheel.
  • the current geometry of the blades does not allow any significant improvement in the aerodynamic performance of a bladed wheel comprising these blades.
  • US 3,692,425 discloses an assembly comprising a main blade and an auxiliary blade.
  • WO 2005/040559 discloses a split blade blade comprising a first blade having a leading edge, a trailing edge, and an inner face and an outer face extending between said leading edge and said trailing edge, a second blade having a leading edge, a trailing edge, and an inner face and an outer face which extend between said leading edge and said trailing edge, said first blade and said second blade being aligned with each other; so that said inner face of the first blade is, only on a part of its surface, facing a portion of said inner face of the second blade, the leading edge of said first blade and the edge etching said second blade forming a leading edge of the blade, the trailing edge of said first blade and the trailing edge of said second blade forming a trailing edge of the blade, and the blade comprising at least one blade connecting said inner face of the first pal e and said inner face of the second blade, said at least one blade extending to said trailing edge,
  • the invention aims to provide blades that have a better aerodynamic performance, without compromising the mechanical strength of these blades.
  • the blade according to the invention has an increased mechanical strength compared to a blade consisting of a single blade.
  • This increased mechanical strength allows a reduction in the average thickness of each blade constituting the blade.
  • This reduction in thickness contributes to improving the aerodynamic efficiency of the blade, since the natural flow of air passing around the blades is less disturbed.
  • the blades guide the air between the two blades, this guided air itself contributing to guide the air flowing along the outer walls of the two blades at the trailing edge of the blade, in particularly because the blades 30 extend to the trailing edge of the blade.
  • the turbulence of the flow at the trailing edge is minimized.
  • the aerodynamic efficiency of dawn is further improved.
  • the blade comprises at least three blades.
  • This larger number of blades makes it possible to stiffen the dawn better, and to better guide the air flowing in the space between the first dawn and the second dawn.
  • the invention also relates to a bladed wheel having on its circumference a series of blades according to the invention.
  • each of the blades according to the invention allows a greater spacing of the blades between them along the circumference of the wheel platform. bladed relative to the spacing between single-blade vanes on a bladed wheel of the prior art.
  • a bladed wheel according to the invention can therefore be equal to or less than a bladed wheel provided with of single-blade blades, and with a higher yield.
  • the figure 2 represents a blade 100 according to the invention, mounted on a platform 80.
  • the blade 100 comprises a first blade 10, a second blade 20, each of these blades being similar to a single blade and therefore having a convex face, a concave face , a leading edge and a trailing edge. These two blades are aligned side by side so that the concave face 15 of the first blade 10 is, over substantially its entire surface, facing the convex face 24 of the second blade 20. There is thus defined a space 40 between the first blade 10 and the second blade 20.
  • the concave face 15 is thus called internal face 15 of the first blade 10, and the convex face 24 is thus called internal face 24 of the second blade 20.
  • the convex face 14 of the first blade blade 10 and the concave face 25 of the second blade 20 constitute the outer faces of the blade 100.
  • the convex face 14 is therefore called the outer face 14 of the first blade 10
  • the concave face 25 is therefore called the outer face 25 of the second blade 20.
  • the dawn 100 is called dawn with split blades.
  • the inner face 15 of the first blade 10 and the inner face 24 of the second blade 20 are interconnected by one or more blades 30 disposed in the space 40.
  • Each blade has a leading edge 32, an edge of 33, and between the two a central portion with a radially lower face 38 (that is to say oriented towards the platform 80) and a radially upper face 39 (that is to say facing the housing 90) .
  • Each blade 30 is a continuous connecting element which connects these two internal faces, this connecting element forming both a reinforcement which contributes to the cohesion and the mechanical strength of the blade 100, and a guide, along its length.
  • Each blade 30 may have its interior hollow, or full.
  • the blades 30 extend substantially from the leading edge 12 of the first blade 10 and the leading edge 22 of the second blade 20 to the trailing edge 13 of the first blade 10 and the trailing edge 23 of the first blade 10. the second blade 20.
  • the leading edge 102 of the blade 100 is thus constituted by the leading edges 12 and 22 of the first blade 10 and the second blade 20, respectively.
  • the trailing edge 103 of the blade 100 is formed by the trailing edges 13 and 23 of the first blade 10 and the second blade 20, respectively.
  • the blades 30 are oriented in the direction of the leading edge 102 towards the trailing edge 103, substantially perpendicular to the leading edge 102 and the trailing edge 103.
  • the blade 100 since it comprises two blades, has an increased mechanical strength compared to a single blade. This increased mechanical strength allows a reduction in the average thickness of each blade constituting the blade 100, that is to say that the first blade 10 and the second blade 20 each have a thickness less than that of a blade monoblade.
  • the total weight of the blade 100 may even be substantially equal to the weight of a single blade 1.
  • the blade 100 has a better aerodynamic efficiency than a single blade thanks to the blades 30.
  • a bladed wheel according to the invention can therefore be equal to or less than a bladed wheel provided with single blades. This results in a reduction in the weight of a turbomachine provided with bladed wheels according to the invention, so its fuel consumption.
  • the blade 100 according to the invention has a better resistance to temperature than a single blade, since the blade 100 has more heat exchange surface than a single blade.
  • the blade 100 may comprise several blades 30.
  • the blade may comprise at least three blades, with a first blade 30 A located between 0% and 30% of the height of the blade 100, a last blade 30 N located between 70% and 100% of the height of the blade 100, and a blade located substantially in the middle of the height of the blade 100, a height of 0% corresponding to the radially inner end of the blade, and a height of 100% corresponding to the radially outer end of the blade.
  • the additional blades, if any, are located at regular intervals between these blades.
  • first blade 30 A is not too far from the platform 80 (in this case less than 30% of the height of the blade 100) in order to more effectively reduce the turbulence generated by the surface radially 81 outside the platform 80 in the flow.
  • last 30 N blade is not too far from the housing 90 (in this case more than 70% of the height of the blade 100) in order to more effectively reduce the turbulence generated by the radially inner surface 91 of the housing 90 in the flow.
