EP2072182B1 - Grinding machine with a device for conditioning a grinding machine and procedure for it - Google Patents

Grinding machine with a device for conditioning a grinding machine and procedure for it Download PDF

Info

Publication number
EP2072182B1
EP2072182B1 EP07123579A EP07123579A EP2072182B1 EP 2072182 B1 EP2072182 B1 EP 2072182B1 EP 07123579 A EP07123579 A EP 07123579A EP 07123579 A EP07123579 A EP 07123579A EP 2072182 B1 EP2072182 B1 EP 2072182B1
Authority
EP
European Patent Office
Prior art keywords
grinding wheel
grinding
electrode
discharge
sharpening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07123579A
Other languages
German (de)
French (fr)
Other versions
EP2072182A1 (en
Inventor
Friedhelm Altpeter
Walter H. Dr. Pfluger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agathon AG Maschinenfabrik
Original Assignee
Agathon AG Maschinenfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agathon AG Maschinenfabrik filed Critical Agathon AG Maschinenfabrik
Priority to DE502007004211T priority Critical patent/DE502007004211D1/en
Priority to EP07123579A priority patent/EP2072182B1/en
Priority to US12/335,183 priority patent/US8410390B2/en
Priority to JP2008322194A priority patent/JP5363091B2/en
Priority to CN2008101780912A priority patent/CN101462243B/en
Publication of EP2072182A1 publication Critical patent/EP2072182A1/en
Application granted granted Critical
Publication of EP2072182B1 publication Critical patent/EP2072182B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/001Devices or means for dressing or conditioning abrasive surfaces involving the use of electric current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/34Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of turning or planing tools or tool bits, e.g. gear cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/062Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels using rotary dressing tools

Definitions

  • the present invention relates to a grinding machine for grinding a workpiece, comprising a machine frame, a bearing mounted on the machine frame and guides movable bearing means in which a cup-shaped grinding wheel is rotatably driven and electrically insulated around a grinding wheel axis, which is constructed of electrically conductive material and a first abrasive region with an annular abrasive coating and second abrasive regions with jacket surface abrasive coatings, each consisting of an electrically conductive bonding material and abrasive grains embedded therein, which abrasive disc is electrically connected to a generator, means for holding the workpiece to be ground, a device for conditioning the Grinding wheel with at least one movable electrode, which is also electrically connected to the generator and means for supplying a cooling lubricant to the El ektrode and the workpiece.
  • Such grinders are eg off EP 1 470 894 A1 known.
  • indexable inserts can be ground, which must be done with high precision, including the grinding wheel must be kept in an optimal condition with respect to accuracy and sharpness. To ensure this quality of the grinding wheel, it must be prepared and conditioned accordingly. In this case, essentially three processes are used, namely the profiling, the sharpening and the cleaning of the grinding wheel.
  • the profiling process with which the grinding wheel is brought into the desired shape, is usually carried out at each new grinding wheel, a profiling is also carried out when the grinding wheel has been in use for a long time.
  • a profiling is performed with a Siliziumcarbidide, which is adjustable to the grinding wheel in the grinding machine or on which the grinding wheel can be employed in the grinding machine.
  • this silicon carbide enters the coolant circuit and must, as this material is very aggressive, be removed as quickly as possible from the cooling lubricant medium. For this purpose, the corresponding complex equipment is required.
  • the binding material of the abrasive pad is reset to improve the projection of the abrasive grains over the bonding material. It is known to carry out the sharpening operation of a grinding wheel for metal-bonded grinding wheels by means of electrochemical processes, in which by means of an electrode and a supplied electrolyte, an electrochemical separation of the conductive bonding material of the abrasive coating of the grinding wheel. The detached material must then be laboriously filtered out of the working as a cooling lubricant electrolytic medium, including expensive devices are required.
  • An object of the present invention is therefore to design a grinding machine for grinding a workpiece so that both the profiling, the sharpening and the cleaning of the grinding wheel can be carried out in a simple manner with a single tool and the cleaning of the cooling lubricant can be carried out in a simple manner.
  • the object is achieved in that the device for profiling, sharpening and cleaning is formed from a single designed as a cup-shaped electrode tool which is equipped at least with an annular processing surface, which pot-shaped electrode mounted to rotate about its central axis drivable on a carriage is, by means of which one between the respective processing surface the pot-shaped electrode and the respective abrasive coating existing working gap is adjustable, in which upon application of an ignition voltage by the generator spark erosive discharge occurs.
  • This electroerosive discharge in the working gap erodes the bonding material, depending on how wide the working gap is, how large the discharge energy is selected and which discharge frequency is used.
  • the grinding wheel can be profiled, sharpened and cleaned, which can be carried out in a very simple manner by the single electrode used for this purpose.
  • the sharpening and cleaning of the grinding wheel can be carried out easily during the grinding of a workpiece, whereby the efficiency of the machining operations, since no interruption arises, is optimal.
  • it is ensured that the grinding wheel constantly has an optimum grinding quality this also increases the efficiency, the machining of the workpieces is very accurate.
  • the removed by the spark erosive discharge material is carried away by the introduced into the working gap cooling lubricant, a cleaning of this cooling lubricant is possible in a simple manner, as is also carried out in corresponding spark erosion machines.
  • the axis of the pot-shaped electrode is aligned parallel to the grinding wheel axis and perpendicular to the working surface of the grinding wheel.
  • the working surface is ideally perfectly planed and conditioned perpendicular to the axis of rotation of the grinding wheel.
  • the axis of the pot-shaped electrode is mounted electrically isolated in the carriage, which carriage is held on a linear guide on the bearing device and controlled in the direction of the axis along the linear guide is displaceable.
  • the pot-shaped electrode can be switched on and off in an optimal and simple manner to the grinding wheel or the processing surface to be conditioned.
  • a further advantageous embodiment of the invention is that the carriage is designed as a cross slide, so that the electrode with respect to the grinding wheel is substantially axially and radially movable, and that the electrode is equipped with a further, substantially mantle-shaped processing surface.
  • the carriage is designed as a cross slide, so that the electrode with respect to the grinding wheel is substantially axially and radially movable, and that the electrode is equipped with a further, substantially mantle-shaped processing surface.
  • the mantle surface-shaped processing surface of the electrode is of cylindrical design and the two carriages designed as cross slide are pivotable relative to each other about an axis perpendicular thereto. This can also be used to condition a surface-shaped abrasive coating with this electrode if it has a so-called clearance angle with respect to the annular abrasive coating.
  • the mantle surface-shaped processing surface of the electrode can also be formed frusto-conical, whereby a mantle surface-shaped abrasive coating can also be conditioned if this has a so-called clearance angle with respect to the annular abrasive coating by both carriages are moved simultaneously.
  • the spark erosion generating generator is a capacitive discharge spark generator, which allows for optimal spark discharge, and is disposed on the cup-shaped grinding wheel storage apparatus, resulting in the shortest possible spark discharge discharge lines, which has a positive effect thereon ,
  • the means for supplying the cooling lubricant from nozzles attached to supply lines are formed, via which nozzles the cooling lubricant in the machining gap and the Workpiece can be fed, which has an optimal conditioning and optimal cooling and lubrication result.
  • cooling lubricant is an oil-based dielectric, whereby an optimal cooling and lubrication during the grinding process is achieved, and an optimal environment for the spark erosive discharge for conditioning the grinding wheel is obtained.
  • the electrode is made of aluminum, whereby it is easy to work, and also in connection with the oil-based based dielectric optimal spark erosive discharge can be achieved.
  • a control device for controlling and regulating the work processes, whereby these can be optimally coordinated with the grinding operations to be performed.
  • a further object of the invention is to provide a method for conditioning a cup-shaped grinding wheel with which it can be profiled, sharpened and cleaned in an optimum manner, which is achieved according to the invention by conditioning a cooling lubricant for conditioning the grinding surfaces of the grinding wheel in the working gap an ignition voltage is applied across the generator across the working gap and the electrode is moved towards the grinding wheel at a feed rate until a predetermined threshold of mean voltage, measured across the working gap, and / or average current flow, as measured by the discharge lines , is passed through that then the ignition voltage across the working gap, the discharge energy, the discharge frequency and the feed rate to a given value for profiling, sharpening or cleaning the grinding wheel are set and the ents Pre-emptive process is carried out by spark erosive discharge.
  • a discharge energy of about 10 to 100 mJ and a discharge frequency of about 1 to 100 kHz is selected for profiling the grinding wheel, resulting in an optimum removal performance.
  • the profiling operation is carried out until the average stress, measured across the working gap, and / or the average flow of current, as measured by the discharge conduits, is substantially constant, indicating that the abrasive coating to be profiled is optimally formed.
  • a discharge energy of about 0.5 to 5 mJ and a discharge frequency of about 10 kHz to 1 MHz is selected, a corresponding discharge energy and discharge frequency is also selected for sharpening and cleaning the grinding wheel, wherein the sharpening and cleaning of the grinding wheel during the machining of a workpiece can be performed.
  • This re-sharpening function lasts for a predetermined time while not being ground, and works with parameters similar to sharpening and cleaning the grinding wheel while machining a workpiece.
  • Optimum machining of the abrasive wheel by the electrode is achieved when the advancing speed of the electrode is adjusted by a regulator located within the controller within a selectable bandwidth due to the average voltage measured across the working gap and the average current flow as measured by the discharge lines.
  • the discharge energy and the discharge frequency during sharpening and cleaning of the grinding wheel by an optimization algorithm arranged in the control within a selectable bandwidth due to the maximum contact pressure, the average contact pressure during the spark, the ratio of Power of the drive motor to the contact force and the disc wear, measured during the previous and completed grinding operations set. This gives a simpler operation of the procedure.
  • a discharge energy of about 0.1 to 5 mJ and a discharge frequency of about 10 kHz to 1 MHz is selected, and this resharpening operation is performed during a selectable re-sharpening time, whereby a large process stability is achieved.
  • the ratio of the power of the drive motor to the contact force and the disk wear measured during the preceding and completed grinding operations is set to achieve further ease of operation.
  • Fig. 1 is the storage device 1 can be seen, which is placed in a known manner, not shown directly on the machine frame of a grinding machine or inserted between bearing device 1 and machine frame carriage assembly.
  • a pot-shaped grinding wheel 2 is rotatably mounted about a grinding wheel axis 3.
  • the rotating drive of this grinding wheel 2 via an electric motor 4, which is arranged on the bearing device 1.
  • the pot-shaped grinding wheel 2 consists of a grinding cup 5, on which a slip ring 6 is placed, which has an annular abrasive coating 7 and a mantle-shaped abrasive coating 8.
  • a workpiece 9 can be ground, for example an indexable insert, which is held in a known manner by means 10 for holding the workpiece 9 to be ground, arranged in the grinding machine.
  • a device 11 For conditioning the abrasive coatings 7, 8 of the cup-shaped grinding wheel 2, a device 11 is provided, which has a cup-shaped electrode 12 which is mounted for rotation about its central axis 13 drivable in a carriage 14 which on the bearing device 1 in the direction of the central axis thirteenth is held displaceable.
  • the displacement of the carriage 14 on the bearing device 1 via a ball screw drive 15, the drive motor 16 is mounted on the bearing device 1.
  • a generator 17 is arranged on the storage device 1.
  • This generator 17 is connected via lines 18 to the power supply of the grinding machine.
  • the generator 17 is connected via a discharge line 19 with the cup-shaped grinding wheel 2 and via a further discharge line 20 with the cup-shaped electrode 12, as will be seen below.
  • the communication with the known, not shown machine control via the line 35 which can meet a variety of specifications such as Ethernet, Profibus or RS 232.
  • a nozzle 21 is attached in known manner, which is connected to a feed line, not shown, via which a cooling lubricant can be introduced into the grinding area.
  • a further nozzle 22 is arranged in a known manner in the region of the electrode, via which the cooling lubricant can be introduced into the working gap 23 between the cup-shaped electrode 12 and the slip ring 6 of the grinding wheel 2 via a feed line, not shown.
  • the spindle 24 of the cup-shaped grinding wheel 2 is mounted in electrically insulated bearings 25.
  • the electric motor 4 is electrically isolated from the spindle 24 in a known manner.
  • a slip ring 26 is mounted, which cooperates with a contact 27, to which the discharge line 19 (FIG. Fig. 1 ) connected.
  • the cup-shaped grinding wheel 2 via the spindle 24, the slip ring 26, the contact 27 and the corresponding discharge line to the generator 17 (FIG. Fig. 1 ) connected.
  • the pot-shaped electrode 12 is flanged onto an electrode spindle 28, which is electrically isolated in a corresponding manner in the carriage 14 (FIG. Fig. 1 ) Is mounted and about the spindle 28 electrically isolated motor 29 arranged around the central axis 13 can be driven.
  • a slip ring 30 is mounted, which cooperates with a contact 31, which contact 31 via the discharge line 20 (FIG. Fig. 1 ) is electrically connected to the generator 17.
  • the grinding wheel cup 5 of the cup-shaped grinding wheel 2 is made of an electrically conductive material.
  • the patch on the grinding wheel pot 5 slip ring 6 consists of a base made of aluminum, bronze or steel.
  • the abrasive coatings 7, 8 are applied, which consist of a bond in which the abrasive grains are incorporated.
  • the binding material consists of a metal alloy, synthetic resin or ceramic, which are also electrically conductive. In this electrically conductive bonding material, the abrasive grains are embedded in a known manner, which may consist of diamond or another correspondingly suitable material.
  • the cup-shaped electrode 12 is also made of an electrically conductive material, preferably of aluminum. However, this pot-shaped electrode 12 may also consist of copper, graphite or another conductive suitable material.
  • the cooling lubricant used is preferably an oil-based dielectric, for example the cooling lubricant marketed under the name "Ionogrind” by the company Oelheld GmbH, Stuttgart, Germany.
  • the generator 17 used here is a spark generator with capacitive discharge, as it is for example in U.S. Patent No. 4,710,603 the company Fanuc Ltd. is described.
  • an ignition voltage is applied by the generator 17 via the working gap 23, whereby between the pot-shaped electrode 12th and the cup-shaped grinding wheel 2 forms an ion channel in the dielectric cooling lubricant and a discharge can take place.
  • the working gap 23 must be large enough so that the released binding material but also the dissolved abrasive grains can be washed away without damaging the pot-shaped electrode 12 or the abrasive coatings 7, 8 of the cup-shaped grinding wheel 2.
  • the working gap 23, ie, the distance between the bottom of the bonding material of the abrasive pad of the grinding wheel 2 and the cup-shaped electrode 12, should be between 50 and 100 microns.
  • an ignition voltage across the working gap 23 of 300 to 500 volts, preferably 400 volts, is required. With a smaller ignition voltage, there is a risk that the working gap is too small and the leaching of the bonding material and the abrasive grains violate the surface of the cup-shaped electrode 12.
  • the generator 17 is arranged on the bearing device 1, which means that the electrical discharge lines 19 and 20 (FIG. Fig. 1 ) can be kept very short, whereby an optimal conditioning process of the grinding wheel can be achieved by means of spark erosion.
  • Fig. 3 shows a schematic representation of the position of the cup-shaped electrode 12 to the cup-shaped grinding wheel 2 when the annular abrasive coating 7 of the cup-shaped grinding wheel 2 is to be conditioned.
  • the central axis 13 of the pot-shaped electrode 12 is in this case aligned exactly parallel to the grinding wheel axis 3.
  • the cup-shaped electrode 12 is formed in a hollow cylindrical shape, and has an annular processing surface 32, which is exactly flat.
  • the cup-shaped grinding wheel 2 rotates around the grinding wheel axis 3, wherein the peripheral speed of the grinding wheel is about 15 to 25 meters per second, if it is a metal-bonded diamond grinding wheel, this can be increased up to 63 meters per second for grinding wheels with CBN grains.
  • the pot-shaped electrode rotates around the central Axis 13 at a slower speed. By rotating the electrode 12, a very accurate flatness of the electrode 12 and the abrasive coating 7 is achieved.
  • the cup-shaped electrode 12 Before the spark erosion discharge conditioning operation can be carried out, the cup-shaped electrode 12 must be placed at the correct distance from the abrasive linings 7, 8 to be conditioned.
  • the conditioning operations described below are carried out with a cup-shaped grinding wheel with a diameter of 400 mm, a pad width of 10 mm and a grain size of 25 microns.
  • the discharge energy at the generator is adjusted, the cup-shaped electrode 12 is moved via the carriage 14 along the central axis 13 to the grinding wheel 2, wherein the speed can be 10 to 100 micrometers per minute.
  • a high discharge energy typically 10 to 100 mJ
  • a low discharge frequency typically 1 to 100 kHz
  • the feed rate of the cup-shaped electrode 12 is set at a rate of typically 0.5 to 5 microns per minute. This feed rate is controlled during spark erosion processing within a given bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the two discharge lines.
  • the profiling process is terminated when the average voltage across the working gap and / or the average current flowing through the discharge lines remain substantially constant, ie not more than 10% during one rotation of the grinding wheel 2 and the electrode 12, respectively.
  • an absolutely flat annular abrasive coating 7 is obtained, which lies in a plane perpendicular to the grinding wheel axis 3 level.
  • annular tapered machining surface 32 of the electrode and align the central axis 13 is not parallel to the grinding wheel axis 3, one would then receive an annular abrasive coating 7, which would be at an angle with respect to the plane perpendicular to the grinding wheel axis 3.
  • the profiling can be shortened by the grinding wheel 2 with the corresponding abrasive coating 7, 8 and the electrode 12 are hired with the corresponding surface to each other, the generator 17 remains off.
  • the grinding wheel 2 and the electrode 12 are driven in rotation.
  • the profiling process can then be completed by the previously described dressing process.
  • the generator 17 can be switched on to carry out the dressing process.
  • a medium voltage is applied.
  • grinding wheel 2 and electrode 12 are moved against each other until grinding wheel 2 and electrode 12 abut one another. It creates a short-circuit voltage.
  • the advancing movement of the grinding wheel 2 or the electrode 12 is stopped, it can be waited until an equilibrium sets in the discharge discharge.
  • a discharge energy of typically 0.1 to 5 mJ and a discharge frequency of typically 10 kHz to 1 MHz are selected.
  • the advancing movement of the cup-shaped electrode 12 is brought to a low speed of typically 0.1 to 0.4 microns per minute.
  • the feed rate is optimally adjusted within a certain bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the discharge lines by means of a regulator in the controller.
  • the pre-sharpening process can be considered complete when a feed distance of 20 to 50 microns is reached, this Feed distance corresponds approximately to the grain diameter. As a result, thermally stressed grains are eliminated.
  • the advancing movement of the cup-shaped electrode 12 is set to a maximum speed of 0.4 micrometers per minute. Discharge energies of 0.1 to 5 mJ and discharge frequencies of 10 kHz to 1 MHz are typically selected.
  • the feed rate is optimally adjusted within a certain bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the discharge lines by means of the controller in the controller.
  • the pressing force with which the workpiece 9 is pressed against the grinding wheel 2 and the power of the electric motor 4 for the grinding wheel can be measured in a known manner.
  • the maximum contact pressure, the average contact force during sparking and the ratio of the power of the electric motor to the contact force are calculated.
  • the disc wear is estimated in a known manner. From these measured values, or from the data prepared accordingly in a computer and control device, the sharpness state of the abrasive coating 7, 8 of the grinding wheel 2 in use can be quantified in a known manner.
  • the discharge energy and discharge frequency for sharpening and cleaning are advantageously adjusted within a certain range due to the sharpness state of the abrasive pad 7, 8 of the grinding wheel 2 in use during the preceding and completed grinding operations.
  • the advancing movement of the cup-shaped electrode 12 to a speed set at a maximum of 0.4 microns per minute.
  • Discharge energies of 0.1 to 5 mJ and discharge frequencies of 10 kHz to 1 MHz are typically selected.
  • the feed rate is optimally adjusted within a certain bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the discharge lines by means of the controller in the controller. This process can be considered complete after a certain re-sharpening time.
  • the discharge energy, the discharge frequency and the re-sharpening time are advantageously set within a certain range due to the sharpness state of the abrasive pad 7, 8 of the grinding wheel 2 in use during the preceding and completed grinding operations.
  • the carriage 14 on which the conditioning device 11 are arranged be placed on a perpendicular thereto further carriage 33 so that the cup-shaped electrode 12 can be moved not only in the direction of the central axis 13 on the cup-shaped grinding wheel 2 but also across it. It can thereby be achieved that a jacket-shaped abrasive coating 8 of the cup-shaped grinding wheel 2 can also be processed with this conditioning device 11.
  • the pot-shaped electrode 12 is moved so that its lateral surface 34 is adjacent to the jacket-shaped abrasive coating 8.
  • the working gap 23 thus arises between jacket-shaped Abrasive coating 8 and lateral surface 34 of the pot-shaped electrode 12.
  • the further carriage 33 is moved transversely to the central axis 13 of the cup-shaped electrode 12, the cup-shaped electrode 12 but during the machining operation in the direction of the central axis 13 is oscillating , so that the entire lateral surface 34 is stressed evenly.
  • Fig. 5 it can be seen here has the cup-shaped electrode 12, which is inserted into the device 11 for conditioning the abrasive coatings 7, 8 of the cup-shaped grinding wheel 2, the shape of a truncated cone.
  • the device 11 is placed on the cross slide 14, 33.
  • the lateral surface 34 of the cup-shaped electrode 12 by appropriate method of the two carriages 14 and 33 in the region of the mantle surface-shaped abrasive coating. 8 brought until the desired working gap 23 is formed.
  • the electrode 12 rotates about the axis 13, simultaneously the two carriages 14, 33 are moved such that the electrode performs a superimposed movement in the direction of the clearance angle, represented by arrow 37, and in FIG This direction is moved oscillating, whereby here the lateral surface 34 of the electrode 12 is claimed evenly.
  • the embodiment of the device 11 according to Fig. 6 can also be a coat surface-shaped abrasive coating 8 of a cup-shaped grinding wheel 2 are conditioned, which has a clearance angle with respect to the annular abrasive coating 7.
  • the pot-shaped electrode 12 used here in the device 11 has a cylindrical outer shape.
  • the carriage 14 is pivotable and adjustable in a known manner about a perpendicular to the directions of movement of the two carriages 14, 33 axis 36.
  • the carriage 14 is pivoted relative to the carriage 33 by an angle which corresponds to the clearance angle.
  • the cup-shaped electrode 12 is moved during the machining process in the direction of the central axis 13 oscillating, so that the entire surface 34 is uniformly stressed.
  • a pot-shaped grinding wheel can be conditioned in a most optimal manner, the sharpening and cleaning operations can be easily performed even during the grinding of workpieces.
  • the grinding wheel always has an optimal condition, which increases efficiency.

