EP2072820B1 - Method of analysing the operation of a dosing pump for liquid, especially a fuel dosing pump for a vehicle heater - Google Patents
Method of analysing the operation of a dosing pump for liquid, especially a fuel dosing pump for a vehicle heater Download PDFInfo
- Publication number
- EP2072820B1 EP2072820B1 EP08018650A EP08018650A EP2072820B1 EP 2072820 B1 EP2072820 B1 EP 2072820B1 EP 08018650 A EP08018650 A EP 08018650A EP 08018650 A EP08018650 A EP 08018650A EP 2072820 B1 EP2072820 B1 EP 2072820B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- analysis
- parameter
- piston
- time
- recognized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
- F04B17/04—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
- F04B17/042—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the solenoid motor being separated from the fluid flow
Definitions
- the present invention relates to a method for analyzing the operation of a metering pump for liquid, in particular Brennstoffdosierpumpe for a vehicle heater, which metering a clocked between two end positions reciprocating piston and an associated thereto, by applying a voltage during energization time intervals in respective working strokes of the piston electrically excitable drive unit comprises.
- a method for operating a metering pump according to the preamble of claim 1 is known.
- a metering pump is basically operated by a reciprocating piston for conveying liquid by an electrically energizable drive unit is moved from a first end position to a second end position, including during a energization time interval to the electrically excitable drive unit, a voltage in the form a clocked voltage signal is applied.
- a pulse width modulated voltage results in an example represented by forming the arithmetic mean voltage, which essentially determines how fast the piston moves from its first end position to the second end position, so for example to minimize the volume of a Pump chamber is moved.
- the time of reaching the second end position is a predetermined time after the beginning of a respective energization time interval or after the beginning of the movement Piston should lie.
- this second end position is reached too early or too late can be adjusted by varying the voltage applied to the drive unit, ie by varying the duty cycle of the pulsed voltage, the average applied voltage and thus trying to the time at which the second end position , That is, the stop position, is reached, to move so that it is at or near the predetermined and to be considered as a reference target time.
- this object is achieved by a method for analyzing the operation of a metering pump for liquid, in particular Brennstoffdosierpumpe for a vehicle heater, which metering a clocked between two end positions reciprocating piston and associated with this, by applying a voltage during energization time intervals in each of the working cycles of According to claim 1.
- the method comprises the steps of: determining a start time of movement of the piston as a first analysis quantity and determining an end time of movement of the piston as a second analysis quantity, comparing at least one analysis variable with a reference associated therewith, and based on on the result of the comparison, detection of the presence of a fault condition if the analysis variable deviates from the reference.
- a reference time point to be considered as a reference does not correspond to the respective analysis value or the analysis variable deviates from such a time point by a predetermined extent or not within a time window defined at such time.
- the first analysis variable is only determined if, in one or more preceding work files, the comparison of the second analysis variable with its associated reference indicates the presence of a fault condition.
- This procedure is based on the knowledge that a second analysis variable can only occur if the piston has started to move, ie if a first analysis variable would also be available. Since, if there is a second analysis variable for evaluation, the respectively assigned first analysis variable does not necessarily have to be evaluated, it can be dispensed with, which reduces the processing outlay.
- the error state that is used as the trigger for subsequently determining also the first analysis variable for following work cycles is a state in which no second analysis variable was detected in an energization time interval.
- the second analysis variable is in an excitation time interval before or after the reference assigned to it, the second analysis parameter is attempted in at least one subsequent working cycle by varying the excitation voltage for the drive unit Reference, and that when a variation of the excitation voltage does not lead to a sufficient shift of the second analysis size, is detected on the presence of a fault condition.
- it may be first attempted to generate an indication indicative of the presence of an error condition or to avoid information. Only when it becomes apparent that a variation of the excitation voltage does not lead to the desired result, is then detected on the presence of a fault condition.
- the first analysis variable be formed by forming the first time derivative of the electrical current flowing in an energization time interval and comparing it to an associated first threshold is determined.
- the second analysis variable is determined by forming the second time derivative of the electrical current flowing in an energization time interval and comparing it with an associated second threshold.
- Fig. 1 is a fuel heater to be operated with liquid fuel, such as can be used for example as a heater or heater in a vehicle, generally designated 10.
- the heating device 10 comprises a burner region 12 with a combustion chamber 16 formed in a housing 14. Combustion air is conducted into the combustion chamber 16 via a combustion air blower 18.
- a metering pump 20 conveys the fuel required for combustion with the combustion air in liquid form from a reservoir 22 to the combustion chamber 16, where, for example, a porous evaporator medium can take up this fuel and deliver it into the combustion chamber 16 in vapor form.
- a drive device 24 controls the operation of the heater 10 by generating corresponding excitation signals for the combustion air blower 18 and the metering pump 20 or other system areas not shown here, such as an ignition device or an electrically energizable heating element serving to heat an evaporator medium.
- the metering pump 20 is in principle constructed with a piston 26 which is in a cylinder 28 between an end position with maximum volume of a pump chamber 30 and an end position with minimum volume of the pump chamber 30 back and forth.
- the piston 26 is biased by a biasing arrangement, so for example a spring, in the direction of its first end position, ie the maximum volume of the pump chamber 30.
- An electrically excitable drive unit 32 that is, for example, an electromagnet arrangement, shifts in electrical Exciting the piston 26 to promote the liquid contained therein by reducing the pump chamber volume 30 in the direction of the combustion chamber 16.
- a stop is provided for the piston 26 which defines the second end position of the piston 26 with a minimum volume of the pump chamber 30.
- the drive device 24 In order to move the piston 26, the drive device 24 outputs a pulsed voltage signal U for each operating cycle of the piston 26, that is to say generally a pulse width modulated (PWM) signal.