  • the blade 100 may comprise a number of blades greater than three, for example 4, 5, 6, 7, or more, distributed over its entire height.
  • the Figures 2 to 5 represent a blade 100 having five blades 30.
  • the blades are not in position. too many.
  • the radial distance between two adjacent blades 30 is greater than the distance D between the inner face 15 of the first blade 10 and the inner face 24 of the second blade 20.
  • the distance D between the inner face 15 of the first blade 10 and the inner face 24 of the second blade 20 is at most equal to three times the maximum thickness of the first or second blade.
  • the distance D is of the order of magnitude of this maximum thickness.
  • the distance D between the first blade 10 and the second blade 20 is less than 15 mm.
  • the distance D is between 2 and 5 mm.
  • This distance D can vary along the blade 30 between its leading edge 32 and its trailing edge 33, in which case the distance D is the average distance between the two blades.
  • each of the blades 30 has a profile such that turbulence / vortices of the flow of air along this blade 30 are minimized.
  • the blades 30 substantially follow the flow lines of the air flow in the space 40 between the first blade 10 and the second blade 20 as it would take place if these blades 30 were not present, in order to disturb this airflow to a minimum.
  • the profile and the disposition of the first blade 30 A which is the closest to the wall (radially outer surface 81) of the platform 80, and the profile and the disposition of the last blade 30 N , which is the most close to the wall (radially inner surface 91) of the housing 90, are of particular importance.
  • the flow lines of the flow between the blades are defined in particular by the wall 81 of the platform 80 and the wall 91 of the casing 90 at the radially inner and outer ends respectively of the blade, that is to say to say that the flow lines near these walls are substantially parallel to these walls.
  • the first blade 30 A is substantially parallel to the wall 81 of the platform 80
  • the last blade 30 N is substantially parallel to the wall 91 of the housing 90, as shown in FIGS. Figures 4 and 5 .
  • At least one of the blades 30 is rectilinear.
  • At least one of the blades 30 has at least one curvature in a plane extending along the height of said blade (that is to say a radial plane containing the main axis P of the turbomachine).
  • the blades 30 do not follow the flow of air in the space 40 as would occur if these blades were not present, and instead that these blades force the air to to flow more towards the foot of the dawn 100.
  • a divergence of the flow of air between two blades generally occurs (that is to say that the flow of air flowing between two adjacent blades tends to climb from the foot to the head of dawn when it runs along these blades) which is undesirable.
  • the flow of air is influenced between two adjacent blades 100, and thus contributes to reducing the divergence of this flow of air.
  • each of the blades 30 is shown with a constant thickness between its leading edge 32 and its trailing edge 33 (the thickness of a blade 30 being its dimension according to the height of the blade 100 to which it belongs).
  • the leading edges 32 and the trailing edges 33 of the blades 30 are substantially rectangular.
  • the thickness of a blade 30 may decrease from its middle to its leading edge 32 so that the leading edge 32 forms an edge.
  • the thickness of a blade 30 may decrease from its center towards its trailing edge 33 so that this trailing edge 33 forms an edge. In this way, the disturbances of the air flow in the space 40 between the first blade 10 and the second blade 20 are decreased relative to a blade of constant thickness.
  • This reduction in thickness of the blade 30 may be progressive, or the thickness may be substantially constant along the blade 30, and decrease only in the vicinity of the ends (leading edge 32 and / or trailing edge 33 ), as shown on the figure 5 .
  • the profile of the internal / external face of a blade or a blade is defined as the geometry of the surface of this face.
  • the profiles of the inner face 15 of the first blade and the inner face 24 of the second blade are identical, and the profiles of the outer face 14 of the first blade and the outer face 25 of the second blade are identical.
  • the different geometry of the blade 100 according to the invention with respect to a single blade causes a modification of the aerodynamic characteristics of the blade 100.
  • the outer face 14 of the first blade 10, the inner face 15 of the blade first blade 10, the inner face 24 of the second blade 20, and the outer face 25 of the second blade 20, all have different profiles, so that the flow of air in the space 40 between the first blade 10 and the second blade 20 and around the blade 100 is optimized.
  • the profile of the outer face 14 of the first blade 10 is different from the profile of the convex face 4 of a single blade
  • the profile of the outer face 25 of the second blade 20 is different from the profile of the face. concave 5 of a single blade of the prior art.
  • the profiles of the inner and outer faces of the first blade 10 and the profiles of the inner and outer faces of the second blade 20 are respectively different profiles of the inner and outer faces of a first blade and profiles of the inner faces and external of a second blade which would be placed close to each other without blades 30 connecting them.
  • the blades 30 extend from the leading edge 102 to the trailing edge 103 of the blade 100, as shown in FIG. figure 5 .
  • the blades 30 can start at a distance from the leading edge 102, extending to the trailing edge 103, as shown in FIG. figure 4 .
  • the leading edge 32 of the blades 30 starts set back by a distance d with respect to the leading edge 102 of the blade 100.
  • This distance d is, for example, less than 10% of the distance between the edge d attack 102 and the trailing edge 103.
  • the plane or the surface containing a blade 30 is substantially perpendicular to the inner faces 15, 24 of the blades that this blade 30 joins.
  • a blade 30 may be twisted around the median curve which joins the leading edge 32 of the blade to its trailing edge 33. This twist is intended to cause the blades 30 to substantially follow the flow lines of the blade. the flow of air in the space 40 between the first blade 10 and the second blade 20 as would occur if these blades 30 were not present, in order to disturb this airflow to a minimum.
  • the blade may be made of various materials: steel, nickel-base or cobalt-based superalloy, titanium alloy, aluminum alloy, composite material with a matrix, for example a polymer, ceramic or metal matrix, reinforced with fibers, for example carbon fibers, kevlar, glass, or metal.
  • the blade 100 according to the invention can be manufactured using various methods, depending on the material constituting the blade 100.
  • blade 100 includes two blades.
  • the blade 100 may comprise more than two blades.