Description

Die vorliegende Erfindung bezieht sich auf eine Schleifmaschine zum Schleifen eines Werkstücks, umfassend einen Maschinenrahmen, eine am Maschinenrahmen angebrachte und entlang Führungen verfahrbaren Lagereinrichtung, in welcher eine topfförmige Schleifscheibe um eine Schleifscheibenachse rotierend antreibbar und elektrisch isoliert gelagert ist, die aus elektrisch leitfähigem Material aufgebaut ist und einen ersten Schleifbereich mit einem ringförmigen Schleifbelag und zweite Schleifbereiche mit mantelflächenförmigen Schleifbelägen aufweist, jeweils bestehend aus einem elektrisch leitfähigen Bindungsmaterial und darin eingelagerten Schleifkörnern, welche Schleifscheibe mit einem Generator elektrisch verbunden ist, Mittel zum Halten des zu schleifenden Werkstücks, eine Vorrichtung zum Konditionieren der Schleifscheibe mit mindestens einer verfahrbaren Elektrode, die ebenfalls mit dem Generator elektrisch verbunden ist und Mittel zum Zuführen eines Kühlschmiermittels zur Elektrode und zum Werkstück.The present invention relates to a grinding machine for grinding a workpiece, comprising a machine frame, a bearing mounted on the machine frame and guides movable bearing means in which a cup-shaped grinding wheel is rotatably driven and electrically insulated around a grinding wheel axis, which is constructed of electrically conductive material and a first abrasive region with an annular abrasive coating and second abrasive regions with jacket surface abrasive coatings, each consisting of an electrically conductive bonding material and abrasive grains embedded therein, which abrasive disc is electrically connected to a generator, means for holding the workpiece to be ground, a device for conditioning the Grinding wheel with at least one movable electrode, which is also electrically connected to the generator and means for supplying a cooling lubricant to the El ektrode and the workpiece.

Derartige Schleifmaschinen sind z.B. aus EP 1 470 894 A1 bekannt. Mit derartigen Schleifmaschinen können beispielsweise Wendeschneidplatten geschliffen werden, was mit hoher Präzision erfolgen muss, wozu auch die Schleifscheibe bezüglich Genauigkeit und Schärfe in einem optimalen Zustand gehalten werden muss. Um diese Qualität der Schleifscheibe gewährleisten zu können, muss sie entsprechend vorbereitet und konditioniert werden. Hierbei werden im Wesentlichen drei Vorgänge angewendet, nämlich das Profilieren, das Schärfen und das Reinigen der Schleifscheibe.Such grinders are eg off EP 1 470 894 A1 known. With such grinders, for example, indexable inserts can be ground, which must be done with high precision, including the grinding wheel must be kept in an optimal condition with respect to accuracy and sharpness. To ensure this quality of the grinding wheel, it must be prepared and conditioned accordingly. In this case, essentially three processes are used, namely the profiling, the sharpening and the cleaning of the grinding wheel.