- This signal U can be tapped from the supply voltage, wherein by adjusting the duty cycle during the application of the voltage signal U adjusting average voltage, for example, represented by the arithmetic mean, can be adjusted.
- the electrical current I flowing when the voltage signal U is present can be detected by an ammeter 34, which inputs a corresponding signal into the control device 24.
- the flow meter 34 may also be part of the drive device 24 itself.
- the Fig. 2 shows in principle the time course of the current I during a power stroke and normal operation.
- a working stroke of the piston 26 is defined by a complete reciprocation and begins, for example, each at a time t e , ie the time of the beginning of an energization time interval I e , during which the in the Fig. 2 symbolically indicated by dashed line pulsed voltage signal U is applied to the drive unit 32.
- a power stroke I A of the piston 26 ends with the beginning of the next energization time interval I e , ie the next time t e .
- the pulsed voltage signal U is applied to the drive unit 32 at time t e , the current I initially increases until the magnetic force acting on the piston 26 or an armature or the like coupled thereto is so great that at a time t s the piston 26 begins to move.
- the current flow goes into a shallower section.
- the stop position ie the second end position, is reached, beyond which the piston 26 can not move on.
- Such metering pumps are operated so that working at a working frequency in the range of 3-10Hz, ie 3 to 10 work cycles per second.
- the excitation time interval I e can take a period of about 40 ms.
- the point in time t at which the second end position, ie the movement stop, is reached should be about 35 ms after the start t e of the excitation time interval I e , so that the time span over which the drive unit stops when the piston 26 is no longer moving 32 is energized as short as possible, however, however, it can be ensured that the piston 26 reaches this second end position.
- the Fig. 3 shows in association with Fig. 2 the first time derivative of the in Fig. 2 represented current flow.
- the current initially rises abruptly.
- the slope of the current waveform then decreases until reaching the time t s again.
- the gradient continues to fall or fall, so that a negative gradient, ie a negative first time derivative, results.
- the gradient again increases suddenly and then decreases again, until the time t a, that at the timing at which the energization is actually completed, the current drops again, and thus the Gradient takes a negative value.
- current curve shows the Fig. 4 the second temporal derivative, ie the first time derivative of the in Fig. 3 shown gradients.
- Fig. 4 the second temporal derivative, ie the first time derivative of the in Fig. 3 shown gradients.
- it is characteristic in relation to the two at the times t e and t at the sudden increase of the second time derivative.
- This behavior of the first derivative and the second time derivative can be used to the two times t s and t on, thus to determined the start of the movement of the piston 26 and the reaching of the stop position of the piston 26th
- respective thresholds S 1 and S 2 are given. If the first time derivative of the current profile falls below the first threshold S 1 , this is indicated as an indication of the in Fig. 2 recognizable transition into a much flatter current flow, so the beginning of movement evaluated.
- the point of time t s determined in this way can, as explained below, then be taken into account as the first analysis variable for further evaluation.
- the time t can be recognized to when the second time derivative exceeds the associated threshold S 2, namely from the beginning of the excitation time interval I e exceeds a second time.
- the thus determined time t an can then be used as a second analysis variable for further processing.
- the two times t s and t can be determined in each case as a first analysis variable and as a second analysis variable, for example in the manner described above. Based on these sizes can then, as in the following with reference on the Fig. 5 to 7 explained, various error conditions during operation of the metering pump 10 are detected.
- the Fig. 5 shows the course of the current I, plotted against time, in the event that, for example, due to shocks or due to an almost complete emptying of the reservoir 22, the metering pump 20 at least temporarily promotes air instead of the liquid fuel.
- the time t s at which the piston 26 begins to move will in this case occur approximately at the same time as it is in the correct mode of operation. Due to the fact that a lesser movement resistance will be present already from the beginning, it is possible that the piston 26 starts to move slightly earlier.
- FIG. 6 Another error condition is in Fig. 6 shown.
- a first analysis variable that is to say the time t s
- a second analysis variable that is to say the time t on
- a code indicating this error state that is to say movement blocking of the piston 26, can be set or stored or a numerical value indicating the non-occurrence of the respective analysis variable can be stored as the corresponding time.
- the Fig. 7 shows an error condition in which within the excitation time interval I e, although the first analysis value t s occurs, so at time t s, the piston 26 begins to move until the end time t a of the excitation time interval , the occurrence or reaching the end stop could not be detected , so no second analysis size could be determined. So, this is a condition in which, upon excitement, the piston 26 has begun to move, but obviously moves too slowly. This can be caused, for example, by the fact that the fuel to be pumped is too tough, or that in the conveying path of the fuel downstream of the metering pump 20, a delivery backlog has occurred, for example due to the blockage of a delivery line.
- a corresponding error code can be set, which indicates that there is a problem in conveying the fuel through the lines is present, that in principle, however, the metering pump 20 would be able to promote the fuel.
- the actual applied voltage can be evaluated or stored as a further analysis variable.
- the memory already described above can be read out and evaluated with regard to the data stored therein.
- the occurrence of the malfunction may then be completely prevented. Also in the in the Fig. 6 7 and 7 can immediately, if it has been detected in one or more consecutive work cycles, for example, by increasing the average applied voltage to be tried to move the piston faster or at all. If the system is in a startup phase, in which case the fuel line must first be refilled, the information can also be used to extend this start phase accordingly, until it is ensured that there is sufficient fuel in the line to feed in to begin in the combustion chamber 16.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Air-Conditioning For Vehicles (AREA)
- Loading And Unloading Of Fuel Tanks Or Ships (AREA)
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Analysieren des Betriebs einer Dosierpumpe für Flüssigkeit, insbesondere Brennstoffdosierpumpe für ein Fahrzeugheizgerät, welche Dosierpumpe einen getaktet zwischen zwei Endstellungen hin- und herbewegbaren Kolben und eine diesem zugeordnete, durch Anlegen einer Spannung während Erregungszeitintervallen in jeweiligen Arbeitstakten des Kolbens elektrisch erregbare Antriebseinheit umfasst.The present invention relates to a method for analyzing the operation of a metering pump for liquid, in particular Brennstoffdosierpumpe for a vehicle heater, which metering a clocked between two end positions reciprocating piston and an associated thereto, by applying a voltage during energization time intervals in respective working strokes of the piston electrically excitable drive unit comprises.