  • the blade 100 may further comprise a third blade located between the first blade 10 and the second blade 20, the third blade having a first face and a second face extending between the leading edge 102 and the first blade. trailing edge 103 of the blade 100, the first face being connected to the inner face 15 of the first blade 10 by at least one blade 30 and the second face being connected to the inner face 24 of the second blade 20 by at least this blade 30.
  • the blade 100 comprises three blades, the third blade being located between the first blade 10 and the second blade 20. These three blades are aligned side by side so that the concave face 15 of the first blade 10 is, on substantially all of its surface, opposite the convex face (first face) of the third blade, and that the convex face 24 of the second blade 20 is, over substantially its entire surface, facing the concave face of the third blade.
  • the blades 30 connecting the first blade 10 to the second blade 20 pass through the third blade (or merge with the third blade at their intersection with the third blade, according to the manufacturing method of the blade). It can also be considered that each blade 30 is in two parts, a first part connecting the first blade 10 and the third blade, and, in the extension of this first part, a second portion connecting the third blade and the second blade 20.
  • This blade with three blades is, from an aerodynamic point of view, more effective than a blade 100 with two blades, because the flow of air between these blades and along the outside of this blade is better guided. .
  • the invention applies to the case of a turbomachine comprising at least one blade 100 according to the invention.
  • the invention has been described in the case of non-cooled LP turbine blades or mobile vanes.
  • the invention is also applicable to non-cooled high pressure turbine blades (HP), fixed or mobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • La présente invention concerne une aube possédant un bord d'attaque et un bord de fuite.
  • Dans la description qui suit les termes "bord d'attaque" et "bord de fuite" sont définis par rapport au sens de circulation normal de l'air le long de l'aube.
  • Dans une turbomachine, l'air est comprimé par plusieurs étages d'aubes disposées axialement le long de l'axe principal P de la turbomachine, chaque étage comprenant une série d'aubes disposées le long d'une circonférence autour de cet axe principal P. Un tel étage est appelé roue aubagée. Les aubes s'étendent, depuis une plateforme circonférentielle centrée sur l'axe principal P, sensiblement radialement vers l'extérieur jusqu'à un carter annulaire. La hauteur d'une aube est la dimension radiale de cette aube, c'est-à-dire sensiblement la différence entre le rayon du carter et le rayon de la plateforme.
  • Comme représenté sur la figure 1, qui représente une portion d'une roue aubagée, chaque aube 1 de cette roue aubagée s'étend entre la surface radialement extérieure (paroi) 81 de la plateforme 80 et la surface radialement intérieure (paroi) 91 du carter 90. Cette aube 1, étant constituée d'une seule pale, est appelée aube monopale. L'extrémité radialement intérieure 8 de l'aube 1 est solidaire de la plateforme 80. L'extrémité radialement extérieure 9 de l'aube 1 est fixée au carter 90 s'il s'agit d'une aube fixe, et est libre s'il s'agit d'une aube mobile. La roue aubagée comprend donc cette paroi 81 de la plateforme 80, les aubes 1, et cette paroi 91 du carter 90 selon qu'il s'agit d'aubes 1 fixes ou mobiles.
  • Chaque aube 1 possède un bord d'attaque 2 et un bord de fuite 3, l'axe A (axe de l'aube) reliant ces deux bords étant sensiblement parallèle à l'axe principal P de la turbomachine, ou faisant un angle aigu avec cet axe principal P. Chaque aube 1 est incurvée par rapport à son axe A de telle sorte qu'une des faces reliant son bord d'attaque 2 à son bord de fuite 3 est convexe (face convexe 4), tandis que l'autre face reliant son bord d'attaque à son bord de fuite est concave (face concave 5).
  • Le nombre d'aubes sur une roue aubagée est un compromis entre la réduction du poids de cette roue aubagée, la résistance mécanique d'une aube (soumise à des contraintes thermiques, et à des contraintes mécaniques du fait de la rotation à grande vitesse de la roue aubagée), et le rendement aérodynamique d'une aube et en conséquence le rendement aérodynamique de la roue aubagée. La géométrie actuelle des aubes ne permet pas d'amélioration significative des performances aérodynamiques d'une roue aubagée comportant ces aubes.
  • US 3,692,425 divulgue un assemblage comprenant une pale principale et une pale auxiliaire. WO 2005/040559 divulgue une aube à pales dédoublées, comprenant une première pale possédant un bord d'attaque, un bord de fuite, ainsi qu'une face interne et une face externe qui s'étendent entre ledit bord d'attaque et ledit bord de fuite, une deuxième pale possédant un bord d'attaque, un bord de fuite, ainsi qu'une face interne et une face externe qui s'étendent entre ledit bord d'attaque et ledit bord de fuite, ladite première pale et ladite deuxième pale étant alignées côte à côte de telle sorte que ladite face interne de la première pale est, uniquement sur une partie de sa surface, en regard d'une partie de ladite face interne de la deuxième pale, le bord d'attaque de ladite première pale et le bord d'attaque de ladite deuxième pale formant un bord d'attaque de l'aube, le bord de fuite de ladite première pale et le bord de fuite de ladite deuxième pale formant un bord de fuite de l'aube, et l'aube comprenant au moins une lame reliant ladite face interne de la première pale et ladite face interne de la deuxième pale, ladite au moins une lame s'étendant jusqu'audit bord de fuite, ledit bord de fuite de la première pale étant nettement décalé dudit bord de fuite de la deuxième pale.
  • L'invention vise à proposer des aubes qui possèdent un meilleur rendement aérodynamique, sans compromettre la résistance mécanique de ces aubes.
  • Ce but est atteint grâce à une aube selon la revendication 1.