Der Profiliervorgang, mit welchem die Schleifscheibe in die gewünschte Form gebracht wird, wird üblicherweise bei jeder neuen Schleifscheibe durchgeführt, ein Profiliervorgang wird aber auch ausgeführt, wenn die Schleifscheibe schon längere Zeit im Einsatz war. In bekannter Weise wird ein derartiger Profiliervorgang mit einer Siliciumcarbidscheibe ausgeführt, welche an die Schleifscheibe in der Schleifmaschine anstellbar ist oder an welcher die Schleifscheibe in der Schleifmaschine angestellt werden kann. Dabei wird neben dem Schleifscheibenmaterial auch Siliciumcarbid der Abrichtscheibe abgetragen, dieses Siliciumcarbid gelangt in den Kühlschmiermittelkreislauf und muss, da dieses Material sehr aggressiv ist, rasch möglichst aus dem Kühlschmiermedium entfernt werden. Hierzu sind die entsprechenden aufwändigen Apparaturen erforderlich.The profiling process, with which the grinding wheel is brought into the desired shape, is usually carried out at each new grinding wheel, a profiling is also carried out when the grinding wheel has been in use for a long time. In known manner, such a profiling is performed with a Siliziumcarbidscheibe, which is adjustable to the grinding wheel in the grinding machine or on which the grinding wheel can be employed in the grinding machine. Here, in addition to the grinding wheel material and silicon carbide Dressing disc removed, this silicon carbide enters the coolant circuit and must, as this material is very aggressive, be removed as quickly as possible from the cooling lubricant medium. For this purpose, the corresponding complex equipment is required.

Beim Schärfvorgang einer Schleifscheibe wird das Bindematerial des Schleifbelags zurückgesetzt, um den Überstand der Schleifkörner über das Bindungsmaterial zu verbessern. Es ist bekannt, den Schärfvorgang einer Schleifscheibe für metallgebundene Schleifscheiben mittels elektrochemischen Verfahren auszuführen, bei welchen mittels einer Elektrode und einem zugeführten Elektrolyten eine elektrochemische Ablösung des leitfähigen Bindematerials des Schleifbelags der Schleifscheibe erfolgt. Das abgelöste Material muss dann in aufwändiger Weise aus dem als Kühlschmiermittel wirkenden elektrolytischen Medium herausgefiltert werden, wozu teure Vorrichtungen erforderlich sind.In the sharpening operation of a grinding wheel, the binding material of the abrasive pad is reset to improve the projection of the abrasive grains over the bonding material. It is known to carry out the sharpening operation of a grinding wheel for metal-bonded grinding wheels by means of electrochemical processes, in which by means of an electrode and a supplied electrolyte, an electrochemical separation of the conductive bonding material of the abrasive coating of the grinding wheel. The detached material must then be laboriously filtered out of the working as a cooling lubricant electrolytic medium, including expensive devices are required.

Das Reinigen der Schleifscheibe, mit welchem die durch die Schleifoperation entstehenden Späne, welche sich in den Unebenheiten des Schleifbelags festsetzen, entfernt werden, kann in bekannter Weise mit einer Edelkorund-Scheibe ausgeführt werden, es kann aber auch mittels dem vorgängig beschriebenen elektrochemischen Verfahren ausgeführt werden, wobei bei beiden Verfahren die vorgängig beschriebenen Nachteile auftreten.The cleaning of the grinding wheel with which the chips resulting from the grinding operation, which settle in the unevennesses of the abrasive coating, can be carried out in a known manner with a corundum disk, but it can also be carried out by means of the previously described electrochemical process In both methods, the disadvantages described above occur.

Eine Aufgabe der vorliegenden Erfindung besteht somit darin, eine Schleifmaschine zum Schleifen eines Werkstücks so auszugestalten, dass sowohl das Profilieren, das Schärfen und das Reinigen der Schleifscheibe in einfacher Weise mit einem einzigen Werkzeug ausgeführt und das Reinigen des Kühlschmiermittels in einfacher Weise vorgenommen werden kann.An object of the present invention is therefore to design a grinding machine for grinding a workpiece so that both the profiling, the sharpening and the cleaning of the grinding wheel can be carried out in a simple manner with a single tool and the cleaning of the cooling lubricant can be carried out in a simple manner.

Erfindungsgemäss erfolgt die Lösung der Aufgabe dadurch, dass die Vorrichtung zum Profilieren, Schärfen und Reinigen aus einem einzigen als topfförmige Elektrode ausgebildeten Werkzeug gebildet ist, welche mindestens mit einer ringförmigen Bearbeitungsfläche ausgestattet ist, welche topfförmige Elektrode rotierend um deren zentrale Achse antreibbar auf einem Schlitten gelagert ist, mittels welchem ein zwischen der jeweiligen Bearbeitungsfläche der topfförmigen Elektrode und dem jeweiligen Schleifbelag bestehender Arbeitsspalt einstellbar ist, in welchem bei Anlegen einer Zündspannung durch den Generator eine funkenerosive Entladung auftritt.According to the invention, the object is achieved in that the device for profiling, sharpening and cleaning is formed from a single designed as a cup-shaped electrode tool which is equipped at least with an annular processing surface, which pot-shaped electrode mounted to rotate about its central axis drivable on a carriage is, by means of which one between the respective processing surface the pot-shaped electrode and the respective abrasive coating existing working gap is adjustable, in which upon application of an ignition voltage by the generator spark erosive discharge occurs.

Durch diese elektroerosive Entladung im Arbeitsspalt wird das Bindungsmaterial abgetragen, abhängig davon, wie breit der Arbeitsspalt ist, wie gross die Entladungsenergie ausgewählt wird und welche Entladungsfrequenz zum Einsatz kommt. Dadurch kann die Schleifscheibe profiliert, geschärft und gereinigt werden, was durch die einzige Elektrode, die hierfür zum Einsatz kommt, in sehr einfacher Weise ausgeführt werden kann. Das Schärfen und das Reinigen der Schleifscheibe können problemlos während der Schleifbearbeitung eines Werkstücks ausgeführt werden, wodurch die Effizienz der Bearbeitungsvorgänge, da kein Unterbruch entsteht, optimal ist. Zudem ist gewährleistet, dass die Schleifscheibe dauernd eine optimale Schleifqualität aufweist, auch dadurch wird die Effizienz gesteigert, die Bearbeitung der Werkstücke ist sehr genau. Das durch die funkenerosive Entladung abgetragene Material wird durch das in den Arbeitsspalt eingebrachte Kühlschmiermittel weggeführt, ein Reinigen dieses Kühlschmiermittels ist in einfacher Weise möglich, wie dies bei entsprechenden Funkenerodiermaschinen auch ausgeführt wird.This electroerosive discharge in the working gap erodes the bonding material, depending on how wide the working gap is, how large the discharge energy is selected and which discharge frequency is used. As a result, the grinding wheel can be profiled, sharpened and cleaned, which can be carried out in a very simple manner by the single electrode used for this purpose. The sharpening and cleaning of the grinding wheel can be carried out easily during the grinding of a workpiece, whereby the efficiency of the machining operations, since no interruption arises, is optimal. In addition, it is ensured that the grinding wheel constantly has an optimum grinding quality, this also increases the efficiency, the machining of the workpieces is very accurate. The removed by the spark erosive discharge material is carried away by the introduced into the working gap cooling lubricant, a cleaning of this cooling lubricant is possible in a simple manner, as is also carried out in corresponding spark erosion machines.

In vorteilhafter Weise ist die Achse der topfförmigen Elektrode parallel zur Schleifscheibenachse und senkrecht zur Bearbeitungsfläche der Schleifscheibe ausgerichtet. Dadurch wird die Bearbeitungsfläche in idealer Weise perfekt plan und senkrecht zur Rotationsachse der Schleifscheibe konditioniert.Advantageously, the axis of the pot-shaped electrode is aligned parallel to the grinding wheel axis and perpendicular to the working surface of the grinding wheel. As a result, the working surface is ideally perfectly planed and conditioned perpendicular to the axis of rotation of the grinding wheel.

In vorteilhafter Weise ist die Achse der topfförmigen Elektrode elektrisch isoliert im Schlitten gelagert, welcher Schlitten über eine Linearführung an der Lagereinrichtung gehalten und in Richtung der Achse entlang der Linearführung gesteuert verschiebbar ist. Dadurch lässt sich die topfförmige Elektrode in optimaler und einfacher Weise an die Schleifscheibe beziehungsweise die zu konditionierende Bearbeitungsfläche an- und abstellen.Advantageously, the axis of the pot-shaped electrode is mounted electrically isolated in the carriage, which carriage is held on a linear guide on the bearing device and controlled in the direction of the axis along the linear guide is displaceable. As a result, the pot-shaped electrode can be switched on and off in an optimal and simple manner to the grinding wheel or the processing surface to be conditioned.

Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass der Schlitten als Kreuzschlitten ausgebildet ist, sodass die Elektrode bezüglich der Schleifscheibe im Wesentlichen axial und radial verfahrbar ist, und dass die Elektrode mit einer weiteren, im Wesentlichen mantelflächenförmigen Bearbeitungsfläche ausgestattet ist. Somit lässt sich mit dieser Elektrode nicht nur der ringförmige Schleifbelag der topfförmigen Schleifscheibe sondern auch ein mantelflächenförmiger Schleifbelag dieser Schleifscheibe entsprechend konditionieren, wodurch die Einsatzmöglichkeiten für Schleifprozesse erhöht werden.A further advantageous embodiment of the invention is that the carriage is designed as a cross slide, so that the electrode with respect to the grinding wheel is substantially axially and radially movable, and that the electrode is equipped with a further, substantially mantle-shaped processing surface. Thus, not only the annular abrasive coating of the cup-shaped grinding wheel but also a coat surface-shaped abrasive coating of this grinding wheel can be conditioned accordingly with this electrode, whereby the possible applications for grinding processes are increased.

In vorteilhafter Weise ist die mantelflächenförmige Bearbeitungsfläche der Elektrode zylinderförmig ausgebildet und sind die beiden als Kreuzschlitten ausgebildeten Schlitten um eine senkrecht dazu stehende Achse gegeneinander verschwenkbar. Damit kann mit dieser Elektrode auch ein mantelflächenförmiger Schleifbelag konditioniert werden, wenn dieser bezüglich des ringförmigen Schleifbelags einen sogenannten Freiwinkel aufweist.In an advantageous manner, the mantle surface-shaped processing surface of the electrode is of cylindrical design and the two carriages designed as cross slide are pivotable relative to each other about an axis perpendicular thereto. This can also be used to condition a surface-shaped abrasive coating with this electrode if it has a so-called clearance angle with respect to the annular abrasive coating.

Die mantelflächenförmige Bearbeitungsfläche der Elektrode kann auch kegelstumpfförmig ausgebildet sein, wodurch ebenfalls ein mantelflächenförmiger Schleifbelag konditioniert werden kann, wenn dieser bezüglich des ringförmigen Schleifbelags einen sogenannten Freiwinkel aufweist, indem beide Schlitten gleichzeitig verfahren werden.The mantle surface-shaped processing surface of the electrode can also be formed frusto-conical, whereby a mantle surface-shaped abrasive coating can also be conditioned if this has a so-called clearance angle with respect to the annular abrasive coating by both carriages are moved simultaneously.

Der Generator zur Erzeugung der funkenerosiven Entladung ist ein Funkengenerator mit kapazitiver Entladung, was eine optimale funkenerosive Entladung ermöglicht, und ist auf der Lagereinrichtung für die topfförmige Schleifscheibe angeordnet, wodurch sich die kürzest möglichen Entladungsleitungen für die funkenerosive Entladung ergeben, was sich auf diese positiv auswirkt.The spark erosion generating generator is a capacitive discharge spark generator, which allows for optimal spark discharge, and is disposed on the cup-shaped grinding wheel storage apparatus, resulting in the shortest possible spark discharge discharge lines, which has a positive effect thereon ,

In vorteilhafter Weise sind die Mittel zur Zuführung des Kühlschmiermittels aus an Zuführleitungen angebrachten Düsen gebildet, über welche Düsen das Kühlschmiermittel in den Bearbeitungsspalt und zum Werkstück zuleitbar ist, was eine optimale Konditionierung und eine optimale Kühlung und Schmierung zur Folge hat.Advantageously, the means for supplying the cooling lubricant from nozzles attached to supply lines are formed, via which nozzles the cooling lubricant in the machining gap and the Workpiece can be fed, which has an optimal conditioning and optimal cooling and lubrication result.

Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass das Kühlschmiermittel ein Dielektrikum auf Ölbasis ist, wodurch eine optimale Kühlung und Schmierung beim Schleifvorgang erreicht wird, und ein optimales Umfeld für die funkenerosive Entladung zum Konditionieren der Schleifscheibe erhalten wird.A further advantageous embodiment of the invention is that the cooling lubricant is an oil-based dielectric, whereby an optimal cooling and lubrication during the grinding process is achieved, and an optimal environment for the spark erosive discharge for conditioning the grinding wheel is obtained.