Aus der
Es ist die Zielsetzung der vorliegenden Erfindung, ein Verfahren bereitzustellen, mit welchem der Betrieb einer Dosierpumpe für Flüssigkeit analysiert werden kann, um das Vorliegen von Fehlerzuständen zu erkennen.It is the object of the present invention to provide a method by which the operation of a fluid metering pump can be analyzed to detect the presence of fault conditions.
Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zum Analysieren des Betriebs einer Dosierpumpe für Flüssigkeit, insbesondere Brennstoffdosierpumpe für ein Fahrzeugheizgerät, welche Dosierpumpe einen getaktet zwischen zwei Endstellungen hin- und herbewegbaren Kolben und eine diesem zugeordnete, durch Anlegen einer Spannung während Erregungszeitintervallen in jeweiligen Arbeitstakten des Kolbens elektrisch erregbare Antriebseinheit umfasst, gemäß Anspruch 1. Das Verfahren umfasst die Maßnahmen: Ermitteln eines Startzeitpunktes der Bewegung des Kolbens als erste Analysegröße und Ermitteln eines Endzeitpunktes der Bewegung des Kolbens als zweite Analysegröße, Vergleichen wenigstens einer Analysegröße mit einer dieser zugeordneten Referenz und, beruhend auf dem Vergleichsergebnis, Erkennen auf Vorliegen eines Fehlerzustandes, wenn die Analysegröße von der Referenz abweicht.According to the invention, this object is achieved by a method for analyzing the operation of a metering pump for liquid, in particular Brennstoffdosierpumpe for a vehicle heater, which metering a clocked between two end positions reciprocating piston and associated with this, by applying a voltage during energization time intervals in each of the working cycles of According to
Bei der vorliegenden Erfindung wird also beruhend auf demjenigen Zeitpunkt, zu welchem ein Kolben einer Dosierpumpe sich zu bewegen beginnt, oder/und beruhend auf demjenigen Zeitpunkt, zu welchem der Kolben seine Endposition, also beispielsweise eine Anschlagposition, erreicht, und beruhend auf jeweils zugeordneten Referenzwerten bestimmt, ob der Kolben sich in normaler Art und Weise, also korrekt bewegt hat, oder ob der Bewegungsverlauf von dem normal zu erwartenden abweicht, was sich dadurch erkennbar macht, dass auch die jeweilige Analysegröße von der zugeordneten Referenz abweicht. Es sei hier darauf hingewiesen, dass das Abweichen einer jeweiligen Analysegröße von einer Referenz so zu verstehen ist, dass beispielsweise ein als Referenz zu betrachtender Sollzeitpunkt nicht der jeweiligen Analysegröße entspricht oder dass die Analysegröße um ein vorbestimmtes Ausmaß von einem derartigen Zeitpunkt abweicht bzw. nicht innerhalb eines um einen derartigen Zeitpunkt definierten Zeitfensters liegt.In the present invention, therefore, based on the time at which a piston of a metering pump begins to move, and / or based on the time at which the piston reaches its end position, for example, a stop position, and based on respectively assigned reference values determines whether the piston has moved in a normal manner, that is, correctly, or whether the course of movement deviates from the normal expected, which is characterized makes it clear that the respective analysis variable deviates from the assigned reference. It should be pointed out here that the deviation of a respective analysis variable from a reference is to be understood such that, for example, a reference time point to be considered as a reference does not correspond to the respective analysis value or the analysis variable deviates from such a time point by a predetermined extent or not within a time window defined at such time.
Erfindungsgemäß ist ferner vorgesehen, dass die erste Analysegröße nur dann ermittelt wird, wenn in einem oder mehreren vorangehenden Arbeitsakten der Vergleich der zweiten Analysegröße mit der ihr zugeordneten Referenz das Vorliegen eines Fehlerzustandes indiziert. Diese Vorgehensweise beruht auf der Erkenntnis, dass eine zweite Analysegröße zwangsweise nur dann auftreten kann, wenn der Kolben sich zu bewegen begonnen hat, also auch eine erste Analysegröße verfügbar wäre. Da dann, wenn eine zweite Analysegröße zur Auswertung vorliegt, nicht notwendigerweise die jeweils zugeordnete erste Analysegröße ausgewertet werden muss, kann auf deren Ermittlung verzichtet werden, was den Verarbeitungsaufwand reduziert.According to the invention, it is further provided that the first analysis variable is only determined if, in one or more preceding work files, the comparison of the second analysis variable with its associated reference indicates the presence of a fault condition. This procedure is based on the knowledge that a second analysis variable can only occur if the piston has started to move, ie if a first analysis variable would also be available. Since, if there is a second analysis variable for evaluation, the respectively assigned first analysis variable does not necessarily have to be evaluated, it can be dispensed with, which reduces the processing outlay.
Der Fehlerzustand, der zum nachfolgenden Ermitteln auch der ersten Analysegröße für folgende Arbeitstakte als Auslöser verwendet wird, ein Zustand ist, in welchem in einem Erregungszeitintervall keine zweite Analysegröße erkannt wurde.The error state that is used as the trigger for subsequently determining also the first analysis variable for following work cycles is a state in which no second analysis variable was detected in an energization time interval.