  • Grâce à ces dispositions, l'aube selon l'invention a une résistance mécanique accrue comparée à une aube constituée d'une seule pale. Cette résistance mécanique accrue autorise une réduction de l'épaisseur moyenne de chacune des pales constituant l'aube. Cette réduction d'épaisseur contribue à améliorer le rendement aérodynamique de l'aube, puisque l'écoulement naturel de l'air passant autour des pales est moins perturbé. De plus, les lames guident l'air entre les deux pales, cet air guidé contribuant lui-même à guider l'air s'écoulant le long des parois externes des deux pales au niveau du bord de fuite de l'aube, en particulier grâce au fait que les lames 30 s'étendent jusqu'au bord de fuite de l'aube. Ainsi, les turbulences de l'écoulement au niveau du bord de fuite sont minimisées. Par conséquent, le rendement aérodynamique de l'aube est encore amélioré.
  • Avantageusement, l'aube comporte au minimum trois lames.
  • Ce nombre plus important de lames permet de mieux rigidifier l'aube, et de mieux guider l'air s'écoulant dans l'espace entre la première aube et la deuxième aube.
  • L'invention concerne également une roue aubagée comportant sur sa circonférence une série d'aubes selon l'invention.
  • L'amélioration du rendement aérodynamique de chacune des aubes selon l'invention (par rapport à une aube monopale), rendue possible grâce à leur géométrie, autorise un espacement plus grand des aubes entre elles le long de la circonférence de la plateforme de la roue aubagée par rapport à l'espacement entre des aubes monopale sur une roue aubagée de l'art antérieur. Au total, malgré le fait qu'une aube individuelle selon l'invention puisse être d'un poids supérieur au poids d'une aube monopale, une roue aubagée selon l'invention peut donc être de poids égal ou inférieur à une roue aubagée munie d'aubes monopale, et avec un rendement supérieur.
  • L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
    • la figure 1 est une vue en perspective d'aubes selon l'art antérieur,
    • la figure 2 est une vue en perspective d'une aube selon l'invention,
    • la figure 3 est une coupe transversale selon le plan III-III de l'aube de la figure 2,
    • la figure 4 est une coupe longitudinale selon le plan IV-IV de l'aube de la figure 3,
    • la figure 5 est une coupe longitudinale d'un autre mode de réalisation de l'aube de la figure 3.
  • La figure 2 représente une aube 100 selon l'invention, montée sur une plateforme 80. L'aube 100 comprend une première pale 10, une deuxième pale 20, chacune de ces pales étant similaire à une aube monopale et possédant donc une face convexe, une face concave, un bord d'attaque et un bord de fuite. Ces deux pales sont alignées côte à côte de telle sorte que la face concave 15 de la première pale 10 est, sur sensiblement toute sa surface, en regard de la face convexe 24 de la deuxième pale 20. Il est ainsi défini un espace 40 entre la première pale 10 et la deuxième pale 20. La face concave 15 est donc appelée face interne 15 de la première pale 10, et la face convexe 24 est donc appelée face interne 24 de la deuxième pale 20. La face convexe 14 de la première pale 10 et la face concave 25 de la deuxième pale 20 constituent les faces externes de l'aube 100. La face convexe 14 est donc appelée face externe 14 de la première pale 10, et la face concave 25 est donc appelée face externe 25 de la deuxième pale 20. L'aube 100 est appelée aube avec pales dédoublées.
  • La face interne 15 de la première pale 10 et la face interne 24 de la deuxième pale 20 sont reliées entre elles par une ou plusieurs lames 30, disposées dans l'espace 40. Chaque lame possède un bord d'attaque 32, un bord de fuite 33, et entre les deux une partie centrale avec une face radialement inférieure 38 (c'est-à-dire orientée vers la plateforme 80) et une face radialement supérieure 39 (c'est-à-dire orientée vers le carter 90).
  • Chaque lame 30 est un élément de liaison continu qui relie ces deux faces internes, cet élément de liaison formant à la fois un renfort qui participe à la cohésion et à la résistance mécanique de l'aube 100, et un guide, le long de sa face radialement inférieure 38, et de sa face radialement supérieure 39, pour l'écoulement de l'air entre la première pale 10 et la deuxième pale 20. Chaque lame 30 peut avoir son intérieur creux, ou plein.
  • Les lames 30 s'étendent sensiblement depuis le bord d'attaque 12 de la première pale 10 et le bord d'attaque 22 de la deuxième pale 20 jusqu'au bord de fuite 13 de la première pale 10 et au bord de fuite 23 de la deuxième pale 20. Le bord d'attaque 102 de l'aube 100 est ainsi constitué par les bords d'attaque 12 et 22 de la première pale 10 et de la deuxième pale 20, respectivement. Le bord de fuite 103 de l'aube 100 est constitué par les bords de fuite 13 et 23 de la première pale 10 et de la deuxième pale 20, respectivement. Les lames 30 sont orientées selon la direction du bord d'attaque 102 vers le bord de fuite 103, sensiblement perpendiculairement au bord d'attaque 102 et au bord de fuite 103.
  • L'aube 100, puisqu'elle comprend deux pales, possède une résistance mécanique accrue comparée à une aube monopale. Cette résistance mécanique accrue autorise une réduction de l'épaisseur moyenne de chacune des pales constituant l'aube 100, c'est-à-dire que la première pale 10 et la deuxième pale 20 ont chacune une épaisseur moindre que celle d'une aube monopale. Le poids total de l'aube 100 peut même être sensiblement égal au poids d'une aube monopale 1. De plus, comme expliqué plus haut, l'aube 100 a un meilleur rendement aérodynamique qu'une aube monopale, grâce aux lames 30. Sur une roue aubagée comportant des aubes 100 selon l'invention, cette amélioration du rendement aérodynamique autorise un espacement plus grand des aubes 100 entre elles le long de la circonférence de la plateforme 80 de la roue aubagée par rapport à l'espacement entre des aubes monopale sur une roue aubagée de l'art antérieur. Au total, une roue aubagée selon l'invention peut donc être de poids égal ou inférieur à une roue aubagée munie d'aubes monopale. Il en résulte une diminution du poids d'une turbomachine munie de roues aubagées selon l'invention, donc de sa consommation en carburant.
  • De plus, l'aube 100 selon l'invention possède une meilleure tenue à la température qu'une aube monopale, puisque l'aube 100 possède plus de surface d'échange thermique qu'une aube monopale.