In vorteilhafter Weise besteht die Elektrode aus Aluminium, wodurch diese gut bearbeitbar ist, und zudem im Zusammenhang mit dem auf Ölbasis basierendem Dielektrikum eine optimale funkenerosive Entladung erreichbar ist.Advantageously, the electrode is made of aluminum, whereby it is easy to work, and also in connection with the oil-based based dielectric optimal spark erosive discharge can be achieved.

In vorteilhafter Weise ist eine Steuerungseinrichtung zum Steuern und Regeln der Arbeitsabläufe vorgesehen, wodurch diese in optimaler Weise mit den auszuführenden Schleifvorgängen koordiniert werden können.Advantageously, a control device is provided for controlling and regulating the work processes, whereby these can be optimally coordinated with the grinding operations to be performed.

Eine weitere Aufgabe der Erfindung besteht darin, ein Verfahren zum Konditionieren einer topfförmigen Schleifscheibe zu schaffen, mit welchem diese in optimaler Weise profiliert, geschärft und gereinigt werden kann, was erfindungsgemäss dadurch gelöst wird, dass zum Konditionieren der Schleifbeläge der Schleifscheibe in den Arbeitsspalt ein Kühlschmiermittel zugeführt wird, über den Generator über den Arbeitsspalt eine Zündspannung angelegt wird und die Elektrode gegen die Schleifscheibe hin mit einer Vorschubgeschwindigkeit verfahren wird, bis ein vorgegebener Grenzwert der mittleren Spannung, gemessen über dem Arbeitsspalt, und/oder des mittleren Stromflusses, gemessen durch die Entladungsleitungen, durchschritten wird, dass dann die Zündspannung über dem Arbeitsspalt, die Entladungsenergie, die Entladungsfrequenz und die Vorschubgeschwindigkeit auf einen jeweils vorgegebenen Wert zum Profilieren, Schärfen oder Reinigen der Schleifscheibe eingestellt werden und der entsprechende Vorgang durch funkenerosive Entladung ausgeführt wird.A further object of the invention is to provide a method for conditioning a cup-shaped grinding wheel with which it can be profiled, sharpened and cleaned in an optimum manner, which is achieved according to the invention by conditioning a cooling lubricant for conditioning the grinding surfaces of the grinding wheel in the working gap an ignition voltage is applied across the generator across the working gap and the electrode is moved towards the grinding wheel at a feed rate until a predetermined threshold of mean voltage, measured across the working gap, and / or average current flow, as measured by the discharge lines , is passed through that then the ignition voltage across the working gap, the discharge energy, the discharge frequency and the feed rate to a given value for profiling, sharpening or cleaning the grinding wheel are set and the ents Pre-emptive process is carried out by spark erosive discharge.

In vorteilhafter Weise wird zum Profilieren der Schleifscheibe eine Entladungsenergie von etwa 10 bis 100 mJ und eine Entladungsfrequenz von etwa 1 bis 100 kHz ausgewählt, was eine optimale Abtragungsleistung ergibt.Advantageously, a discharge energy of about 10 to 100 mJ and a discharge frequency of about 1 to 100 kHz is selected for profiling the grinding wheel, resulting in an optimum removal performance.

Der Profilierungsvorgang wird solange ausgeführt, bis die mittlere Spannung, gemessen über dem Arbeitsspalt, und/oder der mittlere Stromfluss, gemessen durch die Entladungsleitungen im Wesentlichen konstant ist, was darauf hinweist, dass der zu profilierende Schleifbelag optimal ausgebildet ist.The profiling operation is carried out until the average stress, measured across the working gap, and / or the average flow of current, as measured by the discharge conduits, is substantially constant, indicating that the abrasive coating to be profiled is optimally formed.

Zum Vorschärfen der Schleifscheibe wird eine Entladungsenergie von etwa 0,5 bis 5 mJ und eine Entladungsfrequenz von etwa 10 kHz bis 1 MHz ausgewählt, eine entsprechende Entladungsenergie und Entladungsfrequenz wird auch zum Schärfen und Reinigen der Schleifscheibe ausgewählt, wobei das Schärfen und Reinigen der Schleifscheibe während dem Bearbeiten eines Werkstücks durchgeführt werden kann.For pre-sharpening the grinding wheel, a discharge energy of about 0.5 to 5 mJ and a discharge frequency of about 10 kHz to 1 MHz is selected, a corresponding discharge energy and discharge frequency is also selected for sharpening and cleaning the grinding wheel, wherein the sharpening and cleaning of the grinding wheel during the machining of a workpiece can be performed.

Nach einer Schleifoperation kann es erforderlich sein, den optimalen Schärfezustand des im Einsatz stehenden Schleifbelags mittels einer zusätzlichen Nachschärffunktion wieder herzustellen. Diese Nachschärffunktion dauert eine vorgegebene Zeit, während der nicht geschliffen wird, und arbeitet mit ähnlichen Parametern wie das Schärfen und Reinigen der Schleifscheibe während dem Bearbeiten eines Werkstücks.After a grinding operation, it may be necessary to restore the optimum sharpness state of the abrasive coating in use by means of an additional secondary sharpening function. This re-sharpening function lasts for a predetermined time while not being ground, and works with parameters similar to sharpening and cleaning the grinding wheel while machining a workpiece.

Einen optimalen Bearbeitungsvorgang der Schleifscheibe durch die Elektrode wird dann erreicht, wenn die Vorschubgeschwindigkeit der Elektrode durch einen in der Steuerung angeordneten Regler innerhalb einer wählbaren Bandbreite aufgrund der mittleren Spannung, gemessen über dem Arbeitsspalt und des mittleren Stromflusses, gemessen durch die Entladungsleitungen, eingestellt wird.Optimum machining of the abrasive wheel by the electrode is achieved when the advancing speed of the electrode is adjusted by a regulator located within the controller within a selectable bandwidth due to the average voltage measured across the working gap and the average current flow as measured by the discharge lines.

In vorteilhafter Weise wird die Entladungsenergie und die Entladungsfrequenz während dem Schärfen und Reinigen der Schleifscheibe durch einen in der Steuerung angeordneten Optimierungsalgorithmus innerhalb einer wählbaren Bandbreite aufgrund der maximalen Anpresskraft, der durchschnittlichen Anpresskraft während dem Ausfunken, dem Verhältnis der Leistung des Antriebsmotors zur Anpresskraft und dem Scheibenverschleiss, gemessen während den vorangehenden und abgeschlossenen Schleifoperationen, eingestellt. Dadurch erhält man eine einfachere Bedienbarkeit des Verfahrensablaufs.Advantageously, the discharge energy and the discharge frequency during sharpening and cleaning of the grinding wheel by an optimization algorithm arranged in the control within a selectable bandwidth due to the maximum contact pressure, the average contact pressure during the spark, the ratio of Power of the drive motor to the contact force and the disc wear, measured during the previous and completed grinding operations set. This gives a simpler operation of the procedure.

In vorteilhafter Weise wird zum Nachschärfen der Schleifscheibe zwischen zwei Schleifoperationen eine Entladungsenergie von etwa 0,1 bis 5 mJ und eine Entladungsfrequenz von etwa 10 kHz bis 1 MHz ausgewählt, und diese Nachschärfoperation wird während einer wählbaren Nachschärfzeit ausgeführt, wodurch eine grosse Prozessstabilität erreicht wird.Advantageously, for sharpening the grinding wheel between two grinding operations, a discharge energy of about 0.1 to 5 mJ and a discharge frequency of about 10 kHz to 1 MHz is selected, and this resharpening operation is performed during a selectable re-sharpening time, whereby a large process stability is achieved.

Indem die die Entladungsenergie und die Entladungsfrequenz während dem Nachschärfen der Schleifscheibe, wie auch die Nachschärfzeit, durch einen in der Steuerung angeordneten Optimierungsalgorithmus innerhalb einer wählbaren Bandbreite aufgrund der maximalen Anpresskraft, der durchschnittlichen Anpresskraft während dem Ausfunken, dem Verhältnis der Leistung des Antriebsmotors zur Anpresskraft und dem Scheibenverschleiss, gemessen während den vorangehenden und abgeschlossenen Schleifoperationen, eingestellt wird, erreicht man eine weitere Vereinfachung der Bedienbarkeit.By the discharge energy and the discharge frequency during resharpening of the grinding wheel, as well as the re-sharpening time, by an in the control arranged optimization algorithm within a selectable bandwidth due to the maximum contact pressure, the average contact pressure during sparking, the ratio of the power of the drive motor to the contact force and the disk wear measured during the preceding and completed grinding operations is set to achieve further ease of operation.

Eine Ausführungsform der erfindungsgemässen Vorrichtung und des erfindungsgemässen Verfahrens zum Konditionieren einer Schleifscheibe wird nachfolgend mit Bezugnahme auf die beiliegende Zeichnung beispielhaft näher erläutert.An embodiment of the device according to the invention and of the method according to the invention for conditioning a grinding wheel will be explained in more detail below by way of example with reference to the attached drawing.

Es zeigt,

  • Fig. 1 in räumlicher Darstellung die Lagereinrichtung für die rotierend antreibbare topfförmige Schleifscheibe mit der aufgesetzten Vorrichtung zum Profilieren, Schärfen und Reinigen der Schleifscheibe;
  • Fig. 2 eine räumliche Darstellung der Einrichtung gemäss Fig. 1 im Schnitt;
  • Fig. 3 in schematischer Darstellung die Vorrichtung zum Konditionieren der topfförmigen Schleifscheibe, dargestellt in einer ersten Position zum Konditionieren des ringförmigen Schleifbelags der Schleifscheibe;
  • Fig. 4 in schematischer Darstellung die Vorrichtung zum Konditioneren der topfförmigen Schleifscheibe, dargestellt in einer zweiten Position zum Konditionieren des mantelflächenförmigen Schleifbelags der Schleifscheibe;
  • Fig. 5 in schematischer Darstellung die Vorrichtung beim Konditionieren des mantelflächenförmigen Schleifbelags der Schleifscheibe, bei welcher die topfförmige Elektrode eine kegelstumpfförmige Aussenfläche aufweist und der mantelflächenförmige Schleifbelag mit einem Freiwinkel ausgestattet ist; und
  • Fig. 6 in schematischer Darstellung die Vorrichtung beim Konditionieren eines mit Freiwinkel versehenen mantelflächenförmigen Schleifbelags mit zylindrischer topfförmiger Elektrode.
It shows,
  • Fig. 1 in a spatial representation of the bearing device for the rotating drivable cup-shaped grinding wheel with the attached device for profiling, sharpening and cleaning the grinding wheel;
  • Fig. 2 a spatial representation of the device according to Fig. 1 on average;
  • Fig. 3 a schematic representation of the apparatus for conditioning the cup-shaped grinding wheel, shown in a first position for conditioning the annular abrasive coating of the grinding wheel;
  • Fig. 4 a schematic representation of the device for conditioning the cup-shaped grinding wheel, shown in a second position for conditioning the mantle-shaped abrasive covering of the grinding wheel;
  • Fig. 5 a schematic representation of the device during conditioning of the mantle-shaped abrasive covering of the grinding wheel, wherein the cup-shaped electrode has a frusto-conical outer surface and the mantle-shaped abrasive coating is provided with a clearance angle; and
  • Fig. 6 a schematic representation of the device in the conditioning of a provided with clearance angle coat surface-shaped abrasive coating with cylindrical pot-shaped electrode.

Aus Fig. 1 ist die Lagereinrichtung 1 ersichtlich, die in bekannter, nicht dargestellter Weise direkt am Maschinenrahmen einer Schleifmaschine oder auf zwischen Lagereinrichtung 1 und Maschinenrahmen eingesetzter Schlittenanordnung aufgesetzt ist. In dieser Lagereinrichtung 1 ist eine topfförmige Schleifscheibe 2 um eine Schleifscheibenachse 3 rotierbar gelagert. Der rotierende Antrieb dieser Schleifscheibe 2 erfolgt über einen Elektromotor 4, welcher an der Lagereinrichtung 1 angeordnet ist.Out Fig. 1 is the storage device 1 can be seen, which is placed in a known manner, not shown directly on the machine frame of a grinding machine or inserted between bearing device 1 and machine frame carriage assembly. In this bearing device 1, a pot-shaped grinding wheel 2 is rotatably mounted about a grinding wheel axis 3. The rotating drive of this grinding wheel 2 via an electric motor 4, which is arranged on the bearing device 1.

Die topfförmige Schleifscheibe 2 besteht aus einem Schleiftopf 5, auf welchem ein Schleifring 6 aufgesetzt ist, der einen ringförmigen Schleifbelag 7 und einen mantelflächenförmigen Schleifbelag 8 aufweist. Mit dieser Schleifscheibe 2 lässt sich ein Werkstück 9 schleifen, beispielsweise eine Wendeschneidplatte, welche in bekannter Weise über Mittel 10 zum Halten des zu schleifenden Werkstücks 9, angeordnet in der Schleifmaschine, gehalten wird.The pot-shaped grinding wheel 2 consists of a grinding cup 5, on which a slip ring 6 is placed, which has an annular abrasive coating 7 and a mantle-shaped abrasive coating 8. With this grinding wheel 2, a workpiece 9 can be ground, for example an indexable insert, which is held in a known manner by means 10 for holding the workpiece 9 to be ground, arranged in the grinding machine.