Um insbesondere für spätere Analysevorgänge, die beispielsweise in einem Labor bzw. einer Werkstatt vorgenommen werden können, ausreichend Information zur Verfügung zu haben, wird vorgeschlagen, dass in Zuordnung zu einem jeweiligen Arbeitstakt des Kolbens wenigstens eine Analysegröße oder/und das Vergleichsergebnis des Vergleichs wenigstens einer Analysegröße mit der ihr zugeordneten Referenz gespeichert wird.In order to have sufficient information in particular for later analysis processes, which can be carried out for example in a laboratory or a workshop, it is proposed that in association at least one analysis variable and / or the comparison result of the comparison of at least one analysis variable with the reference assigned to it is stored for a respective working cycle of the piston.
Bei dem erfindungsgemäßen Verfahren kann vorgesehen sein, dass dann, wenn die zweite Analysegröße vor der ihr zugeordneten Referenz liegt, auf Vorliegen eines das Fördern von Luft umfassenden Fehlerzustandes erkannt wird.In the case of the method according to the invention, it can be provided that, when the second analysis variable lies in front of the reference assigned to it, it is detected that there is an error state comprising the conveying of air.
Weiter ist es möglich, dass dann, wenn die zweite Analysegröße in einem Erregungszeitintervall und nach der ihr zugeordneten Referenz liegt, auf Vorliegen eines ein erschwertes Fördern umfassenden Fehlerzustandes geschlossen wird.Furthermore, it is possible that when the second analysis variable is in an excitation time interval and after the reference assigned to it, it is concluded that a fault condition comprising a difficult conveying is present.
Gemäß einem weiteren Aspekt kann vorgesehen sein, dass dann, wenn in einem Erregungszeitintervall keine zweite Analysegröße erkannt wird und eine erste Analysegröße erkannt wird, auf Vorliegen eines ein erschwertes Fördern umfassenden Fehlerzustandes geschlossen wird.According to a further aspect, it can be provided that when no second analysis variable is detected in an excitation time interval and a first analysis variable is detected, it is concluded that a fault condition comprising a difficult conveying is present.
Weiter ist es möglich, dass dann, wenn in einem Erregungszeitintervall keine erste Analysegröße erkannt wurde, auf Vorliegen eines eine Bewegungsblockierung des Kolbens umfassenden Fehlerzustandes erkannt wird.Furthermore, if no first analysis variable was detected in an excitation time interval, it is possible to detect the presence of an error state comprising a movement blocking of the piston.
Bei einer besonders vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens wird vorgeschlagen, dass dann, wenn die zweite Analysegröße in einem Erregungszeitintervall vor oder nach der ihr zugeordneten Referenz liegt, in wenigstens einem folgenden Arbeitstakt durch Variation der Erregungsspannung für die Antriebseinheit versucht wird, die zweite Analysegröße in Richtung Referenz zu verschieben, und dass dann, wenn eine Variation der Erregungsspannung nicht zu einer ausreichenden Verschiebung der zweiten Analysegröße führt, auf Vorliegen eines Fehlerzustandes erkannt wird. Gemäß diesem Aspekt kann also zunächst versucht werden, das Erzeugen einer auf das Vorliegen eines Fehlerzustands hinweisenden Anzeige bzw. Information zu vermeiden. Erst wenn auch erkennbar wird, dass eine Variation der Erregungsspannung nicht zu dem gewünschten Ergebnis führt, wird dann auf das Vorliegen eines Fehlerzustands erkannt.In a particularly advantageous development of the method according to the invention, it is proposed that if the second analysis variable is in an excitation time interval before or after the reference assigned to it, the second analysis parameter is attempted in at least one subsequent working cycle by varying the excitation voltage for the drive unit Reference, and that when a variation of the excitation voltage does not lead to a sufficient shift of the second analysis size, is detected on the presence of a fault condition. Thus, according to this aspect, it may be first attempted to generate an indication indicative of the presence of an error condition or to avoid information. Only when it becomes apparent that a variation of the excitation voltage does not lead to the desired result, is then detected on the presence of a fault condition.
Um in präziser Art und Weise ermitteln zu können, wann ein Kolben beginnt oder begonnen hat, sich zu bewegen, wird vorgeschlagen, dass die erste Analysegröße durch Bilden der ersten zeitlichen Ableitung des in einem Erregungszeitintervall fließenden elektrischen Stroms und Vergleichen derselben mit einer zugeordneten ersten Schwelle ermittelt wird.In order to determine in a precise manner when a piston starts or has begun to move, it is proposed that the first analysis variable be formed by forming the first time derivative of the electrical current flowing in an energization time interval and comparing it to an associated first threshold is determined.
Weiter kann zur präzisen Ermittlung des Erreichens der zweiten Endstellung, also der Anschlagposition vorgesehen sein, dass die zweite Analysegröße durch Bilden der zweiten zeitlichen Ableitung des in einem Erregungszeitintervall fließenden elektrischen Stroms und Vergleichen derselben mit einer zugeordneten zweiten Schwelle ermittelt wird.Furthermore, for the precise determination of the reaching of the second end position, ie the stop position, it may be provided that the second analysis variable is determined by forming the second time derivative of the electrical current flowing in an energization time interval and comparing it with an associated second threshold.
Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Figuren detailliert beschrieben. Es zeigt:
- Fig. 1
- eine Prinzipdarstellung eines Fahrzeugheizgeräts mit einer durch elektrische Erregung betreibbaren Dosierpumpe;
- Fig. 2
- ein Diagramm, welches den zeitlichen Verlauf des Erregungs- stroms der Dosierpumpe in Zuordnung zu einem Erregungszeitin- tervall bei korrektem Betrieb der Dosierpumpe wiedergibt;
- Fig. 3
- in prinzipieller Darstellung die erste zeitliche Ableitung des Erre- gungsstroms;
- Fig. 4
- in prinzipieller Darstellung die zweite zeitliche Ableitung des Erre- gungsstroms;
- Fig. 5
- ein der
Fig. 2 entsprechendes Diagramm für einen Fehlerzustand, in welchem die Dosierpumpe Luft fördert; - Fig. 6
- ein der
Fig. 2 entsprechendes Diagramm für einen Fehlerzustand, in welchem ein Kolben der Dosierpumpe klemmt; - Fig. 7
- ein der
Fig. 2 entsprechendes Diagramm für einen Fehlerzustand, in welchem der Kolben der Dosierpumpe sich zu langsam bewegt.