  • L'aube 100 peut comporter plusieurs lames 30. Par exemple, l'aube peut comporter au minimum trois lames, avec une première lame 30A située entre 0% et 30% de la hauteur de l'aube 100, une dernière lame 30N située entre 70% et 100% de la hauteur de l'aube 100, et une lame située sensiblement au milieu de la hauteur de l'aube 100, une hauteur de 0% correspondant à l'extrémité radialement interne de l'aube, et une hauteur de 100% correspondant à l'extrémité radialement externe de l'aube. Les lames supplémentaires, le cas échéant, sont situées à intervalles réguliers entre ces lames.
  • Il est important que la première lame 30A ne soit pas trop éloignée de la plateforme 80 (en l'espèce à moins de 30% de la hauteur de l'aube 100) afin de pouvoir plus efficacement diminuer les turbulences générées par la surface radialement extérieure 81 de la plateforme 80 dans l'écoulement. De même, il est important que la dernière lame 30N ne soit pas trop éloignée du carter 90 (en l'espèce à plus de 70% de la hauteur de l'aube 100) afin de pouvoir plus efficacement diminuer les turbulences générées par la surface radialement intérieure 91 du carter 90 dans l'écoulement.
  • L'aube 100 peut comporter un nombre de lames supérieur à trois, par exemple 4, 5, 6, 7, ou plus, réparties sur toute sa hauteur. Les figures 2 à 5 représentent une aube 100 comportant cinq lames 30. Pour permettre un débit d'air suffisant entre la première pale 10 et la deuxième pale 20, et pour minimiser le poids de l'aube 100, il est cependant préférable que les lames ne soient pas en nombre trop important. Ainsi, il est préférable que la distance radiale entre deux lames 30 adjacentes soit supérieure à la distance D entre la face interne 15 de la première pale 10 et la face interne 24 de la deuxième pale 20.
  • La distance D entre la face interne 15 de la première pale 10 et la face interne 24 de la deuxième pale 20 est au plus égale à trois fois l'épaisseur maximale de la première ou deuxième pale. Par exemple, la distance D est de l'ordre de grandeur de cette épaisseur maximale.
  • De préférence la distance D entre la première pale 10 et la deuxième pale 20 est inférieure à 15 mm. Par exemple la distance D est comprise entre 2 et 5 mm. Cette distance D peut varier le long de la lame 30 entre son bord d'attaque 32 et son bord de fuite 33, dans ce cas la distance D est la distance moyenne entre les deux pales.
  • Avantageusement, dans une roue aubagée comportant des aubes 100, chacune des lames 30 possède un profil tel que les turbulences/tourbillons de l'écoulement de l'air le long de cette lame 30 sont minimisées. Par exemple, les lames 30 suivent sensiblement les lignes de flux de l'écoulement d'air dans l'espace 40 entre la première pale 10 et la deuxième pale 20 tel qu'il aurait lieu si ces lames 30 n'étaient pas présentes, afin de perturber au minimum cet écoulement d'air.
  • Notamment, le profil et la disposition de la première lame 30A, qui est la plus proche de la paroi (surface radialement extérieure 81) de la plateforme 80, et le profil et la disposition de la dernière lame 30N, qui est la plus proche de la paroi (surface radialement intérieure 91) du carter 90, ont une importance particulière.
  • En effet, les lignes de flux de l'écoulement entre les pales sont notamment définies par la paroi 81 de la plateforme 80 et la paroi 91 du carter 90 aux extrémités respectivement radialement interne et externe de l'aube, c'est-à-dire que les lignes de flux à proximité de ces parois sont sensiblement parallèles à ces parois. Ainsi, la première lame 30A est sensiblement parallèle à la paroi 81 de la plateforme 80, et la dernière lame 30N est sensiblement parallèle à la paroi 91 du carter 90, comme représenté sur les figures 4 et 5.
  • Par exemple, au moins une des lames 30 est rectiligne.
  • Par exemple, au moins une des lames 30 possède au moins une courbure dans un plan s'étendant selon la hauteur de ladite aube (c'est-à-dire un plan radial contenant l'axe principal P de la turbomachine).
  • Il est possible également que les lames 30 ne suivent pas l'écoulement d'air dans l'espace 40 tel qu'il aurait lieu si ces lames 30 n'étaient pas présentes, et au contraire que ces lames forcent l'air à s'écouler davantage vers le pied de l'aube 100. En effet, il est connu qu'il se produit en général une divergence de l'écoulement d'air entre deux aubes (c'est-à-dire que le flux d'air circulant entre deux aubes adjacentes a tendance à monter du pied vers la tête de l'aube lorsqu'il longe ces aubes) qui est indésirable. En forçant le flux d'air dans l'espace 40 à s'écouler davantage vers le pied de l'aube 100, on influence l'écoulement d'air entre deux aubes 100 adjacentes, et on contribue ainsi à réduire aussi la divergence de cet écoulement d'air.
  • Sur les figures 2 et 4, chacune des lames 30 est représentée avec une épaisseur constante entre son bord d'attaque 32 et son bord de fuite 33 (l'épaisseur d'une lame 30 étant sa dimension selon la hauteur de l'aube 100 à laquelle elle appartient). En conséquence, les bords d'attaque 32 et les bords de fuite 33 des lames 30 sont sensiblement rectangulaires. Alternativement, l'épaisseur d'une lame 30 peut diminuer depuis son milieu vers son bord d'attaque 32 de telle sorte que ce bord d'attaque 32 forme une arête. De plus, ou alternativement, l'épaisseur d'une lame 30 peut diminuer depuis son milieu vers son bord de fuite 33 de telle sorte que ce bord de fuite 33 forme une arête. De la sorte, les perturbations de l'écoulement d'air dans l'espace 40 entre la première pale 10 et la deuxième pale 20 sont diminuées par rapport à une lame d'épaisseur constante.