Zum Konditionieren der Schleifbeläge 7, 8 der topfförmigen Schleifscheibe 2 ist eine Vorrichtung 11 vorgesehen, welche eine topfförmige Elektrode 12 aufweist, die um ihre zentrale Achse 13 rotierend antreibbar in einem Schlitten 14 gelagert ist, welcher auf der Lagereinrichtung 1 in Richtung der zentralen Achse 13 verschiebbar gehalten ist. Die Verschiebung des Schlittens 14 auf der Lagereinrichtung 1 erfolgt über einen Kugelspindelantrieb 15, dessen Antriebsmotor 16 auf der Lagereinrichtung 1 befestigt ist.For conditioning the abrasive coatings 7, 8 of the cup-shaped grinding wheel 2, a device 11 is provided, which has a cup-shaped electrode 12 which is mounted for rotation about its central axis 13 drivable in a carriage 14 which on the bearing device 1 in the direction of the central axis thirteenth is held displaceable. The displacement of the carriage 14 on the bearing device 1 via a ball screw drive 15, the drive motor 16 is mounted on the bearing device 1.

Ebenfalls auf der Lagereinrichtung 1 ist ein Generator 17 angeordnet. Dieser Generator 17 ist über Leitungen 18 mit der Stromversorgung der Schleifmaschine verbunden. Der Generator 17 ist über eine Entladungsleitung 19 mit der topfförmigen Schleifscheibe 2 und über eine weitere Entladungsleitung 20 mit der topfförmigen Elektrode 12 verbunden, wie nachfolgend noch gesehen wird. Die Kommunikation mit der bekannten, nicht dargestellten Maschinensteuerung erfolgt über die Leitung 35, welche verschiedenste Spezifikationen wie Ethernet, Profibus oder RS 232 erfüllen kann.Also on the storage device 1, a generator 17 is arranged. This generator 17 is connected via lines 18 to the power supply of the grinding machine. The generator 17 is connected via a discharge line 19 with the cup-shaped grinding wheel 2 and via a further discharge line 20 with the cup-shaped electrode 12, as will be seen below. The communication with the known, not shown machine control via the line 35, which can meet a variety of specifications such as Ethernet, Profibus or RS 232.

Im Bereich des zu schleifenden Werkstücks 9 ist in bekannter Weise eine Düse 21 angebracht, die mit einer nicht dargestellten Zuführleitung verbunden ist, über welche in den Schleifbereich ein Kühlschmiermittel eingebracht werden kann. Eine weitere Düse 22 ist in bekannter Weise im Bereich der Elektrode angeordnet, über welche über eine nicht dargestellte Zuführleitung das Kühlschmiermittel in den Arbeitsspalt 23 zwischen der topfförmigen Elektrode 12 und dem Schleifring 6 der Schleifscheibe 2 eingebracht werden kann.In the area of the workpiece 9 to be ground, a nozzle 21 is attached in known manner, which is connected to a feed line, not shown, via which a cooling lubricant can be introduced into the grinding area. A further nozzle 22 is arranged in a known manner in the region of the electrode, via which the cooling lubricant can be introduced into the working gap 23 between the cup-shaped electrode 12 and the slip ring 6 of the grinding wheel 2 via a feed line, not shown.

Wie aus Fig. 2 ersichtlich ist, ist die Spindel 24 der topfförmigen Schleifscheibe 2 in elektrisch isolierten Lagern 25 gelagert. Der Elektromotor 4 ist in bekannter Weise von der Spindel 24 elektrisch isoliert. Auf der Spindel 24 ist ein Schleifring 26 angebracht, der mit einem Kontakt 27 zusammenwirkt, an welchen die Entladungsleitung 19 (Fig. 1) angeschlossen ist. Dadurch wird die topfförmige Schleifscheibe 2 über die Spindel 24, den Schleifring 26, den Kontakt 27 und die entsprechende Entladungsleitung mit dem Generator 17 (Fig. 1) verbunden.How out Fig. 2 it can be seen, the spindle 24 of the cup-shaped grinding wheel 2 is mounted in electrically insulated bearings 25. The electric motor 4 is electrically isolated from the spindle 24 in a known manner. On the spindle 24, a slip ring 26 is mounted, which cooperates with a contact 27, to which the discharge line 19 (FIG. Fig. 1 ) connected. Thus, the cup-shaped grinding wheel 2 via the spindle 24, the slip ring 26, the contact 27 and the corresponding discharge line to the generator 17 (FIG. Fig. 1 ) connected.

Wie ebenfalls aus Fig. 2 ersichtlich ist, ist die topfförmige Elektrode 12 auf eine Elektrodenspindel 28 aufgeflanscht, die in entsprechender Weise elektrisch isoliert im Schlitten 14 (Fig. 1) gelagert ist und über den von der Spindel 28 elektrisch isoliert angeordneten Motor 29 um die zentrale Achse 13 antreibbar ist. Auf der Elektrodenspindel 28 ist wiederum ein Schleifring 30 angebracht, der mit einem Kontakt 31 zusammenwirkt, welcher Kontakt 31 über die Entladungsleitung 20 (Fig. 1) mit dem Generator 17 elektrisch verbunden ist.Like also out Fig. 2 can be seen, the pot-shaped electrode 12 is flanged onto an electrode spindle 28, which is electrically isolated in a corresponding manner in the carriage 14 (FIG. Fig. 1 ) Is mounted and about the spindle 28 electrically isolated motor 29 arranged around the central axis 13 can be driven. On the electrode spindle 28, in turn, a slip ring 30 is mounted, which cooperates with a contact 31, which contact 31 via the discharge line 20 (FIG. Fig. 1 ) is electrically connected to the generator 17.

Der Schleifscheibentopf 5 der topfförmigen Schleifscheibe 2 besteht aus einem elektrisch leitfähigen Material. Der auf den Schleifscheibentopf 5 aufgesetzte Schleifring 6 besteht aus einem Grundkörper aus Aluminium, Bronze oder Stahl. Auf diesem Grundkörper sind die Schleifbeläge 7, 8 aufgebracht, welche aus einer Bindung bestehen, in welcher die Schleifkörner eingelagert sind. Das Bindungsmaterial besteht aus einer Metalllegierung, aus Kunstharz oder aus Keramik, die ebenfalls elektrisch leitfähig sind. In dieses elektrisch leitfähige Bindungsmaterial sind in bekannter Weise die Schleifkörner eingebettet, die aus Diamant oder einem anderen entsprechend geeigneten Material bestehen können.The grinding wheel cup 5 of the cup-shaped grinding wheel 2 is made of an electrically conductive material. The patch on the grinding wheel pot 5 slip ring 6 consists of a base made of aluminum, bronze or steel. On this body, the abrasive coatings 7, 8 are applied, which consist of a bond in which the abrasive grains are incorporated. The binding material consists of a metal alloy, synthetic resin or ceramic, which are also electrically conductive. In this electrically conductive bonding material, the abrasive grains are embedded in a known manner, which may consist of diamond or another correspondingly suitable material.

Die topfförmige Elektrode 12 besteht ebenfalls aus einem elektrisch leitfähigen Material, vorzugsweise aus Aluminium. Diese topfförmige Elektrode 12 kann aber auch aus Kupfer, Graphit oder einem anderen leitfähigen geeigneten Material bestehen.The cup-shaped electrode 12 is also made of an electrically conductive material, preferably of aluminum. However, this pot-shaped electrode 12 may also consist of copper, graphite or another conductive suitable material.

Als Kühlschmiermittel wird in bevorzugter Weise ein Dielektrikum auf Ölbasis eingesetzt, beispielsweise das unter der Bezeichnung "Ionogrind" durch die Firma Oelheld GmbH, Stuttgart, Deutschland auf dem Markt angebotene Kühlschmiermittel. Der hier eingesetzte Generator 17 ist ein Funkengenerator mit kapazitiver Entladung, wie er beispielsweise im US-Patent Nr. 4 710 603 der Firma Fanuc Ltd. beschrieben ist.The cooling lubricant used is preferably an oil-based dielectric, for example the cooling lubricant marketed under the name "Ionogrind" by the company Oelheld GmbH, Stuttgart, Germany. The generator 17 used here is a spark generator with capacitive discharge, as it is for example in U.S. Patent No. 4,710,603 the company Fanuc Ltd. is described.

Zum Konditionieren der Schleifbeläge 7, 8 der topfförmigen Schleifscheibe 2 wird durch den Generator 17 über dem Arbeitsspalt 23 eine Zündspannung angelegt, wodurch sich zwischen der topfförmigen Elektrode 12 und der topfförmigen Schleifscheibe 2 im dielektrischen Kühlschmiermittel ein Ionenkanal bildet und eine Entladung stattfinden kann. Der Arbeitsspalt 23 muss gross genug sein, damit das ausgelöste Bindungsmaterial aber auch die herausgelösten Schleifkörner weggespült werden können, ohne dass die topfförmige Elektrode 12 oder die Schleifbeläge 7, 8 der topfförmigen Schleifscheibe 2 verletzt werden. Für eine metallgebundene Diamantschleifscheibe mit Körnung 25 Mikrometer sollte der Arbeitsspalt 23, d.h. der Abstand zwischen dem Grund des Bindungsmaterials des Schleifbelags der Schleifscheibe 2 und der topfförmigen Elektrode 12 zwischen 50 und 100 Mikrometer betragen. Um dies erreichen zu können, ist eine Zündspannung über dem Arbeitsspalt 23 von 300 bis 500 Volt, vorzugsweise 400 Volt, erforderlich. Bei kleinerer Zündspannung besteht die Gefahr, dass der Arbeitsspalt zu klein ist und das Herauslösen des Bindungsmaterials und der Schleifkörner die Oberfläche der topfförmigen Elektrode 12 verletzen.For conditioning the abrasive coatings 7, 8 of the cup-shaped grinding wheel 2, an ignition voltage is applied by the generator 17 via the working gap 23, whereby between the pot-shaped electrode 12th and the cup-shaped grinding wheel 2 forms an ion channel in the dielectric cooling lubricant and a discharge can take place. The working gap 23 must be large enough so that the released binding material but also the dissolved abrasive grains can be washed away without damaging the pot-shaped electrode 12 or the abrasive coatings 7, 8 of the cup-shaped grinding wheel 2. For a 25 micron diameter metal-bonded diamond grinding wheel, the working gap 23, ie, the distance between the bottom of the bonding material of the abrasive pad of the grinding wheel 2 and the cup-shaped electrode 12, should be between 50 and 100 microns. To achieve this, an ignition voltage across the working gap 23 of 300 to 500 volts, preferably 400 volts, is required. With a smaller ignition voltage, there is a risk that the working gap is too small and the leaching of the bonding material and the abrasive grains violate the surface of the cup-shaped electrode 12.

Wie bereits erwähnt worden ist, ist der Generator 17 auf der Lagereinrichtung 1 angeordnet, was bedeutet, dass die elektrischen Entladungsleitungen 19 und 20 (Fig. 1) sehr kurz gehalten werden können, wodurch ein optimaler Konditionierprozess der Schleifscheibe mittels Funkenerosion erreichbar ist.As already mentioned, the generator 17 is arranged on the bearing device 1, which means that the electrical discharge lines 19 and 20 (FIG. Fig. 1 ) can be kept very short, whereby an optimal conditioning process of the grinding wheel can be achieved by means of spark erosion.

Fig. 3 zeigt in schematischer Darstellung die Stellung der topfförmigen Elektrode 12 zur topfförmigen Schleifscheibe 2, wenn der ringförmige Schleifbelag 7 der topfförmigen Schleifscheibe 2 konditioniert werden soll. Die zentrale Achse 13 der topfförmigen Elektrode 12 ist hierbei exakt parallel ausgerichtet zur Schleifscheibenachse 3. Die topfförmige Elektrode 12 ist hohlzylinderförmig ausgebildet, und weist eine ringförmige Bearbeitungsfläche 32 auf, die genau plan ist. Die topfförmige Schleifscheibe 2 rotiert um die Schleifscheibenachse 3, wobei die Umfangsgeschwindigkeit der Schleifscheibe etwa 15 bis 25 Meter pro Sekunde beträgt, wenn es sich um eine metallgebundene Diamantschleifscheibe handelt, diese kann auf bis 63 Meter pro Sekunde für Schleifscheiben mit CBN-Körnern erhöht werden. Fig. 3 shows a schematic representation of the position of the cup-shaped electrode 12 to the cup-shaped grinding wheel 2 when the annular abrasive coating 7 of the cup-shaped grinding wheel 2 is to be conditioned. The central axis 13 of the pot-shaped electrode 12 is in this case aligned exactly parallel to the grinding wheel axis 3. The cup-shaped electrode 12 is formed in a hollow cylindrical shape, and has an annular processing surface 32, which is exactly flat. The cup-shaped grinding wheel 2 rotates around the grinding wheel axis 3, wherein the peripheral speed of the grinding wheel is about 15 to 25 meters per second, if it is a metal-bonded diamond grinding wheel, this can be increased up to 63 meters per second for grinding wheels with CBN grains.