- Fig. 1
- a schematic diagram of a vehicle heater with an operable by electrical excitation metering pump;
- Fig. 2
- a diagram which shows the time course of the excitation current of the metering pump in association with an excitation time interval during correct operation of the metering pump;
- Fig. 3
- in a schematic representation the first time derivative of the excitation current;
- Fig. 4
- in a schematic representation, the second time derivative of the excitation current;
- Fig. 5
- one of the
Fig. 2 corresponding diagram for a fault condition, in which the metering pump promotes air; - Fig. 6
- one of the
Fig. 2 corresponding diagram for a fault condition in which a piston of the metering pump is stuck; - Fig. 7
- one of the
Fig. 2 corresponding diagram for a fault condition in which the piston of the metering pump moves too slowly.
In
Eine Ansteuervorrichtung 24 steuert den Betrieb des Heizgeräts 10, indem sie entsprechende Erregungssignale für das Verbrennungsluftgebläse 18 und die Dosierpumpe 20 bzw. auch weitere hier nicht gezeigte Systembereiche, wie zum Beispiel ein Zündorgan oder ein zum Erwärmen eines Verdampfermediums dienendes elektrisch erregbares Heizelement erzeugt.A
Die Dosierpumpe 20 ist prinzipiell mit einem Kolben 26 aufgebaut, der in einem Zylinder 28 zwischen einer Endstellung mit maximalem Volumen einer Pumpenkammer 30 und einer Endstellung mit minimalem Volumen der Pumpenkammer 30 hin- und herbewegbar ist. Im Allgemeinen ist der Kolben 26 durch eine Vorspannanordnung, also beispielsweise eine Feder, in Richtung seiner ersten Endstellung, also derjenigen mit maximalem Volumen der Pumpenkammer 30, vorgespannt. Eine elektrisch erregbare Antriebseinheit 32, also beispielsweise eine Elektromagnetanordnung, verschiebt bei elektrischer Erregung den Kolben 26, um durch Verringerung des Pumpenkammervolumens 30 den darin enthaltenen flüssigen Brennstoff in Richtung Brennkammer 16 zu fördern. Dabei ist für den Kolben 26 ein Anschlag vorgesehen, der bei minimalem Volumen der Pumpenkammer 30 die zweite Endstellung des Kolbens 26 definiert.The
Um den Kolben 26 zu bewegen, gibt die Ansteuervorrichtung 24 für jeden Arbeitstakt des Kolbens 26 ein gepulstes Spannungssignal U, also im Allgemeinen ein pulsweitenmoduliertes (PWM) Signal ab. Dieses Signal U kann von der Versorgungsspannung abgegriffen werden, wobei durch Einstellung des Tastverhältnisses die während des Anliegens des Spannungssignals U sich einstellende mittlere Spannung, beispielsweise repräsentiert durch das arithmetische Mittel, eingestellt werden kann. Der bei Anliegen des Spannungssignals U fließende elektrische Strom I kann durch einen Strommesser 34 erfasst werden, der ein entsprechendes Signal in die Ansteuervorrichtung 24 eingibt. Selbstverständlich kann der Strommesser 34 auch Bestandteil der Ansteuervorrichtung 24 selbst sein.In order to move the piston 26, the
Die
Wird also zum Zeitpunkt te das gepulste Spannungssignal U an die Antriebseinheit 32 angelegt, so steigt der Strom I zunächst an, bis die auf den Kolben 26 bzw. einen damit gekoppelten Anker oder dergleichen einwirkende Magnetkraft so groß ist, dass zu einem Zeitpunkt ts der Kolben 26 beginnt, sich zu bewegen. Durch die Bewegung des Kolbens 26 und die dabei auftretende Rückinduktion geht der Stromverlauf in einen flacheren Abschnitt über. Zu einem Zeitpunkt tan ist die Anschlagstellung, also die zweite Endstellung, erreicht, über welche hinaus der Kolben 26 sich nicht weiterbewegen kann. Da ab dem Zeitpunkt tan der Kolben 26 sich also nicht mehr weiterbewegt, entsteht auch keine Gegeninduktion, so dass der Strom I zunächst wieder ansteigt, bis zum Zeitpunkt ta das Ende des Erregungszeitintervalls Ie erreicht ist und der Strom I dann beispielsweise exponentiell abklingt. Ab dem Zeitpunkt ta beginnt der Kolben 26 sich dann wieder in seine erste Endstellung zurückzubewegen.Thus, if the pulsed voltage signal U is applied to the
Derartige Dosierpumpen werden so betrieben, dass mit einer Arbeitstaktfrequenz im Bereich von 3-10Hz, also 3 bis 10 Arbeitstakten pro Sekunde, gearbeitet wird. Innerhalb eines derartigen Arbeitstaktes IA kann das Erregungszeitintervall Ie eine Zeitspanne von etwa 40 ms einnehmen. Idealerweise sollte dabei der Zeitpunkt tan, zu welchem die zweite Endstellung, also der Bewegungsanschlag, erreicht wird, etwa 35 ms nach dem Beginn te des Erregungszeitintervalls Ie liegen, so dass die Zeitspanne, über welche bei nicht mehr bewegtem Kolben 26 die Antriebseinheit 32 weiterhin bestromt wird, so kurz als möglich gehalten wird, gleichwohl jedoch sichergestellt werden kann, dass der Kolben 26 diese zweite Endstellung erreicht.Such metering pumps are operated so that working at a working frequency in the range of 3-10Hz, ie 3 to 10 work cycles per second. Within such a working cycle I A , the excitation time interval I e can take a period of about 40 ms. Ideally, the point in time t at which the second end position, ie the movement stop, is reached, should be about 35 ms after the start t e of the excitation time interval I e , so that the time span over which the drive unit stops when the piston 26 is no longer moving 32 is energized as short as possible, however, however, it can be ensured that the piston 26 reaches this second end position.