  • Cette diminution d'épaisseur de la lame 30 peut être progressive, ou l'épaisseur peut être sensiblement constante le long de la lame 30, et ne diminuer qu'au voisinage des extrémités (bord d'attaque 32 et/ou bord de fuite 33), comme représenté sur la figure 5.
  • Le profil de la face interne/externe d'une aube ou d'une pale est défini comme la géométrie de la surface de cette face. Par exemple les profils de la face interne 15 de la première pale et de la face interne 24 de la deuxième pale sont identiques, et les profils de la face externe 14 de la première pale et de la face externe 25 de la deuxième pale sont identiques. Cependant, la géométrie différente de l'aube 100 selon l'invention par rapport à une aube monopale entraîne une modification des caractéristiques aérodynamiques de l'aube 100. Avantageusement, la face externe 14 de la première pale 10, la face interne 15 de la première pale 10, la face interne 24 de la deuxième pale 20, et la face externe 25 de la deuxième pale 20, ont toutes des profils différents, de telle sorte que l'écoulement de l'air dans l'espace 40 entre la première pale 10 et la deuxième pale 20 et autour de l'aube 100 est optimisé. De plus, le profil de la face externe 14 de la première pale 10 est différent du profil de la face convexe 4 d'une aube monopale, et le profil de la face externe 25 de la deuxième pale 20 est différent du profil de la face concave 5 d'une aube monopale de l'art antérieur. En particulier, les profils des faces interne et externe de la première pale 10 et les profils des faces interne et externe de la deuxième pale 20 sont différents respectivement des profils des faces interne et externe d'une première pale et des profils des faces interne et externe d'une deuxième pale qui seraient placées à proximité l'une de l'autre sans lames 30 les reliant entre elles.
  • Les lames 30 s'étendent depuis le bord d'attaque 102 jusqu'au bord de fuite 103 de l'aube 100, comme représenté sur la figure 5. Alternativement, les lames 30 peuvent commencer à une certaine distance du bord d'attaque 102, en s'étendant jusqu'au bord de fuite 103, comme représenté sur la figure 4. Ainsi, le bord d'attaque 32 des lames 30 commence en retrait d'une distance d par rapport au bord d'attaque 102 de l'aube 100. Cette distance d est par exemple inférieure à 10% de la distance entre le bord d'attaque 102 et le bord de fuite 103.
  • Le plan ou la surface contenant une lame 30 est sensiblement perpendiculaire aux faces internes 15, 24 des pales que cette lame 30 joint. Alternativement, une lame 30 peut être en torsion autour de la courbe médiane qui joint le bord d'attaque 32 de la lame à son bord de fuite 33. Cette torsion est destinée à faire en sorte que lames 30 suivent sensiblement les lignes de flux de l'écoulement d'air dans l'espace 40 entre la première pale 10 et la deuxième pale 20 tel qu'il aurait lieu si ces lames 30 n'étaient pas présentes, afin de perturber au minimum cet écoulement d'air.
  • L'aube peut être réalisée en divers matériaux : acier, superalliage à base nickel ou cobalt, alliage de titane, alliage d'aluminium, matériau composite avec une matrice, par exemple une matrice polymère, céramique, ou métallique, renforcée par des fibres, par exemple des fibres de carbone, de kevlar, de verre, ou de métal.
  • L'aube 100 selon l'invention peut être fabriquée en utilisant divers procédés, selon le matériau constituant l'aube 100.
  • Dans la description ci-dessus, l'aube 100 comprend deux pales. Alternativement, l'aube 100 peut comporter plus de deux pales. Par exemple, l'aube 100 peut comporter en outre une troisième pale située entre la première pale 10 et la deuxième pale 20, la troisième pale possédant une première face et une seconde face qui s'étendent entre le bord d'attaque 102 et le bord de fuite 103 de l'aube 100, la première face étant reliée à la face interne 15 de la première pale 10 par au moins une lame 30 et la seconde face étant reliée à la face interne 24 de la deuxième pale 20 par au moins cette lame 30.
  • Ainsi, l'aube 100 comprend trois pales, la troisième pale se situant entre la première pale 10 et la deuxième pale 20. Ces trois pales sont alignées côte à côte de telle sorte que la face concave 15 de la première pale 10 est, sur sensiblement toute sa surface, en regard de la face convexe (première face) de la troisième pale, et que la face convexe 24 de la deuxième pale 20 est, sur sensiblement toute sa surface, en regard de la face concave de la troisième pale. Les lames 30 reliant la première pale 10 à la deuxième pale 20 traversent la troisième pale (ou se fondent avec cette troisième pale à leur intersection avec cette troisième pale, selon le mode de fabrication de l'aube). On peut également considérer que chaque lame 30 est en deux parties, une première partie reliant la première pale 10 et la troisième pale, et, dans le prolongement de cette première partie, une seconde partie reliant la troisième pale et la deuxième pale 20.
  • Cette aube 100 à trois pales est, d'un point de vue aérodynamique, plus efficace qu'une aube 100 à deux pales, car l'écoulement d'air entre ces pales et le long de l'extérieur de cette aube est mieux guidé. En conséquence, il est possible de diminuer le nombre total d'aubes 100 sur une roue aubagée en les espaçant davantage, jusqu'à obtenir une roue aubagée plus légère qu'une roue aubagée avec des aubes monopale.
  • L'invention s'applique au cas d'une turbomachine comportant au moins une aube 100 selon l'invention.
  • L'invention a été décrite dans le cas d'aubes fixes ou mobiles de turbine BP non-refroidies. L'invention s'applique également à des aubes de turbine haute pression (HP) non-refroidies, fixes ou mobiles.