Dies entspricht auch der Geschwindigkeit der Schleifscheibe zum Schleifen eines Werkstücks. Die topfförmige Elektrode rotiert um die zentrale Achse 13 mit einer geringeren Geschwindigkeit. Durch das Rotieren der Elektrode 12 wird eine sehr genaue Planheit der Elektrode 12 und des Schleifbelages 7 erreicht.This also corresponds to the speed of the grinding wheel for grinding a workpiece. The pot-shaped electrode rotates around the central Axis 13 at a slower speed. By rotating the electrode 12, a very accurate flatness of the electrode 12 and the abrasive coating 7 is achieved.

Bevor der Konditioniervorgang mit funkenerosiver Entladung ausgeführt werden kann, muss die topfförmige Elektrode 12 auf den richtigen Abstand zu den zu konditionierenden Schleifbelägen 7, 8 gebracht werden. Die nachfolgend beschriebenen Konditionierungsvorgänge werden mit einer topfförmigen Schleifscheibe mit einem Durchmesser von 400 mm, einer Belagsbreite von 10 mm und einer Körnung 25 Mikrometer ausgeführt. Die Entladungsenergie am Generator wird eingestellt, die topfförmige Elektrode 12 wird über den Schlitten 14 entlang der zentralen Achse 13 auf die Schleifscheibe 2 zubewegt, wobei die Geschwindigkeit 10 bis 100 Mikrometer pro Minute betragen kann. Sobald die mittlere Spannung über dem Arbeitsspalt 23, die in bekannter Weise gemessen wird und/oder der mittlere Strom, welcher durch die elektrischen Entladungsleitungen 19 und 20 (Fig. 1) fliesst, der ebenfalls in bekannter Weise gemessen wird, einen vorgegebenen Grenzwert durchschreiten, kann mit der Konditionierung durch funkenerosive Entladung begonnen werden. Zum Profilieren des ringförmigen Schleifbelags 7 werden eine hohe Entladungsenergie, typischerweise 10 bis 100 mJ, und eine geringe Entladungsfrequenz, typischerweise 1 bis 100 kHz, ausgewählt. Die Vorschubgeschwindigkeit der topfförmigen Elektrode 12 wird auf eine Geschwindigkeit von typischerweise 0,5 bis 5 Mikrometer pro Minute eingestellt. Diese Vorschubgeschwindigkeit wird während der funkenerosiven Bearbeitung innerhalb einer vorgegebenen Bandbreite aufgrund der gemessenen mittleren Spannung über dem Arbeitsspalt 23 und des mittleren Stroms, welcher durch die beiden Entladungsleitungen fliesst, geregelt.Before the spark erosion discharge conditioning operation can be carried out, the cup-shaped electrode 12 must be placed at the correct distance from the abrasive linings 7, 8 to be conditioned. The conditioning operations described below are carried out with a cup-shaped grinding wheel with a diameter of 400 mm, a pad width of 10 mm and a grain size of 25 microns. The discharge energy at the generator is adjusted, the cup-shaped electrode 12 is moved via the carriage 14 along the central axis 13 to the grinding wheel 2, wherein the speed can be 10 to 100 micrometers per minute. Once the average voltage across the working gap 23, which is measured in a known manner and / or the average current flowing through the electrical discharge lines 19 and 20 ( Fig. 1 ) flows, which is also measured in a known manner, pass a predetermined limit, can be started with the conditioning by spark discharge. For profiling the annular abrasive pad 7, a high discharge energy, typically 10 to 100 mJ, and a low discharge frequency, typically 1 to 100 kHz, are selected. The feed rate of the cup-shaped electrode 12 is set at a rate of typically 0.5 to 5 microns per minute. This feed rate is controlled during spark erosion processing within a given bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the two discharge lines.

Der Profiliervorgang wird dann beendet, wenn die mittlere Spannung über dem Arbeitsspalt und/oder der mittlere Strom, welcher durch die Entladungsleitungen fliesst, im Wesentlichen konstant bleiben, d.h. nicht mehr als 10% während einer Umdrehung der Schleifscheibe 2 beziehungsweise der Elektrode 12, variieren. Bei diesem Profiliervorgang wird ein absolut planer ringförmiger Schleifbelag 7 erhalten, welcher in einer senkrecht zur Schleifscheibenachse 3 stehenden Ebene liegt. Es wäre auch denkbar, die ringförmige Bearbeitungsfläche 32 der Elektrode kegelig anzuschrägen und die zentrale Achse 13 nicht parallel zur Schleifscheibenachse 3 auszurichten, man würde dann einen ringförmigen Schleifbelag 7 erhalten, der bezüglich der senkrecht zur Schleifscheibenachse 3 stehenden Ebene winklig wäre.The profiling process is terminated when the average voltage across the working gap and / or the average current flowing through the discharge lines remain substantially constant, ie not more than 10% during one rotation of the grinding wheel 2 and the electrode 12, respectively. In this profiling an absolutely flat annular abrasive coating 7 is obtained, which lies in a plane perpendicular to the grinding wheel axis 3 level. It would also be conceivable that annular tapered machining surface 32 of the electrode and align the central axis 13 is not parallel to the grinding wheel axis 3, one would then receive an annular abrasive coating 7, which would be at an angle with respect to the plane perpendicular to the grinding wheel axis 3.

Der Profiliervorgang kann dadurch abgekürzt werden, indem die Schleifscheibe 2 mit dem entsprechenden Schleifbelag 7, 8 und die Elektrode 12 mit der entsprechenden Fläche aneinander angestellt werden, der Generator 17 bleibt ausgeschaltet. Die Schleifscheibe 2 und die Elektrode 12 sind rotierend angetrieben. Die Schleifscheibe 2, die üblicherweise in einem relativ genau profilierten Zustand angeliefert wird, richtet dadurch durch einen Schleifvorgang die Elektrode 12 ab. Der Profiliervorgang kann danach durch das vorgängig beschriebene Abrichtverfahren zu Ende geführt werden.The profiling can be shortened by the grinding wheel 2 with the corresponding abrasive coating 7, 8 and the electrode 12 are hired with the corresponding surface to each other, the generator 17 remains off. The grinding wheel 2 and the electrode 12 are driven in rotation. The grinding wheel 2, which is usually delivered in a relatively precisely profiled state, thereby aligns the electrode 12 by a grinding operation. The profiling process can then be completed by the previously described dressing process.

Mit diesem Abrichtverfahren besteht das Risiko, dass die Elektrode unnötigerweise zu stark abgeschliffen wird. Um dies zu vermeiden, kann zur Durchführung des Abrichtvorgangs der Generator 17 eingeschaltet werden. Es wird eine mittlere Spannung angelegt. Danach werden Schleifscheibe 2 und Elektrode 12 gegeneinander verfahren, bis Schleifscheibe 2 und Elektrode 12 aneinander anstossen. Es entsteht eine Kurzschlussspannung. Die Vorschubbewegung der Schleifscheibe 2 beziehungsweise der Elektrode 12 wird gestoppt, es kann zugewartet werden, bis sich bei der funkenerosiven Entladung ein Gleichgewicht einstellt.With this dressing method, there is a risk that the electrode will be unnecessarily abraded too much. In order to avoid this, the generator 17 can be switched on to carry out the dressing process. A medium voltage is applied. Thereafter, grinding wheel 2 and electrode 12 are moved against each other until grinding wheel 2 and electrode 12 abut one another. It creates a short-circuit voltage. The advancing movement of the grinding wheel 2 or the electrode 12 is stopped, it can be waited until an equilibrium sets in the discharge discharge.

Zum Vorschärfen des ringförmigen Schleifbelags 7 der topfförmigen Schleifscheibe 2 werden eine Entladungsenergie von typischerweise 0,1 bis 5 mJ und eine Entladungsfrequenz von typischerweise 10 kHz bis 1 MHz ausgewählt. Die Vorschubbewegung der topfförmigen Elektrode 12 wird auf eine kleine Geschwindigkeit von typischerweise 0,1 bis 0,4 Mikrometer pro Minute gebracht. Die Vorschubgeschwindigkeit wird innerhalb einer bestimmten Bandbreite auf Grund der gemessenen mittleren Spannung über dem Arbeitsspalt 23 und des mittleren Stroms, welcher durch die Entladungsleitungen fliesst, mittels eines Reglers in der Steuerung in optimaler Weise eingestellt. Der Vorschärfvorgang kann als beendet betrachtet werden, wenn eine Vorschubdistanz von 20 bis 50 Mikrometer erreicht ist, wobei diese Vorschubdistanz etwa dem Korndurchmesser entspricht. Dadurch werden thermisch belastete Körner eliminiert.For pre-sharpening the annular abrasive coating 7 of the cup-shaped grinding wheel 2, a discharge energy of typically 0.1 to 5 mJ and a discharge frequency of typically 10 kHz to 1 MHz are selected. The advancing movement of the cup-shaped electrode 12 is brought to a low speed of typically 0.1 to 0.4 microns per minute. The feed rate is optimally adjusted within a certain bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the discharge lines by means of a regulator in the controller. The pre-sharpening process can be considered complete when a feed distance of 20 to 50 microns is reached, this Feed distance corresponds approximately to the grain diameter. As a result, thermally stressed grains are eliminated.

Zum Schärfen und Reinigen des ringförmigen Schleifbelags 7 der topfförmigen Schleifscheibe 2 während des Schleifvorgangs (inprocess) wird die Vorschubbewegung der topfförmigen Elektrode 12 auf eine Geschwindigkeit von maximal 0,4 Mikrometer pro Minute eingestellt. Dabei werden typischerweise Entladungsenergien von 0,1 bis 5 mJ und Entladungsfrequenzen von 10 kHz bis 1 MHz ausgewählt. Die Vorschubgeschwindigkeit wird innerhalb einer bestimmten Bandbreite auf Grund der gemessenen mittleren Spannung über dem Arbeitsspalt 23 und des mittleren Stroms, welcher durch die Entladungsleitungen fliesst, mittels des Reglers in der Steuerung in optimaler Weise eingestellt.For sharpening and cleaning the annular abrasive covering 7 of the cup-shaped grinding wheel 2 during the grinding process (inprocess), the advancing movement of the cup-shaped electrode 12 is set to a maximum speed of 0.4 micrometers per minute. Discharge energies of 0.1 to 5 mJ and discharge frequencies of 10 kHz to 1 MHz are typically selected. The feed rate is optimally adjusted within a certain bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the discharge lines by means of the controller in the controller.

Während des Schleifens eines Werkstücks 9 können in bekannter Weise die Anpresskraft, mit welcher das Werkstück 9 gegen die Schleifscheibe 2 gepresst wird, und die Leistung des Elektromotors 4 für die Schleifscheibe gemessen werden. Im Besonderen werden die maximale Anpresskraft, die durchschnittliche Anpresskraft während dem Ausfunken und das Verhältnis der Leistung des Elektromotors zur Anpresskraft berechnet. Am Ende einer jeden Schleifoperation wird der Scheibenverschleiss auf bekannte Weise abgeschätzt. Aus diesen Messwerten, beziehungsweise aus den in einer Rechner- und Reglereinrichtung entsprechend aufbereiteten Daten, lässt sich in bekannter Weise der Schärfezustand des im Einsatz stehenden Schleifbelags 7, 8 der Schleifscheibe 2 quantifizieren.During the grinding of a workpiece 9, the pressing force with which the workpiece 9 is pressed against the grinding wheel 2 and the power of the electric motor 4 for the grinding wheel can be measured in a known manner. In particular, the maximum contact pressure, the average contact force during sparking and the ratio of the power of the electric motor to the contact force are calculated. At the end of each grinding operation, the disc wear is estimated in a known manner. From these measured values, or from the data prepared accordingly in a computer and control device, the sharpness state of the abrasive coating 7, 8 of the grinding wheel 2 in use can be quantified in a known manner.

Die Entladungsenergie und Entladungsfrequenz zum Schärfen und Reinigen werden vorteilhafterweise innerhalb einer bestimmten Bandbreite aufgrund des Schärfezustands des im Einsatz stehenden Schleifbelags 7, 8 der Schleifscheibe 2 während den vorangehenden und abgeschlossenen Schleifoperationen, eingestellt.The discharge energy and discharge frequency for sharpening and cleaning are advantageously adjusted within a certain range due to the sharpness state of the abrasive pad 7, 8 of the grinding wheel 2 in use during the preceding and completed grinding operations.