Die
In Zuordnung zur in
Dieses Verhalten der ersten zeitlichen Ableitung und der zweiten zeitlichen Ableitung kann dazu genutzt werden, die beiden Zeitpunkte ts und tan, also den Beginn der Bewegung des Kolbens 26 und das Erreichen der Anschlagstellung des Kolbens 26, zu ermittelt. In Zuordnung zur ersten zeitlichen Ableitung und zur zweiten zeitlichen Ableitung sind jeweilige Schwellen S1 bzw. S2 vorgegeben. Unterschreitet die erste zeitliche Ableitung des Stromverlaufs die erste Schwelle S1, wird dies als Indiz für den in
Es sei hier darauf hingewiesen, dass grundsätzlich diese beiden Analysegrößen bzw. Zeitpunkte auch in anderer Weise bestimmt werden können. So könnte beispielsweise nur mit dem Gradienten, also der ersten zeitlichen Ableitung gearbeitet werden, wobei der Zeitpunkt tan als der Zeitpunkt bestimmt werden könnte, in welchem der Gradient die zugeordnete Schwelle S1 zum zweiten mal innerhalb eines Erregungszeitintervalls bzw. zum ersten mal nach dem Zeitpunkt ts überschreitet.It should be noted here that in principle these two analysis variables or times can also be determined in another way. For example, it would be possible to work only with the gradient, that is to say the first time derivative, wherein the time t on could be determined as the time in which the gradient crosses the associated threshold S 1 for the second time within an excitation time interval or for the first time after Time t s exceeds.
Während des Betriebs der Dosierpumpe 20 können die beiden Zeitpunkte ts und tan jeweils als erste Analysegröße und als zweite Analysegröße beispielsweise in der vorangehend beschriebenen Art und Weise ermittelt werden. Beruhend auf diesen Größen können dann, wie im Folgenden mit Bezug auf die
Die
Da im Verlaufe dieser Bewegung der Widerstand, gegen welchen der Kolben 26 verschoben werden muss, deutlich geringer ist, da keine Flüssigkeit aus der Pumpenkammer 30 verdrängt werden muss, wird der Kolben 26 seine zweite Bewegungsendstellung deutlich früher erreichen, so dass der als zweite Analysegröße verwendete Zeitpunkt tan im Vergleich zur normalen Funktionalität, wie sie in
Tritt bei einem derartigen System dann eine Betriebsstörung, beispielsweise in Form eines Flammabrisses auf, da nicht mehr ausreichend Brennstoff zur Verfügung steht, so kann in einer nachfolgenden Auswertung der Grund dafür erkannt werden, da bereits vor dem Auftreten des Flammabrisses Arbeitstakte aufgetreten sind, denen ein den Flammabriss indizierender Fehlercode zugeordnet und abspeichert ist. Wird lediglich die zweite Analysegröße an sich abgespeichert, so kann durch spätere Auswertung, also durch späteren Vergleich derselben mit der zugeordneten Referenz, erkannt werden, dass der aufgetretene Flammabriss durch das Fördern von Luft bedingt oder zumindest begünstigt war.Occurs in such a system then a malfunction, for example in the form of a flame, because not enough fuel is available, then the reason can be recognized in a subsequent evaluation, since already before the occurrence of the flame burst working cycles have occurred associated with the flameout indicative error code and is stored. If only the second analysis variable is stored per se, it can be recognized by subsequent evaluation, that is to say by later comparison of the same with the associated reference, that the occurring flameout was conditioned or at least favored by the conveyance of air.
Da derartige Fehlerzustände im Allgemeinen innerhalb vergleichsweise kurzer Zeit zu Betriebsstörungen führen, kann zum möglichst effizienten Nutzen des vorhandenen Speichervolumens so vorgegangen werden, dass lediglich in Zuordnung zu einer bestimmten Anzahl, beispielsweise 100, in der Vergangenheit liegender Arbeitstakte IA diese Daten gespeichert werden, so dass jeweils für die letzten beispielsweise 100 Arbeitsakte IA diese Information vorliegt.Since such error conditions generally lead to malfunctions within a comparatively short time, the most efficient use of the existing storage volume can be achieved by storing this data only in association with a specific number, for example 100, in the past working cycles I A that in each case for the last example, 100 work file I A this information is present.
Um die Genauigkeit bei der Fehlerindizierung zu erhöhen, kann beispielsweise weiterhin so vorgegangen werden, dass dann, wenn zunächst erkannt wird, dass der durch die zweite Analysegröße, also den Zeitpunkt tan, indizierte Anschlag, zu früh auftritt, zunächst durch Variation des Tastverhältnisses des Spannungssignals U versucht werden, diesen Zeitpunkt tan in Richtung zu seiner Referenz tan' zu verschieben. Ein zu frühes Auftreten der zweiten Analysegröße kann möglicherweise dadurch kompensiert werden, dass das Tastverhältnis in Richtung Verringerung der mittleren anliegenden Spannung verschoben wird. Bewegt sich auf diese Maßnahme hin die zweite Analysegröße tan nicht bzw. nicht ausreichend schnell oder ausreichend nahe an die Referenz tan' heran, so konnte also auch durch Verringern der Spannung und mithin Verringern der den Kolben 26 antreibenden Kraft dessen zu schnelle Bewegungen nicht ausreichend abgebremst werden, so dass dann beispielsweise der entsprechende Fehlercode gesetzt bzw. abgespeichert werden kann, z.B. auch in Verbindung mit Information, welche die anliegende Spannung charakterisiert.In order to increase the accuracy in the error indexing, it is further possible, for example, to proceed, if it is initially recognized that the stop indicated by the second analysis variable, ie the time t an , to occur too early, first by varying the duty cycle of the Voltage signal U to be attempted to move this time t an in the direction of its reference t an '. Too early occurrence of the second analysis size may possibly be compensated for by shifting the duty cycle in the direction of decreasing the average applied voltage. Moves on this measure out the second analysis variable t to not or not sufficiently fast or sufficiently close to the reference at t 'zoom, so as could by reducing the Stress and thus reducing the piston 26 driving force whose too fast movements are not sufficiently slowed down, so that then, for example, the corresponding error code can be set or stored, for example, also in conjunction with information that characterizes the applied voltage.