Claims (11)

  1. Aube (100) à pales dédoublées, comprenant une première pale (10) possédant un bord d'attaque (12), un bord de fuite (13), ainsi qu'une face interne (15) et une face externe (14) qui s'étendent entre ledit bord d'attaque (12) et ledit bord de fuite (13), une deuxième pale (20) possédant un bord d'attaque (22), un bord de fuite (23), ainsi qu'une face interne (24) et une face externe (25) qui s'étendent entre ledit bord d'attaque (22) et ledit bord de fuite (23), ladite première pale (10) et ladite deuxième pale (20) étant alignées côte à côte de telle sorte que ladite face interne (15) de la première pale (10) est, sensiblement sur toute sa surface, en regard de ladite face interne (24) de la deuxième pale (20), le bord d'attaque (12) de ladite première pale (10) et le bord d'attaque (22) de ladite deuxième pale (20) formant un bord d'attaque (102) de l'aube, le bord de fuite (13) de ladite première pale (10) et le bord de fuite (23) de ladite deuxième pale (20) formant un bord de fuite (103) de l'aube, et l'aube (100) comprenant au moins une lame (30) reliant ladite face interne (15) de la première pale (10) et ladite face interne (24) de la deuxième pale (20), ladite au moins une lame (30) s'étendant jusqu'audit bord de fuite (103) de l'aube, ledit bord de fuite (13) de la première pale (10) étant aligné et côte à côte avec ledit bord de fuite (23) de la deuxième pale (20).
  2. Aube (100) selon la revendication 1, comportant au minimum trois lames (30).
  3. Aube (100) selon la revendication 2, configurée pour être montée sur une roue aubagée ayant un axe, l'aube (100) comportant une première lame (30A) située entre 0% et 30% de la hauteur de l'aube (100), une dernière lame (30N) située entre 70% et 100% de la hauteur de l'aube (100), et une lame (30) située sensiblement au milieu de la hauteur de l'aube (100), une hauteur de 0% correspondant à l'extrémité radialement interne de l'aube (100) et une hauteur de 100% correspondant à l'extrémité radialement externe de l'aube (100).
  4. Aube (100) selon l'une quelconque des revendications 1 à 3, dans laquelle l'épaisseur de ladite au moins une lame (30) diminue depuis son milieu vers le bord d'attaque (32) de ladite au moins une lame (30) de telle sorte que ce bord d'attaque (32) forme une arête.
  5. Aube (100) selon l'une quelconque des revendications 1 à 4 dans laquelle l'épaisseur de ladite au moins une lame (30) diminue depuis son milieu vers le bord de fuite (33) de ladite au moins une lame (30) de telle sorte que ce bord de fuite (33) forme une arête.
  6. Aube (100) selon l'une quelconque des revendications 1 à 5 dans laquelle ladite face externe (14) de la première pale (10), ladite face interne (15) de la première pale (10), ladite face interne (24) de la deuxième pale (20), et ladite face externe (25) de la deuxième pale (20), ont toutes des profils différents.
  7. Aube (100) selon l'une quelconque des revendications 1 à 6 dans laquelle la distance (D) entre ladite face interne (15) de la première pale et ladite face interne (24) de la deuxième pale est au plus égale à trois fois l'épaisseur maximale de ladite première (10) ou deuxième pale (20).
  8. Aube (100) selon la revendication 7 dans laquelle la distance (D) est inférieure à 15 mm.
  9. Aube (100) selon l'une quelconque des revendications 1 à 8 dans laquelle l'une au moins desdites lames (30) possède au moins une courbure dans un plan s'étendant selon la hauteur de ladite aube.
  10. Roue aubagée comportant sur sa circonférence une série d'aubes (100) à pales dédoublées selon l'une quelconque des revendications 1 à 9.
  11. Turbomachine comportant au moins une aube (100) à pales dédoublées selon l'une quelconque des revendications 1 à 9.
EP09150327.6A 2008-01-10 2009-01-09 Aube à pales dédoublées, roue aubagée et turbomachine associées Active EP2078824B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0850120A FR2926322B1 (fr) 2008-01-10 2008-01-10 Aube bi-pale avec lames.

Publications (2)

Publication Number Publication Date
EP2078824A1 EP2078824A1 (fr) 2009-07-15
EP2078824B1 true EP2078824B1 (fr) 2018-11-07

Family

ID=39832654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09150327.6A Active EP2078824B1 (fr) 2008-01-10 2009-01-09 Aube à pales dédoublées, roue aubagée et turbomachine associées

Country Status (6)

Country Link
US (1) US8021113B2 (fr)
EP (1) EP2078824B1 (fr)
JP (1) JP5474358B2 (fr)
CA (1) CA2649397C (fr)
FR (1) FR2926322B1 (fr)
RU (1) RU2492330C2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145253B2 (en) * 2012-04-05 2018-12-04 Safran Aircraft Engines Stator vane formed by a set of vane parts
US9506353B2 (en) 2012-12-19 2016-11-29 United Technologies Corporation Lightweight shrouded fan blade
US20180017037A1 (en) * 2016-07-14 2018-01-18 James L. Kissel Hub and Rotor Assemby for Wind Turbines with Conjoined Turbine Blades
US20190101128A1 (en) * 2017-10-01 2019-04-04 Papa Abdoulaye MBODJ Wing or blade design for wingtip device, rotor, propeller, turbine, and compressor blades with energy regeneration
FR3081913B1 (fr) * 2018-06-04 2021-01-08 Safran Aircraft Engines Aube de turbomachine comportant une ailette anti-tourbillons
FR3087828B1 (fr) * 2018-10-26 2021-01-08 Safran Helicopter Engines Aubage mobile de turbomachine
JP7390920B2 (ja) * 2020-02-14 2023-12-04 三菱重工業株式会社 昇圧装置、二酸化炭素サイクルプラント及びコンバインドサイクルプラント

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE573799C (de) * 1930-12-05 1933-04-05 Johanna Langhans Geb Ulrich Beschaufelung fuer Gas- und Dampfturbinen
US2714499A (en) * 1952-10-02 1955-08-02 Gen Electric Blading for turbomachines
US3040971A (en) * 1960-03-02 1962-06-26 American Mach & Foundry Methods of compressing fluids with centripetal compressors
US3335483A (en) * 1961-12-19 1967-08-15 Gen Electric Method of manufacturing a stator assembly for turbomachines
US3164367A (en) * 1962-11-21 1965-01-05 Gen Electric Gas turbine blade
US3388888A (en) * 1966-09-14 1968-06-18 Gen Electric Cooled turbine nozzle for high temperature turbine
US3692425A (en) * 1969-01-02 1972-09-19 Gen Electric Compressor for handling gases at velocities exceeding a sonic value
US3883268A (en) * 1971-11-01 1975-05-13 Gen Electric Blunted leading edge fan blade for noise reduction
US3957392A (en) * 1974-11-01 1976-05-18 Caterpillar Tractor Co. Self-aligning vanes for a turbomachine
US4195396A (en) * 1977-12-15 1980-04-01 Trw Inc. Method of forming an airfoil with inner and outer shroud sections
US4464094A (en) * 1979-05-04 1984-08-07 Trw Inc. Turbine engine component and method of making the same
FR2574113A1 (fr) * 1984-12-05 1986-06-06 Lejeloux Patrick Rotor de machine tournante helicoidale
SU1460433A2 (ru) * 1986-10-21 1989-02-23 Свердловский горный институт им.В.В.Вахрушева Лопатка осевого вентил тора
US5088894A (en) * 1990-05-02 1992-02-18 Westinghouse Electric Corp. Turbomachine blade fastening
US5257908A (en) * 1991-11-15 1993-11-02 Ortolano Ralph J Turbine lashing structure
JPH05280495A (ja) * 1992-03-31 1993-10-26 Ishikawajima Harima Heavy Ind Co Ltd ファン動翼
US5368440A (en) * 1993-03-11 1994-11-29 Concepts Eti, Inc. Radial turbo machine
US5524341A (en) * 1994-09-26 1996-06-11 Westinghouse Electric Corporation Method of making a row of mix-tuned turbomachine blades
JPH08159090A (ja) * 1994-12-01 1996-06-18 Sharp Corp 軸流ファン
KR100388158B1 (ko) * 1994-12-28 2003-09-06 가부시키 가이샤 에바라 세이사꾸쇼 가변각유체안내장치를구비한터보기계장치
FR2743113B1 (fr) * 1995-12-28 1998-01-23 Inst Francais Du Petrole Dispositif de pompage ou de compression d'un fluide polyphasique a aubage en tandem
US5797725A (en) * 1997-05-23 1998-08-25 Allison Advanced Development Company Gas turbine engine vane and method of manufacture
JP3668413B2 (ja) * 2000-04-27 2005-07-06 サンキテクノス株式会社 マルチガイドベーン付き軸流式送風機
US6599092B1 (en) * 2002-01-04 2003-07-29 General Electric Company Methods and apparatus for cooling gas turbine nozzles
ITBA20030052A1 (it) * 2003-10-17 2005-04-18 Paolo Pietricola Pale rotoriche e statoriche a profili multipli
DE10355241A1 (de) * 2003-11-26 2005-06-30 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Fluidzufuhr
US7195454B2 (en) * 2004-12-02 2007-03-27 General Electric Company Bullnose step turbine nozzle
US7520728B2 (en) * 2006-09-07 2009-04-21 Pratt & Whitney Canada Corp. HP turbine vane airfoil profile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2649397A1 (fr) 2009-07-10
CA2649397C (fr) 2016-05-10
RU2009100686A (ru) 2010-07-20
FR2926322A1 (fr) 2009-07-17
US8021113B2 (en) 2011-09-20
JP5474358B2 (ja) 2014-04-16
EP2078824A1 (fr) 2009-07-15
FR2926322B1 (fr) 2012-08-03
RU2492330C2 (ru) 2013-09-10
JP2009168024A (ja) 2009-07-30
US20090220348A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
EP2078824B1 (fr) Aube à pales dédoublées, roue aubagée et turbomachine associées
EP2844841B1 (fr) Renfort structurel metallique d'aube en composite de turbomachine
EP2252770B1 (fr) Aube avec plateforme non axisymetrique
EP1726783B1 (fr) Aube creuse de rotor pour la turbine d'un moteur à turbine à gaz, équipée d'une baignoire
EP3212373B1 (fr) Aube composite comprenant une plateforme munie d'un raidisseur
EP2310690B1 (fr) Pale de rouet de compresseur a raccordement elliptique evolutif
EP2257694B1 (fr) Aube avec plateforme 3d comportant un bulbe interaubes
EP2260179A2 (fr) Aube avec plateforme non axisymetrique
EP2673473B1 (fr) Ensemble pale-plateforme pour ecoulement supersonique.
EP3315721A1 (fr) Renfort de bord d'attaque d'une aube de turbomachine
EP2090747A1 (fr) Bord d'attaque de pièce de turbomachine constitué de matériau superélastique
FR2855439A1 (fr) Procede de fabrication d'une aube creuse pour turbomachine.
EP3749838B1 (fr) Aube de turbomachine d'aeronef
WO2017109407A1 (fr) Bouclier de bord d'attaque
EP3394397B1 (fr) Bouclier de bord d'attaque
FR2855441A1 (fr) Aube creuse pour turbomachine et procede de fabrication d'une telle aube.
FR3029242A1 (fr) Aube de turbomachine, comprenant des cloisons entrecroisees pour la circulation d'air en direction du bord de fuite
FR2965843A1 (fr) Rotor pour turbomachine
EP3394396B1 (fr) Bouclier de bord d'attaque
FR2855440A1 (fr) Procede de fabrication d'une aube creuse pour turbomachine.
WO2016174358A1 (fr) Aube de stator a calage variable, comprenant des cloisons transversales entrecroisées et procédé de fabrication d'une telle aube
WO2020249887A1 (fr) Piece annulaire de support d'un palier pour une turbomachine
FR3103855A1 (fr) Structure améliorée de bord d’attaque d’aube.
FR3101107A1 (fr) Aube pour une turbomachine d’aeronef
FR3055352A1 (fr) Aube pour turbomachine dotee d'une structure reduisant les risques d'apparition de criques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20100310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180524

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009055451

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009055451

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 16