Zum Nachschärfen des ringförmigen Schleifbelags 7 der topfförmigen Schleifscheibe 2 zwischen zwei Schleifoperationen wird die Vorschubbewegung der topfförmigen Elektrode 12 auf eine Geschwindigkeit von maximal 0,4 Mikrometer pro Minute eingestellt. Dabei werden typischerweise Entladungsenergien von 0,1 bis 5 mJ und Entladungsfrequenzen von 10 kHz bis 1 MHz ausgewählt. Die Vorschubgeschwindigkeit wird innerhalb einer bestimmten Bandbreite auf Grund der gemessenen mittleren Spannung über dem Arbeitsspalt 23 und des mittleren Stroms, welcher durch die Entladungsleitungen fliesst, mittels des Reglers in der Steuerung in optimaler Weise eingestellt. Dieser Vorgang kann nach einer bestimmten Nachschärfzeit als abgeschlossen betrachtet werden.For re-sharpening the annular abrasive coating 7 of the cup-shaped grinding wheel 2 between two grinding operations, the advancing movement of the cup-shaped electrode 12 to a speed set at a maximum of 0.4 microns per minute. Discharge energies of 0.1 to 5 mJ and discharge frequencies of 10 kHz to 1 MHz are typically selected. The feed rate is optimally adjusted within a certain bandwidth due to the measured average voltage across the working gap 23 and the average current flowing through the discharge lines by means of the controller in the controller. This process can be considered complete after a certain re-sharpening time.

Die Entladungsenergie, die Entladungsfrequenz und die Nachschärfzeit werden vorteilhafterweise innerhalb einer bestimmten Bandbreite aufgrund des Schärfezustands des im Einsatz stehenden Schleifbelags 7, 8 der Schleifscheibe 2 während den vorangehenden und abgeschlossenen Schleifoperationen, eingestellt.The discharge energy, the discharge frequency and the re-sharpening time are advantageously set within a certain range due to the sharpness state of the abrasive pad 7, 8 of the grinding wheel 2 in use during the preceding and completed grinding operations.

Wie bereits erwähnt worden ist, gelten die vorgängig beschriebenen Werte zur Konditionierung einer topfförmigen Schleifscheibe mit einem Durchmesser von 400 mm, welche eine Belagsbreite von 10 mm hat und eine Körnung 25 Mikrometer aufweist. Bei grösseren Belagsbreiten müsste die Vorschubgeschwindigkeit entsprechend reduziert werden, abhängig vom abtragbaren Volumen pro Zeiteinheit. Bei anderer Körnung gelten entsprechend andere Vorschubdistanzen.As already mentioned, the values described above for conditioning a pot-shaped grinding wheel with a diameter of 400 mm, which has a pad width of 10 mm and a grain size of 25 microns apply. For larger paving widths, the feed rate would have to be reduced accordingly, depending on the ablatable volume per unit of time. For other grain sizes, different feed distances apply accordingly.

Wie aus den Figuren 3 und 4 ersichtlich ist, kann der Schlitten 14, auf welchem die Vorrichtung zum Konditionieren 11 angeordnet sind, auf einen senkrecht dazu stehenden weiteren Schlitten 33 aufgesetzt sein, sodass die topfförmige Elektrode 12 nicht nur in Richtung der zentralen Achse 13 auf die topfförmige Schleifscheibe 2 zubewegt werden kann, sondern auch quer dazu. Dadurch kann erreicht werden, dass auch ein mantelförmiger Schleifbelag 8 der topfförmigen Schleifscheibe 2 mit dieser Vorrichtung zum Konditionieren 11 bearbeitet werden kann.Like from the Figures 3 and 4 it can be seen, the carriage 14 on which the conditioning device 11 are arranged, be placed on a perpendicular thereto further carriage 33 so that the cup-shaped electrode 12 can be moved not only in the direction of the central axis 13 on the cup-shaped grinding wheel 2 but also across it. It can thereby be achieved that a jacket-shaped abrasive coating 8 of the cup-shaped grinding wheel 2 can also be processed with this conditioning device 11.

Wie aus Fig. 4 ersichtlich ist, wird die topfförmige Elektrode 12 so verfahren, dass deren Mantelfläche 34 dem mantelförmigen Schleifbelag 8 benachbart ist. Der Arbeitsspalt 23 entsteht somit zwischen mantelförmigem Schleifbelag 8 und Mantelfläche 34 der topfförmigen Elektrode 12. Zum Konditionieren dieses mantelfächenförmigen Schleifbelags 8 wird der weitere Schlitten 33 quer zur zentralen Achse 13 der topfförmigen Elektrode 12 verfahren, die topfförmige Elektrode 12 wird aber während des Bearbeitungsvorgangs auch in Richtung der zentralen Achse 13 oszillierend bewegt, sodass die ganze Mantelfläche 34 gleichmässig beansprucht wird.How out Fig. 4 it can be seen, the pot-shaped electrode 12 is moved so that its lateral surface 34 is adjacent to the jacket-shaped abrasive coating 8. The working gap 23 thus arises between jacket-shaped Abrasive coating 8 and lateral surface 34 of the pot-shaped electrode 12. To condition this mantelfächenförmigen abrasive coating 8, the further carriage 33 is moved transversely to the central axis 13 of the cup-shaped electrode 12, the cup-shaped electrode 12 but during the machining operation in the direction of the central axis 13 is oscillating , so that the entire lateral surface 34 is stressed evenly.

Wie aus Fig. 5 ersichtlich ist, weist hier die topfförmige Elektrode 12, die in die Vorrichtung 11 zum Konditionieren der Schleifbeläge 7, 8 der topfförmigen Schleifscheibe 2 eingesetzt ist, die Form eines Kegelstumpfes auf. Die Vorrichtung 11 ist auf den Kreuzschlitten 14, 33 aufgesetzt. Zum Konditionieren des mantelflächenförmigen Schleifbelags 8, der bezüglich des ringförmigen Schleifbelags 7 einen Freiwinkel, welcher dem Kegelstumpfwinkel der Elektrode 12 entspricht, aufweist, wird die Mantelfläche 34 der topfförmigen Elektrode 12 durch entsprechendes Verfahren der beiden Schlitten 14 und 33 in den Bereich des mantelflächenförmigen Schleifbelags 8 gebracht , bis der gewünschte Arbeitsspalt 23 entsteht. Während des Konditioniervorgangs des mantelflächenförmigen Schleifbelags 8 der topfförmigen Schleifscheibe 2 rotiert die Elektrode 12 um die Achse 13, gleichzeitig werden die beiden Schlitten 14, 33 derart verfahren, dass die Elektrode eine überlagerte Bewegung in Richtung des Freiwinkels, dargestellt durch Pfeil 37, ausführt und in dieser Richtung oszillierend bewegt wird, wodurch auch hier die Mantelfläche 34 der Elektrode 12 gleichmässig beansprucht wird.How out Fig. 5 it can be seen here has the cup-shaped electrode 12, which is inserted into the device 11 for conditioning the abrasive coatings 7, 8 of the cup-shaped grinding wheel 2, the shape of a truncated cone. The device 11 is placed on the cross slide 14, 33. For conditioning the surface-shaped abrasive coating 8, which has a clearance angle with respect to the annular abrasive coating 7, which corresponds to the truncated cone angle of the electrode 12, the lateral surface 34 of the cup-shaped electrode 12 by appropriate method of the two carriages 14 and 33 in the region of the mantle surface-shaped abrasive coating. 8 brought until the desired working gap 23 is formed. During the conditioning process of the surface-shaped abrasive covering 8 of the cup-shaped grinding wheel 2, the electrode 12 rotates about the axis 13, simultaneously the two carriages 14, 33 are moved such that the electrode performs a superimposed movement in the direction of the clearance angle, represented by arrow 37, and in FIG This direction is moved oscillating, whereby here the lateral surface 34 of the electrode 12 is claimed evenly.

Mit der Ausgestaltung der Vorrichtung 11 gemäss Fig. 6 kann ebenfalls ein mantelflächenförmiger Schleifbelag 8 einer topfförmigen Schleifscheibe 2 konditioniert werden, der bezüglich des ringförmigen Schleifbelags 7 einen Freiwinkel aufweist. Die hier in die Vorrichtung 11 eingesetzte topfförmige Elektrode 12 weist eine zylindrische Aussenform auf. Der Schlitten 14 ist in bekannter Weise um eine senkrecht zu den Bewegungsrichtungen der beiden Schlitten 14, 33 stehenden Achse 36 schwenkbar und einstellbar. Zum Konditionieren des mantelflächenförmigen Schleifbelags 8 der Schleifscheibe 2 wird der Schlitten 14 bezüglich des Schlittens 33 um einen Winkel verschwenkt, der dem Freiwinkel entspricht. Durch Verfahren des Schlittens 33 wird der Arbeitsspalt 23 eingestellt, die topfförmige Elektrode 12 wird während des Bearbeitungsvorgangs auch in Richtung der zentralen Achse 13 oszillierend bewegt, sodass die ganze Mantelfläche 34 gleichmässig beansprucht wird.With the embodiment of the device 11 according to Fig. 6 can also be a coat surface-shaped abrasive coating 8 of a cup-shaped grinding wheel 2 are conditioned, which has a clearance angle with respect to the annular abrasive coating 7. The pot-shaped electrode 12 used here in the device 11 has a cylindrical outer shape. The carriage 14 is pivotable and adjustable in a known manner about a perpendicular to the directions of movement of the two carriages 14, 33 axis 36. To condition the surface-shaped abrasive coating 8 of the grinding wheel 2, the carriage 14 is pivoted relative to the carriage 33 by an angle which corresponds to the clearance angle. By moving the carriage 33 of the working gap 23 is set, the cup-shaped electrode 12 is moved during the machining process in the direction of the central axis 13 oscillating, so that the entire surface 34 is uniformly stressed.

Mit dieser erfindungsgemässen Vorrichtung und dem erfindungsgemässen Verfahren kann eine topfförmige Schleifscheibe in optimalster Weise konditioniert werden, die Schärf- und Reinigungsvorgänge können problemlos auch während des Schleifens von Werkstücken ausgeführt werden. Die Schleifscheibe weist immer einen optimalen Zustand auf, die Effizienz wird dadurch gesteigert.With this inventive device and the inventive method, a pot-shaped grinding wheel can be conditioned in a most optimal manner, the sharpening and cleaning operations can be easily performed even during the grinding of workpieces. The grinding wheel always has an optimal condition, which increases efficiency.

Claims (20)

  1. Grinding machine for grinding a workpiece (9), comprising a machine frame, a bearing device (1) provided on the machine frame and movable along guides, in which device a cup-shaped grinding wheel (2) is borne in a way rotatably drivable about a grinding wheel axis (3) and electrically insulated, which is constructed of electrically conductive material and has a first grinding region with an annular abrasive lining (7) and second grinding regions (8) with abrasive linings in the shape of lateral surfaces of a cylinder, consisting in each case of an electrically conductive bonding material and grinding grains embedded therein, which grinding wheel (2) is electrically connected to a generator (17), means (10) for holding the workpiece (9) to be ground, a device (11) for profiling, sharpening and cleaning the abrasive linings (7, 8) of the grinding wheel (2) with at least one movable electrode (12), likewise electrically connected to the generator (17), and means (21, 22) of supply of a cooling lubricant to the electrode (12) and to the workpiece (9), characterised in that the device (11) for profiling, sharpening and cleaning is made up of a single tool designed as cup-shaped electrode (12), which is provided with at least one annular machining surface (32), which cup-shaped electrode (12), drivable in a rotating way about its central axis (13), is borne on a slide (14), by means of which a working gap (23) existing between the respective machining surface (32, 34) of the cup-shaped electrode (12) and the respective abrasive lining (7, 8) is adjustable, in which an electric discharge occurs when a sparking voltage is applied by the generator (17).
  2. Grinding machine according to claim 1, characterised in that the shaft (13) of the cup-shaped electrode (12) is aligned parallel to the grinding wheel axis (3) and orthogonal to the annular machining surface (32).
  3. Grinding machine according to claim 1 or 2, characterised in that the shaft (13) of the cup-shaped electrode (12) is borne in the slide (14) in an electrically insulated way, which slide (14) is held on the bearing device (1) via a linear guide and is displaceable, in a controlled way, along the linear guide, in the direction of the shaft (13).
  4. Grinding machine according to one of the claims 1 to 3, characterised in that the slide is designed as compound slide rest (14, 33), so that the electrode (12) is movable substantially axially and radially with respect to the grinding wheel (2), and in that the electrode (12) is provided with a further machining surface (34) having substantially the shape of the lateral area.
  5. Grinding machine according to claim 4, characterised in that the electrode's (12) machining surface (34), having the shape of the lateral area, is of cylindrical design, and in that the two slides (14, 33), designed as compound slide rest (14, 33), are pivotable toward one another about an axis (36) situated perpendicular thereto.
  6. Grinding machine according to claim 4, characterised in that the electrode's (12) machining surface (34), having the shape of the lateral area, is designed frustoconical.
  7. Grinding machine according to one of the claims 1 to 6, characterised in that the generator (12) is a spark generator with capacitive discharge, which is disposed on the bearing device (1).
  8. Grinding machine according to one of the claims 1 to 7, characterised in that the means of supply of the cooling lubricant consist of jets (21, 22) disposed on the supply lines, via which jets (21, 22) the cooling lubricant is able to be conducted into the working gap (23) and to the workpiece (9).
  9. Grinding machine according to one of the claims 1 to 8, characterised in that the cooling lubricant is an oil-based dielectric fluid.
  10. Grinding machine according to one of the claims 1 to 9, characterised in that the electrode (12) is made of aluminium.
  11. Grinding machine according to one of the claims 1 to 10, characterised in that a control device is provided for control and regulation of the operational procedures.
  12. Method for conditioning a cup-shaped grinding wheel (2) in a grinding machine according to one of the claims 1 to 11, characterised in that, to condition the abrasive linings (7, 8) of the grinding wheel (2), a cooling lubricant is conducted into the working gap (23), a spark voltage is applied over the working gap (23) via the generator (17), and the electrode (12) is moved toward the grinding wheel (2) at a feed rate until a predetermined threshold value of the average voltage is exceeded, measured via the working gap (23), and/or of the average current flow, measured through the discharge lines (19, 20), in that the spark voltage over the working gap, the discharge energy, the discharge frequency and the feed rate are then set to a predetermined value in each case for profiling, sharpening or cleaning of the grinding wheel (2), and the respective step is carried out by spark erosion discharge.
  13. The method according to claim 12, characterised in that, to profile the grinding wheel (2), a discharge energy of about 10 to 100 mJ and a discharge frequency of about 1 to 100 kHz is selected.
  14. The method according to claim 13, characterised in that the profiling step is carried out until the average voltage, measured over the working gap (23), and/or the average current flow, measured through the discharge lines, is substantially constant.
  15. The method according to claim 12, characterised in that, for preliminary sharpening of the grinding wheel (2), a discharge energy of about 0.1 to 5 mJ and a discharge frequency of about 10 kHz to 1 MHz is selected.
  16. The method according to claim 12, characterised in that, to sharpen and clean the grinding wheel (2), a discharge energy of about 0.1 to 5 mJ and a discharge frequency of about 10 kHz to 1 MHz is selected, and in that the sharpening and cleaning of the grinding wheel (2) is carried out during the machining of the workpiece (9).
  17. The method according to one of the claims 12 to 16, characterised in that, during the machining step carried out by the grinding wheel (2), through the electrode (12), the feed rate is set within a selectable range based on the average voltage, measured over the working gap (23) and the average current flow, measured through the discharge lines, by means of a regulating device disposed in the control system.
  18. The method according to one of the claims 12 to 17, characterised in that the discharge energy and the discharge frequency during the sharpening and cleaning of the grinding wheel (2) is set within a selectable range, using an optimisation algorithm stored in the control system, based on the maximal electrode force, the average electrode force during spark-out, the ratio of the power output of the drive motor to the electrode force and to the wheel attrition, measured during the preceding and concluded grinding operations.
  19. The method according to claim 12, characterised in that, for re-sharpening of the grinding wheel (2) between two grinding operations, a discharge energy of about 0.1 to 5 mJ and a discharge frequency of about 10 kHz to 1 MHz is selected, and this re-sharpening operation is carried out during a selectable re-sharpening time.
  20. The method according to one of the claims 12 to 19, characterised in that the discharge energy and the discharge frequency during the re-sharpening of the grinding wheel (2), and also the re-sharpening time, is set using an optimisation algorithm stored in the control system, within a selectable range based on the maximal electrode force, the average electrode force during spark-out, the ratio of the power output of the drive motor to the electrode force and the wheel attrition, measured during the preceding and completed grinding operations.
EP07123579A 2007-12-19 2007-12-19 Grinding machine with a device for conditioning a grinding machine and procedure for it Active EP2072182B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE502007004211T DE502007004211D1 (en) 2007-12-19 2007-12-19 Grinding machine with a device for conditioning a grinding wheel and method therefor
EP07123579A EP2072182B1 (en) 2007-12-19 2007-12-19 Grinding machine with a device for conditioning a grinding machine and procedure for it
US12/335,183 US8410390B2 (en) 2007-12-19 2008-12-15 Grinding machine with a device for conditioning a grinding wheel and a method of conditioning a grinding wheel
JP2008322194A JP5363091B2 (en) 2007-12-19 2008-12-18 Polishing machine equipped with a device for bringing the grinding wheel into an appropriate state and method thereof
CN2008101780912A CN101462243B (en) 2007-12-19 2008-12-19 Grinding machine for grinding a workpiece and a method of conditioning a cup-shaped grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07123579A EP2072182B1 (en) 2007-12-19 2007-12-19 Grinding machine with a device for conditioning a grinding machine and procedure for it

Publications (2)

Publication Number Publication Date
EP2072182A1 EP2072182A1 (en) 2009-06-24
EP2072182B1 true EP2072182B1 (en) 2010-06-23

Family

ID=39357991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07123579A Active EP2072182B1 (en) 2007-12-19 2007-12-19 Grinding machine with a device for conditioning a grinding machine and procedure for it

Country Status (5)

Country Link
US (1) US8410390B2 (en)
EP (1) EP2072182B1 (en)
JP (1) JP5363091B2 (en)
CN (1) CN101462243B (en)
DE (1) DE502007004211D1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20100070A1 (en) * 2010-03-17 2011-09-18 Giuseppe Soli MACHINE FOR CUTTING AND / OR PROFILING OF SUBSTANTIALLY LASTRIFORM FACTORIES
CN103522190B (en) * 2013-10-31 2016-03-30 哈尔滨工业大学 A kind of Arc Diamond Wheel electric spark and mechanical compound trimming device
CN105312916B (en) * 2014-07-31 2018-01-26 中国船舶重工集团公司第七二二研究所 A kind of multiple degrees of freedom adjusting means of workpiece
CN104842274B (en) * 2015-04-15 2018-03-09 北京兴华机械厂 A kind of compound trimmer of super-abrasive grinding wheel cup emery wheel electric spark
KR101868575B1 (en) * 2016-06-29 2018-06-18 한국산업기술대학교산학협력단 Apparatus and method for dressing grinding wheel
CN106584277B (en) * 2017-01-13 2019-02-22 河钢股份有限公司邯郸分公司 A kind of improved grinding wheel of roller grinder arrangement for grinding
EP3542959B1 (en) * 2018-03-20 2021-09-15 Vincent S.r.l. Dressing device
EP3608060A1 (en) * 2018-08-07 2020-02-12 Comadur S.A. Machining tool for grinding a workpiece
US11577365B2 (en) 2019-04-05 2023-02-14 Honda Motor Co., Ltd. Systems and methods of processing a rotatable assembly
CN110509125B (en) * 2019-08-30 2020-11-17 东阳市智享机械科技有限公司 Machining cutter polishing device adopting stability-increasing and surface-correcting principle
TWI715298B (en) * 2019-11-20 2021-01-01 國立臺灣師範大學 Online discharge sharpening system and method thereof
CN112828779A (en) * 2021-01-21 2021-05-25 上海橄榄精密工具有限公司 Preparation method of aluminum-based grinding wheel and grinding wheel

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180718A (en) 1984-02-29 1985-09-14 Fanuc Ltd Discharge machining power supply
WO1988006953A1 (en) * 1987-03-13 1988-09-22 The Gleason Works Rotary dressing roller and method and apparatus for dressing cup-shaped grinding wheels
JP2637473B2 (en) * 1988-06-03 1997-08-06 日立精工株式会社 Wire electric discharge machine
DE4033137C1 (en) * 1990-10-18 1991-11-14 Wendt Gmbh, 4005 Meerbusch, De
JP3286941B2 (en) * 1991-07-09 2002-05-27 株式会社日立製作所 Truing method of diamond grinding wheel
US5416289A (en) * 1994-02-14 1995-05-16 Tanaka; Dwight Method of and apparatus for increasing the productivity of an electroerosion drill
EP0909611B1 (en) * 1997-10-14 2002-01-30 Agathon A.G. Maschinenfabrik Method for grinding the surfaces of workpieces and apparatus for carrying out the method
JP2000061839A (en) * 1998-08-19 2000-02-29 Rikagaku Kenkyusho Microdischarge truing device and finely machining method using it
JP2001353648A (en) * 2000-06-16 2001-12-25 Inst Of Physical & Chemical Res Device and method of grinding elid mirror surface of large diameter work
JP2003170328A (en) * 2001-11-30 2003-06-17 Toshiba Mach Co Ltd Tool, tool holder, and machine tool
EP1459844B1 (en) * 2001-12-26 2011-08-17 Koyo Machine Industries Co., Ltd. Truing method for grinding wheels and grinding machine
WO2004069478A2 (en) * 2003-02-07 2004-08-19 Koninklijke Philips Electronics N.V. Grinding machine
EP1470894B1 (en) * 2003-04-22 2006-07-26 Agathon AG Maschinenfabrik Apparatus for dressing a cup-shaped grinding wheel
US7150101B2 (en) * 2003-12-15 2006-12-19 General Electric Company Apparatus for fabricating components
CN101001720A (en) * 2004-08-16 2007-07-18 丰田万磨株式会社 Rotary diamond dresser
CN200974191Y (en) * 2006-11-21 2007-11-14 青岛理工大学 Diamond grinding wheel dressing device
US8016644B2 (en) * 2007-07-13 2011-09-13 UNIVERSITé LAVAL Method and apparatus for micro-machining a surface

Also Published As

Publication number Publication date
CN101462243A (en) 2009-06-24
CN101462243B (en) 2013-05-29
DE502007004211D1 (en) 2010-08-05
EP2072182A1 (en) 2009-06-24
US20090163121A1 (en) 2009-06-25
JP2009184103A (en) 2009-08-20
JP5363091B2 (en) 2013-12-11
US8410390B2 (en) 2013-04-02

Similar Documents

Publication Publication Date Title
EP2072182B1 (en) Grinding machine with a device for conditioning a grinding machine and procedure for it
EP0909611B1 (en) Method for grinding the surfaces of workpieces and apparatus for carrying out the method
DE10322360A1 (en) Device for finishing flat surfaces
EP2516109A1 (en) Method for cylindrical grinding long, thin round rods and cylindrical grinding machine for carrying out the method having a trailing, self-centering steady rest
EP3271111B1 (en) Method and grinding machine for grinding groove containing workpieces
EP0481348B1 (en) Method and apparatus for dressing grinding discs
DE19840738C5 (en) Method for semifinishing or finish machining of surfaces of rotationally symmetric sections of workpieces made of hard or hardened material and rotary tool for carrying out the method
EP2607006B1 (en) Pivoting wire guide
EP0293673B1 (en) Method and apparatus for mechanical grinding of workpieces by electric conductive worktools
DE102004013031A1 (en) Method and machine for producing a roll
DE10042613A1 (en) Electrolysis dressing for honing grindstone, involves impressing preset voltage between grinding stone, separated from grindstone processing surface and electrode with simultaneously supply of electroconductive fluid
DE202018105343U1 (en) Device for dressing a honing tool and equipped with the device processing machine, honing stone and honing tool
DE102017110196B4 (en) Process and grinding and eroding machine for machining a workpiece
DE102018006033B4 (en) Device and method for machining a workpiece, in particular a workpiece with cutting edges, by means of a grinding or eroding tool
DE60122901T2 (en) CONTACT DISCHARGE TESTING AND ALIGNMENT METHOD AND DEVICE
DE912057C (en) Method and device for successive sharpening and fine grinding or lapping of turning tools or other cutting tools
DE2336705B2 (en) INTERNAL GRINDING PROCESS
EP1470894B1 (en) Apparatus for dressing a cup-shaped grinding wheel
DE102017001601B4 (en) Thermal coating tool
DE1113388B (en) Method for dressing a grinding tool
EP3852972A1 (en) Method for dressing a honing tool, device for applying the method and machining unit equipped with the device, honing strip and honing tool
EP1475186B1 (en) Method and apparatus for abrasively working surfaces of revolution
DE102009008811B4 (en) Conditioning apparatus for conditioning a grinding wheel and method for conditioning a grinding wheel
DE102015121316A1 (en) Power transmission for electroerosive dressing
DE202020004003U1 (en) Machine tool for laser conditioning of grinding tools regardless of their specification

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20091012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): CH DE LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REF Corresponds to:

Ref document number: 502007004211

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AGATHON AG MASCHINENFABRIK

Free format text: AGATHON AG MASCHINENFABRIK# #4503 SOLOTHURN (CH) -TRANSFER TO- AGATHON AG MASCHINENFABRIK# #4503 SOLOTHURN (CH)

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004211

Country of ref document: DE

Effective date: 20110323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221212

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 17