Ein weiterer Fehlerzustand ist in
Die
Bei den in den
Wie vorangehend dargelegt, kann unter Berücksichtigung der ermittelten Analysegrößen bzw. der in Zuordnung dazu generierten Fehlercodes dann, wenn eine Betriebsstörung aufgetreten ist, nachvollzogen werden, welches Problem zur Betriebsstörung geführt hat, um möglicherweise in einem Reparaturbetrieb entsprechende Korrekturen vorzunehmen. Hierzu kann der vorangehend bereits beschriebene Speicher ausgelesen und hinsichtlich der darin gespeicherten Daten ausgewertet werden. Grundsätzlich besteht jedoch auch die Möglichkeit, unmittelbar im Betrieb zu erkennen, wenn Fehlerzustände auftreten, die in naher Zukunft zu einer Betriebsstörung führen könnten. Zeigt sich beispielsweise, dass der in
Claims (9)
- A procedure for analyzing the operation of a dosing pump for fluid, in particular a fuel dosing pump for a vehicle heating device, with the dosing pump (20) comprising a piston (26), moveable in a clocked manner between two final positions, and in association to the piston comprising a drive unit (32), excitable by applying a voltage (U) during excitation time intervals (Ie) in respective duty cycles (IA) of the piston (26), the procedure comprising the following steps:- determining a starting time (ts) of the movement of the piston (26) as a first parameter of analysis
and
determining a final time (tan) of the movement of the piston (26) as a second parameter of analysis,- comparing at least one parameter of analysis (ts, tan) with an associated reference (tan'), characterized in thatan error condition is recognized on the basis of the result of comparison, if the parameter of analysis (ts, tan) deviates from the reference (tan'), and that the first parameter of analysis (ts) is only determined if in one or more preceding duty cycles the comparison of the second parameter of analysis (tan) with the associated reference (tan') indicates the presence of an error condition, wherein in an excitation time interval (Ie) no second parameter of analysis (tan) is recognized. - A procedure according to claim 1, characterized in that in association to a respective duty cycle (IA) of the piston (26), at least one parameter of analysis (ts, tan) or/and the reference result of the comparison of at least one parameter of analysis with the associated reference (tan') is stored.
- A procedure according to claim 1 or 2, characterized in that, if the second parameter of analysis (tan) precedes the reference (tan'), an error condition is recognized indicating the transport of air.
- A procedure according to one of claims 1 to 3, characterized in that, if the second parameter of analysis (tan) lies within an excitation time interval (Ie) and is succeeding its reference (tan'), an error condition is recognized indicating an impeded transport.
- A procedure according to one of claims 1 to 4, characterized in that, if within an excitation time intervals (Ie) no second parameter of analysis (tan) is recognized and a first parameter of analysis (ts) is recognized, an error condition is recognized comprising an impeded transport.
- A procedure according to one of claims 1 to 5, characterized in that, if within an excitation time intervals (Ie) no first parameter of analysis (ts) is recognized, an error condition is recognized comprising obstructed movement of the piston (26).
- A procedure according to one of claims 1 to 6, characterized in that, if the second parameter of analysis (tan) precedes or succeeds the associated reference (tan') in an excitation time interval (Ie), the second parameter of analysis (tan) should, if possible, be adjusted towards the reference (tan) during at least one following duty cycle (IA) by varying the excitation voltage (U) for the drive unit (32) and in that, if a variation of the excitation voltage (U) does not result in efficiently adjusting the second parameter of analysis (tan), an error condition is recognized.
- A procedure according to one of claims 1 to 7, characterized in that the first parameter of analysis (ts) is determined by establishing the first derivation in time of the current (I) flowing during an excitation interval (Ie) and by comparing the latter with an associated first threshold (S1).
- A procedure according to one of claims 1 to 8, characterized in that the second parameter of analysis (tan) is determined by establishing the second derivation in time of the current (I) flowing during an excitation interval (Ie) and by comparing the latter with an associated second threshold (S2).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007061478A DE102007061478A1 (en) | 2007-12-20 | 2007-12-20 | A method of analyzing the operation of a liquid metering pump, in particular a fuel metering pump for a vehicle heater |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2072820A1 EP2072820A1 (en) | 2009-06-24 |
EP2072820A8 EP2072820A8 (en) | 2009-09-30 |
EP2072820B1 true EP2072820B1 (en) | 2010-07-28 |
Family
ID=40578202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08018650A Not-in-force EP2072820B1 (en) | 2007-12-20 | 2008-10-24 | Method of analysing the operation of a dosing pump for liquid, especially a fuel dosing pump for a vehicle heater |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2072820B1 (en) |
AT (1) | ATE475805T1 (en) |
DE (2) | DE102007061478A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010014106B4 (en) | 2010-04-07 | 2012-03-15 | Webasto Ag | Method for operating a metering pump and device with a metering pump |
DE102011088699B4 (en) | 2011-12-15 | 2019-07-04 | Robert Bosch Gmbh | Method for controlling a reciprocating pump |
DE102013207345B4 (en) * | 2013-04-23 | 2021-04-29 | Robert Bosch Gmbh | Method for operating a reciprocating piston pump |
DE102017008988A1 (en) * | 2017-09-26 | 2019-03-28 | Albonair Gmbh | Method for monitoring a magnetic piston pump |
DE102021003261A1 (en) | 2021-06-25 | 2022-12-29 | Truma Gerätetechnik GmbH & Co. KG | Heating device and method for monitoring a pump device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH675312A5 (en) * | 1988-06-13 | 1990-09-14 | Rueck & Meier Ag | Fluid dosing device using timed pump operation - compensates set time for detected variation in pump flow |
DE10152782B4 (en) * | 2001-10-29 | 2005-04-07 | Webasto Ag | Method for controlling a metering pump |
DE102005024858A1 (en) | 2005-05-31 | 2006-12-07 | J. Eberspächer GmbH & Co. KG | Method for operating a metering pump, in particular for conveying fuel for a vehicle heater |
-
2007
- 2007-12-20 DE DE102007061478A patent/DE102007061478A1/en not_active Withdrawn
-
2008
- 2008-10-24 DE DE502008001023T patent/DE502008001023D1/en active Active
- 2008-10-24 AT AT08018650T patent/ATE475805T1/en active
- 2008-10-24 EP EP08018650A patent/EP2072820B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
DE102007061478A1 (en) | 2009-06-25 |
EP2072820A8 (en) | 2009-09-30 |
ATE475805T1 (en) | 2010-08-15 |
DE502008001023D1 (en) | 2010-09-09 |
EP2072820A1 (en) | 2009-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1729008B1 (en) | Method for driving a dosing pump, in particular for pumping a combustible of a vehicle heater | |
EP2376761B1 (en) | Method for operating a fuel injection system of an internal combustion engine | |
EP2072820B1 (en) | Method of analysing the operation of a dosing pump for liquid, especially a fuel dosing pump for a vehicle heater | |
DE102010042467B4 (en) | Determining the opening time of a control valve of an indirectly driven fuel injector | |
DE102014203364B4 (en) | Method and device for operating a valve, in particular for an accumulator injection system | |
DE19913477B4 (en) | Method for operating a fuel supply device of an internal combustion engine, in particular a motor vehicle | |
DE102007035316A1 (en) | Method for controlling a solenoid valve of a quantity control in an internal combustion engine | |
DE102010041320B4 (en) | Determination of the closing time of a control valve of an indirectly driven fuel injector | |
DE102012105818A1 (en) | Method for operating high pressure pump for pressurization of e.g. diesel fuel in internal combustion engine of vehicle, involves determining reference angle position of shaft depending on change of feed capacity during control of valve | |
DE102011088699B4 (en) | Method for controlling a reciprocating pump | |
EP2501917B1 (en) | Method and device for controlling a metering control valve | |
EP3039288B2 (en) | Method for optimizing the dosing profiles of positive displacement pumps | |
DE102007040122A1 (en) | Method and device for controlling a pump connected to a fuel rail | |
DE102017204077A1 (en) | Method for operating a solenoid and computer program product | |
EP2852748B1 (en) | Method for operating a fuel system for an internal combustion engine | |
DE102011106932B4 (en) | Method for operating a device for conveying and dosing | |
DE102013206674A1 (en) | Method and device for controlling a quantity control valve | |
EP3460241B1 (en) | Method for monitoring a magnetic piston pump | |
WO2018068998A1 (en) | Operation of a fuel injector with hydraulic stopping | |
DE102011088703A1 (en) | Method for measuring current flow of reciprocating pump in conveying module of silicon-controlled rectifier catalytic system of internal combustion engine, involves measuring main voltage simultaneously with measurement of current flow | |
DE102015219383B3 (en) | Determining a time when a fuel injector is in a predetermined state | |
EP2053249A2 (en) | Assembly with vacuum pump and method | |
DE102008041126A1 (en) | Fuel system i.e. fuel injection system, operating method for diesel engine, involves closing measuring unit, when detection of failure of valve and indication of reaching of boundary pressure are realized as logical-AND-combination | |
DE102007021759B4 (en) | A method of identifying a fuel metering pump of a vehicle heater | |
DE102008057365B4 (en) | Method for operating an electromagnetically operated metering pump with stop damping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20091228 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502008001023 Country of ref document: DE Date of ref document: 20100909 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100728 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101028 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20101109 Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101028 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101128 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
BERE | Be: lapsed |
Owner name: J. EBERSPACHER G.M.B.H. & CO. KG Effective date: 20101031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101108 |
|
26N | No opposition filed |
Effective date: 20110429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008001023 Country of ref document: DE Effective date: 20110429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101024 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008001023 Country of ref document: DE Representative=s name: WEICKMANN & WEICKMANN, DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20121024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100728 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502008001023 Country of ref document: DE Owner name: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH & CO, DE Free format text: FORMER OWNER: J. EBERSPAECHER GMBH & CO. KG, 73730 ESSLINGEN, DE Effective date: 20130607 Ref country code: DE Ref legal event code: R082 Ref document number: 502008001023 Country of ref document: DE Representative=s name: WEICKMANN & WEICKMANN, DE Effective date: 20130607 Ref country code: DE Ref legal event code: R082 Ref document number: 502008001023 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL PATENT- U, DE Effective date: 20130607 Ref country code: DE Ref legal event code: R082 Ref document number: 502008001023 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL, PATENT- , DE Effective date: 20130607 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH & CO., D Effective date: 20130807 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008001023 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL PATENT- U, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008001023 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL, PATENT- , DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 475805 Country of ref document: AT Kind code of ref document: T Effective date: 20131024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181031 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008001023 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |